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Figure 1: The reflectance field of a glass full of gummy bears is capturedusing two coaxial projector/camera pairs placed 120◦ apart. (a)
is the result of synthetically relighting the scene from thefront projector, which is coaxial with the presented view, with a high resolution
“SIGGRAPH” matte. Note that due to their sub-surface scattering property, even a single beam of light that falls on a gummy bear illuminates
it completely. In (b) we simulate homogeneous backlightingfrom the second projector. (c) combines (a) and (b). For validation, a ground-
truth image (d) was captured by loading the same projector patterns into the real projectors. Our approach is able to faithfully capture and
reconstruct the complex light transport in this scene.

Abstract

We present a novel technique called symmetric photography to cap-
ture real world reflectance fields. The technique models the 8D re-
flectance field as a transport matrix between the 4D incident light
field and the 4D exitant light field. It is a challenging task toac-
quire a full transport matrix due to its sheer size. We observe that
the transport matrix is data-sparse and symmetric. This symmetry
enables us to measure the light transport from two sides simultane-
ously, from the illumination directions and the view directions. This
provides the basis for our acquisition algorithm, which exploits
the data-sparseness in the matrix, resulting in tremendousspeed-up
during acquisition. We introduce the use of hierarchical tensors as
the underlying data structure to represent data-sparseness by local
rank-1 factorizations of the transport matrix. Besides providing an
efficient representation for acquisition and storage, it enables fast
rendering of images from the captured transport matrix. Ourpro-
totype acquisition system consists of an array of coaxial projectors
and mirrors. We demonstrate the effectiveness of our systemwith
scenes rendered from reflectance fields that were captured byour
system. In these renderings we can change the viewpoint freely as
well as relight using arbitrary incident light fields.
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1 Introduction

The most complete image-based description of a scene for com-
puter graphics applications is its 8D reflectance field [Debevec et al.
2000]. When available, a reflectance field can be used to render im-
ages of the scene from any viewpoint under arbitrary lighting. The
resulting images capture all global illumination effects such as dif-
fuse inter-reflections, shadows, caustics and sub-surfacescattering
without the need for an explicit physical simulation.

The 8D reflectance field can also be described as a matrix that de-
scribes the transfer of energy between a bundle of incoming rays
(the illumination) and a bundle of outgoing rays (the view) in a
scene, each of which are 4D. Viewing and illuminating with light
fields of 10 view positions and a resolution of 100× 100 in each
image require a transport matrix containing about 1010 entries. If
constructed by measuring the transport coefficients between every
pair of incoming and outgoing light rays, it could take days to com-
pute, making it intractable.

This paper introducessymmetric photography - a technique for ac-
quiring 8D reflectance fields efficiently. It relies on two keyob-
servations. First, the reflectance field is data-sparse in spite of its
high dimensionality. Second, the transport matrix is symmetric,
due to Helmholtz reciprocity. This symmetry enables simultane-
ous measurements for both dimensions of the transport matrix. We



use these measurements to develop a hierarchical acquisition algo-
rithm that can exploit the data-sparseness. To facilitate this, we
have built a symmetrical capture setup, which consists of a coax-
ial array of projectors and cameras. In addition, we introduce the
use of hierarchical tensors as an underlying data structureto repre-
sent reflectance fields. The hierarchical tensor representation turns
out to be a natural data structure for the acquisition algorithm and
provides compact factorized representation for storing a data-sparse
transport matrix. Further, hierarchical tensors provide fast compu-
tation during rendering.

The rest of the paper is organized as follows. Section 2 presents a
brief survey of prior research in the area. We explain the concept of
data-sparseness in a matrix in Section 3 and contrast it withsparse-
ness and smoothness. This is followed by an explanation of the
data-sparseness and symmetry of the transport matrix in Section 4.
In Section 5 we describe our complete acquisition scheme. Experi-
mental results follow in Section 6. We conclude and describesome
ideas for future work in Section 7.

2 Related Work

The measurement of reflectance fields is an active area of research
in computer graphics. However, most of this research has focused
on capturing various lower dimensional slices of the reflectance
field. For instance, if the illumination is fixed and the viewer al-
lowed to move, the appearance of the scene as a function of out-
going ray position and direction is a 4D slice of the reflectance
field. This is also called the (exitant) light field [Levoy andHan-
rahan 1996] or the lumigraph [Gortler et al. 1996]. By extracting
appropriate 2D slices of the light field, one can virtually flyaround
a scene but the illumination cannot be changed. If the viewpoint is
fixed and the illumination is provided by a set of point light sources,
one obtains another 4D slice of 8D reflectance field. Various re-
searchers [Debevec et al. 2000; Malzbender et al. 2001; Hawkins
et al. 2005] have acquired such data sets where the captured images
can be combined using a weighted sum to obtain re-lit images from
a fixed viewpoint only. Since point light sources radiate light in
all directions, it is impossible to cast sharp shadows onto the scene
using a spatially varying illumination pattern with this technique.

If the illumination is provided by an array of video projectors and
the scene is captured as illuminated by each pixel of each projector,
but still as seen from a single viewpoint, then one obtains a 6D
slice of 8D reflectance field. Masselus et al. [2003] capture such
data sets using a single moving projector. More recently, Sen et
al. [2005] have exploited Helmholtz reciprocity to improveon both
the resolution and capture times of these data sets in their work
on dual photography. With such a data set it is possible to relight
the scene with arbitrary 4D incident light fields, but the viewpoint
cannot be changed. Goesele et al. [2004] use a scanning laser, a
turntable and a moving camera to capture a reflectance field for the
case of translucent objects under a diffuse sub-surface scattering
assumption. Although one can view the object from any position
and relight it with arbitrary light fields, the captured dataset is still
essentially 4D because of their assumption. All these workscapture
some lower dimensional subset of the 8D reflectance field. A full
8D reflectance field has never been acquired before.

Hierarchical data structures have been previously used forrepre-
senting reflectance fields. These representations provide greater ef-
ficiency both in terms of storage and capture time. A typical setup
for capturing reflectance fields consists of a scene under controlled
illumination, as imaged by one or more cameras. Peers and Dutré
[2003] illuminate the scene with wavelet patterns in order to capture
environment mattes (a 4D slice of the reflectance field). A feedback

loop determines the next pattern to use based on knowledge ofpre-
viously recorded photographs. The stopping criteria is based on the
error of the current approximation. Although their scheme adapts
to the scene content, it does not try to parallelize the capture pro-
cess. Matusik et al. [2004] use a kd-tree based subdivision structure
to represent environment mattes. They express environmentmatte
extraction as an optimization problem. Their algorithm progres-
sively refines the approximation of the environment matte with an
increasing number of training images taken under various illumina-
tion conditions. However, the choice of their patterns is indepen-
dent of the scene content. Sen et al. [2005] also use a hierarchical
scheme to capture 6D slices of the reflectance field. Their illumina-
tion patterns adapt to the scene content, and the acquisition system
tries to parallelize the capture process depending on the sparseness
of the transport matrix. Their technique reduces to scanning if the
transport matrix is dense, e.g. in case of scenes with various dif-
fuse bounces. We observe that the light transport in these cases is
data-sparse. Using the symmetry of the transport matrix to exploit
data-sparseness, we are able to capture full 8D reflectance fields in
reasonable time.

3 Sparseness, Smoothness and

Data-sparseness

To efficiently store large matrices, sparseness and smoothness are
two ideas that are typically exploited. But the notion of data-
sparseness is more powerful than these. A sparse matrix has a
small number of non-zero elements in it and hence can be repre-
sented compactly. A data-sparse matrix on the other hand canhave
a lot of non-zero elements but the actual information content in the
matrix is small enough that it can still be expressed compactly. A
simple example will help understand this concept better. Consider
taking the cross product of two vectors. Although the resulting ma-
trix (which is rank-1 by construction) could be non-sparse,we only
need two vectors to represent the contents of the entire matrix. Such
matrices are data-sparse. More generally, any matrix in which a
significant number of sub-blocks can have a low-rank representa-
tion is data-sparse. Note that a low-rank sub-block of a matrix need
not be smooth and may contain high frequencies. A frequency or
wavelet-based technique would be ineffective in compressing this
block. Therefore, the concept of data-sparseness is more general
and powerful than sparseness or smoothness of the matrix.

Sparseness in light transport has been exploited to accelerate acqui-
sition times in the work of Sen at al. [Sen et al. 2005]. Ramamoor-
thi and Hanrahan [2001] analyze the smoothness in BRDFs and use
it for efficient rendering and compression. A complete frequency
space analysis of light transport has been presented by Durand et
al. [Durand et al. 2005]. The idea of exploiting data-sparseness
for factorizing high dimensional datasets into low-rank approxima-
tions has been investigated in the context of BRDFs [Kautz and Mc-
Cool 1999; McCool et al. 2001; Latta and Kolb 2002] and also for
light fields and reflectance fields [Vasilescu and Terzopoulos 2004;
Wang et al. 2005]. We tie in the factorization with a hierarchical
subdivision scheme (see section 5). This hierarchical factorization
approach allows us to exploit the data-sparseness locally.

4 Properties of Light Transport

Our acquisition scheme is based on two key observations about
light transport in a scene. We observe that the transport matrix is
typically data-sparse and is always symmetric. These observations
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Figure 2: Understanding the transport matrix. To explain the intrinsic structure of reflectance fields we capture the transport matrix for
4 real scenes shown in row (a) with a coaxial projector/camera pair. The scenes in different columns are: (I) a diffuse textured plane, (II)
two diffuse white planes facing each other at an angle, (III)a diffuse white plane facing a diffuse textured plane at an angle, and (IV) two
diffuse textured planes facing each other at an angle. Row (b) shows the images rendered from the captured transport matrices under floodlit
illumination. A 2D slice of the transport matrix for each configuration is shown in row (c). This slice describes the lighttransport between
every pair of rays that hit the brightened line in row (b). Note that the transport matrix is symmetric in all 4 cases. Since(I) is a flat diffuse
plane, there are no secondary bounces and the matrix is diagonal. In (II), (III) and (IV) the diagonal corresponds to the first bounce light and
is therefore much brighter than the rest of the matrix. The top-right and bottom-left sub-blocks describe the diffuse-diffuse light transport
from pixels on one plane to the other. Note that this is smoothly varying for (II). In case of (III) and (IV), the textured surface introduces
high frequencies but the sub-blocks describing the secondary bounce light transport are still data-sparse and can be represented using rank-1
factors. The top-left and bottom-right sub-blocks correspond to the energy from 3rd-order bounces in our scenes. Because this energy is
around the noise threshold in our measurements we get noisy readings for these sub-blocks. Row (d) is a visualization of the level in the
hierarchy when a block is classified as rank-1. White blocks are leaf nodes, while darker shades of gray progressively represent lower levels
in the hierarchy. Finally, row (e) shows the result of relighting the transport matrix with a vertical bar. Note the diffuse glow on the right
plane in (II), (III) and (IV). Since the left plane is textured in (IV) the diffuse glow is dimmer than in (III).



form the basis of our acquisition algorithm and guide the design of
our acquisition setup.

4.1 Data-Sparseness

The flow of light in a scene can be described by a light field.
Light fields, which were introduced in the seminal work of Gershun
[1936], are used to describe the radiance at each pointx and in each
directionω in a scene. This is a 5D function which we denote by
L̃(x,ω). Under this paradigm, the appearance of a scene can be
completely described by an outgoing radiance distributionfunction
L̃out(x,ω). Similarly, the illumination incident on the scene can be
described by an incoming radiance distribution functionL̃in(x,ω).
The relationship betweeñLin(x,ω) andL̃out(x,ω) can be expressed
by an integral equation, the well known rendering equation [Kajiya
1986]:

L̃out(x,ω) = L̃in(x,ω)+
∫

V

∫

Ω
K(x,ω;x′,ω ′)L̃out(x′,ω ′)dx′dω ′

(1)
The functionK(x,ω;x′,ω ′) defines the proportion of irradiance
from (x′,ω ′) that gets transported as radiance to(x,ω). It is a func-
tion of the BSSRDF, the relative visibility of(x′,ω ′) and (x,ω)
and foreshortening and light attenuation effects. Eq. (1) can be
expressed in discrete form as:

L̃out [i] = L̃ in[i]+∑
j

K [i, j]L̃out [ j] (2)

whereL̃out andL̃ in are discrete representations of outgoing and in-
coming light fields respectively. We can rewrite eq. (2) as a matrix
equation:

L̃out = L̃ in +KL̃out (3)

Eq. (3) can be directly solved [Kajiya 1986] to yield:

L̃out = (I −K)−1L̃ in (4)

The matrixT̃ = (I −K)−1 describes the complete light transport
between the 5D incoming and outgoing light fields as a linear op-
erator1. Heckbert [1991] uses a similar matrix in the context of ra-
diosity problems and shows that such matrices are not sparse. This
is also observed by Börm et al. [2003] in the context of linear oper-
ators arising from an integral equation such as eq. (1). Theyshow
that even though the kernelK might be sparse, the resulting ma-
trix (I −K)−1 is not. But it is data-sparse. In global illumination
computations the kernel is sparse because of occlusions. But due to
multiple scattering events one can observe light transportbetween
any pair of points in the scene, resulting in a denseT̃. We observe
that the indirect bounces affect large portions of the scenesimi-
larly. Therefore, large portions of the transport matrix, e.g. those
resulting from inter-reflections of diffuse and glossy surfaces, are
data-sparse. One can exploit the data-sparseness by using local
low-rank approximations for sub-blocks ofT̃. We choose a rank-1
approximation.

Figure 2 illustrates the data-sparseness for a few example transport
matrices that we have measured and also demonstrates the local
rank-1 approximation. To gain some intuition, let us look atthe
light transport between two homogeneous planar patches. The light

1Note that our derivation is similar to that of Seitz et al. [2005], but they
only derive the formula for light transport between the firstbounce 4D light
field and outgoing 4D light field whereas our derivation is forcomplete 5D
radiance transfer.

transport between the two is smooth and can be easily factorized.
It can be seen in the top-right and bottom-left sub-blocks ofthe
transport matrix for scene (II). Even if the surfaces are textured, it
only results in appropriate scaling of either the columns orrows of
the transport matrix as shown in (III) and (IV). This will notchange
the factorization. If a blocker was present between the two patches,
it will introduce additional diagonal in the matrix sub-blocks. We
can still handle it by subdividing the blocks and factorizing at a
finer level as explained in section 5.

4.2 Symmetry of the Transport Matrix

Capturing full transport matrix is a daunting task. However, T̃ is
highly redundant, since the radiance along a line is constant unless
the line is blocked. So, if one is willing to stay outside the convex
hull of the scene to view it or to illuminate it, the 5D representation
of the light field can be reduced to 4D [Levoy and Hanrahan 1996;
Gortler et al. 1996; Masselus et al. 2003]. We will be workingwith
this representation for the rest of the paper. Let us represent the 4D
incoming light field byL in(θ ) and the 4D outgoing light field by
Lout(θ ) whereθ parameterizes the space of all possible incoming
or outgoing directions on a sphere [Masselus et al. 2003]. The light
transport can then be described as:

Lout = TL in (5)

T[i, j] represents the amount of light received along outgoing direc-
tion θi when unit radiance is emitted along incoming directionθ j.
Helmholtz reciprocity [von Helmholtz 1856; Rayleigh 1900]states
that the light transport betweenθi andθ j is equal in both directions,
i.e. T[i, j] = T[ j, i]. Therefore,T is asymmetric matrix. Also, note
that since we are looking at a subset of rays (4D from 5D),T is just
a sub-block of̃T. Therefore,T is also data-sparse.

We will use the two properties,data-sparseness andsymmetry, to
develop our method for acquiringT in the next section.

5 Data Acquisition

In order to measureT, we use projectors to provide the incom-
ing light field and cameras to measure the outgoing light field.
Thus, the fullT matrix can be extremely large, depending on the
number of pixels in our acquisition hardware. A naive acquisition
scheme would involve scanning through individual projector pixels
and concatenating the captured camera images to constructT. This
could take days or even months to complete. Therefore, to achieve
faster acquisition, we would like to illuminate multiple projector
pixels at the same time. If we do this, the captured camera image
would be the sum of columns in the transport matrix that corre-
spond to illuminated projector pixels. Because of the symmetry
of the transport matrix, this would also be the sum of correspond-
ing rows in the matrix. We can use this to exploit data-sparseness
in the matrix. Consider a sub-block of the matrix that can be ap-
proximated by a rank-1 factorization. By just shining two projector
patterns we can capture images such that one provides the column
sum and the other provides the row sum of this sub-block. After
appropriate normalization of these two measurements we directly
get a rank-1 factorization for this sub-block. Thus the whole sub-
block can be constructed using just two illumination patterns. This
is the key idea behind our algorithm. The algorithm tries to find
sub-blocks inT that can be represented as a rank-1 approximation
by a hierarchical subdivision strategy. For an effective hierarchical
acquisition we need an efficient data structure to representT. We
will describe our data structure now.



5.1 Hierarchical Tensors for Representing T

We introduce a new data structure calledhierarchical tensors to
represent light transport. Hierarchical tensors are a generalization
of hierarchical matrices (orH -matrices), which have been intro-
duced by Hackbush [1999] in the applied mathematics community
to represent data-sparse matrices. The key idea behindH -matrices
is that a data-sparse matrix can be represented by an adaptive sub-
division structure and a low-rank approximation for each node. At
each level of the hierarchy, sub-blocks in the matrix are subdivided
into 4 children (as in a quadtree). If a sub-block at any levelin the
tree can be represented by a low-rank approximation, then itis not
subdivided any further. Thus, the leaf nodes in the tree contain low-
rank approximation for the corresponding sub-block, whichreduces
to just a scalar value at the finest level in the hierarchy.

Consider the 4D reflectance field that describes the light transport
for a single projector/camera pair. We have a 2D image representing
the illumination pattern and a resulting 2D image captured by the
camera. The connecting light transport can therefore be represented
by a 4th-order tensor. One can work by flattening out the 2D image
into a vector but that would destroy the spatial coherency present in
a 2D image [Wang et al. 2005]. To preserve coherency we represent
the light transport by a 4th-order hierarchical tensor. Instead of 4,
a node in the hierarchical tensor is divided into 16 childrenat each
level of the hierarchy. Thus, we call the hierarchical representation
for a 4th-order tensor, asedectree2. Additionally, we use a rank-1
approximation for representing data-sparseness in the leaf nodes of
the hierarchical tensor. This means that a leaf node is represented
by a tensor product of two 2D images, one from the camera side
and the other from the projector side.

5.2 Hierarchical Acquisition Scheme

Our acquisition algorithm follows the structure of the hierarchical
tensor described in the previous section. At each level of the hi-
erarchy we illuminate the scene with a few projector patterns. We
use the captured images to decide which nodes of the tensor inthe
previous level of hierarchy are rank-1. Once a node has been deter-
mined to be rank-1, we do not subdivide it any further as its entries
are known. The nodes which fail the rank-1 test are subdivided and
scheduled for investigation during the next iteration. Thewhole
process is repeated until we reach the pixel level. We initiate the
acquisition by illuminating with a floodlit projector image. The
captured image provides a possible rank-1 factorization ofthe root
node of the hierarchical tensor. We schedule this node for investi-
gation in the first iteration of the algorithm.

The first step in the algorithm is to decide what illuminationpatterns
to use. At each level in the hierarchy, we start off with a listof tensor
nodes that need to be investigated. We divide each tensor node
into 16 children and the 8 blocks in the projector corresponding to
this subdivision are accumulated in a listB = {B1,B2, ...,Bn}. In
order to speed-up our acquisition, we need to minimize the number
of patterns we use. To achieve this, our algorithm determines the
set of blocks which can be illuminated in the same pattern. We
can only illuminate two blocksBi and B j in parallel if the light
transport between them has been measured at a previous levelin the
hierarchy. This is because we can use the measured light transport
to subtract the contribution ofBi to B j andB j to Bi from the camera
images obtained upon illuminating with the pattern.

Two blocksBi andB j cannot be illuminated in parallel if the light
transport between them has not been measured at a previous level

2Derived fromsedecim, Latin equivalent of 16.

of the hierarchy. This is because if bothBi andB j are illuminated,
we would not only measure the contribution fromB j to Bi but also
the contribution ofBi to itself. The same holds for blockB j. There-
fore, for all possible block pairs for which the light transport has
not been resolved yet there is a direct conflict and we generate a
conflict setC = {(Bi,B j) : Bi,B j ∈ B}. Given these two sets, we
define an undirected graphG = (B,C), whereB is the set of ver-
tices in the graph andC is the set of edges. Now let us look at
two blocksBp andBq which do not have a direct conflict with each
other and hence do not have an edge between them in the graph.
If both these blocks have a direct conflict with a common block
Br, we still cannot illuminate them in parallel. This is because in
the measurement for blockBr we will receive contributions from
both Bp and Bq, thereby causing an indirect conflict betweenBp
andBq. Such blocks correspond to vertices at a distance two from
each other in our graphG. In order to capture these conflicts as
direct edges in a graph, we construct another graphG2 which is
the square of graphG [Harary 2001]. The square of a graph con-
tains an edge between any two vertices which are at most distance
two away from each other in the original graph. Thus, in the graph
G2, any two vertices which are not connected can be scheduled to-
gether. We use a graph coloring algorithm onG2 to obtain conflict
free subsets ofB which can be illuminated in parallel. The obtained
camera images are then corrected for intra-block light transport due
to blocks which are illuminated in the same pattern as described in
the previous paragraph.

In the next step, we use these measurements to test if the tensor
nodes in the previous level of the hierarchy can be factorized us-
ing rank-1 approximation. We have a current rank-1 approximation
for each node from the previous level in the hierarchy. The cam-
era images corresponding to 8 projector blocks of a node are used
as test cases to validate the current approximation. This isdone
by rendering estimate images for the 8 projector blocks using the
current rank-1 approximation. The estimated images are compared
against the corresponding camera images and an RMS error is cal-
culated for the node. A low RMS error indicates our estimatesare
as good as our measurements and we declare the node as rank-1
and stop any further subdivision on this node. If on the otherhand
the RMS error is high, it is subdivided into 16 children. The 8cam-
era images are used to provide rank-1 estimates for the childnodes.
These nodes are scheduled for investigation in the next iteration.

A tensor node containing just a scalar value is trivially rank-1.
Therefore, the whole process terminates when the size of thepro-
jector block reduces to a single pixel. Upon finishing, the scheme
directly returns the hierarchical tensor for the reflectance field of
the scene.

5.3 Setup and Pre-processing

In order to experimentally validate our ideas we need an acquisi-
tion system that is capable of simultaneously emitting and captur-
ing along each ray in the light field. This suggests having a coaxial
array of cameras and projectors. Figure 3 shows the schematic of
such a setup. Our actual physical implementation is built using
a single projector, a single camera, a beam-splitter and an array of
planar mirrors. The projector and the camera are mounted coaxially
using the beam splitter on an optical bench as shown in Figure4 and
the mirror array divides the projector/camera pixels into 16 coaxial
pairs. Once the optical system has been mounted it needs to becali-
brated. First, the center of projection of the camera and projector is
aligned. The next task is to find the per pixel mapping betweenthe
projector and camera pixels. We use a calibration scheme similar to
that used by Han and Perlin [2003] and Levoy et al. [2004] in their
setup to find this mapping.
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Figure 3: Schematic of symmetric photography setup.A coaxial
array of projectors and cameras provides an ideal setup for symmet-
ric photography. The projector array illuminates the scenewith an
incoming light field. Since the setup is coaxial, the camera array
measures the corresponding outgoing light field.

The dynamic range of the scenes that we capture can be very high.
This is because the light transport contains not only the high direct
bounce effects but also very low secondary bounce effects. In or-
der to capture this range completely, we take multiple images of the
scene and combine them into a single high dynamic range image
[Debevec and Malik 1997; Robertson et al. 1999]. Additionally,
before combining the images for HDR, we subtract the black level
of the projector from our images. This accounts for the straylight
coming from the projector even when it is shining a completely
black image. Also, upon illuminating the scene with individual pro-
jector pixels, we notice that the captured images appear darker and
have a significantly reduced contrast. This is because an individual
projector pixel would be illuminating very few pixels on theBayer
mosaiced sensor of the camera, leading to an error upon interpola-
tion during demosaicing. This problem is also noticed by Senet al.
[2005]. To remove these artifacts, we employ a solution similar to
theirs, i.e. the final images are renormalized by forcing thecaptured
images to sum up to the floodlit image.

6 Results

We capture reflectance fields of several scenes. We will explain
them now. For reference, Table 1 provides statistics (size,time
and number of patterns required for acquisition) for each ofthese
datasets.

In Figure 2, we present the results of our measurement for four
simple scenes consisting of planes. This experiment has been de-
signed to elucidate the structure of theT matrix. A coaxial pro-
jector/camera pair is directly aimed at the scene in this case. The
image resolution is 310× 350 pixels. Note the storage, time and
number of patterns required for the four scenes (listed in Table 1).
A brute-force scanning to acquire theseT matrices would take at
least 100 times more images. Also, since the energy in the light af-
ter an indirect bounce is low, the camera would have to be exposed
for longer time interval to achieve good SNR during brute-force
scanning. On the other hand in our scheme, the indirect bounce
light transport is resolved earlier in the hierarchy, see rows (c) and
(d) in Figure 2. At lower levels of the hierarchy, we are illumi-
nating with bigger projector blocks (and hence throwing more light
into the scene than just from a single pixel), therefore we are able to

Figure 4: Coaxial setup for capturing 8D reflectance fields.A
pattern loaded into projector atA illuminates a 4×4 array of planar
mirrors atB. This provides us with 16 virtual projectors which
illuminate our scene atC. The light that returns from the scene is
diverted by a beam-splitter atD towards a camera atE. Any stray
light reflected from the beam-splitter lands in a light trap at F . The
camera used is an Imperx IPX-1M48-L (984×1000 pixels) and the
projector is a Mitsubishi XD60U (1024×768 pixels). The setup is
computer controlled, and we capture HDR images every 2 seconds.

get good SNR even with small exposure times. Also, note that the
high frequency of the textures does not affect the data-sparseness of
reflectance fields. The hierarchical subdivision follows almost the
same strategy in all four cases as visualized in row (d). In row (e),
we show the results of relighting the scene with a vertical bar. The
smooth glow from one plane to the other in column (II), (III) and
(IV) shows that we have measured the indirect bounce correctly.

Figure 1 demonstrates that our technique works well for acquir-
ing the reflectance fields of highly sub-surface scattering objects.
The image (240×340 pixels) reconstructed from relighting with a
spatially varying illumination pattern (see Figure 1(c)) is validated
against the ground-truth image (see Figure 1(d)). We also demon-
strate the result of reconstructing at different levels of the hierar-
chical tensor for this scene in Figure 8. This figure also explains
the difference between our hierarchical tensor representation and a
wavelet based representation.

Figure 5 describes the result of an 8D reflectance field acquired us-
ing our setup. The captured reflectance field can be used to view
from any position (see Figure 5(b)) and also to relight from any po-
sition (see Figure 5(a)). The resolution of the reflectance field for
this example is about 3×3×130×200×3×3×130×200. The
total size of this dataset would be 610 GB if three 32-bit floats were
used for each entry in the transport matrix. Our hierarchical tensor
representation compresses it to 1.47 GB. A brute force approach
would require 233,657 images to capture it. Our algorithm only
needs 3,368 HDR images and takes around 8 hours to complete. In
our current implementation though, the processing time is asignifi-
cant amount when compared against the actual image capture time.
We believe that the acquisition times can be reduced even further
by implementing a parallelized version of our algorithm.

We can also relight the scenes with arbitrary illumination patterns.
In Figure 6 we illuminate the scene with two spotlights. The spot-
lights have a spatially varying illumination distributionthat falls off
gradually as one moves radially outwards from their center.The
specular highlights, caustics and shadows indicate that light trans-
port paths were correctly measured during our acquisition.



Brute-force Symmetric photography Number of leaf nodes (rank-1 blocks) at different levels
SCENE # PATTERNS SIZE TIME # PATTERNS 1 2 3 4 5 6 7 8 9 10

(MB) (min)
Fig. 1 111,354 236 103 2,209 16 64 256 1168 5360 16736 54144 119152 116096 610208
Fig. 2(I) 108,500 255 44 809 12 45 237 826 3327 7512 27683 104364 124551 4176784
Fig. 2(II) 108,500 371 70 1,085 12 42 276 1004 2619 9436 36560 127736 228335 6048016
Fig. 2(III) 108,500 334 65 1,081 12 44 244 966 3279 8882 33187 118112 176948 4930752
Fig. 2(IV) 108,500 274 46 841 12 40 312 910 3277 7392 26603 97660 135383 3327632
Fig. 5 233,657 1,470 484 3,368 0 175 639 7979 32080 109197 330760 1109974 2096115 29551312
Fig. 6 133,004 825 227 2,853 8 86 419 3117 11664 40097 146703 529257 855441 11128304

Table 1: Table of relevant data (size, time and number of patterns) for different example scenes captured using our technique. Note that our
algorithm requires about 2 orders of magnitude fewer patterns than the brute-force scan. The number of nodes that are represented as rank-1
factors at different levels in the hierarchical tensor are also presented. The greater the number of rank-1 nodes at lower levels of the hierarchy,
the faster the acquisition and the smaller the size of our dataset.

(a) Fixed view point / Different light source positions (b) Fixed light source position / Different view points

Figure 5: 8D reflectance field of an example scene.This reflectance field was captured using the setup describedin Figure 4. A 3×3 grid
of mirrors was used. In (a) we see images rendered from the viewpoint at the center of the grid with illumination coming from 9 different
locations on the grid. Note that the shadows move appropriately depending upon the direction of incident light. (b) shows the images rendered
from 9 different viewpoints on the grid with the illumination coming from the center. In this case one can notice the change in parallax with
the viewpoint.

7 Discussion and Conclusions

In this paper we have presented a framework for acquiring 8D re-
flectance fields. The method is based on the observation that re-
flectance fields are data-sparse. We exploit the data-sparseness
to represent the transport matrix by local rank-1 approximations.
The symmetry of the light transport allows us to measure these lo-
cal rank-1 factorizations efficiently as we can obtain measurements
corresponding to both rows and columns of the transport matrix si-
multaneously. We have also introduced a new data structure called
hierarchical tensor that can represent these local low-rank approx-

imations. Based on these observations we have developed a hi-
erarchical acquisition algorithm which looks for regions of data-
sparseness in the matrix. Once a data-sparse region has beenmea-
sured we can use it to parallelize our acquisition resultingin tremen-
dous speedup.

There are limitations in our setup (Figure 4) that can corrupt our
measurements. To get a coaxial setup we use a beam-splitter.Al-
though we use a 1mm thin plate beam-splitter, it produces slight
double image inherent to beam-splitters. This along with the light
reflected back off the light trap reduces the SNR in our measure-
ments. The symmetry of our approach requires projector and cam-



Figure 6: Relighting with 2
spot lights. Image rendered
from a reflectance field cap-
tured by our system. The egg
and the wooden toy are lit
from 2 spotlights (with spa-
tially varying intensity distri-
bution), one shining from the
right and the other from left.
Another faint floodlight adds
to the overall brightness of
the scene. Note that the caus-
tics from the glass, specular-
ities on the egg, and the toy,
and shadows are all faithfully
reconstructed.

era to be pixel aligned. Any slight misalignment adds to the mea-
surement noise. Cameras and projectors can also have different op-
tical properties. This can introduce non-symmetries such as lens
flare, resulting in artifacts in our reconstructed images (see Fig-
ure 7). We hope that future advances in hardware technology would
result in symmetric projector/cameracombo devices that can avoid
the need for beam-splitters and calibration.

In order to keep our implementation simple, we use a 4th orderhi-
erarchical tensor. This means that we are flattening out 2 of the
4 dimensions of the light field, thereby not exploiting the full co-
herency in the data. An implementation based on 8th order tensor
should be able to exploit it and make the acquisition more efficient.

Since we use a 4×4 array of planar mirrors, the resolution of our in-
coming and outgoing light fields is low. Therefore, the reflectance
fields that we can capture are sparse. Techniques have been pro-
posed for interpolating slices of the reflectance fields before, both
from the view direction [Chen and Williams 1993] and from the
illumination direction [Chen and Lensch 2005] but the problem of
interpolating reflectance fields is still open. By applying similar
flow based techniques to the transport matrix, one should be able
to create more densely sampled reflectance fields. One can also
imagine directly sampling incoming and outgoing light fields more
densely by pointing the projector/camera pair at a bumpy mirrored
sheet. This will increase the number of viewpoints in the light field
but at the cost of image resolution.

Finally, although we introduce the hierarchical tensor as adata
structure for storing reflectance fields, the concept has implications
for other high dimensional datasets as well. It can be used for rep-
resenting any dataset which is data-sparse. The hierarchical rep-
resentation also has some other benefits. It provides constant time
access to the data during evaluation or rendering. At the same time
it maintains the spatial coherency in the data, making it attractive
for parallel computation.
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