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Figure 1: The reflectance field of a glass full of gummy bears is captussdg two coaxial projector/camera pairs placed°12part. (a)
is the result of synthetically relighting the scene from ftwnt projector, which is coaxial with the presented vievithwa high resolution
“SIGGRAPH” matte. Note that due to their sub-surface scattgproperty, even a single beam of light that falls on a gynbear illuminates
it completely. In (b) we simulate homogeneous backlighfiogn the second projector. (c) combines (a) and (b). Fodailon, a ground-
truth image (d) was captured by loading the same projectivenpa into the real projectors. Our approach is able tbfiaiy capture and

reconstruct the complex light transport in this scene.

Abstract

We present a novel technique called symmetric photograpbsi-
ture real world reflectance fields. The technique models Ehes8
flectance field as a transport matrix between the 4D incidght |
field and the 4D exitant light field. It is a challenging taskaio
quire a full transport matrix due to its sheer size. We olesénat
the transport matrix is data-sparse and symmetric. Thisrsstny
enables us to measure the light transport from two sideslsinas
ously, from the illumination directions and the view ditiecis. This
provides the basis for our acquisition algorithm, which leitp
the data-sparseness in the matrix, resulting in tremensjoesd-up
during acquisition. We introduce the use of hierarchicattes as
the underlying data structure to represent data-sparsdryelecal
rank-1 factorizations of the transport matrix. Besides/jating an
efficient representation for acquisition and storage, #hées fast
rendering of images from the captured transport matrix. (@ar
totype acquisition system consists of an array of coaxiajegotors
and mirrors. We demonstrate the effectiveness of our systigim

scenes rendered from reflectance fields that were capturedrby

system. In these renderings we can change the viewpoiry faise
well as relight using arbitrary incident light fields.
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1 Introduction

The most complete image-based description of a scene for com
puter graphics applications is its 8D reflectance field [ebet al.
2000]. When available, a reflectance field can be used to rémde
ages of the scene from any viewpoint under arbitrary lightihhe
resulting images capture all global illumination effeatsts as dif-
fuse inter-reflections, shadows, caustics and sub-susfeattering
without the need for an explicit physical simulation.

The 8D reflectance field can also be described as a matrix ¢hat d
scribes the transfer of energy between a bundle of inconagg r
(the illumination) and a bundle of outgoing rays (the view)a
scene, each of which are 4D. Viewing and illuminating withti
fields of 10 view positions and a resolution of 10A00 in each
image require a transport matrix containing about’léntries. If
constructed by measuring the transport coefficients betweery
pair of incoming and outgoing light rays, it could take daysom-
pute, making it intractable.

This paper introduces/mmetric photography - a technique for ac-
quiring 8D reflectance fields efficiently. It relies on two kely-
servations. First, the reflectance field is data-sparseiia epits
high dimensionality. Second, the transport matrix is syinitie
due to Helmholtz reciprocity. This symmetry enables siamsdt
ous measurements for both dimensions of the transportxméitie




use these measurements to develop a hierarchical acguialto-

rithm that can exploit the data-sparseness. To facilitaig twe

have built a symmetrical capture setup, which consists afex-c
ial array of projectors and cameras. In addition, we intoedthe

use of hierarchical tensors as an underlying data strutiuepre-

sent reflectance fields. The hierarchical tensor repreemtarns

out to be a natural data structure for the acquisition aligoriand

provides compact factorized representation for storingta-dparse
transport matrix. Further, hierarchical tensors proviakt tompu-
tation during rendering.

The rest of the paper is organized as follows. Section 2 ptese
brief survey of prior research in the area. We explain theepthof
data-sparseness in a matrix in Section 3 and contrast itspéhse-
ness and smoothness. This is followed by an explanationeof th
data-sparseness and symmetry of the transport matrix tin8et

In Section 5 we describe our complete acquisition schempeix
mental results follow in Section 6. We conclude and dessdrae
ideas for future work in Section 7.

2 Related Work

The measurement of reflectance fields is an active area @rodse
in computer graphics. However, most of this research hasstmt
on capturing various lower dimensional slices of the reflece
field. For instance, if the illumination is fixed and the vieved-

loop determines the next pattern to use based on knowledge-of
viously recorded photographs. The stopping criteria igbam the
error of the current approximation. Although their scherdepis
to the scene content, it does not try to parallelize the cagiro-
cess. Matusik et al. [2004] use a kd-tree based subdivisiaotare
to represent environment mattes. They express environmatie
extraction as an optimization problem. Their algorithmgres-
sively refines the approximation of the environment matten \&n
increasing number of training images taken under varidusniha-
tion conditions. However, the choice of their patterns dejpen-
dent of the scene content. Sen et al. [2005] also use a Higralc
scheme to capture 6D slices of the reflectance field. Themita-
tion patterns adapt to the scene content, and the acquisiggtem
tries to parallelize the capture process depending on tisespess
of the transport matrix. Their technique reduces to scanifithe
transport matrix is dense, e.g. in case of scenes with \&idfu
fuse bounces. We observe that the light transport in thesesda
data-sparse. Using the symmetry of the transport matrixptoé
data-sparseness, we are able to capture full 8D reflectaids iin
reasonable time.

3 Sparseness, Smoothness and
Data-sparseness

To efficiently store large matrices, sparseness and smesshare

lowed to move, the appearance of the scene as a function of out two ideas that are typically exploited. But the notion ofadat

going ray position and direction is a 4D slice of the reflec&an
field. This is also called the (exitant) light field [Levoy ahidn-
rahan 1996] or the lumigraph [Gortler et al. 1996]. By extirag
appropriate 2D slices of the light field, one can virtuallydiypund

a scene but the illumination cannot be changed. If the viéwip®
fixed and the illumination is provided by a set of point lightisces,
one obtains another 4D slice of 8D reflectance field. Vari@us r
searchers [Debevec et al. 2000; Malzbender et al. 2001; Hawk
et al. 2005] have acquired such data sets where the capmeagg:s
can be combined using a weighted sum to obtain re-litimages f
a fixed viewpoint only. Since point light sources radiatentign
all directions, it is impossible to cast sharp shadows dmecstene
using a spatially varying illumination pattern with thickmique.

If the illumination is provided by an array of video projergtand
the scene is captured as illuminated by each pixel of eaghqioo,
but still as seen from a single viewpoint, then one obtainda 6
slice of 8D reflectance field. Masselus et al. [2003] captuighs
data sets using a single moving projector. More recently, Se
al. [2005] have exploited Helmholtz reciprocity to imprawe both
the resolution and capture times of these data sets in thak w
on dual photography. With such a data set it is possible tghtel
the scene with arbitrary 4D incident light fields, but thewp®int
cannot be changed. Goesele et al. [2004] use a scanning daser
turntable and a moving camera to capture a reflectance fiettdo
case of translucent objects under a diffuse sub-surfadtesog
assumption. Although one can view the object from any positi
and relight it with arbitrary light fields, the captured dagt is still
essentially 4D because of their assumption. All these woaksure
some lower dimensional subset of the 8D reflectance field. llA fu
8D reflectance field has never been acquired before.

Hierarchical data structures have been previously usedefme-
senting reflectance fields. These representations provédeay ef-
ficiency both in terms of storage and capture time. A typiealis
for capturing reflectance fields consists of a scene undératiad
illumination, as imaged by one or more cameras. Peers and Dut
[2003] illuminate the scene with wavelet patterns in orderapture
environment mattes (a 4D slice of the reflectance field). Allbaek

sparseness is more powerful than these. A sparse matrix has a
small number of non-zero elements in it and hence can be-repre
sented compactly. A data-sparse matrix on the other hantiaan

a lot of non-zero elements but the actual information cadritethe
matrix is small enough that it can still be expressed coniypaét
simple example will help understand this concept bettenster
taking the cross product of two vectors. Although the résglna-

trix (which is rank-1 by construction) could be non-spaxge only
need two vectors to represent the contents of the entiréxn&tich
matrices are data-sparse. More generally, any matrix irchvhi
significant number of sub-blocks can have a low-rank reptese
tion is data-sparse. Note that a low-rank sub-block of aimag&ed

not be smooth and may contain high frequencies. A frequency o
wavelet-based technique would be ineffective in compnestiis
block. Therefore, the concept of data-sparseness is moerae
and powerful than sparseness or smoothness of the matrix.

Sparseness in light transport has been exploited to aatel@cqui-
sition times in the work of Sen at al. [Sen et al. 2005]. Ramamo
thi and Hanrahan [2001] analyze the smoothness in BRDFssad u
it for efficient rendering and compression. A complete fiegy
space analysis of light transport has been presented bynDwta
al. [Durand et al. 2005]. The idea of exploiting data-spaess
for factorizing high dimensional datasets into low-rankigxima-
tions has been investigated in the context of BRDFs [Kautiz\Mcr
Cool 1999; McCool et al. 2001; Latta and Kolb 2002] and algo fo
light fields and reflectance fields [Vasilescu and Terzopoa@04;
Wang et al. 2005]. We tie in the factorization with a hieracah
subdivision scheme (see section 5). This hierarchicabfeztion
approach allows us to exploit the data-sparseness locally.

4 Properties of Light Transport

Our acquisition scheme is based on two key observationstabou
light transport in a scene. We observe that the transpontixriat
typically data-sparse and is always symmetric. These vasens
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Figure 2: Understanding the transport matrix. To explain the intrinsic structure of reflectance fields wptaee the transport matrix for
4 real scenes shown in row (a) with a coaxial projector/canpair. The scenes in different columns are: (I) a diffuséuted plane, (II)
two diffuse white planes facing each other at an angle, dldiffuse white plane facing a diffuse textured plane at aglearand (1V) two
diffuse textured planes facing each other at an angle. Rpah{d@vs the images rendered from the captured transporicemtmder floodlit
illumination. A 2D slice of the transport matrix for each digiration is shown in row (c). This slice describes the lighhsport between
every pair of rays that hit the brightened line in row (b). &l¢hat the transport matrix is symmetric in all 4 cases. S{t)ds a flat diffuse
plane, there are no secondary bounces and the matrix isrdiado (l1), (Ill) and (IV) the diagonal corresponds to thesfibounce light and
is therefore much brighter than the rest of the matrix. Theeright and bottom-left sub-blocks describe the diffusitude light transport
from pixels on one plane to the other. Note that this is srigathrying for (Il). In case of (lll) and (IV), the textured gace introduces
high frequencies but the sub-blocks describing the seegrmaince light transport are still data-sparse and canfimesented using rank-1
factors. The top-left and bottom-right sub-blocks cormeapto the energy from 3rd-order bounces in our scenes. Bedhis energy is
around the noise threshold in our measurements we get neéslings for these sub-blocks. Row (d) is a visualizatiorheflevel in the
hierarchy when a block is classified as rank-1. White blockdeaf nodes, while darker shades of gray progressivelgesent lower levels
in the hierarchy. Finally, row (e) shows the result of retigh the transport matrix with a vertical bar. Note the dstfuglow on the right
plane in (Il), (1ll) and (1V). Since the left plane is textatén (1V) the diffuse glow is dimmer than in (ll1).



form the basis of our acquisition algorithm and guide thagiesf transport between the two is smooth and can be easily faetbri
our acquisition setup. It can be seen in the top-right and bottom-left sub-blockshef

transport matrix for scene (Il). Even if the surfaces aréuieed, it

only results in appropriate scaling of either the columnsoars of
4.1 Data-Sparseness the transport matrix as shown in (lll) and (1V). This will nchiange
the factorization. If a blocker was present between the mtolpes,
it will introduce additional diagonal in the matrix sub-bls. We
can still handle it by subdividing the blocks and factoriziat a
finer level as explained in section 5.

The flow of light in a scene can be described by a light field.
Light fields, which were introduced in the seminal work of &am
[1936], are used to describe the radiance at each pa@intl in each
directionw in a scene. This is a 5D function which we denote by
E(x,w). Under this paradigm, the appearance of a scene can be
completely described by an outgoing radiance distribufimection

Lout (X, w). Similarly, the illumination incident on the scene can be
described by an incoming radiance distribution funcﬁm(xm).

The relationship betwedn;,(x, w) andLoy (X, @) can be expressed
by an integral equation, the well known rendering equatiCegifya

4.2 Symmetry of the Transport Matrix

Capturing full transport matrix is a daunting task. Howevelis
highly redundant, since the radiance along a line is consialess
the line is blocked. So, if one is willing to stay outside tloeeex
hull of the scene to view it or to illuminate it, the 5D repretsion

1986]: of the light field can be reduced to 4D [Levoy and Hanrahan 1996
B B - _ Gortler et al. 1996; Masselus et al. 2003]. We will be workivith
Lout (X, @) = Lin(X, w) +/ / K(x, ;X' , @ )Loyt (X', ' )dx'de’ this representation for the rest of the paper. Let us repteke 4D
v/Q 1) incoming light field byLi(8) and the 4D outgoing light field by

The functionK(x, w;x’, ') defines the proportion of irradiance Lo (6) where§ parameterizes the space of all possible incoming
from (X', o) that gets transported as radiancétav). Itis a func- or outgoing directions on a s_phere [Masselus et al. 2003.light
tion of the BSSRDF, the relative visibility ofx’, /) and (x, w) transport can then be described as:

and foreshortening and light attenuation effects. Eq. €l be Lo —TL: )
expressed in discrete form as: out n

- P T[i, j] represents the amount of light received along outgoingédire
Louwli] = Lin[i] + 3 K[i, jlL owl[]] (2) tion 6 when unit radiance is emitted along incoming direct@n
J Helmholtz reciprocity [von Helmholtz 1856; Rayleigh 19G@ates
that the light transport betwedhand®; is equal in both directions,

Whe_refo_ut aanin are discrete representations of outgoing and in- i.e. T[i, j] = T|[j,i]. ThereforeT is asymmetric matrix. Also, note
coming light fields respectively. We can rewrite eq. (2) asadrix that since we are looking at a subset of rays (4D from 903, just
equation: _ ~ ~ a sub-block ofT. ThereforeT is also data-sparse.
Lout = Lin+KL 3
out = Lin+ B L ou 3 We will use the two propertiesjata-sparseness and symmetry, to
Eqg. (3) can be directly solved [Kajiya 1986] to yield: develop our method for acquiringin the next section.
Eou'( =(- K)71Ein 4)

. 5 Data Acquisition
The matrixT = (I — K)~1 describes the complete light transport
between the 5D incoming and outgoing light fields as a lingar o ) ) )
eratof. Heckbert [1991] uses a similar matrix in the context of ra- N order to measurd, we use projectors to provide the incom-

diosity problems and shows that such matrices are not spinie ing light field and cameras to measure the outgoing_light field
is also observed by Borm et al. [2003] in the context of lineaer- Thus, the fullT matrix can be extremely large, depending on the
ators arising from an integral equation such as eq. (1). Ehey number of pixels in our acquisition hardware. A naive acitjois

that even though the kern&l might be sparse, the resulting ma- Scheme would involve scanning through individual projepizels
trix (I —K)~1 is not. But it is data-sparse. In global illumination ~and concatenating the captured camera images to con$triiciis
computations the kernel is sparse because of occlusionsiugito could take days or even months to complete. Therefore, teeh
multiple scattering events one can observe light trandpetween faster acquisition, we would like to illuminate multiplegpector

any pair of points in the scene, resulting in a defisaVe observe pixels at the same time. If we do this, the captured camergéma
that the indirect bounces affect large portions of the scemi- would be the sum of columns in the transport matrix that corre

- : d to illuminated projector pixels. Because of the syimyne
larly. Therefore, large portions of the transport matrixy. e¢hose spon . :
resulting from inter-reflections of diffuse and glossy scHs, are of the transport matrix, this would also be the sum of comasp

data-sparse. One can exploit the data-sparseness by using local INg rows in the matrix. We can use this to exploit data-spase

o = in the matrix. Consider a sub-block of the matrix that can jpe a
Exgggﬁzﬁg?mmm'ons for sub-blocks ®f We choose arank-1  55yimated by a rank-1 factorization. By just shining twojpctor

patterns we can capture images such that one provides thecol

Figure 2 illustrates the data-sparseness for a few examaisgort sum and the other provides the row sum of this sub-block. rAfte
matrices that we have measured and also demonstrates #ie loc @PPropriate normalization of these two measurements veettjir

rank-1 approximation. To gain some intuition, let us lookte get a rank-1 factorization for this sub-block. Thus the vehslib-
light transport between two homogeneous planar patchesligt block can be constructed using just two illumination patgerThis
is the key idea behind our algorithm. The algorithm tries tal fi
INote that our derivation is similar to that of Seitz et al. ¢80 but they sub-blocks inT that can be represented as a rank-1 approximation
only derive the formula for light transport between the firstince 4D light by a hierarchical subdivision strategy. For an effectiverdnichical
field and outgoing 4D light field whereas our derivation isdomplete 5D acquisition we need an efficient data structure to reprebewe

radiance transfer. will describe our data structure now.



5.1 Hierarchical Tensors for Representing T

We introduce a new data structure callgi@rarchical tensors to
represent light transport. Hierarchical tensors are argdination
of hierarchical matrices (op#-matrices), which have been intro-
duced by Hackbush [1999] in the applied mathematics compuni
to represent data-sparse matrices. The key idea betfindatrices
is that a data-sparse matrix can be represented by an aelaptiv
division structure and a low-rank approximation for eachenoAt
each level of the hierarchy, sub-blocks in the matrix arelsided
into 4 children (as in a quadtree). If a sub-block at any laveéhe
tree can be represented by a low-rank approximation, themiit
subdivided any further. Thus, the leaf nodes in the treeatohbw-
rank approximation for the corresponding sub-block, wheduces
to just a scalar value at the finest level in the hierarchy.

Consider the 4D reflectance field that describes the lighsfrart
for a single projector/camera pair. We have a 2D image reptes
the illumination pattern and a resulting 2D image captungdhe
camera. The connecting light transport can therefore besepted
by a 4th-order tensor. One can work by flattening out the 2yana
into a vector but that would destroy the spatial coherenegemt in

a 2D image [Wang et al. 2005]. To preserve coherency we repres
the light transport by a 4th-order hierarchical tensortdad of 4,

a node in the hierarchical tensor is divided into 16 childrerach
level of the hierarchy. Thus, we call the hierarchical repreation
for a 4th-order tensor, sedectree?. Additionally, we use a rank-1
approximation for representing data-sparseness in tfhadekes of
the hierarchical tensor. This means that a leaf node is septed
by a tensor product of two 2D images, one from the camera side
and the other from the projector side.

5.2 Hierarchical Acquisition Scheme

Our acquisition algorithm follows the structure of the hiehical
tensor described in the previous section. At each level efhih
erarchy we illuminate the scene with a few projector patieive
use the captured images to decide which nodes of the tentie in
previous level of hierarchy are rank-1. Once a node has beten-d
mined to be rank-1, we do not subdivide it any further as itsen
are known. The nodes which fail the rank-1 test are subdilvael
scheduled for investigation during the next iteration. Twele
process is repeated until we reach the pixel level. We iritihe
acquisition by illuminating with a floodlit projector imageThe
captured image provides a possible rank-1 factorizatidh@foot
node of the hierarchical tensor. We schedule this node fesii
gation in the first iteration of the algorithm.

The first step in the algorithm is to decide what illuminatpaiterns

to use. Ateach level in the hierarchy, we start off with adigensor
nodes that need to be investigated. We divide each tens& nod
into 16 children and the 8 blocks in the projector corresjugnto

this subdivision are accumulated in a IBt= {B1,B,,...,Bn}. In
order to speed-up our acquisition, we need to minimize timetrax

of patterns we use. To achieve this, our algorithm detersnihe

set of blocks which can be illuminated in the same pattern. We
can only illuminate two block®; and B; in parallel if the light
transport between them has been measured at a previouslével
hierarchy. This is because we can use the measured liglsptretn

to subtract the contribution &; to B; andB; to Bj from the camera
images obtained upon illuminating with the pattern.

Two blocksB;j andBj cannot be illuminated in parallel if the light
transport between them has not been measured at a previelis le

2Derived fromsedecim, Latin equivalent of 16.

of the hierarchy. This is because if bdhandBj are illuminated,

we would not only measure the contribution fr@yto B; but also

the contribution oB; to itself. The same holds for blodk. There-
fore, for all possible block pairs for which the light tramsphas

not been resolved yet there is a direct conflict and we gemerat
conflict setC = {(B;j,Bj) : Bj,Bj € B}. Given these two sets, we
define an undirected grapgh = (B, C), whereB is the set of ver-
tices in the graph an€ is the set of edges. Now let us look at
two blocksB, andBg which do not have a direct conflict with each
other and hence do not have an edge between them in the graph.
If both these blocks have a direct conflict with a common block
By, we still cannot illuminate them in parallel. This is becaus

the measurement for blodg; we will receive contributions from
both Bp and By, thereby causing an indirect conflict betweg
andBg. Such blocks correspond to vertices at a distance two from
each other in our grapB. In order to capture these conflicts as
direct edges in a graph, we construct another gi@ptwhich is

the square of grap® [Harary 2001]. The square of a graph con-
tains an edge between any two vertices which are at mosndesta
two away from each other in the original graph. Thus, in trepbr
G2, any two vertices which are not connected can be scheduled to
gether. We use a graph coloring algorithm®fito obtain conflict
free subsets d8 which can be illuminated in parallel. The obtained
camera images are then corrected for intra-block lighsjart due

to blocks which are illuminated in the same pattern as desdrin

the previous paragraph.

In the next step, we use these measurements to test if ther tens
nodes in the previous level of the hierarchy can be factdrire

ing rank-1 approximation. We have a current rank-1 appraion

for each node from the previous level in the hierarchy. Tha-ca
era images corresponding to 8 projector blocks of a node sé u
as test cases to validate the current approximation. Thi®mne

by rendering estimate images for the 8 projector blocksgutie
current rank-1 approximation. The estimated images aregaosal
against the corresponding camera images and an RMS er@k is ¢
culated for the node. A low RMS error indicates our estimates

as good as our measurements and we declare the node as rank-1
and stop any further subdivision on this node. If on the ottzerd

the RMS error is high, it is subdivided into 16 children. Thea8n-
eraimages are used to provide rank-1 estimates for the mbdlds.
These nodes are scheduled for investigation in the nexstioer.

A tensor node containing just a scalar value is triviallyk-dn
Therefore, the whole process terminates when the size girthe
jector block reduces to a single pixel. Upon finishing, thieesae
directly returns the hierarchical tensor for the reflectafield of
the scene.

5.3 Setup and Pre-processing

In order to experimentally validate our ideas we need aniaqu
tion system that is capable of simultaneously emitting aaqutuor-
ing along each ray in the light field. This suggests havingaxizd
array of cameras and projectors. Figure 3 shows the schepfati
such a setup. Our actual physical implementation is buitigus
a single projector, a single camera, a beam-splitter andray af
planar mirrors. The projector and the camera are mountedaibya
using the beam splitter on an optical bench as shown in Figyarel
the mirror array divides the projector/camera pixels iriactaxial
pairs. Once the optical system has been mounted it needstdibe
brated. First, the center of projection of the camera angprar is
aligned. The next task is to find the per pixel mapping betvtben
projector and camera pixels. We use a calibration schemiasim
that used by Han and Perlin [2003] and Levoy et al. [2004] &irth
setup to find this mapping.



beamsplitter
camera
projector

Figure 3: Schematic of symmetric photography setupA coaxial
array of projectors and cameras provides an ideal setuyfiomet-
ric photography. The projector array illuminates the sositk an
incoming light field. Since the setup is coaxial, the cameraya
measures the corresponding outgoing light field.

The dynamic range of the scenes that we capture can be véry hig
This is because the light transport contains not only tha Higect
bounce effects but also very low secondary bounce effeotsr-|
der to capture this range completely, we take multiple irsarjeéhe

scene and combine them into a single high dynamic range image

[Debevec and Malik 1997; Robertson et al. 1999]. Additibnal
before combining the images for HDR, we subtract the blacélle
of the projector from our images. This accounts for the sligiyt
coming from the projector even when it is shining a compietel
black image. Also, upon illuminating the scene with indivédipro-
jector pixels, we notice that the captured images appe&edand
have a significantly reduced contrast. This is because avidndl
projector pixel would be illuminating very few pixels on tBayer
mosaiced sensor of the camera, leading to an error upompahéer
tion during demosaicing. This problem is also noticed by &eal.
[2005]. To remove these artifacts, we employ a solution Isinto
theirs, i.e. the final images are renormalized by forcingctgured
images to sum up to the floodlit image.

6 Results

We capture reflectance fields of several scenes. We will expla
them now. For reference, Table 1 provides statistics (diree
and number of patterns required for acquisition) for eacthete
datasets.

In Figure 2, we present the results of our measurement far fou
simple scenes consisting of planes. This experiment has dee
signed to elucidate the structure of thiematrix. A coaxial pro-
jector/camera pair is directly aimed at the scene in thie.cd$e
image resolution is 31 350 pixels. Note the storage, time and
number of patterns required for the four scenes (listed bieTa).

A brute-force scanning to acquire theBematrices would take at
least 100 times more images. Also, since the energy in thedig

ter an indirect bounce is low, the camera would have to besago
for longer time interval to achieve good SNR during bruteséo
scanning. On the other hand in our scheme, the indirect lgounc
light transport is resolved earlier in the hierarchy, seesr¢c) and

(d) in Figure 2. At lower levels of the hierarchy, we are illum
nating with bigger projector blocks (and hence throwing enaght
into the scene than just from a single pixel), therefore veeate to

Figure 4: Coaxial setup for capturing 8D reflectance fields.A
pattern loaded into projector Atilluminates a 4x 4 array of planar
mirrors atB. This provides us with 16 virtual projectors which
illuminate our scene &. The light that returns from the scene is
diverted by a beam-splitter &t towards a camera &. Any stray
light reflected from the beam-splitter lands in a light tragaThe
camera used is an Imperx IPX-1M48-L (984.000 pixels) and the
projector is a Mitsubishi XD60U (1024 768 pixels). The setup is
computer controlled, and we capture HDR images every 2 siscon

get good SNR even with small exposure times. Also, note tiat t
high frequency of the textures does not affect the datasspass of
reflectance fields. The hierarchical subdivision follownast the
same strategy in all four cases as visualized in row (d). W (&),
we show the results of relighting the scene with a vertical bae
smooth glow from one plane to the other in column (ll), (lljca
(IV) shows that we have measured the indirect bounce céyrect

Figure 1 demonstrates that our technique works well for imequ
ing the reflectance fields of highly sub-surface scatterinjgais.
The image (24& 340 pixels) reconstructed from relighting with a
spatially varying illumination pattern (see Figure 1(g)validated
against the ground-truth image (see Figure 1(d)). We alswode
strate the result of reconstructing at different levelshaf hierar-
chical tensor for this scene in Figure 8. This figure also &xgl
the difference between our hierarchical tensor repreentand a
wavelet based representation.

Figure 5 describes the result of an 8D reflectance field aeduis-

ing our setup. The captured reflectance field can be usedwo vie
from any position (see Figure 5(b)) and also to relight fram po-
sition (see Figure 5(a)). The resolution of the reflectanele fior
this example is about 8 3 x 130x 200x 3 x 3x 130x 200. The
total size of this dataset would be 610 GB if three 32-bit Boatre
used for each entry in the transport matrix. Our hierardheasor
representation compresses it to 1.47 GB. A brute force agpro
would require 233,657 images to capture it. Our algorithrty on
needs 3,368 HDR images and takes around 8 hours to compiete. |
our current implementation though, the processing timesigaifi-
cant amount when compared against the actual image caphge t
We believe that the acquisition times can be reduced evehefur
by implementing a parallelized version of our algorithm.

We can also relight the scenes with arbitrary illuminatiatt@rns.
In Figure 6 we illuminate the scene with two spotlights. Thets
lights have a spatially varying illumination distributitimat falls off
gradually as one moves radially outwards from their cenfére
specular highlights, caustics and shadows indicate thht trans-
port paths were correctly measured during our acquisition.



Brute-force Symmetric photography Number of leaf nodes (rank-1 blocks) at different levels

SCENE # PATTERNS | SIZE TIME  #PATTERNS | 1 2 3 4 5 6 7 8 9 10
(MB)  (min)

Fig. 1 111,354 236 103 2,209 16 64 256 1168 5360 16736 54144 119152 116096 610208
Fig. 2(1) 108,500 255 44 809 12 45 237 826 3327 7512 27683 104364 124551 4176784
Fig. 2(Il) 108,500 371 70 1,085 12 42 276 1004 2619 9436 36560 127736 228335 60480[L6
Fig. 2(Il1) | 108,500 334 65 1,081 12 44 244 966 3279 8882 33187 118112 176948 49307H2
Fig. 2(IvV) | 108,500 274 46 841 12 40 312 910 3277 7392 26603 97660 135383 3327682
Fig. 5 233,657 1,470 484 3,368 0 175 639 7979 32080 109197 330760 1109974 2096115 29551312
Fig. 6 133,004 825 227 2,853 8 86 419 3117 11664 40097 146703 529257 855441 11128304

Table 1: Table of relevant data (size, time and number of patterngjifferent example scenes captured using our techniquée that our
algorithm requires about 2 orders of magnitude fewer padtdran the brute-force scan. The number of nodes that anesegied as rank-1
factors at different levels in the hierarchical tensor dse aresented. The greater the number of rank-1 nodes at leveds of the hierarchy,
the faster the acquisition and the smaller the size of owrsaht

(a) Fixed view point / Different light source positions (b) Fixed light source position / Different view points

Figure 5: 8D reflectance field of an example scendhis reflectance field was captured using the setup desdnideidure 4. A 3x 3 grid
of mirrors was used. In (a) we see images rendered from thgoviat at the center of the grid with illumination coming findd different
locations on the grid. Note that the shadows move appr@yidepending upon the direction of incident light. (b) skdte images rendered
from 9 different viewpoints on the grid with the illuminaticoming from the center. In this case one can notice the ehangarallax with
the viewpoint.

7 Discussion and Conclusions imations. Based on these observations we have developed a hi
erarchical acquisition algorithm which looks for regiorfsdata-
sparseness in the matrix. Once a data-sparse region hasneaen
sured we can use it to parallelize our acquisition resultirigemen-

In this paper we have presented a framework for acquiringe3D r dous speedup.

flectance fields. The method is based on the observationehat r
flectance fields are data-sparse. We exploit the data-sEmse

to represent the transport matrix by local rank-1 approkiona. There are limitations in our setup (Figure 4) that can cdroyr
The symmetry of the light transport allows us to measureethes measurements. To get a coaxial setup we use a beam-sphitter.
cal rank-1 factorizations efficiently as we can obtain measents though we use a 1mm thin plate beam-splitter, it produceghtsli
corresponding to both rows and columns of the transportixsitr double image inherent to beam-splitters. This along withlitpht

multaneously. We have also introduced a new data strucéliexdc reflected back off the light trap reduces the SNR in our measur
hierarchical tensor that can represent these local lok-aaprox- ments. The symmetry of our approach requires projector and ¢



Figure 6: Relighting with 2
spot lights. Image rendered
from a reflectance field cap-
tured by our system. The egg
and the wooden toy are lit
from 2 spotlights (with spa-
tially varying intensity distri-
bution), one shining from the
right and the other from left.
Another faint floodlight adds
to the overall brightness of
the scene. Note that the caus-
tics from the glass, specular-
ities on the egg, and the toy,
and shadows are all faithfully
reconstructed.

era to be pixel aligned. Any slight misalignment adds to theam
surement noise. Cameras and projectors can also havesdiffgp-
tical properties. This can introduce non-symmetries sucheas
flare, resulting in artifacts in our reconstructed image= (Eig-
ure 7). We hope that future advances in hardware technologydw
result in symmetric projector/camecambo devices that can avoid
the need for beam-splitters and calibration.

In order to keep our implementation simple, we use a 4th drder
erarchical tensor. This means that we are flattening out hef t
4 dimensions of the light field, thereby not exploiting thd @wo-
herency in the data. An implementation based on 8th ordeoten
should be able to exploit it and make the acquisition moreiefit.

Since we use a4 4 array of planar mirrors, the resolution of our in-
coming and outgoing light fields is low. Therefore, the refiece

fields that we can capture are sparse. Techniques have been pr

posed for interpolating slices of the reflectance fields tegfboth
from the view direction [Chen and Williams 1993] and from the
illumination direction [Chen and Lensch 2005] but the pevblof
interpolating reflectance fields is still open. By applyinmitar
flow based techniques to the transport matrix, one shouldlee a

to create more densely sampled reflectance fields. One can als

imagine directly sampling incoming and outgoing light feeldore
densely by pointing the projector/camera pair at a bumpyared
sheet. This will increase the number of viewpoints in thatligeld
but at the cost of image resolution.

Finally, although we introduce the hierarchical tensor adata
structure for storing reflectance fields, the concept haicatpns
for other high dimensional datasets as well. It can be userefs
resenting any dataset which is data-sparse. The hieratfateip-
resentation also has some other benefits. It provides ctristee
access to the data during evaluation or rendering. At theegame
it maintains the spatial coherency in the data, making itetive
for parallel computation.
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