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SYMMETRIC POSITIVE SYSTEMS WITH BOUNDARY
CHARACTERISTIC OF CONSTANT MULTIPLICITY

BY
JEFFREY RAUCH1

Abstract. The theory of maximal positive boundary value problems for symmetric
positive systems is developed assuming that the boundary is characteristic of
constant multiplicity. No such hypothesis is needed on a neighborhood of the
boundary. Both regularity theorems and mixed initial boundary value problems are
discussed. Many classical ideas are sharpened in the process.

1. Introduction. Suppose that fl c R" is a bounded open set lying on one side of its
C1 boundary 3A. In fl suppose that

(1) L = t Aj(x)dj + B(x)
7 = 1

is a first order system of differential operators with

(2) A j,e Lip(fl: Hom(C*)),

(3) B g L°°(fl: Hom(C*)).
We are interested in boundary value problems for the system

(4) Lu=fczzj?*(ri).
Our first result is concerned with Green's identity,

(5) f (Lu,v)= f (u,L*v)+ f   (Anu,v)da

when L* is the formal adjoint of L, n = («,, n2,... ,«„) is the unit outward normal
to 9fi and An = Y.jnjAj. It has long been recognized that if «e^?2(0) and
Lu G .S?2(£2), then A„u\aa e H~1/2(d^) and Green's identity holds for v g H\U).
In fact, less is needed. Let

XL = { u Gi?2(S2)|LM g Hl(Q)'},    \\u\\]e-L=\\u\&m + \\Lu\\2H\ay,

JfL= [u Gi?2(S2)|L«Gi?2(fi)),      ||«||^,. = ||i/||^(o) + ||Lm||^(Q).

The space J^fL* is defined similarly.

Proposition 1. JfL and3^L are Hilbert spaces and Cx(fi) is dense in each of them.
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168 JEFFREY RAUCH

The proof of this and other results is given in later sections. If u g „S?2(12), then
automatically Lu g 77^ 12)' so JTl is only slightly smaller than^?2(fl), the restriction
coming near 312.

Theorem 1. The map

Cl(tt)^ u^Anu\SQ

extends uniquely to a continuous linear mapJfL —> 77~1/2(312) and Green's identity (5)
holds for «eJfL,DG H\Q).

In the proofs of energy inequalities one wants to take u = v and for that purpose
this theorem is not sufficient. For IcR'we denote by Lip(A') the set of uniformly
Lipshitzean functions on X normed by

ii  ii n   /   \n l|w(*) ~~ w( v)ll
HlLipfA-) =   SUp ||w(*)ll +        SUp        -U—^-^-WLZiL_

xEX x,yeXxX \\x — y\\
Jt # y

Theorem 2. The map

C1(A)xC1(fl) 3 (u,o)~ (A„u,v)\m

extends uniquely to a continuous bilinear map yfL X JFL» —> Lip(312)' and Green's
identity (5) holds for (u,c)G^X 3ffL,.

Remark. The space Lip(312)' c .©'(312) does not have a useful elementary de-
scription.

Remark. The boundary integral in Green's identity is interpreted as the action of
(Anu, v) on the Lipshitz continuous function 1.

The next result expresses the idea that traces on nearby surfaces are close. Note
that i/Gjft (resp. u G ifL) implies that <pu G 3^L (resp. XL) for <p G Cl(tt). Thus it
suffices to consider functions supported in a small neighborhood of a point/? g 312.
Introduce local coordinates (xx, x') near/; so that 12 becomes [\x\ < 1 and xx > 0).
Theorem 2 then implies that for e > 0, and u g jTl, Axu\x =s g H-1/2(W~X) n
d"(R"_1), where Ax comes from the expression for L in the new coordinates.

Theorem 3. If u g Xl is supported in the coordinate patch above, then the map

R+35^^1«Ui_iG/7-V2(R-i)

is continuous. Similarly ifu^ 3ti?L, v G 3€L* are supported in the patch, then the map

R+3 5~ (^^I^GLiptR"-1)'

is continuous.

We are interested in boundary value problems for the system (4). For simplicity
we consider homogeneous linear conditions u(x) g N(x) for x g 312 when N(x) is a
linear subspace of C* for each x g 312. We suppose that

(6) N(x) depends Lipshitz continuously on x,

(7) N(x)^ ker^„(x)forallxG 312.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SYMMETRIC POSITIVE SYSTEMS 169

Roughly speaking, since An(x)u(x) is meaningful in x g 312 we expect that u(x) is
determined modulo kexAn(x) and since N(x) d kexAn(x) the equivalence class
u(x) mod N(x) is determined. To make this precise let irN(x): Ck -* Ck/N(x) be
the canonical projection. Since N(x) z> kexAn(x) there is a unique M(x) so that

C*      "lx)    ,  Ck/N(x)

*.(*Y\        Af(x)
ck

is a commutative diagram. Since N(x) and M(a:) are Lipshitzean, Ck/N(x) is a
Lipshitz continuous vector bundle over 312 and M is a Lipshitzean bundle map. The
Sobolev space of sections 77J(312: Ck/N(x)) is well defined for \s\ < 1. These
remarks and Proposition 1 yield the following result.

Proposition 2. The map

Cl(Q) 3 u -> wmod 7V(jc) G Lip(312 : C*/^(x))

extends uniquely to a continuous map from JfL to 77~1/2(312 : Ck/N(x)). For u in 3CL
the image is equal to M(Anu\3a).

Definition 1. For u g JtL we say that u g N at 312 if the image of u in

77"1/2(312 : C*/7V(jc))

vanishes.

Inhomogeneous boundary conditions, u = g mod Af at 312, can be reduced to the
homogeneous case when g g //1/2(312) by merely subtracting an element of 771
which achieves these boundary data. The adjoint boundary space N*(x) is defined
by

N*(x)=[A„(x)(N(x))]\

Since N(x) zd kexAn(x) we see that

dim A„(N) = dim N(x) — dimkery4„(jc).

Thus A^* has locally constant dimension if and only if the nullity of An(x) is locally
constant.

Definition 2. The boundary of 12 is characteristic of constant multiplicity if
dimkexAn(x) is constant on each component of 312.

In this case, N* is Lipshitz continuous. We will assume from here on that 312 is
characteristic of constant multiplicity. The next result is fundamental.

Theorem 4 (weak = strong). If u g zfL (resp. JfL) and u g N at 312, then there
is a sequence uk e Cx(12) with uk(x) G N(x) for x G 312 and uk^> u in StL (resp.

As a consequence, it is not difficult to prove.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



170 JEFFREY RAUCH

Proposition 3. 7/312 is characteristic of constant multiplicity, u g jTl and f = Lu,
then u g N at 312 if and only if for all v g Lip(12) with v(x) g N*(x)for all x g 312,

(8) f (u,L*v)=f(v).

Here the right-hand side is the value off G H1 (SI)' at v.

Remark. In case/ g i?2(12), the right-hand side is an integral and the formula (8)
was used by Friedrichs as the definition of a weak solution to the boundary value
problem.

Remark. Using Theorem 2 we see that for u g 3^l, the equality (8) extends to all
v g 3^fL satisfying v G A^ * at 312 in the sense of Definition 1.

Theorems 1-4 provide the basic calculus on which the theory of boundary value
problems for (4) is built. Most earlier work on the subject assumed a stronger
hypothesis than in Definition 2. They assumed that there was an extension of n(x)
to a C1 function on 12 so that dimkex An(x) was constant on a neighborhood of each
component of the boundary. In problems involving the flow of fluids it is quite
common for this stronger hypothesis to fail (see [1, 3, 13, 22]). This paper was
written to provide a theory which was sufficiently strong to handle these problems
and, secondly, refines and simplifies the standard results, even when the stronger
hypothesis is valid. Another class of problems arises when dimkeryln(x) is not
locally constant on 312. Here examples are known when weak is not equal to strong
(see [12, 14, 17]). Some positive results can be found in [17, 20].

The symmetric positive problems we study have an elementary a priori estimate
thanks to two positivity assumptions. First we suppose that L is symmetric positive,
that is A j = A* for all x g 12, and there is a constant a > 0 so that

(9) Z(x)s*±*l-^.Aj>aI
j

for all x G 12. Second, we suppose that N is maximal positive in the sense that

(10) (A„(x)v,v) > 0   Vjce38,«eyV(x).

(11) dim N = # nonnegative eigenvalues of An counting multiplicity.

The maximality condition (11) implies that N cannot be enlarged while preserving
(10), in particular it implies that N d kexA„. If u g 771(12), then Green's identity (5)
with u = v yields the energy identity

(12) Re(u,f)a=(Zu,u)il + f   (A„u,u)do.

The positivity hypotheses (9) and (10) yield the L2 a priori estimate

(13) all"lk2(G) < \\Lu\lsrHQ)
for u g //J(0) with u(x) g N(x) for almost all x g 312. Using Theorems 2 and 4 it
is easy to prove the following.

Theorem 5. For any f g S£ 2(12) there is a unique u g „S?2(12) satisfying Lu = fin Si
and u G N at 312. In addition the distribution (Anu, u)\3a is nonnegative, and the
estimate (13) holds.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SYMMETRIC POSITIVE SYSTEMS 171

Remark. For An invertible this was proved by Friedrichs [6] and a direct proof
valid under the more restrictive constant multiplicity hypothesis was given by Lax
and Phillips [9].

For problems with characteristic boundary, one does not expect full regularity of
u even iff g C°°(12). However, there is a good tangential regularity theorem.

Definition 3. A smooth vector field y on 12 is called tangential if and only if, for
every x g 312, (y(x), n(x)) = 0. For s g Z+, the space 77,^(12) consists of those
»Gi?2(i2) with the property that for any / < .s and tangential fields {y,}'=1,
V1V2 ■ • • Y/« g jS?2(12). Clearly elements of 77,^ lie in 77^(12). Near/? g 312 one may
localize to <$>u then introduce coordinates (xx, x') so that supp^w c (|x| < 1 and
xx > 0}. The elements <pu are characterized by

2Z ||(jc131,32,...,3ja<)M||^2(R,+) < 00.
|a|<5

This yields a natural Hilbert space structure for 77,^(12) (see [2]). Assuming that 312
and the coefficients of L are sufficiently regular, one has tangental regularity as
follows.

Theorem 6. Suppose s g Z+, A, N and 312 are of class C1,1 and B is of class C*-1*1.
Then there are real numbers Xs and Cs so that X0 < A, < • • • and ifue Hslm, ugJV
at 312, andLu G 77,^, then for all X G C

(14) Re(X - Xs)\\4hL„ < CS(\\(L + X)u\\Hlm + \X\ ||W||„-).

Conversely ifXs, Cs are as above, Re X > Xs andf G 77,^(12), then the unique solution
uto(L + X)u = f,u G N at 312, lies in 77^(12).

Remark 1. In case 312 is noncharacteristic it follows that u g 7P(12). In the
characteristic case, one cannot expect full regularity even if/ g Hs(£l) (see [11, 24]).
However, for some important problems of mathematical physics one does get full
regularity (see [11, 13, 22]).

Remark 2. An example of Friedrichs [6] shows that without a condition that X be
sufficiently large (X > 0 does not always suffice) one gets regularity no better than
se2.

Remark 3. In the noncharacteristic case with s = 1 this result was proved by
Friedrichs. Higher i was studied by many authors [7, 15, 16, 23]. Problems character-
istic of constant multiplicity on a neighborhood of the boundary were studied in [11,
16, 24], where partial results can be found.

Results analogous to Theorems 1-6 are valid for time dependent problems
(3, — L(t))u = fin cylindrical domains [0, T] X 12. These results are described and
proved in §4. §2 is devoted to the proofs of Theorems 1-5 while §3 contains the
proof of Theorem 6.

Studying these problems for the last decade the author has benefitted from
correspondence and conversations with J. Ralston, D. Tartakoff and L. Sarason.
Thanks!License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



172 JEFFREY RAUCH

2. They2 theory.
Proof of Proposition 1. Only the density requires comment. Cover 12 by finitely

many coordinate patches C1 diffeomorphic to {|jc| < 1} or to (|x| < 1 and xx > 0}
by diffeomorphisms x,- Choose a finite smooth partition of unity <pt subordinate to
this cover. Choose/ e C0°° (|jc| < 1 and xx < 0), // = 1 and letje(x) = e'"j(e~1x).
Let

i
Then ut g C*(12) and ke -* u in J£?2(12). The classical lemma of Friedrichs [4]
implies that (Lk), - L(ue) - 0 ini?2(12), so L(uc) -» Lk in 771(12)'. Thus «e -> k
in JfL.    D

Proof of Theorem 1. Given $ e 771/2(312) choose * e TfH.fl) such that ^|3a =
'/'' ll^ll//' < cll'ryllr/1/2 w'm c independent of \p. Then for h G C^fl),

/"   (Anu,^) da = f (u, L**> + (Lu,*)dx.
JdQ Ja

Thus

/    <^„w, i//> da < ||H||^2(S)||L*^||j?2(a) + ||LK||//'(n)'||^'||//I(S2)
Kan

< c||V'l|//I/2oa)||w||Jr,. •

Thus, ||-<4„m||//-i/2(98) < cll"||jr which proves the existence of a continuous extension.
By Proposition 1, C*(12) is dense so the extension is unique.    □

Proof of Theorem 2. Given ^ g Lip(312) choose ^ g Lip(12) so that ^|3a = \p
and ||^r*||Lip(a) < c||^||Up(3a) with c independent of if. Then for u, v g Cx(12), Green's
identity yields

f   i>(Anu,v)do = f (Lu,*v) + (u,L*(*v))dx.

Since the commutator [L*, ty] is of order zero we see that with c independent of ty

/ t(A„u, v) da ^ c||i//||Lip(3a)||M||jrJ|i;||jf,.. .

Thus ||(^4„k, f)||Lip(3a)' < cIMIjc, IMI.*»,.- Since C'(12) is dense, Theorem 2 follows.
D

Proof of Theorem 3. The proof of Theorem 2 shows that for u g C1

(15) Mi«U-.||jri(a(r-i) < cll«lk
with c independent of u and s. For u g jfL, choose w„ g C1 with support in the
coordinate  patch  and   un -» u  in JfL.   By  (15)   un  is  a  Cauchy  sequence  in
C(R+ : 77-1/2(R"-1)), so there is fi such that u„ -» fi in C(R+ : H~1/2(W-1)). Thus
u„ -> ii in ^'(R"+) so k = fi. Thus u e C(R+ : 77-^(R'"1)) and (15) holds for u.

Similarly, for k, y g C1, the proof of Theorem 2 yields

l<^.«.«'>U-.|lWP-.),<c||tt|klHk.
with c independent of u, v and s. Using this in the same fashion as (15), the second
part of Theorem 3 follows.   □License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



symmetric positive SYSTEMS 173

Proof of Theorem 4. With the aid of a partition of unity write u = £#,m = Lk'.
Then

Lu'-kf+LcuixWmf,.
If we can find u'e in C'(12) supported near supp tyt, u'e G N at 312, and u'c -* u' in JfL
(resp. JVL), then letting ue = Eu[ gives the desired approximation for u. Thus, it
suffices to consider u supported in a small coordinate patch. The interesting patches
are at 312. Performing a change of independent variable we are reduced to the case
12 = R"+, supp k c { |jc| < 1 and xx ^ 0).

Under a change of dependent variable, fi = M(x)~lu, the differential equation is
transformed to Lfi = M*f where

Lv = Y,M*Ajdj(Mw) + M*BMw.

By hypothesis, AX(Q, x') has rank independent of x' so by a Lipshitzean change,
M(x'), we can transform Ax(0, x') to

0    0     0 "
0    7     0.

.0    0    -I.
Multiplying on the left by

7     0      0
0     7      0

.0     0     -7.
transforms to an equivalent, but nonsymmetric, system with

"0    0    0"

(16) Ax(0,x') =   0    7    0.
.0    0    I _

Since N D ker^ we may choose a Lipshitz continuous unitary U(x') such that U
leaves ker^j invariant and U*(x')(N(x')) is equal to

(17) {«eC*|«/+1= ■••  =uk = 0} =N0.

The change of dependent variable fi = U*u transforms to an equivalent system with
Ax unchanged since U*AXU = Ax and with the boundary space N replaced by iV0.
These changes have simultaneously transformed ^j(0, x') to the form (16) and N to
N0 in (17), both independent of x'. We now drop the tildes and work with the
transformed boundary value problem.

Suppose k G jfL and u g N0 on jc, = 0. The approximation ue is made in three
steps. First we construct ue G 77,^ n JfL, ue G N0, ue -» k in JTL. The construction
uses a variant of Friedrichs's mollifiers. Choose/ g C0oc(( |x| < 1 and xx > 0}),/ > 0
and // = 1. Let

ue = Jeu = j u(xxeey\ x' + ey')j(y)dy.

The novelty here is that instead of xx + eyx we have xxeey' which is the point e units
of time along the integral curve of xxd/dxx with initial point xx. The gain is that
ut\x _0 is determined by u\x =0 and the loss is that the mollifier is not completely
smoothing; one gains (x,3,, 3') derivatives but not Sx. A related idea, convolutingLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



174 JEFFREY RAUCH

only in the x' variables, was used by Lax and Phillips [9]. For that method it appears
necessary to suppose that dim ker A x is constant on a neigborhood of xx = 0.

Lemma. (1) With X = H1'^) or X = Hsan(W+) and ty g X with compact support,
{J& } o < £ < iis a bounded subset ofX.Ase -» 0, Je ty converges to ty in X.

(2)7/Z = (xxdx, 32,... ,3J and ty is as above, then ZaJety G X for all a g Z".
(3) Suppose s > 0 is an integer, ty g 77tJan(R"+) with compact support and A G

C^(/R+) : Hom(C*)). Then if\a\ = 1 the family [AZa, Je]ty, 0 < e < 1, is bounded in
H*l!m and as e -+ 0, MZa, 7J<f> - 0 in 77tJan.

Proof of Lemma. (1) For ty e X with compact support we have

ty(xxe'y\x' + ey') G X   for |y\ < 1, 0 < e < 1.

In fact they lie in a bounded subset of X. As Jety is a convex combination it is
bounded in X uniformly in e < 1, with bountLdepending only on \\ty\\ x and supp ty.
Approximating ty in X by elements of C^R") with uniformly bounded supports,
part (1) follows since Jety -> ty in X for ty G C^R^).

(2) Consider first xxdx. For ty g C$(W^), Jcty g C^(W^) and differentiating under
the integral sign

xxdxJcty = f xxe'yA(xxe^\ x' + ey')j(y) dy

= {j(y)\^ri{t>(^^,x' + ey'))dy.

Integrating by parts using the fact that/ = 0 when yx = 0 yields

= -^f<t,(Xle^,x' + ey')^-(y)dy.

More generally we have

ZVety = (v) "/ *{*iety\ x' + ey')(*;j)(y) dy.

Thus for e and a fixed and K c R"+ compact there is C = C(e, a, K) so that
\\zaJety\\x< cII<tHIa- Approximating ty ^ X with compact support by a sequence
<J>, g C(%, (2) follows.

(3) We treat a = (1,0,...,0) and s = 0. The other cases are similar. For ty g
C™(W^) and r = Za we have

[,4I\ Je]ty = / (^l(x) - A(xxe'», x' + ey'))j(y)^^-(ty(xxe^, x' + ey')) dy.

Now integrate by parts. When the y derivative falls on the A term we find

/ xxe^^(xxe^, x' + ey')j(y)ty(xxe^, x' + ey') dy
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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whose ■£?2(R"+) norm is bounded independent of e g (0,1] since xxdA/dxx is
bounded. When the y derivative falls on j we find

c A(x) -A(xxeey\x' + ey')   3/ ,   .    , , ,
-/      —^^-a^M*!**"1. * +«/) dy

whose J?2(R"+) norm is bounded independent of e g (0,1] because the difference
quotient in the integrand is bounded since A G Lip. Thus [AT, Je] mapsJS?2(R"+) to
itself with norm independent of e g (0,1]. Since ^f2-\im[AT, Je]ty = 0 for ty g
C^fWl), a dense subset of &2, part (3) follows.   D

Applying part (2) of the lemma with X = i?2(R"+) we see that uc = Jcu g 77t1an(R"+).
Part (1) with X = 771(R"+)' shows Je(Lu) -» Lw in Hl(W+)'. Finally, part (3) shows
that Le(Lk) - L(ue) -> 0 in <S?2(R"+). Putting this together we see that for u G jfL,
ke -» k in JfL.

Since A^ is independent of x', it is clear on a formal level that ke g A^ at jc, = 0.
To prove this, first observe that for ty G C(^(R"+),

■^U-o = Ye*( *U-o),   Y.(*0 s e-l'-Vyix'/e),   y(x') = j j(xx, x') dxx,

the convolution in x' variables only. Define M0: C* -> Ck/N0 by the commutative
diagram:

c*-—>-cViv0
\       /Ax(0,x')\ /M(t

^ck

Since A70 and Ax are independent of x' we have

KAi-fMx1=o = Y.*(JMi*U-o)>

the convolution in x' variables. Using Theorem 1 we see that this identity extends by
continuity to ty e JTL, the equality expressed in H~1/2(R"~1). For u e jfL with
k G A7 at 312, ALj^k^ =0 = 0 so we find that M0Axue = 0, that is ke g A7,, at
Xi = 0.

Thus, replacing u by ke we may suppose without loss of generality that u G
*OR+)-

The differential equation and u g 77^ imply that 31(^41w) g „S?2(R"+), so /4jK g
TT^R^). Let k" = (0,0,. ..,0, ul+l,...,uk) be the projection of u orthogonal to A^.
Since N0 D kex Ax we see that u" g 771(R"+). The boundary condition, though
expressed weakly, implies u" G Hl(W+). Extend u" to be zero for x, < 0, so
u" g 771(R"). LetM;= k - k" and fori? G (0,1],

uv(x) = u'(x) + u"(xl-v,x').

Then as t? -» 0, k„ - u -» 0 in /^(R)!;), so Lk,, -> Lk in JSP 2(R"+). Thus k„ -» u in
Jf,. Replacing k by w,, we may suppose without loss of generality that u" = 0 for
0 < xx < TJ.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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With / as before and je{x) = e'"j(-xx /e, x/e) and e < i) let ke = /E * u g C(^(R'+),
(ue)n = 0 for xx < v - e. Thus ke g N0 at the boundary. That ke -» u in £f2(R\)
and je * Lu -> Lu in H1(R"+)' axe routine. Friedrichs' classical lemma asserts that
je * Lu - Luc -» 0 in J5?2(R"+). In total, ue -» k in JfL and the proof of Theorem 4 for
Jf, is complete. ¥oxJfL one merely repeats the proof replacing Jf by Jf and T/^R^)'
by^2(R"+).    □

Proof of Proposition 3. If u g jfz with k g N at 312 we may choose ke g jfLn
C*(12), ke g A^ at 312 and uf -> u inJtL. Green's identity for ut yields

/   <wE, L*v) dx = (Lue)(v) + [   (Anue, v) do.

For v g Lip(312) with ne/v* the boundary term vanishes. Passing to the limit
e -> 0 yields (8).

Conversely, suppose (8) holds for wGjf,. Then for any ty g Lip(312) with
ty c= N* we may choose d g Lip(12), u|3a = ty. Then identity (8) implies that
(y4„M|an)(^) = 0. Thus if tin*(X) is the orthogonal projection in C* onto N* we see
that ^„k|3H annihilates trN,v for any v G Lip(312). Since ttn* is selfadjoint, this is
equivalent to nN*(A„u\aa) = 0 in 77~1/2(312). Here we have used the fact that irN»
multiplies TP(312) to itself for all |s| < 1. Since N zz> kexAn, we have kexitN»An = N
for all x g 312. An argument like that in Proposition 2 then shows that for u G XL,
u g N at 312 <=> TTN*(Anu\M)= 0 in 771/2(312). We conclude that if (8) holds then
k g N at 312 and Proposition 3 is proved.    □

Proof of Theorem 5. If k g jfft and u g A' at 312 we may choose ke g C:(12)
with ke g N at 312 and ke -» u in JifL. Then (Anu£, «E}|3a > 0 and (Anut, uf) ->
(Anu,u) in Lip(312)'. This implies that (Anu, u)\aa is a positive distribution.
Green's identity (5) with v = u yields estimate (13), and, in particular, uniqueness.

To prove existence let 38 be the set of v g Lip(12) with v czz N* at 312. Since N* is
maximal positive we have a||y||_se.2(fi) < ||L*u||_^2(n) for all v g ^, in particular L* is
a bijection from J1 to @ = L*(9S). Define /: ^ -» C by

L*v >-» /  u/dx.
•'a

The estimate for L* yields a\l(v)\ < ||/||^>2(0). Riesz's theorem implies that there is a
k g i^2(12) so that l(w) = (w, K)_^2(a) for all tvef. This is exactly identity (8) of
Proposition 3. Considering w = L*v, v g C(J°(12) we find Lk =/. Proposition 3
shows k g N at 312 so u is the desired solution.    □

3. Tangential regularity.
Proof of Theorem 6. We begin with the derivation of the a priori estimate (14).

Let/ = (L + X)u. Cover 12 by a finite family of open sets (>Uj so that either <%tcz c 12
or <%i n 12 is Csl diffeomorphic to {x, > 0} n {|jc| < 1} with 312 mapping to
(x, = 0}. Choose a finite partition of unity {<£,} subordinate to this cover and let
k = Y.tyjU = Ek,. Changing coordinates in the boundary patches yields functions
k, ° Xi defined on {xx > 0} n {|x| < 1} which we continue to call m,-. Each function
w, satisfies an equation of the form

(18) (L, + X)u, = ty,f°Xl + Y,c,j(x)uj,
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where L, is the operator expressed in the new coordinates and the matrices c,. are of
class CI_U. Taking thcS?2 scalar product with ui yields

|(k,,(l, + A)k,)| < c||«M||(L + \)«||^ + ||k||^)-

However, as ui satisfies the maximal positive boundary condition k, g 7V°x, on
Xj = 0, Green's identity implies that

Re(M„(L,. + A)K,.)MRe\-c)|k||2.
Summing on i, we find constants u0, c0 so that

(ReX - w0)||K||^2<a)< c0||(L + X)u\\sp\Q).

We want such an estimate for the tangential derivatives of u. The basic idea is to
apply the ££2 estimate to the tangential derivatives of u. There are two problems,
first the tangential derivatives yu need not satisfy the boundary conditions and,
second, LyK need not have J£?2 norm dominated by ||k||wi . To overcome these
difficulties the problem is transformed to a convenient form.

Since kax Ax(0, x') c N(x') we may choose a unitary matrix valued function Ut of
class Csl so that

U*(N)= (kgC*:k/+1= •••  =uk = 0}=No,

U*(kexAx) = { u g C*: ua + x = • • ■  = uk = 0}

with a < /. Then fi, = Ul*m, satisfies the boundary condition fi, g N0 and L, + A is
transformed to L, + X, where

l, = \t u'AjUfij + l.o.t. = em + B-
j

The symmetry of Ax shows that

0 0       0"

^ Ax(0,x')=\0     Jnonsing]   ,
where the (k — a) X (k — a) lower right-hand block is invertible.

What we have done is to transform the problem so that N and ker ,4,(0, x') are
independent of x'. It is worth noting that one cannot, in general, arrange that N and
Ax(0, x') be constant. To see this consider Ax constant and TV(x') which varies from
dissipative to conservative with x'.

For notational simplicity we drop the tildes. Next we examine the commutator of
L, with tangential derivatives. In local coordinates, the tangential vector fields are
generated by the Z-, where

(ZX,Z2,...,ZV) = (jc191,92,...,3„).

The critical observation is that for each Zy and L, there are matrices Tp, ty so that

(20) [^.z,.]= L i>z' + *l„
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where Tp and ty are of class Cs~2-1 or L°° depending on whether 5 is greater than or
equal to one. The crucial commutators are [Axi)x, Zf\. For / > 1, [Axdx, Zf\ =
(ZjAx)dx. Write Ax(xx, x') = Ax(0, x') + xxG(xx, x') with G of class CJ_U. Then

(ZJAl)dl = {dJAl(0,x'))dx+(dJG)Zl

with 3;G of class Cs~21 (resp. L00) if s > 1 (resp. ^ = 1). Because of the special form
(19) we have

djAx(0,x') = /7(0, x')Ax(0, x')

with T7 of class CS~1J. Thus,

(djAx(0, x'))dx = HAfi, - HGZY.
Now -4,3, = L — Ey=2^/Z — B, so [-4,3,, Z] has the desired form fory > 2. For
j = 1, [A1d1, Zx] = Aldl — (dxAx)Zx. Replacing Axdx as above completes the proof
of (20).

We would like to apply the energy inequality to Z,Uj. Dropping the subscripts we
have

(L + X)Zk = Z(L + X)h +[L, Z]u.

For /G TT,1^ the middle term lies in J£2 as does the last term by virtue of the
commutator identity (20). Thus Z,ut G 3VL. We need to know that Z,k, g N0 on
x, = 0. Since k, g N0 and N0 is independent of x' this is obvious on the formal level.
For proof consider 7ek, as in the proof of Theorem 4. Using the lemma from that
proof we see (subscripts dropped) that 7ek -» u in 77,^ and LJek -» Lk in 77^. It
follows that ZyeK -> Zk in JifL and therefore the equivalence classes ZTek mod 7Vq
converge to Zu mod N0 in 77~1/2(R"_1). Thus, it suffices to show that ZTEw G N0 at
x, = 0. Since A^ is independent of x' a simple calculation shows that for u g
C(")(R+).

Z/EKmod N = yE(x')*(wmod N0),

where ye = -e~"y(x'/e) and y(x') = fz^iZJXx^ x') dxx. This identity extends by
continuity to all u g Xl with equality in 77"1/2(R"_1). In particular, if u g N0, then
ZJeu g N0.

The preliminaries complete, we apply the energy identity to Z;k, to find

(ReX - c0)||Z/K|.||.sf.2(ir+) < c,||(L, + X)Zlui\\^2(R,J\Z/ui\\^2(R,).

Write (L, + X)Zk = Z(L, + X)k + [L, Z]k and use (20) for the commutator. For
the L,h term which arises write L,k = (L, + X)k - Xk. This yields

||(L, + X)Z,ui\yilt+) < c(||(L, + X)u\\„L + \\u\\HL + \X\ \\u\\j?>).

Plugging in and summing over / and i yields

(ReX - c2)||k||2/4„ < C3||K||//L(||/||w,an +||k||//L +|X| \\u\\^).

This is the desired estimate (14) for s = 1.
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For higher s, one needs higher order commutators. Using (20) one proves by
induction on |a| that for each a there are matrices Ta/j, tya ^ so that

[Li,z"]=  E rai/,z' +  I %.pz%,
I0l«l«l \P\<\<*\

I ^7«—|«c|—1,1     if s > |a|
Ta,P>%.l3 of class fll'

[L if s = \a\.

Then reasoning as above, one proves the a priori estimate (14) by induction on s.
We next turn to the proof of regularity. Assuming numbers Xs, cs have been found

so that (14) holds and that/ g Hslm and Re X > Xs we must show that the solution u
of (L + X)k = /, k g N at 312, lies in 77,^(12). The proof proceeds in two steps.
First we produce a number As so that the conclusion holds provided Re X > A,.
The continuity method then yields the desired result for Re X > X^..

The first step proceeds by noncharacteristic regularization. Choose n(x) as an
extension of the unit outward normal to a CJ+1 vector field on 12. Extend 7V(x) to a
Csl map defined on an open neighborhood of 312, and choose ty G C°°(12) sup-
ported in the domain of definition of N and equal to one at 312. Let trNlxX be the
orthogonal projection of Ck onto N(x), and set

V

U = L + etytrN Y, «,3,-
;. = i

For Le with e small, 312 is noncharacteristic and A^ is a maximal positive boundary
space. Actually, N is strictly positive in the sense that (10) holds with strict
inequality, (AEnv, v) > e|<;|2 for v G N(x). A straightforward argument shows that
there is an co0 so that U + X is positive for all Re X > w0 and 0 < e < 1. Let ue be
the solution to (Le + X)ke =/, «EeiVat 312. Then it is easy to see that as e -» 0, us
converges to u in .S?2(12). In addition, if one retraces the derivation of the a priori
7/fan estimate one finds us, cs so that u0 < w, «s • • • and for all u g /LtJan with
Lke g Hslan anduGJV at 312,

(21) (Re X - <o,)||k||„l < cs(\\(U + X)k||„l + |X| ||k||H|,-,).

From this and the fact that 312 is noncharacteristic, we find the 77s estimate

(ReX - oONkor, < ^(||(L* + X)u\\HLn(a) + |X| ||k||„,;-,>).

Lemma. There is an es > 0 so that if ReX > us, 0 < e < es, and f g 77i(12), the
unique solution to (LE + X)u = f, u g N at 312, lies in 77i(!2).

Remark. There are two reasons why we cannot merely apply the result of
Tartakoff [23]. First, the coefficients of U and 312 are not sufficiently regular and
second, Tartakoff provides a As E so that the regularity holds for ReX > A!E. We
need a constant A independent of e.

We postpone the proof of the lemma. Given the lemma and Re X > us, estimate
(21) allows one to prove inductively that (ue} is bounded in 77t0an for a = 0,1,2,. ..,s.
Since u* -> u in^2(12), we conclude that u g 77,^(12).
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Finally, we must prove the same conclusion assuming ReX > X^, where Xs
appearing in (14) may be smaller than ws. Define a closed operator L on 774n(12) by

S(L)=(ue 77tJan(12)|LK G 77*an(12) and u g Af at 312}.

We have proved that {Re X > us} lies in the resolvent set p(L) of L. We must show
that & = {Re X > Xs} lies in p(L). Now Cis connected and 0 n p(L) is open. Thus,
it suffices to show that 0 n p(L) is a closed subset of &. Suppose pk G (Jn p(L)
and /iA. -» ju in 0. We must show that /j, g p(L). Inequality (14) implies that
Z(x) > (Reju - XJ7 for all x G 12 where Z(x) is the matrix appearing in (9). Thus,
for any / G 77tsan(12), there is a unique u G i?2(12) with (L + /x)k = f, u (zz N at 312.
We need to show that u g 77,^(12). Now

u=^2-limKA,        w* = (L + /tj"1/-

By hypothesis uk g 77tsan(12). The a priori estimate (21) shows that {uk} is bounded
in 77^. It follows that u g 77,^(12), the desired conclusion.

Remark. Instead of noncharacteristic regularization one could prove tangential
regularity directly using our mollifiers Jc in a proof imitating that of Tartakoff.
Given Tartakoff's theorem the present path is shorter.

Proof of Lemma. Fix e. We want to apply Tartakoff's theorem to L", but the
coefficients 312 and N axe not smooth enough. Let A., B be the coefficients of Le.
Choose A), Bk g C°°(fl), Ak symmetric so that as k -> oo, A) -> Ap and Bk -> B
uniformly with {Ak} and {Bk} bounded in CS'\Q) and C*~u(12), respectively.
This yields operators Le-k converging to U.

Next choose 12* c 12, increasing to 12 with 312* -» 312 in the Cs+1 topology.
Finally choose boundary spaces Nk defined in 312*, smooth and converging to N

in the C1,1 topology (which makes sense in a unique way). We may choose Nk
strictly positive and so that the strictly positive smooth problems Le-k, 12*, Nk satisfy
Hs(£lk) estimates uniformly in k. That is, there are constants us and Cs so that for all
k and u g TL^R")

(Re X - wj||u||/7'(c*) < C,(||(L£-* + X)ii||h.(0*, + |X| ||m||h->(o*)).

For e, k fixed, the proof of Tartakoff's theorem provides ahck so that if Re X > Ack,
then the solution uE-k to(Lck + X)uc-k = f, ue-k G Nk at 312*, satisfies ue-k G 77J(12*).
A continuity argument as the end of the proof of Theorem 6 implies that the same
conclusion holds for Re X > ws.

Now suppose that ReX > <or Then ||Me,*||//*(o*) is bounded independent of k.
Choose extensions ueexkt uniformly bounded in HS(R"). Let ue g TT^R") be a weak
limit point. One shows easily that ue\a satifies the boundary value problem of the
lemma. Again a continuity argument yields the same conclusion for all X with
Re X > us. This completes the proof of the lemma and consequently of tangential
regularity.    □
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4. Mixed initial boundary value problems. We are interested in solving

(Lu = F(t, x) in(0, L) X 12,
(22) (k(0, ■) = g in 12,

(U(t,x) g N(t, x)     for(t,x) g [0, T] X 312,

where N(t, x) is a Lipshitz continuous map from [0, T] X 312 to the subspaces of C\

L = 3, + Y,Aj(t,x)Zj + B(t,x),
7 = 1

Aj g Lip([0, T] X 12), B e L°°([0, 7] X 12),

and  312 is assumed to be of class C1. We introduce the notations 7 = (0, T)
0 = (0, L) X 12 and T = (0, T) X 312.

Though 30 has corners it is Lipshitzean so that H°(d&) is well defined for all
|cr | < 1. Hilbert spaces JfL, 3teL, 3fL*, 3VL* are defined as in §1 with 6 replacing 12.
Again Cx(0) is dense in each. The next result is the analogue of Theorems 1 and 2.
The proof is exactly as before.

Theorem 7. The map

C1(C>)3 k^tg^°°(30),

lu on {T} X 12,
t= / -u      on {0} X 12,

(-4„k    on T

extends uniquely to a continuous map from Jf; to Hl/2(d&)'. The map

Cl((3) X C\0) 3 (u, v) -> p g^oc(3(5),

l(u, v) on {T} X 12,
p = / -(u,v)       on (0) X 12,

((-4„k, v)    o« r

extends uniquely to a continuous map from XL X 3VL* to Lip(30)'.

For u G jf"L, -4n«|r is a distribution on T which has an extension to an element of
77"1/2(30) * H1/2(W)'. It follows that A„u g Hl/2(T)' = H-l/2(T). If N zz> ker-4„
we then find that wmod TV is a well defined element of 771/2(T : Ck/N)'. When
k mod N vanishes we say that u g N on T. In the same way the restrictions of u to
{r = 0} X 12 and {/ = T) X 12 are well defined elements of 771/2(12)'. Next, we
impose the hypothesis that T is characteristic of constant multiplicity in the same
sense that dim kerAn is constant on each component of T.

Theorem 8. If 3T is characteristic of constant multiplicity, u g jfL (resp. j^l) and
u g N onT, then there is a sequence uk G Cx(6) such that uk G N onT and uk -> u in
SfL (resp. Jf?L). In addition, if u = 0 on [t = 0) X 12, then the uk may be chosen with
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Outline of proof. The proof is by mollification as in Theorem 4 but one must
mollify in x and t. By a partition of unity, one reduces to u of small support. If u
vanishes near [t = 0} X 12 and {t = T) X 12, one mollifies in x as before and then
in t. For u supported near [t = 0} the mollification in time is performed with a
kernel/ supported in t > 0. Near t = Tone takes supp/ c {/ < 0}. See [9, §4] for a
similar calculation.

For the second part of the theorem, let F = Lu. Extend the coefficients of L and
the boundary space N to (-oo, T] X 12 by taking them independent of t for t < 0.
Extend u and F to be equal to zero for t < 0. Denote with a subscript e the extended
quantities. Since u = 0 when / = 0, we find Leue = Fe.

Viewing ue as an element of JifLf(-oo, T) X 12) we see that it can be approximated
by elements in C1((-oo, T] X 12) obtained by mollification. The main point is that
no special attention must be payed at {< = 0}. One may mollify in x and then in t
with any kernel. Choosing a kernel / supported in / > 0 for the contribution near
{t = 0} yields approximations supported in [t > 0}    □

We next suppose that TV is maximal positive, that is, (10) and (11) hold on T. With

ft _|_   ft* "

y-i

we have for u g C\0), F = Lu,

-r\\u(t)\\]?2{Q) + 2(u, Zu)a = 2Re(u,F) -2J   (Anu,u)do.
at JdQ

If k g N on r the boundary integral is positive. With c = ||Z||^oc(C)) and ty(t) =

ll«(OII^(0).
j-tty2(t) <2ty(t)(\\F(t)\\^a) + cty(t)).

It follows that

(23) sup  ty(t) < c\\F\\^'(i:^W) + <£(()),
o«r«r

(24) ty(t2) - ty(tl) < f'2 ||F(o)|h,2(D) + cty(o) do

with new constants c independent of u. These estimates suggest the following
theorem.

Theorem 9 (£?2 well - posedness). For any F^Se\l : ^2(12)), gGif2(12),
there is a unique u G y2(0) satisfying (22). In addition, u G C(7 : =§*2(12)) and with
ty(t) = ||«(OII^2(B). estimates (23) and (24) hold.

Proof of Uniqueness. The difference 8 of two solutions lies inJifL, satisfies the
boundary condition on T, and vanishes on {/ = 0}. Use the second part of Theorem
8 to construct approximations Sk g Cx(0) converging to S in 3^L. Estimate (23)
implies that 8k -> 0 inJS?2(0), hence 8 = 0.

Proof of Existence. A simple approximation argument shows that it suffices to
prove the existence of solutions u when g g C0°°(12). For such g, subtracting a
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smooth function from u reduces to the case g = 0. If we can construct a solution to
this problem with u g jffL, then the fact that u g C(7 : =§?2(12)) and satisfies
(23), (24) follows by a simple approximation argument using the second part of
Theorem 8. Thus, it suffices to construct u g jVl with Lk = F, k|(=0 = 0 and u g N
on r.

Fix F g y2(Q). The adjoint boundary space N* = A^N)1- is Lipshitzean since
r is characteristic of constant multiplicity. Let

3S = { v g Up(&)\v g TV* on T and v\,-T = 0).

Let ^" = L*(^). As N* is also maximal positive an inequality analogous to (23)
shows that L* is one-to-one on 38 and that ||w||_^2(a) < c||L*w||_s?2((!,) with c indepen-
dent ofH-eA Define /: St -> C by

3t3 L*w -»  f (vv, 7^) = l(L*w).

Then for any r = L*w g ^we have

|/(r)l < ||w||if2((!i)||7;,||if2((!>) < c||r||j?2(<9)||77||.2>2(0).

It follows that there is a u Gi?2(0) such that l(r) = (r, u)^i(C)) for all r e 3?.
Choosing r = L*ty with ty G Co°°(0) we see that Lk = F in 0 so u g jTt. Let
t G Lip(3#)' be the distribution which is formally equal to u on t = T, -u on t = 0
and (-4„k, k) on T. The identity satisfied by u shows that T(f|aa,) = 0 for all v g 3D.
Thus, t(/) = 0 for all /g Lip(30) which vanish on t = T and lie in TV* on T.
Choosing/supported in {t = 0} we see that suppK|/=0 c 312. Similarly choosing/
supported in T we find that supp(K mod A7) c 3T. Now k|,_0 is an element of
77-1/2(12), and u mod TV is an element of 77"1/2(r : Ck/N). The only such
distributions supported on the boundaries are the zero elements. This well-known
fact is proved by localizing and then applying the following lemma.

Lemma. 7/5 g g'(Rv) n 77-1/2(R") with supp Pa {xx = 0}, thenS?= 0.

Proof. Let m ^ 0 be the order of S and introduce the notation x, = (xx, x'),
£ = (Sx, *'). Then

Thus 5 = E7_0€i/7(D. where/ g C0O(R"-1) is given by

One easily shows that if fm(£') * 0, then for any r > 0

If \S(S)\ (H)2sdVdix = oo,
■'0       J\i'-i'\<r

Unless 2s + 2m < -1. By hypothesis the integral is finite for j = -1/2 so fm must
vanish identically. A simple recursion then yields /m-1=/„,_2= "•■ =/o = °>
whence 5 = 0.   D
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We next study the regularity of solutions. For s g Z+ we seek solutions with
derivatives up to order s. Toward this end we suppose that Aj, TV, and 312 are of
Lipshitz class C5'1 and B is of class C'~1,1. One localizes as in §2 so that N and
ker-4, are independent of x', then applies the standard energy method to
(3,, x,3x,, 3x2,... ,3x„)aw with commutators controlled as in §2. Letting

7 = 0

one finds

(25) sup  tys(t) < c it piF%*Hr.H&m) + *»(°)l
0<r<r \j=o I

s

(26) tys(t2) - tys(h) < cf'2 tys(t) +, E pjF(*)lnum dt.

In addition to regularity of F, g we must impose compatibility conditions at the
corner {: = 0} X 312. These conditions are computed in the usual fashion. For
(t, x) g T, let m(t, x) be the orthogonal projection of C* onto N(t,x)±. The
compatibility condition of order/ comes from expressing 3/(wk) at {/ = 0} X 312 in
terms of g and F and requiring that the resulting expression vanishes. For example,
for/ = 0,1 we find t = 0

3,Vk) = Trg,        d}(vu) = tr(F(0, -)-Gg)+ irtg,

where L = 3, + G. The compatibility conditions of order zero and one are

Trg = 0    on 312,       tt(F(0, •) - Gg)+ 7r,g = 0    on 312.

There is a subtle problem with the compatibility conditions. We illustrate this by
considering the condition of order zero. If one seeks u G Ply=0 C\I : 77tan7(12)) the a
priori estimates suggest

i
g g H\JSL),       Fe C\^(I:H^(Q)),       ^ = 0^312

7 = 0

as the natural conditions on the data. However, for data as above, the trace trg 13a is
not defined. This is easily seen with the example on R+ given by the function
ty(x)\n x, ty G C(^(R+), ty(0) ± 0, which lies in f\77;an(R+) and has no trace. On the
other hand if u g r\)=0Cj(1: 77,^(12)) satisfies Lk = F, where Fhas the regularity
suggested above, it follows that 7tk(0, -)\za is well-defined element of 771/2(312).
Postponing the demonstration for a moment, we see that it is necessary to require
more than g g 77,^(12). To prove that tru(0, •) has a trace, one localizes with a
partition of unity and changes and independent variable, reducing to the case
[0, T] X R"+. Then one finds Axu g C(7 : H^n) and, from the differential equation,
3!(-4,k) g C(7 : if2) since F g Wl\l : i?2(12)). Thus

-4,K|aaGC(7:771/2(312)),

and it follows that 7tk(0, -)|8a e T71/2(312).
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We are not able to describe the precise set of data g, F leading to solutions in
f\Sj_0CJ(I : 77^(12)). However, we give an important subclass by assuming TF
regularity in place of 77,^ regularity near t = 0.

Theorem 10 (tangential regularity). Suppose s > 1 is an integer, Ay, TV, 312
are of class C1,1 and B is of class C*-1,1. Suppose the data g G Hs and d{F G
&\l : 77,^(12)) for 0 </ < 5 and in addition there is a 0 < 7" < T such that
d/F g ^\[0, T'\ : HS~J(Q,)), 0 < / < s. If the data satisfy the compatibility conditions
up to order s - 1, then the solution u to (22) lies inDsJ=0CJ(1: 77^(12)) and satisfies
the estimates (25), (26).

Remark. With g, F as in the theorem the compatibility conditions make sense. We
check the cases s = 0, 1. For s = 0, the condition is i>yig|3a = 0 and we have
g g 77^12) so TTNxg\sa is a well-defined element of 771/2(312). For s = 1, we need
the condition of order 1 which makes sense provided F(0, -)|3a and Gg|3a make
sense. Here g g 772(12) so the second term is ok. For the first we observe that

F G Wll(l: Hl(Q)) c C(7 : H\U))

so the trace of F on [t = 0} X 312 lies in 771/2(312). The higher order conditions are
similar.

Proof of Theorem 10. As in the proof of Theorem 6 we make a noncharacteristic
regularization, replacing L by

U = L + ety^Lnj^-.

For this operator 312 is noncharacteristic and the boundary space is strictly positive.
One then approximates U by operators U, with smooth coefficients, 12 by smooth
domains 12c, and A' by smooth strictly positive boundary spaces TVE so that estimates
hold uniformly in e. For the mixed problem we encounter a new difficulty. The data
F, g will not, in general, satisfy the compatibility condition for the regularized
problem. In addition, F is not smooth enough to apply directly the results in the
literature. To solve the second dilemma choose Fc g C(f^(0) such that

d/F* - d/F   in Lx([0, T'] : H'~J(Q)) n Ll([0, T] : 77,^(12))

for 0 < / < i. The final approximation ge G C(r^(12) must be done with care so as to
ensure that the compatibility conditions are satisfied.

Lemma. One can choose ge g C^(Q) so that ge -> g in 77^(12) and the compatibility
conditions up to order s — 1 are satisfied by Le, N\ 12e, Fc, ge.

Proof. The construction is local. We localize then introduce coordinates in R" and
C* so that 12£ = {x, < e}, N* = {ul+x = ■■■ = uk = 0}. Then since Ne d kexAex,
the last k — I rows of A [ form a matrix of rank k — I. The compatibility conditions
for g are

g = 0 mod N,
Gg + F = 0 mod N,       on 312.

G2g + [GF + F,+ G,u] = 0 mod TV
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If one approximates g by g[ in 77* one finds that

Gg[ + F* = ty\ mod 7VE    °nd"

with <j>* g Cf°(dQ*), ty' = o(l) in 77s-1/2-'(312E) as e -> 0. We will choose gE = g[ +
g|, g| chosen with its first / components identically zero. The first compatibility
condition for gE requires g| = -tye0 mod 7VE which determines the trace of g| on 312E.
Given this trace the second compatibility condition determines the trace of 3g|/3x,
since the last rows of Ax axe of maximal rank. Continuing we see that to satisfy the
compatibility conditions we must choose g| so that

—    gi = ^jmod 7VE   on 312E

with ty* g Crf(312E), ty) = o(l) in HS~J~1/2, 0 </ < s - 1. This can be done with
gf G C(^(12E), g| = o(l) in 77J(12) and the lemma is proved.    □

We now complete the proof of the theorem. The results of Rauch-Massey [21]
imply that the solution of Uue = F\ ke(0) = gt,«!sFonP, lies in

S

f| CJ(I:Hs-J(Qe)).
7 = 0

As e tends to zero the 77s norm of wE need not stay bounded, however, the tangential
estimate (25) shows that 3/ke is bounded in C(I : T7tsa„7(12E)). Passing to a weak star
convergent subsequence yields a solution u to (22) with 3/k G«Sfcc(/ : 77^(12)).
Estimate (26) applied to the convergent subsequence shows that 3/w g
C(7 : 77tsan7(12)) and itself satisfies (25) and (26). By uniqueness this u is the solution.
D
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