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Prologue

I Let C be an (n, k, d) linear code over F
I generator / parity-check matrix: G ∈ Fk×n / H ∈ F(n−k)×n

I product code given by n×n arrays with rows/columns in C:

P =
{
G>UG |U ∈ Fk×k}

I well-known that P is an (n2, k2, d2) linear code

I Let U be the symmetric subcode of P:

U =
{
X ∈ P |X> = X

}
I if char(F) 6= 2, then U =

{
2−1(X> +X) |X ∈ P

}
I puncturing the lower triangle gives

((
n+1
2

)
,
(
k+1
2

)
,
(
d+1
2

))
code
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Prologue (2)

Product Code

X0,0

X1,0

X2,0

X3,0

X4,0

X5,0

X6,0

X0,1

X1,1

X2,1

X3,1

X4,1

X5,1

X6,1

X0,2

X1,2

X2,2

X3,2

X4,2

X5,2

X6,2

X0,3

X1,3

X2,3

X3,3

X4,3

X5,3

X6,3

X0,4

X1,4

X2,4

X3,4

X4,4

X5,4

X6,4

X0,5

X1,5

X2,5

X3,5

X4,5

X5,5

X6,5

X0,6

X1,6

X2,6

X3,6

X4,6

X5,6

X6,6
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Prologue (2)

Symmetric Subcode

X0,0 X0,1 X0,2 X0,3 X0,4 X0,5 X0,6

X1,1 X1,2 X1,3 X1,4 X1,5 X1,6

X2,2 X2,3 X2,4 X2,5 X2,6

X3,3 X3,4 X3,5 X3,6

X4,4 X4,5 X4,6

X5,5 X5,6

X6,6

X0,1

X0,2

X0,3

X0,4

X0,5

X0,6

X1,2

X1,3

X1,4

X1,5

X1,6

X2,3

X2,4

X2,5

X2,6

X3,4

X3,5

X3,6

X4,5

X4,6 X5,6
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Prologue (2)

Punctured Symmetric Subcode

X0,0 X0,1 X0,2 X0,3 X0,4 X0,5 X0,6

X1,1 X1,2 X1,3 X1,4 X1,5 X1,6

X2,2 X2,3 X2,4 X2,5 X2,6

X3,3 X3,4 X3,5 X3,6

X4,4 X4,5 X4,6

X5,5 X5,6

X6,6
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Prologue (3)

I Benefits

I for moderate k and n, length and dimension reduced by ∼ 2

I same component code: roughly same rate and half the length

I Drawbacks

I minimum distance also drops by ∼ 2. Can one do better?

I Let V be the anti-symmetric subcode of P:

V =
{
X ∈ P |X> = −X, diag(X) = 0

}
I if char(F) 6= 2, then V =

{
2−1(X> −X) |X ∈ P

}
I Justesen suggested puncturing the lower triangle to get an((

n

2

)
,

(
k

2

)
, D

)
Half-Product Code H



Symmetric Product Codes 4 / 21

Prologue (3)

I Benefits

I for moderate k and n, length and dimension reduced by ∼ 2

I same component code: roughly same rate and half the length

I Drawbacks

I minimum distance also drops by ∼ 2. Can one do better?

I Let V be the anti-symmetric subcode of P:

V =
{
X ∈ P |X> = −X, diag(X) = 0

}
I if char(F) 6= 2, then V =

{
2−1(X> −X) |X ∈ P

}
I Justesen suggested puncturing the lower triangle to get an((

n

2

)
,

(
k

2

)
, D

)
Half-Product Code H



Symmetric Product Codes 4 / 21

Prologue (3)

I Benefits

I for moderate k and n, length and dimension reduced by ∼ 2

I same component code: roughly same rate and half the length

I Drawbacks

I minimum distance also drops by ∼ 2. Can one do better?

I Let V be the anti-symmetric subcode of P:

V =
{
X ∈ P |X> = −X, diag(X) = 0

}
I if char(F) 6= 2, then V =

{
2−1(X> −X) |X ∈ P

}
I Justesen suggested puncturing the lower triangle to get an((

n

2

)
,

(
k

2

)
, D

)
Half-Product Code H



Symmetric Product Codes 5 / 21

Prologue (4)

Product Code

X0,0

X1,0

X2,0

X3,0

X4,0

X5,0

X6,0

X0,1

X1,1

X2,1

X3,1

X4,1

X5,1

X6,1

X0,2

X1,2

X2,2

X3,2

X4,2

X5,2

X6,2

X0,3

X1,3

X2,3

X3,3

X4,3

X5,3

X6,3

X0,4

X1,4

X2,4

X3,4

X4,4

X5,4

X6,4

X0,5

X1,5

X2,5

X3,5

X4,5

X5,5

X6,5

X0,6

X1,6

X2,6

X3,6

X4,6

X5,6

X6,6
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Prologue (4)

Anti-Symmetric Subcode

0

0

0

0

0

0

0

X0,1 X0,2 X0,3 X0,4 X0,5 X0,6

X1,2 X1,3 X1,4 X1,5 X1,6

X2,3 X2,4 X2,5 X2,6

X3,4 X3,5 X3,6

X4,5 X4,6

X5,6

X0,1

X0,2

X0,3

X0,4

X0,5

X0,6

X1,2

X1,3

X1,4

X1,5

X1,6

X2,3

X2,4

X2,5

X2,6

X3,4

X3,5

X3,6

X4,5

X4,6 X5,6
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Prologue (4)

Punctured Anti-Symmetric Subcode

0

0

0

0

0

0

0

X0,1 X0,2 X0,3 X0,4 X0,5 X0,6

X1,2 X1,3 X1,4 X1,5 X1,6

X2,3 X2,4 X2,5 X2,6

X3,4 X3,5 X3,6

X4,5 X4,6

X5,6
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Outline

I Background

I Applications

I Half-Product Codes

I Symmetric Product Codes
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Background

I Product Codes

I introduced by Elias in 1954

I hard-decision “cascade decoding” by Abramson in 1968

I “GLDPC” introduced by Tanner in 1981

I Example: 2-error-correcting codes, bounded distance decoding

Received blockRow decodingColumn decodingDecoding successfulOr trapped in a stopping set
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Applications

I Applications

I recent interest for high speed optical communication

I focus on 100 Gb/s with 7% redundancy (i.e., 1− 239
255 ≈ 0.07)

I high-rate generalized product codes with BCH component
codes and iterative algebraic hard-decision

I many designs appeared in ITU 975.1 in 2004

I Justesen recognized the potential in 2010

I Decoding

I decoding complexity much lower than comparable LDPC codes

I for hard-decision channels, BER performance is comparable
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A Note on Decoding

I Syndrome-Based Iterative Algebraic Decoding

I Initialization

I compute and store the syndrome for each row and column

I Iteration

I run algebraic decoding on each row using syndromes

I correct errors by updating the column syndromes

I run algebraic decoding on each column using syndromes

I correct errors by updating the row syndromes

I Memory to store syndromes is 2n(n− k) = 2n2(1−R) vs. n2

I (1023, 993) BCH vs. n=10232 LDPC: factor 50 less memory

I Well-known trick in industry for many years...
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Symmetric Product Codes

I What are they?

I subclass of generalized product codes that use symmetry to
reduce the block length while using the same component code

I one example, dubbed half-product codes (HPCs) in 2011 by
Justesen, based on work by Tanner in 1981

I the minimum distance is also larger than expected

I Match the length and rate between product and HPC

I PC is (n20, k
2
0) and HPC is ≈ (n21/2, k

2
1/2)

I n1 ≈
√
2n0, k1 ≈

√
2k0, and n1 − k1 ≈

√
2(n0 − k0)

I HPC component code has n and t larger by factor
√
2!
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Minimum Distance (1)

I Support Sets and Generalized Hamming Weights

I let supp(x) , {i ∈ [n] | [x]i 6= 0} denote the support set of x

I the 2nd generalized Hamming weight [HKY92] is

d2 = min
x1,x2∈C\{0}

x1 6=x2

|supp(x1) ∪ supp(x2)|

≥ d3dmin/2e

I measures minimal total support of two codewords

I Bound: if d2 smaller than d3dmin/2e, then sum violates dmin
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Minimum Distance (2)

I Let V be the anti-symmetric subcode of P

I For x1, x2 ∈ C\{0}, we will show X = x>1 x2 /∈ V
I First, note X ∈ P because HX = (HxT1 )x2 = 0

I But, diag(X) = 0 for X ∈ V and, thus, [x1]i [x2]i = 0 for all i

I implies supp(x1) ∩ supp(x2) = ∅
I and Xi,j = [x1]i [x2]j 6= 0 implies Xj,i = [x1]j [x2]i = 0

I Thus, X> 6= −X and X /∈ V

I Thus, no X ∈ V where n.z. rows are scalar multiples of a c.w.
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Minimum Distance (3)

I No X ∈ V where n.z. rows are scalar multiples of a c.w.

I n.z. codeword in V must have ≥ 2 distinct non-zero rows

I Minimum number of n.z. columns is lower bounded by d2

I Likewise, each column must have at least d non-zero elements

I So, minimum distance of V must be ≥ d2d ≥ d3d/2e d
I Puncturing lower triangle gives H

I implies D ≥ d3d/2e d/2
I Or D ≥ 3d2/4 if d even
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Minimum Distance (4)

I H is an (N,K,D) code with N =
(
n
2

)
, K =

(
k
2

)
, and

D ≥


3d2

4 if d even
(3d+1)d

4 if d mod 4 = 1
(3d+1)d+2

4 if d mod 4 = 3

I Also have matching upper bound if d is even and there are
minimum distance codewords achieving the minimum for d2

I Basic Idea: Zeros on diagonal prevent standard square pattern
codewords. Thus, support in one dimension must contain at
least 2 distinct codewords. Thus, there are d2 non-zero rows
(or columns) each with weight at least d and D ≥ d2d.
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Minimum Distance (5)

I Example: If C is an (8,4,4) extended Hamming code

I then d = 4, d2 = d3d/2e = 6, and D ≥ 12

I there exists x1, x2 ∈ C such that |supp(x1) ∪ supp(x2)| = 6
and w(x1) = w(x2) = 4

I Half-product code is a (28, 6, 12) binary linear code

I no (28, 6) binary linear code with larger dmin exists
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Iterative Decoding Analysis (1)

I Peeling Decoder for Generalized Product Codes

I received symbols corrected sequentially without mistakes

I for the BEC and, if a genie prevents miscorrection, the BSC

I Based on “error graph”:

I vertices are code constraints

I edges connect code constraints containing same symbol

I initial observations remove fraction 1− p edges

I decoder peels any code constraint with t or fewer errors/edges

I always reaches stopping set after finite number of iterations
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Iterative Decoding Analysis (2)

I Asymptotic Results for Half-Product Codes

I t-error-correcting components w/bounded distance decoding

I complete graph, edges removed i.i.d. prob. 1− p

I Assume n→∞ with fixed t and pn = λ
n

I decoding threshold λ∗ via k-core problem in graph theory

I observed in 2007 by Justesen and Høholdt

I thresholds for t = 2, 3, 4 are λ∗ = 3.35 , 5.14 , 6.81

I information about finite length via λ∗ = limn→∞ np
∗
n
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Simulation Results (1)

I “Fair comparison” between product and half-product codes

I can’t match both rate and block length due to numerology

I we match the rate and let the block lengths differ by < 15%

I First Example

I product code from (170, 154, 5) shortened binary BCH code

I (N ′,K′, D′) = (28900, 23716, 25), rate ≈ 0.82, smin = 9

I half-product code from (255, 231, 7) binary BCH code

I (N,K,D) = (32385, 26565, 40), rate ≈ 0.82, smin = 10

I Iterative decoding assuming genie to prevent miscorrection

I connection to k-core problem allows “threshold” estimates

I For the product code, p∗ ≈ 3.35/170 = 0.0197

I For the half-product code, p∗ ≈ 5.14/255 = 0.0201
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Simulation Results (2)
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I DE predicts better HPC threshold because 5.14/3.35 > 3/2

I Stopping set analysis predicts better HPC error floor
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Simulation Results (3)
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Product PB
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Half-Product PB

I product code from (383, 356, 7) shortened binary BCH code

I (146689, 126736, 49) code, rate ≈ 0.86, smin = 16

I half-product code from (511, 475, 9) binary BCH code

I (130305, 112575, 65) code, rate ≈ 0.86, smin = 15

I DE predicts worse HPC threshold because 6.81/5.14 < 4/3
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Conclusions

I Half-product codes

I Length and dimension reduced by half with same component

I Normalized minimum distance improved by 3/2

I For same blocklength and rate, one can increase t by
√
2

I Changing t = 2 to t = 3 generally improves performance

I More comprehensive simulations are needed

I Symmetric product codes (see ITA 2015 paper)

I Natural extension to m-dimensional product codes

I Length and dimension reduced roughly by m factorial

I Minimum distance improves

I By how much is an open problem...
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