Symmetric Product Codes

Henry D. Pfister ${ }^{1}$, Santosh Emmadi ${ }^{2}$, and Krishna Narayanan ${ }^{2}$

${ }^{1}$ Department of Electrical and Computer Engineering Duke University
${ }^{2}$ Department of Electrical and Computer Engineering
Texas A\&M University

Coding: From Practice to Theory Simons Institute
UC Berkeley

Prologue

- Let \mathcal{C} be an (n, k, d) linear code over \mathbb{F}
- generator / parity-check matrix: $G \in \mathbb{F}^{k \times n} / H \in \mathbb{F}^{(n-k) \times n}$
- product code given by $n \times n$ arrays with rows/columns in \mathcal{C} :

$$
\mathcal{P}=\left\{G^{\top} U G \mid U \in \mathbb{F}^{k \times k}\right\}
$$

- well-known that \mathcal{P} is an $\left(n^{2}, k^{2}, d^{2}\right)$ linear code

Prologue

- Let \mathcal{C} be an (n, k, d) linear code over \mathbb{F}
- generator / parity-check matrix: $G \in \mathbb{F}^{k \times n} / H \in \mathbb{F}^{(n-k) \times n}$
- product code given by $n \times n$ arrays with rows/columns in \mathcal{C} :

$$
\mathcal{P}=\left\{G^{\top} U G \mid U \in \mathbb{F}^{k \times k}\right\}
$$

- well-known that \mathcal{P} is an $\left(n^{2}, k^{2}, d^{2}\right)$ linear code
- Let \mathcal{U} be the symmetric subcode of \mathcal{P} :

$$
\mathcal{U}=\left\{X \in \mathcal{P} \mid X^{\top}=X\right\}
$$

- if char $(\mathbb{F}) \neq 2$, then $\mathcal{U}=\left\{2^{-1}\left(X^{\top}+X\right) \mid X \in \mathcal{P}\right\}$
- puncturing the lower triangle gives $\left.\binom{n+1}{2},\binom{k+1}{2},\binom{d+1}{2}\right)$ code

Prologue (2)

Product Code

Prologue (2)

Symmetric Subcode

Prologue (2)

Punctured Symmetric Subcode

Prologue (3)

- Benefits
- for moderate k and n, length and dimension reduced by ~ 2
- same component code: roughly same rate and half the length

Prologue (3)

- Benefits
- for moderate k and n, length and dimension reduced by ~ 2
- same component code: roughly same rate and half the length
- Drawbacks
- minimum distance also drops by ~ 2. Can one do better?

Prologue (3)

- Benefits
- for moderate k and n, length and dimension reduced by ~ 2
- same component code: roughly same rate and half the length
- Drawbacks
- minimum distance also drops by ~ 2. Can one do better?
- Let \mathcal{V} be the anti-symmetric subcode of \mathcal{P} :

$$
\mathcal{V}=\left\{X \in \mathcal{P} \mid X^{\top}=-X, \operatorname{diag}(X)=0\right\}
$$

- if $\operatorname{char}(\mathbb{F}) \neq 2$, then $\mathcal{V}=\left\{2^{-1}\left(X^{\top}-X\right) \mid X \in \mathcal{P}\right\}$
- Justesen suggested puncturing the lower triangle to get an

$$
\left(\binom{n}{2},\binom{k}{2}, D\right) \quad \text { Half-Product Code } \mathcal{H}
$$

Prologue (4)

Product Code

Prologue (4)

Anti-Symmetric Subcode

Prologue (4)

Punctured Anti-Symmetric Subcode

Outline

- Background
- Applications
- Half-Product Codes
- Symmetric Product Codes

Background

- Product Codes
- introduced by Elias in 1954
- hard-decision "cascade decoding" by Abramson in 1968
- "GLDPC" introduced by Tanner in 1981
- Example: 2-error-correcting codes, bounded distance decoding

Background

- Product Codes
- introduced by Elias in 1954
- hard-decision "cascade decoding" by Abramson in 1968
- "GLDPC" introduced by Tanner in 1981
- Example: 2-error-correcting codes, bounded distance decoding

Received block

Background

- Product Codes
- introduced by Elias in 1954
- hard-decision "cascade decoding" by Abramson in 1968
- "GLDPC" introduced by Tanner in 1981
- Example: 2-error-correcting codes, bounded distance decoding

Row decoding

Background

- Product Codes
- introduced by Elias in 1954
- hard-decision "cascade decoding" by Abramson in 1968
- "GLDPC" introduced by Tanner in 1981
- Example: 2-error-correcting codes, bounded distance decoding

Row decoding

Background

- Product Codes
- introduced by Elias in 1954
- hard-decision "cascade decoding" by Abramson in 1968
- "GLDPC" introduced by Tanner in 1981
- Example: 2-error-correcting codes, bounded distance decoding

Column decoding

Background

- Product Codes
- introduced by Elias in 1954
- hard-decision "cascade decoding" by Abramson in 1968
- "GLDPC" introduced by Tanner in 1981
- Example: 2-error-correcting codes, bounded distance decoding

Column decoding

Background

- Product Codes
- introduced by Elias in 1954
- hard-decision "cascade decoding" by Abramson in 1968
- "GLDPC" introduced by Tanner in 1981
- Example: 2-error-correcting codes, bounded distance decoding

Background

- Product Codes
- introduced by Elias in 1954
- hard-decision "cascade decoding" by Abramson in 1968
- "GLDPC" introduced by Tanner in 1981
- Example: 2-error-correcting codes, bounded distance decoding

Decoding successful

Background

- Product Codes
- introduced by Elias in 1954
- hard-decision "cascade decoding" by Abramson in 1968
- "GLDPC" introduced by Tanner in 1981
- Example: 2-error-correcting codes, bounded distance decoding

Or trapped in a stopping set

Applications

- Applications
- recent interest for high speed optical communication
- focus on $100 \mathrm{~Gb} / \mathrm{s}$ with 7% redundancy (i.e., $1-\frac{239}{255} \approx 0.07$)
- high-rate generalized product codes with BCH component codes and iterative algebraic hard-decision
- many designs appeared in ITU 975.1 in 2004
- Justesen recognized the potential in 2010
- Decoding
- decoding complexity much lower than comparable LDPC codes
- for hard-decision channels, BER performance is comparable

A Note on Decoding

- Syndrome-Based Iterative Algebraic Decoding
- Initialization
- compute and store the syndrome for each row and column
- Iteration
- run algebraic decoding on each row using syndromes
- correct errors by updating the column syndromes
- run algebraic decoding on each column using syndromes
- correct errors by updating the row syndromes
- Memory to store syndromes is $2 n(n-k)=2 n^{2}(1-R)$ vs. n^{2}
- $(1023,993) \mathrm{BCH}$ vs. $n=1023^{2}$ LDPC: factor 50 less memory
- Well-known trick in industry for many years...

Symmetric Product Codes

- What are they?
- subclass of generalized product codes that use symmetry to reduce the block length while using the same component code
- one example, dubbed half-product codes (HPCs) in 2011 by Justesen, based on work by Tanner in 1981
- the minimum distance is also larger than expected
- Match the length and rate between product and HPC
- PC is $\left(n_{0}^{2}, k_{0}^{2}\right)$ and HPC is $\approx\left(n_{1}^{2} / 2, k_{1}^{2} / 2\right)$
- $n_{1} \approx \sqrt{2} n_{0}, k_{1} \approx \sqrt{2} k_{0}$, and $n_{1}-k_{1} \approx \sqrt{2}\left(n_{0}-k_{0}\right)$
- HPC component code has n and t larger by factor $\sqrt{2}$!

Minimum Distance (1)

- Support Sets and Generalized Hamming Weights
- let $\operatorname{supp}(x) \triangleq\left\{i \in[n] \mid[x]_{i} \neq 0\right\}$ denote the support set of x
- the 2nd generalized Hamming weight [HKY92] is

$$
\begin{aligned}
d_{2} & =\min _{\substack{x_{1}, x_{2} \in \mathcal{C} \backslash\{0\} \\
x_{1} \neq x_{2}}}\left|\operatorname{supp}\left(x_{1}\right) \cup \operatorname{supp}\left(x_{2}\right)\right| \\
& \geq\left\lceil 3 d_{\text {min }} / 2\right\rceil
\end{aligned}
$$

- measures minimal total support of two codewords
- Bound: if d_{2} smaller than $\left\lceil 3 d_{\min } / 2\right\rceil$, then sum violates $d_{\text {min }}$

Minimum Distance (2)

- Let \mathcal{V} be the anti-symmetric subcode of \mathcal{P}

Minimum Distance (2)

- Let \mathcal{V} be the anti-symmetric subcode of \mathcal{P}
- For $x_{1}, x_{2} \in \mathcal{C} \backslash\{0\}$, we will show $X=x_{1}^{\top} x_{2} \notin \mathcal{V}$
- First, note $X \in \mathcal{P}$ because $H X=\left(H x_{1}^{T}\right) x_{2}=0$
- But, $\operatorname{diag}(X)=0$ for $X \in \mathcal{V}$ and, thus, $\left[x_{1}\right]_{i}\left[x_{2}\right]_{i}=0$ for all i
- implies $\operatorname{supp}\left(x_{1}\right) \cap \operatorname{supp}\left(x_{2}\right)=\emptyset$
- and $X_{i, j}=\left[x_{1}\right]_{i}\left[x_{2}\right]_{j} \neq 0$ implies $X_{j, i}=\left[x_{1}\right]_{j}\left[x_{2}\right]_{i}=0$
- Thus, $X^{\top} \neq-X$ and $X \notin \mathcal{V}$

Minimum Distance (2)

- Let \mathcal{V} be the anti-symmetric subcode of \mathcal{P}
- For $x_{1}, x_{2} \in \mathcal{C} \backslash\{0\}$, we will show $X=x_{1}^{\top} x_{2} \notin \mathcal{V}$
- First, note $X \in \mathcal{P}$ because $H X=\left(H x_{1}^{T}\right) x_{2}=0$
- But, $\operatorname{diag}(X)=0$ for $X \in \mathcal{V}$ and, thus, $\left[x_{1}\right]_{i}\left[x_{2}\right]_{i}=0$ for all i
- implies $\operatorname{supp}\left(x_{1}\right) \cap \operatorname{supp}\left(x_{2}\right)=\emptyset$
- and $X_{i, j}=\left[x_{1}\right]_{i}\left[x_{2}\right]_{j} \neq 0$ implies $X_{j, i}=\left[x_{1}\right]_{j}\left[x_{2}\right]_{i}=0$
- Thus, $X^{\top} \neq-X$ and $X \notin \mathcal{V}$
- Thus, no $X \in \mathcal{V}$ where n.z. rows are scalar multiples of a c.w.

Minimum Distance (3)

- No $X \in \mathcal{V}$ where n.z. rows are scalar multiples of a c.w.
- n.z. codeword in \mathcal{V} must have ≥ 2 distinct non-zero rows
- Minimum number of n.z. columns is lower bounded by d_{2}
- Likewise, each column must have at least d non-zero elements
- So, minimum distance of \mathcal{V} must be $\geq d_{2} d \geq\lceil 3 d / 2\rceil d$
- Puncturing lower triangle gives \mathcal{H}
- implies $D \geq\lceil 3 d / 2\rceil d / 2$
- Or $D \geq 3 d^{2} / 4$ if d even

Minimum Distance (4)

- \mathcal{H} is an (N, K, D) code with $N=\binom{n}{2}, K=\binom{k}{2}$, and

$$
D \geq \begin{cases}\frac{3 d^{2}}{4} & \text { if } d \text { even } \\ \frac{(3 d+1) d}{4} & \text { if } d \bmod 4=1 \\ \frac{(3 d+1) d+2}{4} & \text { if } d \bmod 4=3\end{cases}
$$

- Also have matching upper bound if d is even and there are minimum distance codewords achieving the minimum for d_{2}
- Basic Idea: Zeros on diagonal prevent standard square pattern codewords. Thus, support in one dimension must contain at least 2 distinct codewords. Thus, there are d_{2} non-zero rows (or columns) each with weight at least d and $D \geq d_{2} d$.

Minimum Distance (5)

- Example: If \mathcal{C} is an ($8,4,4$) extended Hamming code
- then $d=4, d_{2}=\lceil 3 d / 2\rceil=6$, and $D \geq 12$
- there exists $x_{1}, x_{2} \in \mathcal{C}$ such that $\left|\operatorname{supp}\left(x_{1}\right) \cup \operatorname{supp}\left(x_{2}\right)\right|=6$ and $w\left(x_{1}\right)=w\left(x_{2}\right)=4$
- Half-product code is a $(28,6,12)$ binary linear code
- no $(28,6)$ binary linear code with larger $d_{\text {min }}$ exists

Iterative Decoding Analysis (1)

- Peeling Decoder for Generalized Product Codes
- received symbols corrected sequentially without mistakes
- for the BEC and, if a genie prevents miscorrection, the BSC

Iterative Decoding Analysis (1)

- Peeling Decoder for Generalized Product Codes
- received symbols corrected sequentially without mistakes
- for the BEC and, if a genie prevents miscorrection, the BSC
- Based on "error graph":
- vertices are code constraints
- edges connect code constraints containing same symbol
- initial observations remove fraction $1-p$ edges
- decoder peels any code constraint with t or fewer errors/edges
- always reaches stopping set after finite number of iterations

Iterative Decoding Analysis (2)

- Asymptotic Results for Half-Product Codes
- t-error-correcting components w/bounded distance decoding
- complete graph, edges removed i.i.d. prob. $1-p$
- Assume $n \rightarrow \infty$ with fixed t and $p_{n}=\frac{\lambda}{n}$
- decoding threshold λ^{*} via k-core problem in graph theory
- observed in 2007 by Justesen and Høholdt
- thresholds for $t=2,3,4$ are $\lambda^{*}=3.35,5.14,6.81$
- information about finite length via $\lambda^{*}=\lim _{n \rightarrow \infty} n p_{n}^{*}$

Simulation Results (1)

- "Fair comparison" between product and half-product codes
- can't match both rate and block length due to numerology
- we match the rate and let the block lengths differ by $<15 \%$

Simulation Results (1)

- "Fair comparison" between product and half-product codes
- can't match both rate and block length due to numerology
- we match the rate and let the block lengths differ by $<15 \%$
- First Example
- product code from $(170,154,5)$ shortened binary BCH code
- $\left(N^{\prime}, K^{\prime}, D^{\prime}\right)=(28900,23716,25)$, rate $\approx 0.82, s_{\min }=9$
- half-product code from $(255,231,7)$ binary BCH code
- $(N, K, D)=(32385,26565,40)$, rate $\approx 0.82, s_{\text {min }}=10$

Simulation Results (1)

- "Fair comparison" between product and half-product codes
- can't match both rate and block length due to numerology
- we match the rate and let the block lengths differ by $<15 \%$
- First Example
- product code from $(170,154,5)$ shortened binary BCH code

$$
\text { - }\left(N^{\prime}, K^{\prime}, D^{\prime}\right)=(28900,23716,25), \text { rate } \approx 0.82, s_{\min }=9
$$

- half-product code from $(255,231,7)$ binary BCH code

$$
\text { - }(N, K, D)=(32385,26565,40), \text { rate } \approx 0.82, s_{\min }=10
$$

- Iterative decoding assuming genie to prevent miscorrection
- connection to k-core problem allows "threshold" estimates
- For the product code, $p^{*} \approx 3.35 / 170=0.0197$
- For the half-product code, $p^{*} \approx 5.14 / 255=0.0201$

Simulation Results (2)

- DE predicts better HPC threshold because 5.14/3.35>3/2
- Stopping set analysis predicts better HPC error floor

Simulation Results (3)

- product code from $(383,356,7)$ shortened binary BCH code
- $(146689,126736,49)$ code, rate $\approx 0.86, s_{\text {min }}=16$
- half-product code from $(511,475,9)$ binary BCH code
- $(130305,112575,65)$ code, rate $\approx 0.86, s_{\text {min }}=15$
- DE predicts worse HPC threshold because $6.81 / 5.14<4 / 3$

Conclusions

- Half-product codes
- Length and dimension reduced by half with same component
- Normalized minimum distance improved by $3 / 2$
- For same blocklength and rate, one can increase t by $\sqrt{2}$
- Changing $t=2$ to $t=3$ generally improves performance
- More comprehensive simulations are needed
- Symmetric product codes (see ITA 2015 paper)
- Natural extension to m-dimensional product codes
- Length and dimension reduced roughly by m factorial
- Minimum distance improves

Conclusions

- Half-product codes
- Length and dimension reduced by half with same component
- Normalized minimum distance improved by $3 / 2$
- For same blocklength and rate, one can increase t by $\sqrt{2}$
- Changing $t=2$ to $t=3$ generally improves performance
- More comprehensive simulations are needed
- Symmetric product codes (see ITA 2015 paper)
- Natural extension to m-dimensional product codes
- Length and dimension reduced roughly by m factorial
- Minimum distance improves
- By how much is an open problem...

