Symmetric Product Codes

Henry D. Pfister¹, Santosh Emmadi², and Krishna Narayanan²

¹Department of Electrical and Computer Engineering Duke University

²Department of Electrical and Computer Engineering Texas A&M University

Coding: From Practice to Theory Simons Institute UC Berkeley

Prologue

- Let \mathcal{C} be an (n, k, d) linear code over \mathbb{F}
 - \blacktriangleright generator / parity-check matrix: $G \in \mathbb{F}^{k \times n}$ / $H \in \mathbb{F}^{(n-k) \times n}$
 - product code given by $n \times n$ arrays with rows/columns in C:

$$\mathcal{P} = \left\{ G^\top U G \, | \, U \in \mathbb{F}^{k \times k} \right\}$$

• well-known that \mathcal{P} is an (n^2,k^2,d^2) linear code

• Let $\mathcal C$ be an (n,k,d) linear code over $\mathbb F$

- \blacktriangleright generator / parity-check matrix: $G \in \mathbb{F}^{k \times n}$ / $H \in \mathbb{F}^{(n-k) \times n}$
- product code given by $n \times n$ arrays with rows/columns in C:

$$\mathcal{P} = \left\{ G^\top U G \, | \, U \in \mathbb{F}^{k \times k} \right\}$$

• well-known that \mathcal{P} is an (n^2, k^2, d^2) linear code

• Let \mathcal{U} be the symmetric subcode of \mathcal{P} :

$$\mathcal{U} = \left\{ X \in \mathcal{P} \, | \, X^\top = X \right\}$$

- if char(\mathbb{F}) $\neq 2$, then $\mathcal{U} = \left\{ 2^{-1}(X^{\top} + X) \, | \, X \in \mathcal{P} \right\}$
- ▶ puncturing the lower triangle gives $\left(\binom{n+1}{2},\binom{k+1}{2},\binom{d+1}{2}\right)$ code

Product Code

Symmetric Subcode

Punctured Symmetric Subcode

Prologue (3)

Benefits

- \blacktriangleright for moderate k and n, length and dimension reduced by ~ 2
- same component code: roughly same rate and half the length

- Benefits
 - \blacktriangleright for moderate k and $n_{\rm r}$ length and dimension reduced by ~ 2
 - same component code: roughly same rate and half the length
- Drawbacks
 - \blacktriangleright minimum distance also drops by $\sim 2.$ Can one do better?

- Benefits
 - \blacktriangleright for moderate k and n, length and dimension reduced by ~ 2
 - same component code: roughly same rate and half the length
- Drawbacks
 - \blacktriangleright minimum distance also drops by $\sim 2.$ Can one do better?
- Let \mathcal{V} be the anti-symmetric subcode of \mathcal{P} :

$$\mathcal{V} = \left\{ \boldsymbol{X} \in \mathcal{P} \, | \, \boldsymbol{X}^\top = -\boldsymbol{X}, \, \mathrm{diag}(\boldsymbol{X}) = \boldsymbol{0} \right\}$$

- if char(\mathbb{F}) $\neq 2$, then $\mathcal{V} = \left\{ 2^{-1}(X^{\top} X) \, | \, X \in \mathcal{P} \right\}$
- Justesen suggested puncturing the lower triangle to get an

$$\binom{n}{2}, \binom{k}{2}, D$$
 Half-Product Code $\mathcal H$

Product Code

Anti-Symmetric Subcode

Punctured Anti-Symmetric Subcode

Background

- Applications
- Half-Product Codes
- Symmetric Product Codes

- Product Codes
 - introduced by Elias in 1954
 - ► hard-decision "cascade decoding" by Abramson in 1968
 - "GLDPC" introduced by Tanner in 1981

- Product Codes
 - introduced by Elias in 1954
 - ► hard-decision "cascade decoding" by Abramson in 1968
 - "GLDPC" introduced by Tanner in 1981

Received block

- Product Codes
 - introduced by Elias in 1954
 - ► hard-decision "cascade decoding" by Abramson in 1968
 - "GLDPC" introduced by Tanner in 1981

Row decoding

- Product Codes
 - introduced by Elias in 1954
 - hard-decision "cascade decoding" by Abramson in 1968
 - "GLDPC" introduced by Tanner in 1981

Row decoding

- Product Codes
 - introduced by Elias in 1954
 - ► hard-decision "cascade decoding" by Abramson in 1968
 - "GLDPC" introduced by Tanner in 1981

Column decoding

- Product Codes
 - introduced by Elias in 1954
 - ► hard-decision "cascade decoding" by Abramson in 1968
 - "GLDPC" introduced by Tanner in 1981

Column decoding

- Product Codes
 - introduced by Elias in 1954
 - ► hard-decision "cascade decoding" by Abramson in 1968
 - "GLDPC" introduced by Tanner in 1981

- Product Codes
 - introduced by Elias in 1954
 - ► hard-decision "cascade decoding" by Abramson in 1968
 - "GLDPC" introduced by Tanner in 1981

Decoding successful

- Product Codes
 - introduced by Elias in 1954
 - ► hard-decision "cascade decoding" by Abramson in 1968
 - "GLDPC" introduced by Tanner in 1981

Or trapped in a stopping set

Applications

- recent interest for high speed optical communication
- ▶ focus on 100 Gb/s with 7% redundancy (i.e., $1 \frac{239}{255} \approx 0.07$)
- high-rate generalized product codes with BCH component codes and iterative algebraic hard-decision
- many designs appeared in ITU 975.1 in 2004
- Justesen recognized the potential in 2010
- Decoding
 - decoding complexity much lower than comparable LDPC codes
 - ▶ for hard-decision channels, BER performance is comparable

- Syndrome-Based Iterative Algebraic Decoding
 - Initialization
 - compute and store the syndrome for each row and column
 - Iteration
 - run algebraic decoding on each row using syndromes
 - correct errors by updating the column syndromes
 - run algebraic decoding on each column using syndromes
 - correct errors by updating the row syndromes
- Memory to store syndromes is $2n(n-k) = 2n^2(1-R)$ vs. n^2
- ▶ (1023,993) BCH vs. $n = 1023^2$ LDPC: factor 50 less memory
- Well-known trick in industry for many years...

- What are they?
 - subclass of generalized product codes that use symmetry to reduce the block length while using the same component code
 - one example, dubbed half-product codes (HPCs) in 2011 by Justesen, based on work by Tanner in 1981
 - the minimum distance is also larger than expected
- Match the length and rate between product and HPC

 \blacktriangleright PC is (n_0^2,k_0^2) and HPC is $\approx (n_1^2/2,k_1^2/2)$

• $n_1 \approx \sqrt{2}n_0$, $k_1 \approx \sqrt{2}k_0$, and $n_1 - k_1 \approx \sqrt{2}(n_0 - k_0)$

• HPC component code has n and t larger by factor $\sqrt{2}!$

Support Sets and Generalized Hamming Weights

- ▶ let $supp(x) \triangleq \{i \in [n] \mid [x]_i \neq 0\}$ denote the support set of x
- the 2nd generalized Hamming weight [HKY92] is

$$d_{2} = \min_{\substack{x_{1}, x_{2} \in \mathcal{C} \setminus \{0\} \\ x_{1} \neq x_{2}}} |\operatorname{supp}(x_{1}) \cup \operatorname{supp}(x_{2})|$$
$$\geq \lceil 3d_{\min}/2 \rceil$$

- measures minimal total support of two codewords
- ▶ Bound: if d_2 smaller than $\lceil 3d_{\min}/2 \rceil$, then sum violates d_{\min}

 \blacktriangleright Let ${\mathcal V}$ be the anti-symmetric subcode of ${\mathcal P}$

- Let $\mathcal V$ be the anti-symmetric subcode of $\mathcal P$
- For $x_1, x_2 \in \mathcal{C} \setminus \{0\}$, we will show $X = x_1^\top x_2 \notin \mathcal{V}$
 - First, note $X \in \mathcal{P}$ because $HX = (Hx_1^T)x_2 = 0$
 - ▶ But, diag(X) = 0 for $X \in \mathcal{V}$ and, thus, $[x_1]_i [x_2]_i = 0$ for all i
 - implies $\operatorname{supp}(x_1) \cap \operatorname{supp}(x_2) = \emptyset$
 - and $X_{i,j} = [x_1]_i [x_2]_j \neq 0$ implies $X_{j,i} = [x_1]_j [x_2]_i = 0$
 - $\blacktriangleright \quad \text{Thus, } X^\top \neq -X \text{ and } X \notin \mathcal{V}$

• Let $\mathcal V$ be the anti-symmetric subcode of $\mathcal P$

For $x_1, x_2 \in \mathcal{C} \setminus \{0\}$, we will show $X = x_1^\top x_2 \notin \mathcal{V}$

▶ First, note $X \in \mathcal{P}$ because $HX = (Hx_1^T)x_2 = 0$

- ▶ But, diag(X) = 0 for $X \in \mathcal{V}$ and, thus, $[x_1]_i [x_2]_i = 0$ for all i
 - implies $\operatorname{supp}(x_1) \cap \operatorname{supp}(x_2) = \emptyset$
 - ▶ and $X_{i,j} = [x_1]_i [x_2]_j \neq 0$ implies $X_{j,i} = [x_1]_j [x_2]_i = 0$
 - Thus, $X^{\top} \neq -X$ and $X \notin \mathcal{V}$

• Thus, no $X \in \mathcal{V}$ where n.z. rows are scalar multiples of a c.w.

- No $X \in \mathcal{V}$ where n.z. rows are scalar multiples of a c.w.
 - ▶ n.z. codeword in \mathcal{V} must have ≥ 2 distinct non-zero rows
 - Minimum number of n.z. columns is lower bounded by d_2
 - Likewise, each column must have at least d non-zero elements
 - So, minimum distance of \mathcal{V} must be $\geq d_2 d \geq \lceil 3d/2 \rceil d$
 - Puncturing lower triangle gives \mathcal{H}
 - implies $D \ge \lceil 3d/2 \rceil d/2$
 - ▶ Or $D \ge 3d^2/4$ if d even

Minimum Distance (4)

• \mathcal{H} is an (N, K, D) code with $N = \binom{n}{2}$, $K = \binom{k}{2}$, and

$$D \ge \begin{cases} \frac{3d^2}{4} & \text{if } d \text{ even} \\ \frac{(3d+1)d}{4} & \text{if } d \mod 4 = 1 \\ \frac{(3d+1)d+2}{4} & \text{if } d \mod 4 = 3 \end{cases}$$

- Also have matching upper bound if d is even and there are minimum distance codewords achieving the minimum for d₂
- ▶ Basic Idea: Zeros on diagonal prevent standard square pattern codewords. Thus, support in one dimension must contain at least 2 distinct codewords. Thus, there are d₂ non-zero rows (or columns) each with weight at least d and D ≥ d₂d.

- ▶ Example: If C is an (8,4,4) extended Hamming code
 - then d = 4, $d_2 = \lceil 3d/2 \rceil = 6$, and $D \ge 12$
 - ▶ there exists $x_1, x_2 \in C$ such that $|\operatorname{supp}(x_1) \cup \operatorname{supp}(x_2)| = 6$ and $w(x_1) = w(x_2) = 4$
- Half-product code is a (28, 6, 12) binary linear code
 - ▶ no (28,6) binary linear code with larger d_{\min} exists

- Peeling Decoder for Generalized Product Codes
 - received symbols corrected sequentially without mistakes
 - ▶ for the BEC and, if a genie prevents miscorrection, the BSC

Peeling Decoder for Generalized Product Codes

- received symbols corrected sequentially without mistakes
- ▶ for the BEC and, if a genie prevents miscorrection, the BSC
- Based on "error graph":
 - vertices are code constraints
 - edges connect code constraints containing same symbol
 - initial observations remove fraction 1-p edges
 - decoder peels any code constraint with t or fewer errors/edges
 - always reaches stopping set after finite number of iterations

Asymptotic Results for Half-Product Codes

- *t*-error-correcting components w/bounded distance decoding
- complete graph, edges removed i.i.d. prob. 1-p

• Assume $n \to \infty$ with fixed t and $p_n = \frac{\lambda}{n}$

- decoding threshold λ^* via k-core problem in graph theory
- observed in 2007 by Justesen and Høholdt
- \blacktriangleright thresholds for $t=2,\,3,\,4$ are $\lambda^*=3.35\,,5.14\,,6.81$
 - ▶ information about finite length via $\lambda^* = \lim_{n \to \infty} n p_n^*$

Simulation Results (1)

- "Fair comparison" between product and half-product codes
 - can't match both rate and block length due to numerology
 - \blacktriangleright we match the rate and let the block lengths differ by <15%

Simulation Results (1)

- "Fair comparison" between product and half-product codes
 - can't match both rate and block length due to numerology
 - \blacktriangleright we match the rate and let the block lengths differ by <15%
- First Example
 - product code from (170, 154, 5) shortened binary BCH code

• (N', K', D') = (28900, 23716, 25), rate ≈ 0.82 , $s_{\min} = 9$

- half-product code from (255, 231, 7) binary BCH code
 - (N, K, D) = (32385, 26565, 40), rate ≈ 0.82 , $s_{\min} = 10$

Simulation Results (1)

- "Fair comparison" between product and half-product codes
 - can't match both rate and block length due to numerology
 - \blacktriangleright we match the rate and let the block lengths differ by <15%
- First Example
 - product code from (170, 154, 5) shortened binary BCH code

• (N', K', D') = (28900, 23716, 25), rate ≈ 0.82 , $s_{\min} = 9$

• half-product code from (255, 231, 7) binary BCH code

• (N, K, D) = (32385, 26565, 40), rate ≈ 0.82 , $s_{\min} = 10$

- Iterative decoding assuming genie to prevent miscorrection
 - connection to k-core problem allows "threshold" estimates
 - For the product code, $p^* \approx 3.35/170 = 0.0197$
 - \blacktriangleright For the half-product code, $p^*\approx 5.14/255=0.0201$

Simulation Results (2)

- DE predicts better HPC threshold because 5.14/3.35 > 3/2
- Stopping set analysis predicts better HPC error floor

Simulation Results (3)

iD

• product code from (383, 356, 7) shortened binary BCH code

• (146689, 126736, 49) code, rate ≈ 0.86 , $s_{\min} = 16$

• half-product code from (511, 475, 9) binary BCH code

▶ (130305, 112575, 65) code, rate ≈ 0.86 , $s_{\min} = 15$

• DE predicts worse HPC threshold because 6.81/5.14 < 4/3

- Half-product codes
 - Length and dimension reduced by half with same component
 - Normalized minimum distance improved by 3/2
 - \blacktriangleright For same blocklength and rate, one can increase t by $\sqrt{2}$
 - Changing t = 2 to t = 3 generally improves performance
 - More comprehensive simulations are needed
- Symmetric product codes (see ITA 2015 paper)
 - Natural extension to *m*-dimensional product codes
 - \blacktriangleright Length and dimension reduced roughly by m factorial
 - Minimum distance improves

- Half-product codes
 - Length and dimension reduced by half with same component
 - ▶ Normalized minimum distance improved by 3/2
 - \blacktriangleright For same blocklength and rate, one can increase t by $\sqrt{2}$
 - Changing t = 2 to t = 3 generally improves performance
 - More comprehensive simulations are needed
- Symmetric product codes (see ITA 2015 paper)
 - Natural extension to *m*-dimensional product codes
 - \blacktriangleright Length and dimension reduced roughly by m factorial
 - Minimum distance improves
 - By how much is an open problem...