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Abstract. We consider a random walk on the d-dimensional lattice Z? where
the transition probabilities p(x, y) are symmetric, p(x, y)=p(y, x), different from
zero only if y— x belongs to a finite symmetric set including the origin and are
random. We prove the convergence of the finite-dimensional probability
distributions of normalized random paths to the finite-dimensional probability
distributions of a Wiener process and find our an explicit expression for the
diffusion matrix.

1. Formulation of the Problem and Results

We shall consider Markov chains whose phase space is the cubic d-dimensional
lattice Z° In the case of discrete time such chains are defined by their transition
probabilities p(x, y), xeZ% yeZ® which are replaced by differential transition
probabilities w(x, y), xe Z*%, yeZ* in the case of continuous time. We shall discuss
the situation when p(x, y) or w(x, y) are random variables not depending on time.
One says in these cases that one has a random walk in a random environment (see
[1-2]).

There are many physical problems where one encounters similar random
walks. We can mention some problems in crystallography (see [31), and biophysics
[4]. In this spirit one can discuss kinetic properties of Lorentz gas with random
configurations of scatterers.

The one-dimensional case with possible transitions x—x+1 is mostly in-
vestigated from the mathematical point of view. The first results are due to Kesten,
M. Kozlov, and Spitzer (see [1]). One can also mention the papers [5-6]. In [6]
the case when p(x, x+1) and p(x,x—1)=1—p(x, x -+ 1) are identically distributed
was considered. An unexpected result of [6] is that the random walk can be highly
nonuniform and a moving point spends an unusually large part of time in some
regions of Z*. The positions of these regions and the distribution of time depend
on a realization of probabilities p(x, x + 1).

Quite a different situation arises if one admits the transitions x—»x—1, x, x+ 1
and adds the symmetry condition p(x, y)=p(y, x) or w(x, y)=w(y, x). This case is
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discussed in the whole series of papers [7-9] and a review article [ 10]. The main
result is that if E(w(x,x+ 1))~ < oo and x{t) is a position of the moving particle at
the moment ¢ then Ex?(t)~ Dt as t— co, where D is a constant and the distribution
of x(t)t Y2 converges as t—oo to a gaussian distributuion with a nonrandom
variance. In [10] it is shown that if the condition E(w(x, x+ 1)) ™! < o0 is violated
then the growth of x(¢) can be more slow.

We consider in this paper a symmetric random walk in a random environment
for arbitrary d =1 and for the cases of discrete and continuous time. Let a finite
subset A+ CZ¢ be fixed such that

1) 0gu™,

2) AT A(—-A)=g,

3) A" generates the whole group Z°.

Denote A=A u(—A*)U0 and assume that for each pair x, yeZ?, y— xe A"
a random variable a(x, y) is defined. We put a(x, y)=a(y, x) for y—xe — A", al(x, x)
=— Y alx,x+a)and a(x,y)=0if y—x¢9u.

acW\0

An operator A=|a(x, y)|| is a linear operator with random matrix elements
which is similar in some respects to the Schrédinger operator with random
potential. If random variables a(x, y) =0 then — A4 can be considered as a generator

of a Markov semigroup with continuous time. Moreover if Y a(x,x+u)=—3
asU*

then P=1—4 is a matrix of transition probabilities of a random walk with

discrete time.

Assume that the joint probability distribution of random variables a(x, y) is
translationally invariant and put A= |a(x,y)| = |£a(x,y)| =F£A. Then —A4 is a
generator of a Markov semigroup with translationally invariant transition
probabilities in the case of continuous time while P=I— A4 is a matrix of transition
probabilities of an homogeneous Markov chain with discrete time. Let us
introduce Q= q(x, y)|| =4 — A.

Main assumption

I) Random variables g(x,y), y—xe W™ are mutually independent.
I} a(x, y)+0 for y—xeW\0.
) |g(x, y)|<dla(x, )|, where y—xe U, §< 3.
In the case of discrete time we need also

IV) a(x, x) S(1—=6)/(1 + ) for 6,>0.

The assumption III) means that the random walk defined by the matrix 4 is a
random perturbation of the random walk defined by A.

Let us fix r>0 and a sequence of numbers r,— o0, r,~¥ W as n—oo. We
denote by T, the set of r? points of the lattice Wthh are contalned in the cube
centered at the origin and having the volume r. T, may be considered either as a
fundamental domain of the subgroup »,Z*CZ* or as a finite lattice on the torus
Tor? —Rd/r IR% For large enough n we replace the sample {a(x,y)} by a new
sample {a,(x, )} which coincides with the original one if xeT,, y—xe U™ and is
symmetric and periodic with the period r, with respect to palrs x,y. New random
variables a,(x,y) can be considered as indexed by points of T, x 7T, Let
A,= a5, P, A, = 13,5, )| =EA,, 0,= l4,0x. )| = A, ~ A,, x, ye T,. The matrices
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A,, A, determine the random walk on T,. Trajectories of the random walk are
denoted by {X (1), 0=t =<n}. We want to emphasize that we consider random
trajectories on T, only during n steps. Let us make a contraction of Tor? with the
scaling coefficient ¢, =r,/r. In other words we consider the linear transformation
x—g, 'x which transforms Tor{ into Tor{. This contraction is equivalent to the
usual renormalization of the random walk, ie. to the consideration of the
trajectories {Y,(t)=g, 'X (1), 0=t =<n}, where Y (r)eTors because g,~ W

Let fe#*Tor%, u) be a probability density on Tor? with respect to the
normalized Lebesgue measure p. It defines the initial probability distribution f,

for the random walk on T, where f,(x)= [ f(y)du(y), 4,(x) is a d-dimensional
An(x)
cube in Tor? centered at g, 'x, xe T,, with the side ¢, *. This initial distribution

together with the matrix 4, define completely the probability distribution on the
set of trajectories X (1) or Y, (1), 0St<n.
Gaussian distribution on the torus Tor? with the covariance matrix a is the
probability distribution whose density has the form
d

¥ 1 -1

YVE I/Muazzd exp{—4(a~ Hx—u),(x—u)}.
One certainly assumes that a is a nondegenerate positively-defined matrix.
Brownian motion on Tor? with the initial probability density f and covariance
matrix a is the random process {Y(t), 0=<t<o} on Tor? with independent
increments for which Y(0) is distributed according to f and Y{r,)— Y(¢,) has
gaussian distribution with the covariance matrix (¢, —,)a. Now we can formulate
the main result of this paper.

0(x) =

Theorem 1. There exists a nondegenerate positively~definite matrix a not depending
on r such that for almost all A finite-dimensional probability distributions of the
process {Y,(t-n), 0=t =1} (continuous time) or {Y,([t-n]), 0St=1} (discrete time)
converge weakly as n—oo to the corresponding finite-dimensional probability
distribution of the Brownian motion on Tor? with the initial density f and covariance
matrix a.

In the case of A" consisting of unit coordinate vectors we have a sharper
result. Let {X(z), 0< 1 <n} be a random walk on Z¢ which is defined by the original
random matrix 4 and the probability density f defines as before the initial
probability distribution on Z¢ Let Y, (t)=n" 12X (1). We assume also that f is
square-integrable and has a finite support.

Theorem 2. For almost all A finite-dimensional probability distributions of the
process {Y,(t-n), 0=t =1} (continuous time) or {Y,([t-n]), 0Lt <1} (discrete time)
converge weakly to the corresponding probability distributions of the Brownian
motion on R? with the initial probability density f and the covariances matrix a
which is the same as in Theorem 1.

Proof of Theorem 1 is given in Sect. 3. We show that for eigenvalues of the
transition operator which are sufficiently close to the boundary of the spectrum
the corresponding eigenfunctions are close to exp{2mi(A/r, x)}, AeZ* and thus are
nonlocalized. This result is of a more general interest for the theory of random
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operators. The main part of our arguments concerns the derivation of a more or
less explicit expression for the matrix a (see, in particular, Sect. 6).

Another approach to the whole set of problems was developed by
Papanicolaou and Varadhan (see [11]) and S. Koslov [12] mainly for the case of
solutions of the diffusion equation with random coefficients. In a unpublished
paper by Molchanov this method was applied to the case of random walks on the
lattice where results which are in some respects stronger than ours were obtained.
However, as far as we know this approach does not lead to any explicit formula
for the diffusion matrix.

2. Main Lemma

Let us introduce a probability distribution y, on T, putting the measure of each
point equal to r, % Denote H,=%*T, u,) and HY is the subspace of H, of
functions with the mean equal to zero. Also H=%*Tor% ) and H? is the
subspace of H of functions whose integral over Tor? with respect to the Lebesgue
measure g is zero. It follows from the symmetry a(x, y) =a(y, x) that 4,, 4, are self-
adjoint operators in H, leaving invariant H® and the one-dimensional subspace
of constants. We denote by 4”2 and 4! the restrictions of 4,, 4, to the subspace
H®. One has a natural orthonormal basis of functions e{’(x)=exp {27i(4, x)},
A=Alr,, AT, in H,. We can assume that A={A,, ..., 4,}, — jr,£4,<5r, In the

. 2ni .
same way the set of functions e A(x)=exp{ﬂ(A, x)}, AeZ is an orthonormal
r

basis in H. The functions e are eigenfunctions of 4, and A, =a,(4)e}’. For
small A we have a,(4)=2n*aA, A)+o(|4|?), where & is a nondegenerate positively-
defined matrix (n-d. p~-d. m.) which does not depend on n and r. We expect that 4,
has also eigenvalues of the form a,(4)=2n%*(a4, 1)+ o(||?), where a is a n-d. p-d. m.
In order to extract a quadratic part of an @,(4) and not to deal with the unbounded
spectra, we shall pass to the operator n~*(4%)~ 1. It will be seen that this passage
has a more deep meaning.

For any n-d. p-d.m. a we introduce the operator A4, acting in H via the
formula

2n?

Age,=-(ad, Ne,, AeT?,
r

AY is its restriction to H®, We want to show that there exists a such that for
almost all 4 the sequence of operators n™ 1(4{”)"* converges in a proper sense to

(AD)~ 1, Now our goal is to make this argument more exact. Let us put for any
feH, and yeTor?

(1, f)(y) = f(x)

if ye 4,(x). Then I, is an isometric embedding of H, into H and IT,H® C H?. We
introduce an orthogonal projection ¥, of H onto I, H,. Then for any feH and
xeT,

1

(LY, ) (x)= mdnf(x)f(y) dply).
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d

In particular for any AeZ¢, A= Afr,, © (1) = 1_[

(72 e ) (x)=K,(4) ef{‘)(x) .
We denote by 1 and P{? the restrictions of IT, and ¥, to H®, H” respectively.

sin n/l

Main Lemma. There exists a n-d. p-d.m. a not depending on r and such that for
almost all A and n—

In™ HIR(A) ™ ML) ™D — (AD) ™ H o =0,
Let us write
(A(O))— 1 =E(A(0))_ 1 +(/'I(O))— 1/2Ln(2;0))— 1/2 ,
where L,=(A\")"2 (A) ! — E(AP) ") (A)2
The proof of the main lemma is based upon the following lemmas.

Lemma 1. The operator E(A”)™ ! is diagonal in the basis of functions e\, A= A/r,,
Ae T,\O and there exists a n-d. p-d. m. a not depending on v and such that for n— oo,
A=Afr,, AeZ\0 being fixed,

2 2
HEAL)™ )7 e, )~ - (a 4).

Lemma 2. For almost every A and fixed A,, A,€Z*\0
(L, ef)yo—0, n—oo,
where A, =A,/r,, A, =A,/r,
In both cases the scalar product is taken in the subspace H'Y.
Majorizing Lemma. Let A= lla(x, y)|, A = |{d'(x, y)I| be two matrices satisfying the

conditions on the p. 450 of the paper. If a(x,y)La'(x,y) for x+y then A=A =0
and A,Z A, 20.
Corollaries. 1. (1~8)A, <A, <(1+8)A4,,

2. Let D,=(AP)"Y2(AD — A (AD) 2. Then | D)l o 6.

3, There exists @ n-d. p-d.m. b such that if one puts B, =(bA, A)e®, A= Afr,,
AeT, then nA, 2B,

4. In the case of discrete time || A, |y, <2(1—0d,).

Majorizing Lemma and its corollaries will be proven in Appendix 1.

Proof of the Main Lemma. Let us introduce for any n-d. p-d. m. a a linear operator

G HO—HY, where Gﬁ,%ﬁﬂ— (aA MeP, L= Afr,, AeT,\0. We have

(Aﬁlo))—l :E(A(O))— 1 _1_(2(0))— 1/2L (Z(O))"l/z .

Let us consider the following three statements.
1. n_lll(/—lf,o’)“”zL (AP V2 =0 as n—oo.
2. in T HEAD) T (G, (o)—>0 as n—oo.
3. | OGO (T~ 1O (A‘O)) Yyo—0 as n—ooo.
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Because the map B—ITOB(II”) 9™ is an isometric embedding of the
algebra of linear operators of H'” into the algebra of bounded linear operators of
H'® the assertion of the main lemma is an immediate consequence of these three
statements.

In view of Corollary 3 one can find b > 0 such that if one puts A= A/r,, A€ T,\0,
Bl =b(A, A)el” then

nAOzBO,  nAO2BO,  GOzBO.
Let E; be an orthogonal projection of H{? onto the subspace generated by the
vectors e, |A|SR and Ex=1I— Eg. Then
n- 1(2510))— 1/2Ln(/_1(n()))—‘ 1/2 n- 1(Z;0))' UZERLnER(;{S,O))- 1/2
e EA0) L EHAD) B+ EYA) AL (AL E,
0 ERAL) T ERLERAL) Py
We have [[L, ||y = C where C does not depend on n, and
I~ (ALY 2L (AD) 2] oy b EgLyEgllwo + 2b ' C/R+b™1C/R?.
1t follows from Lemma 2 that for n— o0
b ERL,Egl g S eg(n)—0.

Let us take e >0 and large enough R, such that 2b"*C/R,+b ™ *C/R3 <¢&/2. Then
we choose n, in such a way that e (n) <e/2 as n>n,. We get for n>n,

In™ 1 (A ELAD) P g <.
Thus Statement 1 is proven. Statement 2 is proven in an analogous way.

Indeed, from Lemma 2 and fixed R

IER(n ™ ECA) ™ ~(G) ™ D Egll g0, n—>o0
and

B E(AY) ™ = (G) ™) Bl S 267 R 72

R n n RUH
Now we proceed to the proof of Statement 3. Let us remark that
(H(O))' 1 Y/(O)e — Kn(l) e(/}n)s /1 = A/rno AG Tn\o
40, A= Afr, Ae(ZNT)0.

d
where k(1) = H SmmJ —1 for fixed A, n— o0 and

n

HH(O)e(")—e o0, A=A, AcZ"\0,n—00.
AltH n
This gives

“ ER(H;O)(G;O))* 1 (H(nO))— 1 \P;O) _ (Agg))H I)HH(O)*)O ,
HITGD) (I D — (AD) ™ ) Egllgor—0,

for fixed R and n— co. Moreover
[ExITGO) (T WO El gy ST 'R,

[EgA) ' Exllgon Sb™'R™2.
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Another application of the same arguments as in the proof of Statement 1 gives
Statement 3.

3. Proof of Theorem 1
We shall use two general theorems of the perturbation theory of linear operators.

Theorem A. In the Hilbert space H, consider a given sequence of bounded self-
adjoint operators S, and ||S,— S|/ =0 as n— oo, where S is a bounded self-adjoint
operator. Let w be an isolated eigenvalue of S, &, and E being the corresponding
subspace and the orthogonal projection. Then for all large enough n one can find a
subspace &, invariant under S, and the corresponding projection E, such that for
n— o0

L E,~E|-0; 2 [E(S,—wlE,[—-0.

Theorem B. Let ¢, be a sequence of measurable functions defined on R™, ¢,(0)=0
and @, are uniformly continuous at 0. Assume also that ¢, converge uniformly on any
compact subset of R* to a continuous function @. If S, is a sequence of bounded
non-negative self-adjoint operators converging to a non-negative compact self-
adjoint operator S in the topology of norm-convergence, then ¢ (S,)— @(S) as n— o0
in the same topology.

Proof of Theorems A and B is given in the Appendices.
Let us take >0 and put P,(t)=II,exp{—tn4,} I, ' ¥, Pt
=P exp{— AV} (TP~ 1p®
in the case of continuous time and P (f)=1II (I— A "I ¥, POXt)
= 1O — A (1)~ 19O i the case of discrete time. The sequence ¢,, where

e M >0
0, w=0

in the case of continuous time, while in the case of discrete time

\o 1
1— — -
( nco) @ 2n(1—4,)

1
0 O=o< s i 5y
satisfies all conditions of Theorem B with ¢(w)=exp{—1i/w}. We consider the
operator S=(AY)"! and the sequence of the operators S,=n"'II{"(A4)!
AP0 Tt follows from the Main Lemma that they also satisfy the
conditions of Theorem B. Also ¢,(S,)=P°(1), ¢(S)=exp{—14Y} which follows
from Corollary 4 in the case of discrete time. Thus we obtain

P(t)> POt =exp{—tA"}

o) = {

v

@ (w)=

in the topology of norm-convergence. We have also
P ()= P (t)=exp{—tA,} (1)

in the same topology.
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Let us take a finite set of numbers 0<t, <t, <...<t, and a set of functions
feH, g4,g2s -, g€ L *(Tor}). We denote by T, an operator of multiplication on
g. The statement of Theorem 1 means that for n— oo
lim | (T, Pty=tw-1)T, Pty —lnes)... T, Pty —1)T, Pt))f)(x)du(x)
n—w Tord

I (T P (t 1)Tg -1 oo(tm 17 m-2) ngpoo( 1)

gl co(tl)f) (x)du(x)

But this equality follows immediately from (1).

4. Proof of Lemmas 1 and 2

For the operator D,=(4) 124D — A (A) Y2 we have from the
Corollary 2 || D, || oy <0< 3. The first statement of the lemma is obvious because
the operators (A")”Y2 commute with the translations and the probability
distribution of D, is translationally-invariant. Therefore the operator £(I—D,)™!
also commutes with the translations.

From the estimation ID, g S6<1/2 it follows that {[ED}lye <" Thus

{I—E(I-D,)" | 0)_ |ED || o) S 6/(1 ~8)<1 and the operator E(I—D,)" ' i
H HY

invertible. The operators A(O’F " = FD* commute with translations, and so in the
Fourier representation are multiplications by the functions @,(4)=(Ae{", €!")y0
and f,i"’(}t)=(F,§")eﬁ{‘), eg"))H&o,, where A=Afr,, AeT)\0. Let wus put
C,=(E(I-D,)” 1)" Then C,isin the Fourier representation the multiplication to

the function c,( (1 + Z i ),)) . We shall prove now that for each AeZ\0

there exist hmc (/l)—-c(/l) A=A/r, and a n-d. p-d.m. g, for which (G4, A) c(A)
=(aA, A) where (@d, Ay=r%/(2n?) lim na (4). We shall start by proving the exis-
tence of lim c,(4). Let us write down the explicit expression for fim(3):

fPD=(=1fr" Y E@) - q@ ) A h)

(Z1,a1)5 v (2, 2k)

I (2= 2 ) I (23— 2,) .. I L (z k2 )€ T 2 e T 0, e AT (2)

31} g ~ 1%k

4@ =gz z+a), HPA)=(E*"-1) @),

[O@=r7t Y KOG RP () s

AA=Alr,

AeT,\0
One can easily check the following properties of the function I}5(z):

1) for each zeZ¢ there exists
- 27ni(A, & 2mi(A, By

( At 1)(@ 5 ) 1) 2111(/1 2} dl
Tors 4 2, a(0,y)sin’(n(4, 7))

yeU+

lim [(2) = Fylz) =
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2) for a constant C
PRI C(dy (2, 0) + 1)1,

where d,, is the euclidean metric on T,

We remark that I 4(z) is not absolutely integrable and this generates the main
analytical difficulties of the problem.

In view of Eq™(z)=0 and the independence of different ¢'”(z) the nonzeroth
contribution to (2) is from the terms where each pair (z, @) enters in the sequence of
pairs {(z;,%,), ...,{z;, %)} more then once. It gives in particular f{"(1)=0. It is
convenient to imagine each {(z,a,), ..., (z;, #)} =7 as a path. In terms of the paths
we should consider only those paths which pass through each of its points not less

0 —1
than twice. We shall consider the limit of ¢ (1) = (1 + > f ,‘(")(A)) ,A=Afr, Letus
rewrite it as follows: k=1

c(N=1+ 3 FP0),
k=1
where

fi ()= Z G EDY f""(/l) TG ).

it +im=

Let k=1, +1,+ ...+, We shall use the equality:

SP@) )= (=1 ZE(q(m(zl) G NEG , ()l @)
E(Q;’,')M,Z +1 ﬂ1+1(zzl+lz+.u+1m”1+1) qgg(zk))h(”)( )h‘”)(l)ll({’iz( —Zg)..
1;(:) mk( _ Zkv 1)82ni(l,zl - zk) .

We can rewrite the expression for

JiG) = (= 0 O G A TR 2= 20) o AL (5 5 ) 270750,

315 Ok - 10

k
E(y)= Z Y. E(@i(z)..ql)(z,).

L+ +lhn=k

E(qy,lzﬂﬂ...“m,,+1(le+zz+.,.+lm~,+1)'--qg:3(zk))-
AssertionI. Let a path y={(z,o,),...,(z,, %)} be decomposed onto two paths

’))1 ={(21’ ) (Zp ])} ’YZ {( ]+ I,OCj+ 1)7 “'7(Zka dk)} in SuCh a Way that yzyluyzz
YNy, =0 Then E(yy=0.

Proof. We consider sets of natural numbers [;,1,,...,!
+1,=k. They can be of two types.

Dl +L,+...+,=j for some s, 1 <s<m;

) L+L+ . +L%xjforall s, 1<s<m.
One can correspond to each set of the second type a set of the first type in the
following way. Let us take s, for which [, +l Flog <o il o+l >
and construct a set of the first type 17,15, ..., mﬂ, where I —l for s<so, lsoJrl =j

=L+ L) L=+ )~ L= for s>s0+2 This cor-

such that [, +1,+ ...

n
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respondence is one-to-one. We have

() (n)
E(q“r;1+...+150+I(le+---+lso+1)"'qﬂc'z!1+ L lsgHt (Zl1+.,‘+lsn+1))

— (m) (n)
_E(qar;; oLy +1(Zl{+‘..+l;0+1)"'qo::{ PR T (Zl{+.4.+l;0+1))
w (Zz’l+...+zgo+2)),

. ()
E(qﬂtzi RS (O +1(Zli+~».+lé0+1+1) "'qm; -

so+2

which is equal to the product entering into the sum for £(y) for the corresponding
set of the second type. Our assertion follows from the fact that the corresponding
terms in E(y) have different signs. Q.E.D.

It is obvious also that E(y)=0 if the path y passes through a point only once.
We can write now

TP =(= 0P L0 BV D L, (23— 20) o I (5= 5 )07 20,
7

[251:5) T T e~ 10
3)

where Y means the summation over nondecomposing paths passing through
each of its points at least twice. It turns out that the summation only over these
paths leads to an effective increasing of the power of decay of 1;(;). We shall prove
the following assertion.

Assertion IL. For each k the series

YO ) RO R L (2) [0 (2= 2,) . T (5= 2, e M0

1 305 203 T e - 105
7 ={(0,a1), o, (2K, ax)}
converges absolutely and uniformly with respect to n.

Proof. We have to estimate

Z(l) U;(:;(Zz)i '[1;(;;3(23 - Zz)l Tt ll_;k, lﬁ(zk_ - 1)[ .
¥ ={(0,0),(22,%2), .. (Z2c - 1, 0k - 1), (25, B}
In view of the finiteness of U™ and the properties of I'{(z) it is sufficient to
establish the convergence of the series

W= Z‘l)(] +z,| )T Uz — 2, ) (2~ 2 )T, (4)

where the sum is taken over such paths y'={0,z,,...,2,}, zjeZd that each of its
points is visited not less than twice and the path 7" is nondecomposable.

We denote by V, the set {1,2, ..., k} and & is a partition of ¥, such that there
does not exist j, 1 <j<k, for which {1,2,...,j}, {j +1, ..., k} are unions of elements
of £ Tt is an abstract description of the nondecomposability. 9t(¢) is a set of such ¢’
that z;=2z; iff  and j belong to the same element of ¢, M(C) is a set of such ' that
z;=z; if i and j belong to the same element of {. Then

W=y > (142, " +lz3—z,) 7 (U +lzp— 2z, 1971
¢ yen(®)
<Y Y (1) A +lzs— 2 (g JD T
& v'eME)
The first step is to show that one can restrict himself by even k and such ¢ for
which each element of & consists of even number of points. In order to do this we
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shall correspond to any partition ¢ of ¥, a nondecomposable partition & of V, .,
where k' is the number of elements of £ having an odd number of points. The
partition &' arises if one adds to each element of ¢ with odd number of points one
extra point which follows exactly after the last point of this element. It is easy to
see that for a constant C, depending only on k

WG Y (+lz,) WU +zy— 2,09 7 (U +lze— 24197 F
g yem(E)

The next step is to reduce the whole sum only to the sum over the partitions
where each element contains only two points. In order to do this we construct for
each & a new partition £” in the following manner. If an element of & consists of
two points then it coincides with an element of £”. If it consists of an even number
of points then we decompose it on subsets having two elements in such a way that
each subset consists of points which are equally distant of its ends. It is clear that
P(EVCIR(E"). Now it is sufficient to estimate the sum

D A O I e T o IO § L Py S L R
y'eM(E")

Lemma. For every partition £ of V,, one can delete an element of £" not containing
1 in such a way that the induced partition of V,,_, will be nondecomposable.

Proof. 1f I belongs to the same element as 2k and there is an element of £” between
land 2k then we delete this element. If such an element does not exist then /=1 and
we delete the pair {I,2k}. Q.E.D.

Let us take a partition £” of V,, and find in accordance with the lemma the
element {i,j} of £”. We assume i<j. There are three possibilities.

L i+ 1), j+2k.
L i+1=j,j*2k.
L i+1+j,j=2k.

Denote z=z;=z; and select a part of the product containing z. We shall have in
these three cases:

L (U 4z—z )7 Az =2 WAz =z, )7 A H 2 — 219 71
L (I+[z—z_ 191 +1zj4 4 —~zl) 7t
ML (12 )7 (U 2 =2 (2= 2y, 171
Let us make the summation over z. In the first case with the help of the Cauchy

inequality

Z(l +|Z“Zi—1|d)v1(1+‘Zi+1“zld)~1(1 +|Z—Zj—1|d)_l(1+|Zj+1~zld)_1

z

z

(ROl 2 (Ul =)

z

= (Z(l 2=z, +lzi+1_z|d)—2)1/2

§Con5t'(1+!Zi+1"‘zi—1|d)_l(1+|Zj+1’"zj—1|d)~1'
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Thus the summation gives the same product with 2k—2 factors. It is easy to see
that in the second case

YU Hlz—z (N A+ 1z, — 2 Sconst- InQ2+ |z, ,~z;_4)
) (4l a=2 71
Analogously in the third case
;(1+l2~2i_11“)"1(1+|Z,~+1—Zl")"l(1+|2*22k~1|‘j)’1
Sconst- Y (I4+|z—z;_ 1) (L +lz,  — 297!

sconst - InQ2+1z; ~z D +lz — 27,17

Thus the summation over z gives an analogous product of 2k —2 factors, where
instead of (1 +1z,,  — 2z, ! one has In(2+|z,, , —zH(1 +]z,, , —z )~ ',

We can apply the same arguments and get a product of 2k— 4 factors of the
form

(In@2+lzpp =2 A + |z, — 27"
and so on. Finally we shall have a product of four factors of the form
(In@+lz0 =2 T I+ 7 =207

The condition of nondecomposability implies that we should consider only two
partitions {(1,4), (2,3)} and {(1, 3), (2,4)}. The part of the sum for each of them can
be estimated by the expression

const Y ((In(2+z)*" > 1)1 +(z1) "2 < 0.

Thus Assertion II is proven.
Now we can complete the proof of Lemma 1. We have from (3)

GATPO)=(=1F Y, (- 1) (™2 1) Dhy(h),

o, BeU +
where
DZ’,,"(/{) = yw I;f:;(zz) FL”Z)%(Z3 —z,).. I Sz )
y={(0,a),(z2,a2), ...,z - 1,2~ 1), (2, BY}
z,eTy
. e— Zni(/l,z)E(,y) .
Let us put
D= 3 Loz Doal23—23) o I, =2 ) EQY).

7=U0,0), ..z, )}, 2 e 2
Assertion II gives for every AeZ*\0
: k, _ Nk
'}gl; Daﬂn(A/rn) - DaB .
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Therefore
lim na,(A/r,) [™(A/r,)

:(_ l)k Z lim n(eZni(A/r,.,a)_ 1)(8—27ri(/1/r,.,ﬂ)_ 1) Df’ﬂ"(/l/rn)
o, et n—=>w0
(2n)? 2n?

:(_l)k 7'2 Z (Aaa)(A)ﬁ)D:B: r Z ( (k))Jm Jmo

o, feU* jom=1

where (@), =2(—1D¥"' Y a;8,D%. The estimation |ED} <5 6<1/2 gives

a, feY+

the uniform over n convergence of the series ¢, (A)=1+ Z (). Therefore the
k=2

limit ¢(4)= lim ¢,(4/r,) exists and (@A, A) c(A)=(ad, A), a=a— Z a®,
k=2
The fact that q is a n-d. p-d. m. follows from the Majorizing Lemma. Q.E.D.

Proof of Lemma 2. We shall assume that d > 1. The case d =1 is simpler and can be
treated in another way. We shall estimate matrix elements of the operator L,

= Y (DE—EDF). Let (D%, ed))=DXA, A), A=Afr, X=A)r, and A, AeT,\0.

k=1
4]

Then (L e, ey= Y (DXA,X)—EDYA, ). We shall estimate

k=1

E\DX(A, A)—ED 2, )2 =E|DX(A, 2)* — |[ED¥(%, )|*. We have

DI, ) =(= 1y 4 Y qz0) - ) KO RGN T (2, = 24) ..
LI (2= 1z, ) eI =m0

Qe — 18k

E\D(2, A =r, ZE (@z) - 4120 4,,(2)) - 4.(2)

W) R R KA L0 (22 = 20) o I e 2a ) (= 20)

X1a2 Ok - 1 &k ara’

fﬁ)"-(—_-zf‘““k_;) g2z =) = (Wszk =2
Let a variable of the first group be equal to a variable of the second group, for

example, z;=z,. We denote the corresponding part of the sum by (ED¥(4, 1)[?),,,-

From the 1nequal1ty ILP(2) = const(1+(d,(0,2)))™*, where const does not depend

on n, we get » |[}P(z)| <const-Inr, Making the summation over all variables
zeT,

except z;=z,, =z we get
WEIDEA, A)2) ] S 635120 Y y Y (clnr,)?* 2
ALyunny aReW* ai,..., e+ zeT,
sup  |RP)* S cE(lnr,) 2l

aeW+ /leTorl\O

Therefore
k

S [(EIDE )2, S K2k nr, 228

Jom=1
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We have

[EDX(A, X)2 =7 ZE(q(n) .. qir;‘)(zk)) E(qg?( .. q;nk)(zk))
R B REIO) RO T (2, —2,)

012

LY (2= 2 )T (Zo—2,) .. T (Zy— 2 ) @2miher =2~ (me=zia)

W — 10 a'tal A — 10

Let again z;=z, and the corresponding part of the sum is |EDX(A, /1’) . Then as
before

|EDKZ, )2, £ il )2~ 2r, ¢

n s

Z |EDXA, )3, Sk (Inr, )2 2r, 9

fm=1

If none of the variables of the first group coiacide with a variable of the second
group then

E(q0z,) .48z 45)(2)) ... 45()
=E(giNzy) ... q2)) E(q9(2}) .. .43z
Therefore

[EVD3(A 22— IED(A, AP < 30 ((EIDR(A 2))

+|IEDEA, A3 S 2k K ()~ 24

We take a sequence of natural numbers K,Too. In view of Chebyshev’s
inequality

P{|DXA, \)~ED¥J, A) > K, 2} < 2k*ck(In r)E 2 dKE
Thus

K,
P{ S DML 1)~ EDH0, 2)| > K - 1} <Koy, )Mo 24K
k

=1

Assume that K, increases so slowly that 2K c%(Inr,)?*"72 <7!2 Then
P X 10k iD= K s,
k=1
Let us take a sequence n; such that r, =j. We have

K,
PL % 01— EDl a0 K i
k=1
For d>1 the series Z j 4" Y2 < oo and with probability 1

z" IDE (4, )~ EDX (4, )| =0 as j—o0.
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Moreover
Y DL -EDE(ALA)S2 Y 84=2(1-0)" 15K 150 as jooo.
k=K, +1 k=K, +1

&

The sequence T, contains all the tori of the sequence T,. Therefore with
probability 1 L (/L A)—0 as n— oo, where A=Afr, A'=A'fr, and A, A'€Z0 and
are fixed. The set of pairs (A, A) is countable and one can find an universal set of
full measure for which L (4, 2)—0 for all A, A'eZ*0. Q.E.D.

5. Proof of Theorem 2

In order to prove the limit theorem for the random walk on the whole lattice Z* we
need an estimation of the probability of exit of the random trajectory from the

cube with the side equal to r W during the first n steps as n— oo and r is large but
fixed. We shall consider the random walk with absorbing boundary conditions.
Let us give more exact formulations.

We shall consider the random walk in the cube M,={xeZ’ —r,<x,<r,

1=a=<d} with the absorption at the boundary of the cube, r,~r ]/ﬁ as n—co.
Under conditions of Theorem 2 the moving point either jumps to a neighboring
point or stays at the same place. This means that A" consists of unit positive
coordinate vectors. Let fe #*(J,) be a probability density, J,=[—r,r]% We
construct an initial probability distribution for our random walk with the help of
the formula f,(x { f(»)dy, where 4,(x) is the d-dimensional cube with the

An(x)

centrum at xg, ' and the side ¢, ', 9, =r/r.

Theorem 1'. Let X''(t) be a position at the moment t of the randomly moving point
with the absorption at the boundary of M,. Then for almost all A

PXD(n)edM,}>1— [ f(x) @yt x,y)dxdy, n—oo,

T,

where
ot x, )= Y (=19 (t,x—gy),

D (t,x)=2nt)”¥*(deta) V2 exp{—(2t) '(a"'x,x)}

and G is the group generated by reflections of the boundaries of J,, k(g) is the parity
of g.

One can easily check that ¢'(t, x, y) is a fundamental solution of heat equation
with zeroth boundary conditions. In fact a theorem stating the convergence of
finite-dimensional probability distributions of the random processes {Y!{"(t)
=0, 'XM(tn), 0t <1} to the finite-dimensional probability distributions of the
Brownian motion on J, with zero boundary conditions and initial probability
density f is valid. But we need only the statement of Theorem 1'. We shall prove
Theorem 1’ later and now we shall finish the proof of Theorem 2. For concreteness
we shall consider the case of discrete time.
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Let X (t) be a position of the randomly moving point on the whole lattice with
the initial distribution f, constructed in the same way as above with the help of the
density f, 4,, 1 i<k, are arbitrary bounded measurable subsets of R?, We choose
r in such a manner that (—r, r)*-contains all 4, and the support of f. By X{!)(t) we
denote a position of the randomly moving point on the cube M, with absorbing
boundary conditions and initial distribution f,(x), X'?(¢) is a position of the
randomly moving point on the torus T, with the initial distribution f,. Let us put

P,=P{n 12X ([nted, i=12,. .k},
PV =P{XMn)edM,},
POy =P{n~ M2XD[nt e d,, i=1,2,...,k}.
Then
|P,— PR <2PV(r).
In view of Theorems 1, 1’ for almost all 4
lim P2r)=P )= [ dx | .. | f() 001 —X) 0,1y = V1) -
R4 44 A

eak—tk_i)a(yk—_yk— Ddyy...dyy,
lim PO =PV =1 [ | f(x)@i(L,x,y)dxdy.

PR
From the other side for r— oo
PO —P= {dx | .| f(X)D,(t,,y,—0)Pt,—t,y,— Y.
R4 Ay A
Dt s Ve V- ) dy Ay, - dyy.
PUY(5)—0.

Let us take ¢ >0 and choose r, such that |P?(r,)— P| Le, |PY(r,)| £ e.Forchosen r,,
take N such that for n>N

IP(ro) = PUGroll Se,  IPP(ro)— PPAro) <e.
For almost all 4 and n>N
IP,~ P|<|P,— PP (o)l + [PPro)— PO +1PP(ro)— P
S2POr )+ 26 <26+ 2| P 1) — PO(r o) + 21P V()| S 6c.

This gives P,— P as n— o0 in view of arbitrary smallness of &. Q.E.D.

Now we proceed to the proof of Theorem 1'. It goes mainly in the same way as
the proof of Theorem 1. A difference concerns Lemma 1’ which is a generalization
of Lemma 1 in the periodic case.

For simplicity we shall consider the cube W,={xcZ*: 0<x,<r, 1Sa=<d}.
Let us introduce the uniform measure v, on W, and H, = #*W,,v,). The matrices
A!, A, are restrictions of 4, 4 to W, x W,. One has an orthonormal basis in H,

d

consisting of functions v{(x) =242 [] sin(nd,x,), A=Afr,, AW,

=1
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Lemma 1'. For n—o0, A= A/r,, u=M/r,, A, MecIN* being fixed
n” MEA) T, o) 2 n T Had, A)T (A - M),
where a is the same matrix as in Theorem 1.
Proof. As in the periodic case we put Q,=A,— A., D,=(4.)"2Q!(4,)” V2. The
operator A, is invertible in H, and E(4;)"'=(4,)"Y*E(I-D;)"*(4,)" . The
operator A, is diagonal and there exists the limit
(AP, o) = nal (1) - n?/2r4@GA, A), A= Afr,, AcN°.

We have to show that

(EI—D,)" P, o\ —(ad, Af(ad, A)5(A~M), n—c0. 5

As in the periodic case || D, <0 <1/2 and therefore the operator £(I— D)™ ' =1

+ Y E(D,)* exists. However now the boundary conditions spoil some properties
k=1

of E(D,)%. For example, they are not diagonal now. Let us write down the explicit

expression for matrix elements

(EDY o, o) = (= 1)fr, ¢ Y Ha,(2) @) ) R W

(z1,01),.., (2, ak)

oL (24,2,) djgz)%(zp Z3)... ‘153,'3, ,ak(ZkA 12 Fz(;?()n z,) ng(.uy z),

g0y
where z;€ {xeZ*:0=x,<r, 1Za=d}, 0;=1,2,....4,

cosm{d,z,+ 4,/2)

e (2)=2sin(rA,/2) (@, (D)~ V2, F(4, 2)= ——
sinmi,z,

v(2)
@L’}}(zl, z,)=r;" > hPGY R () FY (A, z,) F (4, z,).
AMA=Afr,, AeW

The kernel ®Y)(z,, z,) does not depend on differences z, — z, now but it satisfies the
uniform estimation

[®0z,, z )| Sconst(1 41z, — z,|) L, 2, z,€ W,

We have

(EQ—-D) Y '=I+ ZD(")

where

P = i (— 1y Y EDY . EDL)

m=1 L+b+. .. +,=k

As in the periodic case

(D(k)v(l") U(")) ( l)k dZE h(n) /1) h(n)( )

alaz(zl?zz) ng’;pmk(zk 121 Fal (A 21)Fg1? 1o Z)
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and the sum is taken over nondecomposable paths. Let us define the functions
F 4 2), ze 2%, 1 So, f=d, where for o f3

sinn(d,z,+4,/2) ‘ sinn(lgz;—Ap/2)

d
Fo (2, 2) H COSTA,Z,

cosSTA,z, cosmA,zy
and for a=p
F (4 z)= ﬁ cosmiz,.
y=1
Now we construct the kernel
D)= | WP RP) Foplh, 2) dA.

[0, 13
d
The functions h(4) do not in fact depend on n because a,(1)= Z sin?ml /2,

where p,= —a(0, o). It is easy to show that

(DPVP, o) (1) 2@, A) ™ S(A— M)
ZE AP (= 20) P (2= 23) - Bl (2 — 7). n> 0, (6)

where y={(0,2),(z,,0,), .., (Z 1, 04— ), (2o @)}, 2;€ 2%, 1 S0, = d. Also
(EU—=D,)"H™ P, 00— (ad, H/@A, ) HA—-M),  n—o0.

The matrix a is now diagonal. The weak convergence of (E(I—D’)~ ')~ ! does not
imply the weak convergence of the inverse £(I—D.)”'. However in our case the
following estimate is valid

I(D(k}v(n) U,Eln))' <const - n4d+r(l,u)_(1nn)const, (7)

d
where (4, u)= Z O(4,— u,) and const depends on k. In view of

k
EDY= Y (=)™ Y D¥..D¢

m=1 Li+..+hLa=k

the operator E(D.)* also satisfies (7). Now (7) and (6) give (5) which leads to the
statement of Lemma 1’

6. Limit Covariance Matrix

In this section we write down the explicit expression for the limit covariance
matrix. It follows from Lemma 1 that it is equal to

a=a— a®

D18

=
it
N
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where
a]mzz Z ﬁ(0,0C)(X] me p(o OC) _—a(o O() a(k)— (—l)k_l Z Dzﬂajﬁm’
asW a, feN+
Dsp: Z E(y) I,,(z5) 12053(23—22)“‘I—;k—m(z_zk—1)7

y={(0,a),(z2,02), ..., (Ze - 1,0k - 1), (2, )}
ze T4, a, U

q,2)=q(z,z+ ),

E(y)= Z (— 1" Z E(Qa(o)qaz(zl)"'qa“(zll))"'E(qak*1m+l(zkvlm+1)"'qﬁ(z))9

L+, +h,=k

—2mi(A, @) _ 2mi(A, B) _ 1 .
1_;/}(2)_ j~ (e )(e )eZnt(/l,z)dl.
Tort 4 Y. P(0,0)sin?m(4,7)

yeA*

Theorem 3. (ad, A)Z(aA, A) for every AcRY.

The statement of the theorem follows from the Main Lemma and the following
general statement.

General Statement. Let A be a non-negatively definite invertible random matrix.
Then (EA™Y) ' SEA.

Proof. Let A=FA, Q=A~— A. We can write
A t=A" '+ ATIQAT I =A" + 470A47
Using the first half of the equality and then the second one we get
A l=A" 4 AT IQAT + A71QAT QAT
Using £Q=0 and A7'QA QA 120 we have
EA '=A ' +EA QAT I0A Y= A4
and thus (E4™ 1) 1<4. Q.ED.

Appendix 1

Proof of the Majorizing Lemma and its Corollaries. We shall give the proof for 4,
and A;. For 4 and A4’ the proof is similar. Let fe H,. Then

rn(Anf9 f)H,, = Z an(x7 Y)mf(w

x, Ty

=— Y Y axx+o)|f(x+a)— f(x)

xeT, acU™

z— Y X afox+o)lfixtro)— ()P =r 4], f)g,z0. QED.

xeTy, ac¥Ut

Corollary 1 follows from the condition

|an(x> y)—an(xs y)|§(55n(x, Y)> y_xem+ .
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Corollary 3 for 4, follows from the assumptions that &(x, y)=#0 for y~xe A"
and A" contains d linear independent vectors. Therefore it is valid for A4, also.
Corollary 4 follows from the inequalities

2(1—-9,)

1AM, (L +0) [ Ayl g, S(1+6) 173

=2(1—3,).

Appendix 2

Proof of Theorem A

The method of the proof of Theorem A is taken from [13]. We can assume that
w=0. Otherwise we replace S and S, by S—wl and S,—wl. Let us look for the
subspace &, and a projection P, onto &, not necessarily orthogonal such that &, is
invariant under S, and PE=P, EP,=E. In other words we have to solve the
system of equations

S,P,=PS.P,, (8)

P,E=P,, EP,=E. 9
We write S,=S+V,. In view of SE=0 and P,SP,=P,ESP,=P,SEP,=0, (8) can
be rewritten as

S(P,—E)=—(I—P,)V,P,.

The spectrum of § on HE& is separated from zero. Therefore there exists a
bounded operator X for which XS =S8X =1— E. Namely, we can take X=0on &
and X=S""! on HO&. Multiplying from the left to X and taking into account
E(P,— E)=E—E=0 we get

P—E=-X(I-P)V.P,.
Let us denote P,— E=Q,. Equation (8) takes the form
Q,=—X(U—-E-Q,)V(E+Q,) (10)
or 0= f(Q), where f(Q)=—-X(I—-E—Q)V,(E+Q). Let Q¥=0, 0** V= f(Q").

We shall show that Q% converges in norm to a solution of (10).

One can find >0 for which | X| < because w=0 is an isolated eigenvalue of
S and B! is the gap in the spectrum. If Q|| <gq, then | f(O S B +q)* |V, . If
Q1 =q, Q' =g, then

[AQ— QN =281+ ) [Vl -1Q—Q']l.

We put 8=28(1+¢)||V,|| and fix g such that 0 <g<1/2. Then we take N so large
that |V, |=gp™'(1+¢)"? for n>N. Now if Q=g then [f(Q)|=q and
6=<2q(1+¢q)~ ! <1. Therefore klim Q®=Q, exists and is a solution of (10). For this

solution {|Q, || £q. But we can take g arbitrarily small and get {Q,[| =0 for n— co.
Equation (9) takes the form

Q,E=Q, EQ,=0. (11)
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We see that Q'O satisfies (11). If Q% satisfies (11) too then Q** V= f(Q%¥) also
satisfies (11), because f(Q)E=f(Q), E f(Q)=0. Therefore Q,= klim Q™ satisfies
(11). e

Now we have a solution of Egs. (8) and (9) for large enough n for which
|P,— E—0as n—o0. Let §,=P,H and E, be the orthogonal projection to &,. We
shall show that ||E,— E[|—0 as n— c0.

Let us consider P¥P,. The subspace & is invariant under P}P,. Indeed, for (e &
we have

P*P ¢ =EP*P ek .

Moreover, for £e& and large enough n

(PrP,& &)= (P,C PO=(E+ Q)L (E+Q,)E)
=9+, 9+(602,0)+(Q.4.0,Hz(1 -9 [€]°.

Thus P¥P, is invertible on & and its inverse (P¥P,)” ! is uniformly bounded. We
put E,=P,(P*P,) 'P* Then E, is an orthogonal projection onto &, and
|E,— E||—0 because E, is hermitean, E2=E, and E (e &, for every (e H. At last

E,S.El =1S,E, | SIS(E+(E,— ED|+[IV,E,|
SISE|+|Si-1E,—E[l +V,1-0,

as n— 0.

Appendix 3
Proof of Theorem B

oG

Let @, w,, s, ... be eigenvalues of S in decreasing order, S= ) w;E;is a spectral
Jj=1

N
decomposition of S. We put SM= 3" w,E, SV =S5—S™. Then

ji=1
1S™)—0. (12)

It follows from Theorem A that for large enough n there exist orthogonal
projections E,,, j=1,2, ..., N commuting with S, and such that for n— oo

WE;—E;j|-0, |E(S,—w;)E,|—0.

N
Let EV= Y E,, SM=EMS ED, §® =5, ~5M. Then
j=1

J
ISM_SM 50 as nooo. (13)

From the uniform convergence on compacts of functions ¢, to the continuous
function ¢ we get

oS —(S™) -0, n—co. (14)
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Let us take £>0. The sequence ¢, being uniformly continuous at 0 one can find

£>0 such that for 0 < w < & we shall have {¢,(0)| =], () — ¢ (0)) < % Assume that
for n>n,(e)

I1S—S, <¢/3. (15)
It follows from (12) that there exists N = N(¢) such that
|S™) <&/3. (16)
Then from (13) we can find n,(¢) for which
IS0 —Ss™| <&/3 (17
if n>n,(g). Now from (15)-(17) for n>max(n,, n,)
ISOUS IS =8, + 1850 = 5™ + 1§ <. (18)
The estimations (16) and (18) give
hou S <e/3, oW <e/3. (19)
In view of (14) one can find n, =n,(e) for which for n>n,
lo(S™) = @, (SY <&/3. (20)

From (19), (20) for n>max(n,, n,, ny) we have
[0S — @) = 19, (S™)— p(SM)|
oSS+ 1S <. QED.
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