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Abstract—In this paper, we propose a powerful symmetric
radial basis function (RBF) classifier for nonlinear detection in the
so-called “overloaded” multiple-antenna-aided communication
systems. By exploiting the inherent symmetry property of the
optimal Bayesian detector, the proposed symmetric RBF classifier
is capable of approaching the optimal classification performance
using noisy training data. The classifier construction process is
robust to the choice of the RBF width and is computationally
efficient. The proposed solution is capable of providing a signal-to-
noise ratio (SNR) gain in excess of 8 dB against the powerful linear
minimum bit error rate (BER) benchmark, when supporting four
users with the aid of two receive antennas or seven users with four
receive antenna elements.

Index Terms—Classification, multiple-antenna system, orthog-
onal forward selection, radial basis function (RBF), symmetry.

I. INTRODUCTION

RADIAL BASIS FUNCTION (RBF) or kernel modeling
techniques have found wide-ranging applications in

regression and classification [1]–[22]. The kernel modeling
method constitutes a black-box approach that seeks a (usually
sparse) model representation extracted from the training data.
Adopting black-box modeling is appropriate, if no a priori
information exists regarding the underlying data generating
mechanism. However, a fundamental principle in practical data
modeling is that if there exists a priori information concerning
the system to be modeled it should be incorporated in the
modeling process. The use of prior knowledge in data modeling
often leads to an improved performance. In regression-type
applications, the symmetric properties of the underlying system
have been exploited by imposing symmetry in both RBF
networks and least squares support vector machines (SVMs)
[23], [24]. An important message from these two studies is
worth revisiting. Many real-life phenomena exhibit inherent
symmetry, but these properties are hard to infer from noisy data
with the aid of black-box-type RBF or kernel models. However,
by imposing appropriate symmetry on the model’s structure,
exploiting the symmetry properties becomes easier and this
leads to substantial improvements in the achievable regression
modeling performance.
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In this paper, we consider nonlinear detection in multiple-
antenna-assisted beamforming systems. Detection in communi-
cation receivers, in general, and in multiple-antenna-aided beam-
forming systems, in particular, can be viewed as a classification
problem, and both RBF as well as other kernel models have been
applied to solve this nonlinear detection problem [25]–[34]. A
kernel-based classifier or detector attempts to realize or approxi-
mate the underlying optimal Bayesian solution. Previous studies
[25]–[34] have shown that a black-box kernel detector typically
requires more kernels than the number of the channel states to ap-
proximate the Bayesian detector, and moreover there often exists
a performance gap between the kernel detector and the Bayesian
solution. This performance degradation can be explained as fol-
lows. The Bayesian nonlinear detection solution has an inherent
symmetry, because the signal states corresponding to the dif-
ferent signal classes are distributed symmetrically with respect
to the Bayesian decision boundary [35]. A black-box RBF, or
kernel classifier, however, has difficulty realizing this symmetry
accurately. In a single-antenna–single-user system, the channel
impulse response (CIR) can be identified during training and
hence the channel states required to form the optimal Bayesian
detector can be explicitly computed. However, for downlink
situation, the receiver in a multiple-antenna-aided beamforming
system only has access to the desired user’s transmitted symbols
during training and does not have access to all the other in-
terfering users’ transmitted data, and identifying all the users’
CIRs is hard to achieve if it is not impossible. Hence, it is more
realistic to implement an RBF or kernel detector directly using
the channel-contaminated data for training.

The novelty of this paper is that we propose a symmetric RBF
classifier for multiple-antenna-aided communication systems,
which renders realization of the symmetric Bayesian detection
solution easier. The orthogonal forward selection (OFS) proce-
dure [18], [21], [33], [34] can readily be applied to construct
a sparse representation for this symmetric RBF classifier based
on various criteria, such as the Fisher ratio of class separability
measure (FRCSM) [33] and the leave-one-out misclassification
rate (LOO-MR) [21]. The OFS procedures based on the FRCSM
and the LOO-MR are computationally very efficient, in compar-
ison to other existing kernel construction methods. We adopt the
FRCSM, partly because it is computationally even simpler to
implement than the LOO-MR. Even though we do not directly
minimize the misclassification rate, we will demonstrate that the
sparse symmetric RBF classifier constructed by incrementally
maximizing the FRCSM is capable of approaching the min-
imum misclassification rate of the optimal Bayesian detector. It
is also worth pointing out that constructing classifiers by mini-
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mizing classification error rate directly does not always produce
good performance, particularly for problems with small training
sample sets, as was demonstrated in [36]. This issue is even
more crucial as in our application the error rate is typically very
small (e.g. ). Thus, any training sample set one may have
becomes relatively speaking very small, with respect to the error
rate. The FRCSM on the other hand does not suffer from this
kind of problem. The advantage of the proposed symmetric RBF
classifier is demonstrated in challenging detection scenarios,
when the number of users supported is almost twice the number
of antenna elements, while conventional techniques cannot sup-
port more users than the number of antenna elements [37], [38].
Although we apply the proposed symmetric RBF classifier in
the context of multiple-antenna aided beamforming systems, it
is applicable in symmetric classification problems. To the best
of our knowledge, this is the first time that the symmetry is ex-
plicitly exploited in RBF or kernel classifier construction.

The outline of this paper is as follows. In Section II, we present
the beamforming model considered and discuss the inherent
symmetric structure of the associated classification task. Based
on the system model of Section II, the novel symmetric RBF clas-
sifier is derived in Section III, while its achievable performance is
discussed in Section IV. In Section V, we offer our conclusions.

II. MULTIPLE-ANTENNA-AIDED BEAMFORMING RECEIVER

Consider a coherent communication system that supports
users, where each user transmits using the same carrier fre-
quency of . For such a system, user separation can
be achieved in the spatial or angular domain [37], [38] if the
receiver is equipped with a linear antenna array consisting of

uniformly spaced elements. Assume that the channel is
nondispersive which does not induce intersymbol interference.
Then, the symbol-rate complex-valued received signal samples
can be expressed as [39], [40]

(1)

for , where is the relative time delay at array el-
ement for source , with being the direction (angle) of arrival
for source , is the complex-valued Gaussian white noise
with , is the complex-valued nondisper-
sive channel coefficient of user , and is the th symbol of
user , which assumes values from the binary phase-shift keying
(BPSK) symbol set, i.e., . Without loss of gener-
ality, source 1 is assumed to be the desired user and the rest of the
sources are interfering users. The desired user’s signal-to-noise
ratio (SNR) is given by SNR , where is
the BPSK symbol energy, and the desired signal-to-interferer
ratio (SIR) is defined by SIR , for .
The received signal vector
can be expressed as

(2)

where we have , the system
matrix is given by

(3)

and the steering vector for source is

(4)

while the transmitted BPSK symbol vector is
.

Although we assume a uniformly spaced linear antenna array,
the results can be extended to other antenna array structures.
In fact, our discussions are applicable to the generic mul-
tiple-input–multiple-output (MIMO) communication system
[37], [38], where the th element of the system matrix
represents the channel coefficient connecting the th transmit
antenna to the th receive antenna. An implicit assumption
for the signal model (1) is that the desired user and inter-
fering signals are symbol synchronised. For the downlink
scenario, synchronous transmission of the users is guaranteed.
By contrast, in an uplink scenario, the differently delayed
asynchronous signals of the users are no longer automatically
synchronized. However, the quasi-synchronous operation of
the system may be achieved with the aid of adaptive timing
advance control as in the global system of mobile (GSM) [41].
The GSM system has a timing-advance control accuracy of
0.25-bit duration. Because synchronous systems perform better
than their asynchronous counterparts, the third-generation
partnership research consortium (3GPP) is also considering
the employment of timing-advance control in next-generation
systems.

Classically, a linear beamforming receiver is adopted to de-
tect the desired user signal [39], [40]. The output of the linear
beamformer is defined by

(5)

and the associated decision is given by

(6)

where denotes the linear beamformer’s
weight vector and the real part. Traditionally, the weight
vector of the linear beamformer (5) is set to the (linear) min-
imum mean square error (L-MMSE) solution [39], [40]. The
L-MMSE solution is based on the following consideration. An
antenna array of elements can place nulls. Thus, the
system can support up to users. If the number of users

is larger than the number of array elements , the system
is called overloaded or rank-deficient. In our previous work
[42], we have shown that the optimal weight vector designed
for the linear beamformer is the (linear) minimum bit error
rate (L-MBER) solution, which directly minimizes the error
probability or bit error rate (BER) of the linear beamformer
(5). The L-MBER beamforming outperforms the L-MMSE
one significantly, particularly for overloaded systems. For this
reason, we will use the L-MBER beamforming solution as a
benchmark, rather than the L-MMSE one, in the evaluation of
the proposed symmetric RBF detector. The L-MBER design
is optimal for the linear beamforming. The optimal channel
matched solution for the multiple-antenna-aided beamforming
detector, however, is nonlinear [33], [34].
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Let us denote the legitimate combinations of
as , . Denote furthermore the first element of ,
corresponding to the desired user, as . The noiseless channel
output only takes values from the signal state set

(7)

The signal state set can be divided into two subsets condi-
tioned on the value of as follows:

(8)

where the size of the sets and is
. Denote the conditional probabilities of receiving

given as . Ac-
cording to Bayes decision theory [43], the optimal detection
strategy should be

if
if .

(9)

If we introduce the following real-valued Bayesian decision
variable

(10)

the optimal Bayesian detection rule (9) is equivalent to
.

The decision variable (10) of the optimal Bayesian detector
is readily expressed as [33], [34]

(11)

where is proportional to the a priori probability of . Be-
cause in our case, all the are equiprobable, we have

. It can readily be shown that the two subsets
and are symmetric with respect to each other [35].

Hence, provided that appropriate indexing is used, for any signal
state , there exists a signal state , so
that

(12)

Given this symmetry, the optimal Bayesian detector (11) can be
rewritten as

(13)

where . The Bayesian detector has odd symmetry,
as .

If the system matrix of (3) is known, the signal state subset
can be computed and the Bayesian detection solution

is specified. For the multiple-antenna-aided beamformer in
downlink, however, the receiver only has access to the training
data , where is the number of
training symbols and are the desired user’s data.
However, the receiver does not have access to the interfering
users’ data , . Thus, estimating the system matrix

is a challenging task. In our previous work [33] and [34],
standard kernel-based classifiers or detectors were constructed
directly using the noisy training data set to approximate
the optimal Bayesian solution. As discussed in Section I, the
inherent symmetry of the Bayesian detector in (13) is hard to
learn by a black-box RBF or kernel classifier using noisy data.
In this paper, we propose a novel symmetric RBF classifier
which renders realization of the symmetric Bayesian detection
solution easier.

Before discussing the training algorithm for the generic two-
class symmetric RBF classifier, we point out that more general
symmetric structures also exist for the Bayesian detectors of
communication systems that employ multiple-bits per symbol
modulation schemes. For the 4-QAM system, for instance, the
data symbol takes value from the 4-QAM symbol set, namely,

, and the signal state set can be divided into
the four subsets depending on the value of . It is
easily verified that the four state subsets satisfy the following
symmetric relationship: ,

and . This symmetric
structure may be exploited to modify the four quadratic-ampli-
tude modulation (4-QAM) RBF detector of [44]. A more gen-
eral symmetric structure also exists for the generic high-order
QAM system; see [45]. The derivation of the generic training
algorithm for the high-order QAM RBF detector is much more
complex and is beyond the scope of this work.

III. SYMMETRIC RBF CLASSIFIER

Consider the problem of training a two-class RBF classifier
based on a training data set

, where denotes the class type
for each complex-valued data sample . We adopt the
RBF classifier of the form

with

(14)

where is the estimated class label for , denotes
the response of the classifier’s RBF bases, are the classifier’s
coefficients, and is the number of RBF units. In contrast to
the standard RBF classifier, here, we propose to adopt the fol-
lowing symmetric RBF unit:

(15)
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where is the RBF center, is the RBF variance, and is
the classic RBF function. In this paper, we adopt the Gaussian
RBF function of

(16)

Other RBF or kernel functions can also be used here. It is
worth emphasizing that, although we derive the symmetric
RBF formulation directly through the observation of the un-
derlying symmetric Bayesian detection solution, the proposed
symmetric RBF detector can also be derived analytically by
imposing the odd symmetry constraint on the standard kernel
formulation, just as in the regression case [24].

Because the symmetric RBF formulation (14) is “identical”
in form to the standard RBF formulation, most of the existing
sparse RBF or kernel techniques can be applied. Our previous
experience with standard sparse kernel modeling suggests that
the OFS procedure based on the FRCSM [33], [34] compares
favorably with many other existing sparse kernel methods, such
as the SVM techniques, in terms of efficiency of the construc-
tion process and the sparsity of the constructed model. For prac-
tical purpose, it is critical to derive an RBF or kernel detector
as sparse as possible, because the detection complexity scales
with the size of the RBF classifier. We apply the OFS proce-
dure based on the FRCSM to construct a sparse symmetric RBF
classifier using the training data set . Note that the objec-
tive of training a classifier is to achieve maximum classification
discriminative power, and Fisher ratio is a measure of discrimi-
native power or class separability [43].

Consider every training data point as a candidate RBF
center. Hence, we have in the RBF model of (14) and

for , and the RBF variance is set to . Let
us now define as the modeling residual
sequence. Then, the model (14) defined over the training data
set can be written in a matrix form as

(17)

where we have ,
, , and

(18)

is the regression matrix with the column vectors
, . Let an

orthogonal decomposition of be , where we have

. . .
...

...
. . .

. . .
(19)

and

...
...

...
...

(20)

with orthogonal columns that satisfy , if . The
model (17) can alternatively be expressed as

(21)

where is the weight vector in the
orthogonal space defined by .

A sparse -term classifier can be selected by incremen-
tally maximizing the FRCSM using the OFS procedure, as in
[18], [33], and [34]. Define the two-class sets

, and let the number of points in be , re-
spectively, with . The means and variances of
the training samples belonging to class and class in the
direction of the basis are given by

(22)

(23)

and

(24)

(25)

respectively, where

.
(26)

The Fisher ratio is defined as the ratio of the interclass differ-
ence and the intraclass spread encountered in the direction of

, which is given by [43]

(27)

Based on this FRCSM, significant RBF terms can be selected
with the aid of an OFS procedure. At the th stage, a candidate
term is chosen as the th RBF term in the selected model, if it
produces the largest among the candidate terms

. The procedure is terminated with a sparse -term model,
when we have

(28)

where the threshold determines the sparsity level of the model
selected. The appropriate value for depends on the application
concerned, and it must be determined empirically. The least
squares solution for the corresponding sparse model weight
vector is readily available, given
the least squares solution of . The
detailed construction algorithm based on the Gram–Schmidt
orthogonalization [14] is summarized in the following.
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OFS based on the FRCSM

1) At the th step where , for ,
, compute

2) Find

and select , for and

.

3) The procedure is monitored and terminated at the index
value , when, for example, the condition (28) is
satisfied. Otherwise, set , and go to step 1).

A simple and yet effective mechanism can be built into
the selection procedure to automatically avoid any numerical
ill-conditioning. If a candidate has too low energy, i.e.,

is near zero, it will not be considered. The least
squares solution for the weight is simply

(29)

Instead of using the condition (28) to terminate the OFS pro-
cedure, which requires us to specify the threshold value , the
so-called cross-validation procedure can be used to decide when
to stop the selection procedure. Automatic termination criteria
such as the information-based criteria and optimal experimental
design criteria of [19] may also be used.

In our particular application, the number of users is usually
known, and therefore the number of the subset signal states
is known. Thus, we may simply set . The training

TABLE I
LOCATIONS OF USERS IN TERMS OF ANGLE OF ARRIVAL (AOA) FOR THE

TWO-ELEMENT ANTENNA ARRAY SYSTEM

set should be sufficiently rich, i.e., containing all possible se-
quences , . It is usually adequate to set the size
of the training set in the range of 10 to 20 . The RBF
variance is not provided by the construction algorithm, but
it may be estimated based on cross validation. Our experience
suggests that the symmetric RBF classifier is not sensitive to the
value of used, and usually there exists a range of values
which enables the sparse symmetric RBF classifier to approach
the optimal Bayesian performance. This will be further illus-
trated in our simulation study. This robustness to the value of

inherently is a consequence of the Bayesian detector’s ro-
bustness to the noise variance used [46].

IV. SIMULATION STUDY

Three simulated multiple-antenna-aided beamforming sys-
tems were used to demonstrate the efficiency of the proposed
symmetric RBF classifier. The antenna array element spacing
was half the wavelength. The simulated channel conditions were

, . The desired user and all the interfering
users had equal signal power, and therefore, we had
0 dB for .

Example 1: The example consisted of four BPSK signal
sources and a two-element antenna array. The user angular
locations are summarized in Table I. Fig. 1 portrays the BER
performance of both the theoretical L-MBER beamformer
and the Bayesian detector for the desired user 1. For each
SNR value, training data
were used to construct the symmetric RBF classifier using
the FRCSM-based OFS algorithm as outlined in Section III.
The RBF variance was chosen to be . As the size of
the Bayesian detector was , we terminated the RBF
classifier construction at . The BER of the eight-term
symmetric RBF detector is also depicted in Fig. 1. It can be
seen from Fig. 1 that the symmetric RBF detector is capable
of closely approaching the optimal Bayesian performance even
when the number of symmetric kernels is no larger than that of
the Bayesian detector, and hence, outperforms the black-box
kernel methods of [33], [34].

When ignoring the symmetry, a standard kernel detector
would typically require more kernels than the number of
Bayesian kernels and yet there would be a larger perfor-
mance gap between the kernel detector and the Bayesian one.
We reconfirm this previous observation by constructing the
standard SVM classifier [2] with the Gaussian kernel function
for this example using the same 500-sample training data set.
The size of the SVM detector constructed ranged from 20 to
32 support vectors (SVs) depending on the SNR value, and the
typical SVM detector contained 26 SVs. The optimal kernel
variance was determined using cross validation and its
value ranged from to . The BER performance of the
constructed SVM detector is also plotted in Fig. 1.
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Fig. 1. Desired-user’s BER performance in the context of four detectors for the
two-element antenna array supporting four users. The symmetric RBF classifier,
constructed from 500 noisy training samples using the FRCSM-based OFS, has
� � � symmetric RBF units and the RBF variance of � � �� . The
standard SVM classifier, constructed from 500 noisy training samples, typically
has 26 support vectors and a kernel variance in the range of � to �� .

Fig. 2. Influence of the classifier’s size on the BER performance of the sym-
metric RBF classifier for the two-element antenna array supporting four users.
We used SNR � 10 dB, the training data length of � � ���, and the RBF
variance � was varied depending on the model size.

The properties of the proposed FRCSM-based OFS invoked
for constructing the symmetric RBF detector were studied. First,
the influence of the model size on the RBF classifier’s per-
formance was investigated. Given SNR 10 dB and a training
data length of , Fig. 2 shows the performance of the
symmetric RBF classifier as a function of the model size .
The RBF variance was tuned according to the model size

. Appropriate values were found to be , ,
, and for , and , respectively, and

for . Next, the influence of the training data length
was investigated. Given SNR 10 dB, an RBF variance of

, and an RBF model size of , Fig. 3 plots the
performance of the symmetric RBF detector as a function of the
training data length . The influence of the RBF variance on the
performance of the symmetric RBF classifier was also investi-
gated. Given SNR 10 dB, a training data length ,
and an RBF model size , Fig. 4 illustrates the BER of
the symmetric RBF detector as a function of the RBF variance.
The result of Fig. 4 confirms that there exists a large range of

Fig. 3. Influence of the training data length on the BER performance of the
symmetric RBF classifier for the two-element antenna array supporting four
users. We used SNR � 10 dB, the RBF model size of� � �, and the RBF
variance of � � �� .

Fig. 4. Influence of the RBF variance on theBER performance of the symmetric
RBF classifier for the two-element antenna array supporting four users. We used
SNR � 10 dB, the training data length of � � ���, and the RBF model size
of � � �.

TABLE II
LOCATIONS OF USERS IN TERMS OF ANGLE OF ARRIVAL (AOA) FOR THE

THREE-ELEMENT ANTENNA ARRAY SYSTEM

values for , which allow the spare symmetric RBF detector to
approach the optimal Bayesian performance.

Example 2: A three-element linear antenna array system was
designed for supporting five BPSK users. Table II lists the user
angular locations. Fig. 5 plots the BER performance of both the
L-MBER beamformer and the Bayesian detector. The size of the
Bayesian solution for this example is specified by .
Given each SNR value, training samples were used to
construct the symmetric RBF classifierwith a model size

and an RBF variance of , using the FRCSM-based
OFS. The BER of the constructed symmetric RBF detector is de-
picted in Fig. 5, where it can be seen that the 16-term symmetric
RBF detector closely approached the performance of the optimal
Bayesian solution. As a comparison, the standard SVM detector
was also trained using the same 600-sample training data set. The
size of the SVM detector constructed ranged from 40 to 60 SVs,
and the value of the kernel variance , determined using cross
validation, was in the range of to . The BER of the con-
structed SVM detector is also shown in Fig. 5.
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Fig. 5. Desired-user’s BER performance in the context of four detectors for the
three-element antenna array supporting five users. The symmetric RBF classi-
fier, constructed from 600 noisy training samples using the FRCSM-based OFS,
has � � �� symmetry RBF units and the RBF variance of � � �� . The
standard SVM classifier, constructed from 600 noisy training samples, has the
number of support vectors in the range of 40 to 60 and a kernel variance in the
range of � to �� .

Fig. 6. Influence of the classifier’s size on the BER performance of the sym-
metric RBF classifier for the three-element antenna array supporting five users.
We used SNR � 5 dB, the training data length of� � ���, and the RBF vari-
ance � was varied depending on the model size.

The influence of the model size to the constructed RBF
classifier’s performance was studied next. Given SNR 5 dB
and the training data length , Fig. 6 illustrates the BER
of the symmetric RBF classifier as a function of the constructed
model size . The RBF variance was tuned according to
the model size , and was in the range of to . The in-
fluence of the training data length was then investigated. Given
SNR 5 dB, RBF variance , and RBF model size

, Fig. 7 plots the BER of the symmetric RBF detector
as a function of the training data length . The influence of the
RBF variance to the performance of the symmetric RBF classi-
fier was also investigated. Given SNR 5 dB, the training data
length , and RBF model size , Fig. 8 depicts
the BER of the symmetric RBF detector as a function of the RBF
variance. The result of Fig. 8 again confirms that there exists a
large range of values for with which the spare symmetric RBF
detector can closely approximate the Bayesian performance.

Fig. 7. Influence of the training data length on the BER performance of the
symmetric RBF classifier for the three-element antenna array supporting five
users. We used SNR � 5 dB, the RBF model size of� � ��, and the RBF
variance of � � �� .

Fig. 8. Influence of the RBF variance on the BER performance of the sym-
metric RBF classifier for the three-element antenna array supporting five users.
We used SNR� 5 dB, the training data length of� � ���, and the RBF model
size of � � ��.

TABLE III
LOCATIONS OF USERS IN TERMS OF ANGLE OF ARRIVAL (AOA) FOR THE

FOUR-ELEMENT ANTENNA ARRAY SYSTEM

Example 3: A four-element linear antenna array system was
used to support seven BPSK users. The users’ angular locations
are summarized in Table III. Fig. 9 depicts the BER performance
of both the L-MBER beamformer and the optimal Bayesian de-
tector. The size of the Bayesian solution for this example is spec-
ified by . At each SNR value, training sam-
ples were used to construct the symmetric RBF classifier with a
model size and an RBF variance of , using
the FRCSM-based OFS. The BER performance of the resulting
symmetric RBF detector is also shown in Fig. 9 in comparison
to that of the optimal Bayesian solution.

We found that a standard kernel classifier constructed from
the same 1000-sample training data set would require a signif-
icantly larger model size than the number of signal
states for this example. In our simulation, the SVM detector re-
quired several hundreds of SVs. Moreover, the performance of
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Fig. 9. Desired-user’s BER performance in the context of three detectors for
the four-element antenna array supporting seven users. The symmetric RBF
classifier, constructed from 1000 noisy training samples using the FRCSM-
based OFS, has � � �� symmetric RBF units and the RBF variance of
� � �� .

this standard SVM detector was poorer than that of the sym-
metric RBF detector.1

V. CONCLUSION

A novel symmetric RBF classifier has been proposed for
nonlinear detection which is capable of substantially out-
performing previous solutions in the extremely challenging
scenario of supporting almost twice as many users as the
number of antenna elements in multiple-antenna-aided commu-
nication systems. The orthogonal forward selection procedure
based on the Fisher ratio of class separability measure provides
a fast and efficient means of constructing a sparse symmetric
RBF detector from the noisy training data, which is capable
of approaching the optimal Bayesian detection performance.
The proposed solution is capable of providing an SNR gain
in excess of 8 dB against the powerful linear minimum BER
benchmark, when supporting four users with the aid of two
receive antennas or seven users employing four receive antenna
elements. Although we have presented this sparse symmetric
RBF classifier in the context of nonlinear detection in wireless
communication systems, it is generically applicable to any
classification problem exhibiting a similar symmetry.

The orthogonal forward selection algorithm based on the
Fisher ratio of class separability measure provides an efficient
procedure for constructing the optimal minimum symbol–error-
rate symmetric RBF detector for the stationary or slow flat fading
systems. We are currently conducting the research to develop a
stochastic adaptive near-minimum symbol–error-rate algorithm
for sample-by-sample adaptation of the symmetric RBF detector
in order to extend its application to fast fading systems.

1It was also computationally very expensive to compute the BER of the SVM
detector for high SNR values using simulation. This is because in order to guar-
antee the estimation accuracy of the BER simulation we require that at least 500
errors occur in the simulation. For the BER level at �� , this will require at
least ���� data symbols. Computing the BER of the SVM detector with sev-
eral hundreds of kernels at this BER level is computationally too costly.
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