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is conjecturally just a local volume at infinity (de- that the first derivative of the p-adic L-function at-
terminant of a period matrix times a power of 2ni) tached to / does not vanish at s = k/2. Actually,
times some nonzero rational number (if the motive we are only able to check this nonvanishing in the
has rational coefficient field). Separating out the cases k — 22, p = 131 or 593, due to the enormous
local volume and the rational number could be a size of the computation that would be necessary for
problem. However, the local volume at infinity is the larger primes p = 43867 and 657931. A precise
the same (up to a power of 2ni) at different criti- theorem is stated at the end of Section 6.
cal points of the same parity, and it should cancel Cremona and Mazur [2000] look, among all strong
when we take the ratio of L-values at those points. Weil elliptic curves over Q of conductor N < 5500,
Removing the power of TT, evidence for the Bloch- at those with nontrivial Shafarevich-Tate group (ac-
Kato conjecture should survive in the factorization cording to the Birch and Swinnerton-Dyer conjec-
of the rational ratio. This is exactly what happens ture). Suppose that the Shafarevich-Tate group has
for the L-functions attached to the cuspidal eigen- predicted elements of order m. In most cases they
forms on SX2(Z) with rational coefficients (weights find another elliptic curve, often of the same conduc-
k = 12,16,18,20,22 and 26), as described in [Dum- tor, whose ra-torsion is Galois-isomorphic to that
migan 2000]. of the first one, and which has rank two. The ra-

in these cases the Bloch-Kato conjecture predicts tional points on the second elliptic curve produce
the existence of nontrivial elements in certain Sha- classes in the common i71(Q,£'[m]). They expect
farevich-Tate groups, but the prospects for finding that these lie in the Shafarevich-Tate group of the
such elements appear bleak. In the present paper we first curve, so rational points on one curve explain
find that in certain cases we have much better luck elements of the Shafarevich-Tate group of the other
with the symmetric square L-functions attached to curve. In somewhat similar fashion, our construc-
these modular forms (but only at one or two of the tion produces an element of order p in a Shafarevich-
critical points). We are unable to deal with the local Tate group for the symmetric square of a modular
fudge factors appearing in the Bloch-Kato conjee- form, which is explained in terms of a rational al-
ture without restricting ourselves to forms of level gebraic cycle on the motive for the modular form,
one. The "p-torsion" of this motive is Galois isomorphic

The critical values (right of the central point) are to a twist of a submodule of that of the symmet-
at the points s — r + k — 1 for odd r with 1 < r < ric square motive, thanks to the Ramanujan-style
k — 1. They may be calculated by a method due to congruence.

Zagier [1977]. Each is equal to a power of TT times We briefly discuss what ought to happen for higher
the norm of the cusp form / with respect to the symmetric powers of modular forms, assuming not
Petersson inner product, times a nonzero rational only Bloch-Kato, but also the Beilinson-Bloch con-
number. Large primes occurring in the numerators jecture [Bloch 1984], which relates vanishing at the
of these rational numbers should be the orders of central point to the existence of certain algebraic
elements in the associated Shafarevich-Tate groups. cycles. There is presently a single piece of compu-
Our restriction to k — 12,16,18,20,22 and 26 is not tational evidence for our suspicions, concerning the
really necessary, but makes things a little simpler. symmetric fourth power of the discriminant form.

When k = 18,22 or 26 (so k/2 is odd) and r = To a pair of cuspidal Heckeeigenforms, / of weight
fc/2, the irregular prime divisors of the Bernoulli k' and g of weight &;, with k' > £;, one may attach a
number Bk are such large prime divisors. This strik- tensor product L-function. We assume that both /
ing fact appears to have no elementary explana- and g have level one, that k'/2 is odd, and also that
tion. Allowing an assumption, we construct the k' > 2k (so that s = (fc'/2) + fc —1 is critical). Aeon-
predicted elements of Shafarevich-Tate groups us- struction like that mentioned above should provide
ing Nekovaf 's work [1995] on Heegner cycles, to- elements of Shafarevich-Tate groups in this case, so
gether with the Galois-theoretic interpretation of we expect to find appropriate irregular primes divid-
Ramanujan-style congruences [Serre 1969] (see also ing the norms of certain algebraic numbers coming
[Swinnerton-Dyer 1973]). For this we need to check from ratios of critical values.
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The only known case where all the Fourier coeffi- then we can use a construction based on work of Ur-
cients of / and g are rational is k' — 26, k = 12. In ban [1998], (though we are unable to confirm that
this case we compute a partial Euler product to find the local condition at p is satisfied).
an approximation close to a simple rational number Hence, in the r = k — 1 case we have a direct ex-
with the expected p — 691 in the numerator. But planation leading from divisibility of a critical value,
we can do much better than this, using Shimura's via a congruence, to a probable element in a Shafa-
formula for the L-function as a Rankin-Selberg in- revich-Tate group,
tegral, combined with Sturm's holomorphic projec-
tion operator. Not only does it allow us to compute 2 . CALCULATING THE CRITICAL VALUES
the critical values without resorting to approxima-
tion, under certain mild conditions it allows us to F o r t h e b a s i c s o n modular forms see [Serre 1973], for
prove the occurrence of the irregular primes in the example. Let / be a normalised Hecke eigenform of

critical values, even for examples of higher weight w e i § h t k f o r SU{%). Let / = £ n = 1 anq
n, where

where the Fourier coefficients are not rational. Not « = <?*"' f o r z i n t h e u PP e r h a l f P l a n e ' a n d a> = L

surprisingly, Ramanujan-style congruences make an W e n o w a s s u m e t h a t k = 1 2 ' 16> 18> 2 0 ' 2 2 o r 26- I n

appearance in this proof. t h e s e c a s e s / i s u n i ( l u e a n d t h e F o u r i e r coefficients
This analysis applies also to Hilbert modular forms a™ a r e r a t i o n a l integers. For example, when k = 12,

(of scalar weight) for a totally real field F of narrow / 1S t h e discriminant function

class number one, but only when the degree [F : Q] ^ -ĵ j- n,2i

is odd. In the light of the Beilinson-Bloch conjee- ~ 2^/ ^ '^ ~~ ^ 1 1 ^ ^ '

ture, this condition on the degree is precisely what
we would expect, since it forces the L-function of / Associated with / is the L-function

to vanish at the central point (as long as we con- Lf(s) = \^ann~s

tinue to insist that k' 12 is odd). Conjecturally, this r _ „ . . . . , _ ,
. , .,i xi i i • i i r lor Re s sufficiently large, contmuable to a nolomor-

provides us with the algebraic cycles we need tor our . . _ . i f , i i
, phic tunction on the whole complex plane by means

construction. *\ .
TTr , . , ,. r n of the integral formula
We return now to consideration of the symmet-

ric square L-function for a Hecke eigenform / o f / f(iy)y^dy = Af(s) := (2n)-8T(s)Lf(s).

level one with rational coefficients. Associated to Jo

f is its Klingen-Eisenstein series [/], a noncuspi- It satisfies the functional equation
dal Siegel modular eigenform of degree two [Klingen * / \ _ / _ - J \ A ; / 2 A / » _ \
1967]. Kurokawa [1979] conjectured that the Hecke ^ ^ ~ ) f

eigenvalues of [/] are congruent to those of some S i n c e / i s a Hecke eigenform, the L-function has an

cuspidal Siegel modular eigenform F , of degree two, Euler product

modulo certain primes dividing the critical value for r rQ\ _ TTVi — n r)~s4-'nA;-1~2s>i~1

* J ^/V5J - H I 1 apP ~rP ) ^
r = k — 1. Kurokawa proved a congruence mod- p

ulo 712 when k = 20 and Mizumoto [1986] proved t h e p r o d u c t t a k e n o y e r a R p r i m e n u m b e r s . F o r e a c h

the general conjecture. These primes modulo which p l e t a n d ^ b e t h g r o o t g o f t h e p o l y n o m i a l X2 _
there is a congruence should, as large prime divisors ^ +pk-K T h e n t h e s y m m e t r i c s q u a r e ^.function
of critical values, be the orders of elements in certain Df{g) a t t a c h e d t o f i s d e f i n e d b y t h e E u l e r p r o d u c t

Shafarevich-Tate groups. The well-known connec-
tion between the deformation theory of Galois repre- Df(s) = J J {{l-a2

pp~s)(l- f32
pp~s){l-apf3pp~s)) .

sentations and Selmer groups for symmetric square P

motives suggests that the existence of the desired The Euler product converges only when Re s is suf-
element should be a fairly direct consequence of the ficiently large, but there is again a holomorphic con-
existence of the congruence. If the Galois represen- tinuation to the whole complex plane. This was
tation attached to F by Weissauer [> 2001] is ab- proved first by Shimura [1975], and later (using a
solutely irreducible and takes values in GSp4(Qp), different method) by Zagier [1977], together with
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the functional equation 4. AN OBSERVATION

2) (s) = 2) (2fc — 1 — s), Ramanujan's famous congruence

where r(n) = au(n) (mod 691)

2>(s) = r(s)(27r)-T((s + 2-fe)/2)7r-(s+2-fc)/2
JD /(S). generalises to

Let ( / , / ) be the norm of / with respect to the an = crfc_i(n) (modp),
Petersson inner product, and for odd r with 1 < . ,. • v-> „ • ,i • i - i

~ where / = 2^ an1 is the unique normalised cusp
r - e form (on SL2(Z)) of weight fc = 12,16,18,20,22 or

D}(r + k-l) = Df{r + k-l)l{f,f)K2r+k-x. 26 and p is a prime divisor of Bk/2k, where 5fe is
These are rational numbers and we now describe the a Bernoulli number. We shall refer to such a p as
calculation of these numbers, which is justified by a n Eisenstein prime, since the ̂ -expansion of / is
the contents of [Zagier 1977]. See especially formulas congruent to that of an un-normalized Eisenstein
(5), (24) and (28) of that paper. s e r i e s ' m o d u l ° P- S e e [Swinnerton-Dyer 1973] for a

Let pk r(t, m) be the coefficient of x * — 1 in (1 - discussion of congruences, and [Manin 1973] for a
tx + mJ)~r. For fixed k and r let c0 = pk P(0,1), P r o o f o f t h e congruences above using periods of / .

Cl = Pk P ( l , 1) + pk P ( - l , 1) and c2 = pk r(2,1) + T h e Eisenstein primes are p = 691 (when k = 12),

Pk r ( - 2 , 1 ) . F o r B E O o r l (mod 4) let XD be P = 3 6 1 7 ( w h e n k = 16)> P = 4 3 8 6 7 ( w h e n k = 1 8 ) '
the quadratic character associated to the quadratic P = 2 8 3 o r 6 1 7 ( w h e n k = 20)> P = 1 3 1 o r 5 9 3 ( w h e n

order of discriminant D. Let L(s, XD) be the associ- k = 2 2 ) a n d P = 6 5 7 9 3 1 ( w h e n k = 2 6 ) "
ated Dirichlet L-function. Let ((s) be the Riemann Surveying the numbers in Table 1 on the next
zeta function Page> o n e notices that for k — 18, 22 or 26, the

For r = 1 we have D}(k) = 22k~1/(k - 1)!. For numerator of D}((k/2) + k - 1) is divisible by the
odd r > 3 we have Eisenstein prime divisors of Bk. The formulas used

, , , „ . , ., to calculate D*f(r + k — l) appear not to offer any
D*f(r+k — l) = — j3, elementary explanation for this phenomenon.

(r+k-2)\(k-2)\ S i n c e r m u g t b e o d d ) i t ig n a t u r a l t h a t w e should
where j3 is given by be looking at those values of k for which k/2 is odd,

CoL(l-r,X-4) + c1L(l-r ,x_3) + c2C(l-2r) b u t t n e significance of the k/2 is that it is the cen-
tral point of symmetry for the functional equation

if r < k-1, and by o f Lf^8y I t ig p r e c i s e i y w n e n k/2 is odd that the

c0L(l—r,X-4)+CiL(l—r,X-3)+(c2+2k/Bk)((l—2r) functional equation forces Lf(s) to have odd order

i f _ _ L. i Pppoii that r n r v ) - R IT of vanishing at s =/u/2, and in particular to vanish
j >/! o \ D /o i. r i. x there. We shall see later how this, together with

and C(l —2r) = —S2r/2r, where, for a character X , ^ - , i i
- , , ,, r J T3 IT u ^^e Ramanujan-style congruences, may be used to

ot conductor ra, the generalised Bernoulli number . .
. 7-, r_i v^^ / \ T̂  / / \ mi -r> IT explain the observation,
is BrjX = rar L a = i X ( a ) B r ( w - The Bernoulli ^
polynomials are defined by

E 5. GALOIS REPRESENTATIONS
Bn(x)*n/n! = teta!/(e*-l),

Let f — Yl anQ
n be one of the normalised eigenforms

and the Bernoulli numbers are Bn = Bn(0). already introduced. A special case of a theorem of
Deligne [1969] implies the existence, for each prime

3. TABLES OF RESULTS /, of a continuous representation

Table 1 shows the values of pi : Gal(Q/Q) -> Aut(Vj)

D*f(r + k — 1) = Df(r + k — l)/(f, /)7r2r+fc~1 (where V\ is a two-dimensional vector space over Qz)

for odd r with 1 < r < k — 1. These calculations

were performed using Maple. 1. pi is unramified at p for all primes p / Z, and
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fc = 16
r = l 220/36.53.72.11.13

fc = 12 3 218.179/37.53.73.11.132.17
r = l 215/34.52.7.11 5 222/38.53.72.11.132.17.19

3 217/35.52.72.11.13 7 222.232/3n.55.73.II2.132.17.19
5 216/37.53.72.11.13 9 221.2243/313.55.73.II2.132.17.19.23
7 219/39.54.72.11.13.17 11 224.839/312.58.75.II3.132.17.19.23
9 223/38.55.74.11.13.17.19 13 228.373/314.58.75.II3.132.17.19.23

11 224/39.54.72.11.13.17.19.23.691 15 230/313.56.72.11.132.17.19.23.29.31.3617

k = 18 k = 20

r = l 220/36.53.72.11.13.17 r = l 223/38.53.72.11.13.17.19
3 220/38.53.73.13.17.19 3 225/310.54.73.11.172.19
5 222/310.54.73.II2.17.19 5 227/312.54.72.11.13.172.19.23
7 222/39.54.73. II2.13.17.19.23 7 226.2593/312.57.73.II2.132.172.19.23
9 221.43867/312.57.75.II2.132.17.19.23 9 228.8831/315.57.75.II2.132.172.19.23

11 224.1951/317.57.74.II2.132.17.19.23 11 227.304793977/319.58.75.II3.133.172.19.23.29
13 228.19501/318.59.75.ll2.132.17.19.23.29 13 225.40706077/320.59.75. II2.132.172.19.23.29.31
15 230.541.2879/317.57.77.II4.133.17.19.23.29.31 15 228.9385577/319.59.77.II3.132.172.19.23.29.31
17 232/317.55.74.II2.13.17.19.23.29.31.43867 17 232.439367/319.5n.75.II4.133.172.19.23.29.31

19 232.712/318.59.73.II2.132.172.19.23.29.31.37.283.617

k = 22

r = l 225/39.54.73.11.13.17.19
3 228/310.55.72.ll2.17.192.23
5 226.59/311.56.73.ll2.13.17.192.23
7 228.239/315.58.73.ll2.132.192.23
9 228.25537/316.58.74.ll2.132.17.192.23.29

11 228.131.593/317.59.75.11.132.17.192.23.29.31
13 228.2436904891/320.510.75.ll4.132.172.192.23.29.31
15 232.98513941/322.510.76.ll4.132.172.192.23.29.31
17 234.545715463/321.512.77.114.132.172.192.23.29.31.37
19 237.281.286397/321.510.77.ll4.134.173.192.23.29.31.37
21 237.61.103/321.58.74.ll4.132.17.192.23.29.31.37.41.131.593

k = 2Q

r = l 229/310.56.73.II2.13.17.19.23
3 230/313.56.74.ll2.132.232

5 233/315.56.73.ll2.132.19.232.29
7 232.3373/316.58.74.II3.132.17.232.29.31
9 231.3308551/317.58.76.ll3.132.172.19.232.29.31

11 230.6560341/320.510.75.113.132.172.19.232.29.31
13 235.1559.657931/322.510.76.ll4.132.172.192.232.29.31.37
15 232.83.1681092571/322.59.78.ll4.134.172.192.232.29.31.37
17 230.1097.1249037.129901/325.512.76.115.134.172.192.232.29.31.37.41
19 233.78750222771431/327.5n.78.ll4.134.172.192.232.29.31.37.41.43
21 238.47.160217.4157.54377/327.514.710.ll5.134.172.192.232.29.31.37.41.43
23 239.4598642018203/327.51277.ll6.134.173.193.232.29.31.41.43.47
25 241.163.187273/326.51O.77.114.132.172.19.232.29.31.37.41.43.47.657931

TABLE 1. Values of D*{r + k- l) = Df (r + k- ! ) / ( / , f)ir2r+k-1 for odd r with 1 <r < fc-1.
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2. If Frobp is an arithmetic Frobenius element at where BCT[S is Fontaine's ring; see [Bloch and Kato

p then the characteristic polynomial of Frob"1 1990] for a definition. The subscript / stands for

acting on Vi is x2 — apx+pk~x. "finite part". Let Hj(Q, V/(j)) be the subspace of

TH AT ̂  o i x ** i n i i i elements of if1 (Q, V/(j)) whose local restrictions lie
For N > 3 let MN be the modular scheme over . r r l / / r h T r / / : ^ ' ' v / / • o .i i
^ri /Tvn "" , . . i r ,. i .,, in #KQx» ^ u)) for a11 primes p. See the remark
L\l JS\ parametrising elliptic curves, each with a Ck

 /
T: v ./. ^ i

• u . r .L r • x r J Ar T X a f t e r Proposition 9.1.
given basis tor the group ot points or order N. Let __ . ,
° , , . , ,,. . ,.. 1 here is a natural exact sequence
A]v be the universal elliptic curve over MN. Let
MN be the compactification of MN and let XN be 0 —> T((j) —> V/(j) - A A[(j) —> 0
theuniversal generalised elliptic curve over MN. Let L e t ^ i ( Q ^ ^(j)) = ^ j y i ^ ̂ j ) . D e f i n e the
JCN be the (fc-2)-fold fibre product of XN over MN /_Selmer group ff}(Q, A;(j)) to be the subgroup of
and let —k-2 elements of HX(Q, -AJ(j)) whose local restrictions lie

X —XN in Hj(Qp, A[(j)) for all primes p. (The condition at

i Tk r ? - i j - l • x- rpi • p = oois superfluous unless / = 2.) Define the Sha-
be Deligne s canonical desmgulansation. Ihe van- *. y

v • J xi r̂ r-i /An xi i tarevich-Tate group

ety A is proper and smooth over Z[l/iVJ, though °
not geometrically irreducible. IH(j) = 0 I / ) ( Q , ^(j))/7r*iJ)(Q, F/(j)).

We shall now fix N = 3. Following Scholl [1990], i

Vi may be constructed as the /-adic realisation of Of course, we could also define all these things with
a Grothendieck motive. Vx = PfH

k
t~\X®Q, Q4), ^ , T / and A{ replaced by VhTi and Az.

where Pf is a suitable projector, in our case in the
group ring of the automorphism group of X. (Set- 6 T H E BLOCH-KATO CONJECTURE
ting N = 3 certainly ensures that the rational co-
efficients of this projector are integral at any prime L e t M b e t h e Grothendieck motive attached to / .
greater than fe-2.) Let L e t 3 b e o f t h e f o r m ^ + ^ - 1 w i t h r o d d and 1 < r <

_ k — 1. The Bloch-Kato conjecture for the twisted
ViU) = PfH^iXgiQ, Qt(j)), symmetric square motive Sym2 M(j) predicts that

the Tate twist as a Galois representation. For each /y-p A voloo(j) #111 (j)
prime I let Tt(j) = P / ^ 1 ^ ^ , MJ)) modulo DM) = {LICPW) # r g ( j ) # r Q ( 2 f c - l - j ) '
torsion. Let Az(j) = Vj(j)/Tz(j).

 p

For the symmetric square motive let T h e C P 0 ) a n d v°loo(j) are defined similarly to those

2 7 2 ; ; in [Dummigan 2000, Section 4], but note that the
Vt = Sym (Vi), Tt = Sym (T)), Al = Vl jTx. definition of vol^t?) given there is mistaken, what

They have rank 3. We sometimes drop the subscript is actually defined being l / v o l ^ ) . The Hodge
when it is convenient to do so. For an integer j of filtration of the deRham realisation of the motive
the form r + k-1 or k - r, with r odd and 1 < Sym2 M has F° = Sym2(P /^R;1(X)), F 1 - • • • =
r < k-1 define the set of global points TQ(j) = F^1 = PfH^1(X)PfH

0(X,nk-1), Fk = - • • =
0 Z # ° ( Q , A\{j)). F2k~2 - PfH\X,QJ

k-1)®PfH
Q{X^k-1), F2^1 -

Following [Bloch and Kato 1990], for p ̂  I let {0}.

x , , The dimension of Sym2 M is 2A:—2, and the length
/ ^ ' ' ^ ^ of its Hodge filtration is 2k- 1. It then follows as

= ker(H\Dp,Vl
/(j)) ^ H^I^V/iJ))). i n [Dummigan 2000, Section 7] that cp{j) - 1 for

Here Dp is a decomposition subgroup at a prime a11 P r i m e s P > 2k> by a n application of Faltings's
above p, /„ denotes the inertia subgroup, and the comparison theorem [Faltings 1989] and [Bloch and
cohomology is for continuous cocycles and cobound- K a t o 1990> Theorem 4.1(iii)]. (We are unable to do
aries For v = I let tlns without restricting to forms of level one.) Also,

each cp(j) (for p < 2k) is a power of p.
HfiQi, V/U)) Since Fk = • • • - F2k~2 and k < j < 2k - 2

= k e r ^ t A , Vj'(j)) -> H^DtiV/iti^Bc^)), with all the j of the same parity, it follows as in
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[Dummigan 2000, Section 4] that the voloo(j) for see [Mazur et al. 1986].) According to [Nekovaf
different j are the same, up to an appropriate power 1995, Theorem C], if the first derivative Lpf(s) does
of 2ni. not vanish at s = k/2 then Hj(Q, Vp(k/2)) is one-

If the Bloch-Kato conjecture is true, and look- dimensional, generated by the classes of Heegner ey-
ing at the prime factorisation of D^(j)/ D^(j'), with cles. We would like to check this nonvanishing for
j 7̂  j ' , any primes p > 2k must be accounted for Eisenstein primes p. From now on, p will be one of
by elements of order p in Shafarevich-Tate groups these primes (p = 43867 when k = 18, 131 or 593
and/or groups of global points, for j and j ' . Now when k — 22 and 657931 when k — 26).
suppose that a prime p > 2k occurs in the numera- We refer to [Mazur et al. 1986] for more details on
tor of precisely one of the Dj(j) 's. Then according the p-adic L-function and calculations with modular
to the Bloch-Kato conjecture, either III(j) contains symbols which we will not explain fully here. What
an element of order p or, for all other critical j ' , p we need to show is that
divides #TQ(jf)#TQ(2k-l-jf). But the p-torsion n

subgroup A'[p] cannot have so many twists with / xr logp(x)d/2f^a ^ 0,
Galois-fixed lines, since it has at most three distinct z*p

composition factors as a Galois module. Therefore w h e r e r = (fc//2) - 1 (which is even), a is a root of

the Bloch-Kato conjecture predicts that there must X2 _ apx+pk~l chosen so that ordp(a) < k - 1,

be an element of order p in IH(j). In Table 1 we l o g^ i s t h e p _ a d i c logarithm and d/jLfa is a certain

marked in boldface those primes p for which we will ^_ a d i c m e a S ure . Manin [1973] showed'that integrals

construct the predicted elements of IH(j). We give s u c h a s t h i s o n e converge when ordp(a) = 0. Such

a precise statement here of what is actually proved a n a e x i s t s i n t h e o r d i n a r y c a Se5 w h e n p does not

in the next few sections. d i v i d e ^ I n [Amice and Velu 1975] and [Vishik

Theorem 6.1. When k = 22 and p = 131 or 593, if 1 9 7 6 ] t h e condition is relaxed to ordp(a) < k - 1

H}(Q, V'({k/2) + k-l)) and H}(Q, V'{k/2)) are ( s e e [Mazur et al. 1986]), and there always exists

both trivial, then IH((fc/2) + k - 1) (for Sym2(M)) s u c h a n a> b u t w e a r e i n t h e ordinary case anyway

contains an element of order p. For fc = 18, p = s i n c e ap = ak-i(p) = 1 (modp).

43867, or k = 26, p = 657931, one obtains the T o c u t a l o n g s t o r y s h o r t ' calculating with mod-

same conclusion with the additional hypothesis that u l a r symbols and approximating the integrand by a

the first derivative of the p-adic L-function attached s t e P function locally constant on discs of radius p 2,

to f does not vanish at s = k/2. [t suffices to show that

p-i

7. HEEGNER CYCLES Yl « 2 ^K + ^2 + ' • - + lr] + 0 (modp).
a,6=1

For a detailed description of the Heegner cycles of
codimension k/2 on X, see [Nekovaf 1992]. They H e r e w e h a v e u s e d sequences of integers a0 > m >

project to Heegner divisors on the modular curve - - - > at = 0 and ra0 > mi > • • • > mt = 1 (t

MN , and involve products of graphs of endomor- depends on a and b) with m0 = p2 , 1 < a0 < p2,

phisms of CM elliptic curves. Via the p-adic Abel- ao = ap(l + bp) (modp2), a^m^ = 1 (mod mj) and

Jacobi map, a Heegner cycle gives rise to a class ai+i = ( a i m i+i ~" l ) / m i - Alternatively we could
in i f ^ Q , Vp(k/2)), (for any prime p), and Nekovaf t a k e t h e mj t o b e t h e denominators of the conver-
[1992] shows that it is in fact in the subspace g e n t s to the continued fraction for ap(l + bp)/p2.

1 This drastic simplification of the appropriate Rie-
/ ^ ' p\ ' "' mann sum is made possible by the fact that p divides

See also [Nekovaf 1995, 0.13]. the even period ratios for / (see the table in [Manin
Now suppose that k = 18, 22 or 26. The vanishing 1973]), a fact which was one of the main concerns of

of the complex L-function Lf (s) at s = k/2 implies [Dummigan 2000], and is the basis of that proof of
the vanishing of the p-adic L-function Lpj(s) at s = the Ramanujan-style congruences to which we have
k/2. (For the construction of this p-adic L-function already referred.
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We ran a simple Maple program to evaluate this and H°(Q, A'((k/2) + k — l)) = 0 (since k > 2 so
sum modulo p. When k = 22 and p — 131 the an- k — 1 ̂  fc/2, and the composition factors of A'[p\ are
swer came out to 12, after 129 seconds of computer FP,FP(1 — k) and Fp(2 —2&)), so
time. When k = 22 and p = 593 it came out to 167,
after 83 minutes of computer time. For p = 43867 or ^ (Q> ̂  M((fc/2) + fc-!))

657931 the computation would have taken millions injects into #X(Q, A\(k/2) + k-l)), and we get a

of minutes, so we did not start it. nonzero class d e H^Q, A'{{k/2) + k- 1)). Since
In any case, if we have a nonzero class in H}(®, (fe/2) + k - 1 is a noncentral critical point, conjec-

Vp{k/2)) then by continuity we may assume, after turally H}(Q, V'((k/2) + k - 1)) should be trivial,
multiplication by a power of p if necessary, that it Admitting this assumption, to show we have con-
lies in if X(Q, Tp{k/2)) but not in if ̂ Q , pTp{k/2)), structed an element of order p in HI((fc/2)+fc-l) we
then by reduction modulo p we get a nonzero class j u s t h a v e t o s h o w t h a t d e H}(Q, A\{k/2) + k-l)).

c G F X (Q, A[p}(k/2)). Here A[p] is the p-torsion N o t i c e t h a t t h e occurrence in Af[p] of a submod-
subgroup of Av. (We know for certain that this class u l e i s o morphic to Fp(2 - 2k) fits well with Bloch-
exists when k — 22,p— 131 or 593.) Kato and the Eisenstein prime in the denominator

of D*j(2k—2) (see Section 3). Of course, the presence

8. RAMANUJAN CONGRUENCES AND SHAFAREVICH- of that Eisenstein prime has a simple explanation
TATE GROUPS since there is a Bernoulli number in the calculation.

^ 1 , 1 . / \ Any element of order p in IH(fc/2) for M should
For p as above, there is a congruence an = (Jk-i(n) , J , , , *\ . ' ' /ox . , ^
f j v £ ' ^ i TX r n i £ - produce an element of order p in IH((fc/2) + k — 1)
(modp), for all n > 1. It follows that for prime 5, 2/7,/rx . -, , , / , , , \ , u ,,
, z ^i , r ~ , _i ,. >ir i • 1 lit i f° r Sym (M), independent of that produced by the
l^p, the trace of Frob, acting on A[p] is 1 + /*-1. J v '̂ c . . 1Q

F
OO . ^ , J

T, ,;/ - n , A r> AT u-4.4. 4.1, Heegner cycle. Since (for fc = 18,22,26) the nu-
it then follows from the Brauer-Nesbitt theorem r T^Jk//1 /rtX , ^ . ,. . .,\ ,
,, , .r n . ^ i . i T i . ! . merator of DAik 2)-\-k — 1) is not divisible by the
that A » contains a Galois submodule isomorphic r . *. ' . . - . , , .

. . ' ^ J . ^ .. . N /TTrl . , square of the bisenstem prime p, there should not be
to either ¥p or the twist F p ( l - k). (Whichever . , , , , .

. . f . . . , . i i any elements of order p in IH(fc/2) (for M). Koly-
one it is, the quotient is isomorphic to the other . , xl . rAT . /v i n ^ o i • \ i ^ ^

v T ri-. . ™™i . -i i ,, I T vagm s method JNekovar 1992 is unable to confirm
one.) In Dummigan 2000 , assuming the latter led , . r , . . r , . , jn r, . , . * , T _ x r- , n this for such exceptional p, tor which the map from
to an explanation (via Bloch-Kato) of the occur- i/;nw/n\\ 4. r̂ T m, 1 H7\ • 4. • 4.-

r T ; . . . . xl
 y

 £ Gal(Q/Q) to GL2(Z/_pZ) is not surjective.
rence of bisenstem primes in the numerators of even
period ratios. We shall make the same assump-
tion for the moment, though we shall see later that 9. CHECKING THE LOCAL CONDITIONS

it is unnecessary. Now if A\p] has a submodule P m p o s i t i o n 9 J . For aU pnmes j ̂  p?

isomorphic to Fp(l — k) then the three-dimensional
Af[p] has a two-dimensional submodule isomorphic resz d G Hj(Qh A'((k/2) + k-l)).

to A\p](l-k) with trivial one-dimensional quotient. W g ̂  ^(QJ^/Q,, ^b](^/2)),

Twjstmg, A'jp] */2 +fc-l) has a submodule 1So- s o t h a t r e S ! C , € ffi(Qr/Ql> A'W((fc/2)+fc-l)j'aid

" i n S ^ ™ ? acts as Z—(^ on the quo- ^ ^ d ̂ ^ / ^ A ^ + * " ̂  ^ S*
_ _, , , , . „ . , ,N TTn/^, ^N . . . , toliows trom the tact that A is unrammed at / that

tient Q ~ ¥p((k/2) + k- 1), so tf°(Q,<2) is trivial

and H\Q, A\p](k/2)) injects into ^(Qr/Qj. A'((k/2) + k-l))

H\Q, A'\p]((k/2)+k-l)), = ̂ /(Q«. ^((*/2) + * - l ) ) ,

sending the Heegner cycle class c to a nonzero class s o w e h a v e w h a t w e w a n t (see t h e P r o o f o f tF l a c h

c, 1990, Theorem 3]). •

There is an exact sequence Incidentally,

0 —• A'\p]((k/2)+k-l) —> 4'((fc/2)+fc-l) A ^(Q,, V'((k/2) + k-l))

A'((k/2)+k-l) ^ 0 ~ F'((fe/2) + A;-l)/(l-Prob()F'((fe/2) + A;-l),
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(V is unramified at Z), which is zero by the Weil The exact sequence in [Bloch and Kato 1990, p. 366,
conjectures, I being a prime of good reduction since middle] gives us a commutative diagram
/ has level one. Hence Hj(Qh A'((k/2) + k-l)) is

actually trivial. h1 (£>(£)) — ^ — h1 (£>(£)) * h1 (D(\)/pD(\))

Proposition 9.2. respde H}(Qp, A'((k/2) + k-l)). I I I

Proof. Bloch and Kato [1990, Lemma 4.4] construct H^Q^Tffl) — H^Q^T^)) — H1 (Qp, A\p](%))

a cohomological functor {hl}i>0 on the Fontaine- . .

T r -n J. ri2ix J T̂ - ~ J ' J i The vertical arrows are all inclusions and we know
Lafaille category of filtered Dieudonne modules over . . - .

Zp. It s a t i s f i e d ? ) = 0 for alH > 2 and all D, t h & t ^ ^ f <** ^ */*» m ^ W 2 ) ) "

and fc'(D) = Ebrt<(lFD,D) for all i and P, where e X & C t l y Hf®P> T ( * / 2 ) ) ' „v? ̂  " ^ h ° n z o n t a l

i • li. « -4.W £14. J TV J - j i m a P 1S surjective since hz(D(k 2)) — 0.
1FD is the unit filtered Dieudonne module. JL TT , , T • , ,^ Ar •,,, , xx

î  The Heegner cycle class c e ^ ( Q p , A[p](fc/2)) is
6 in the image of # } ( Q P , T{k/2)) (by [Nekovaf 1992])

D = PfHl-\X®Zp) and D' = Sym2(D). and is thus in the image of h1(D(k/2)/pD(k/2)).
o rni i. J is x mnn T >i c/ M J 4.1. Recall that -A/[p]((fe/2) + fe - 1) has a Galois sub-
By Bloch and Kato 1990, Lemma 4.5(c) and the . . . [ y . j r ' J

A[ W1 , ' „ xl £ „ r;. ,. r rT1 ,,. -,AOAI J -u J • TT̂  • module isomorphic to A\p\(k/2). By the fullness of
application of Faltmgs 1989 described in Dummi- . ^ ^;v nnom / mi ^ j

onnn c i.- TI i. t J i e Fontaine-Lafaille functor 1982 (see Bloch and
gan 2000, Section 7 , we have F , i n n n T l i A Ql.

 L J v L

Kato 1990, Theorem 4.3]),
*'(«)* JS(Q,,r), i)'((t/2) + t-l)/PlJ'((t/2) + *-l)

where
j , . has a subobject isomorphic to D(k/2)/pD(k/2).
e ̂ P'1) It follows that the class

a n d c'G^(Qp)^b]((fc/2) + fc-l))
^e (Q p ) V") = ker(JfiT

1(Qp,F) ->• ̂ ( Q , , , B ^ T 1 ® ^ ) ) . is in the image of

Note that D and £>' are torsion-free, by [Dummigan h' {D'{{k/2) + k- l)/pD'{{k/2) + k-1))

, ec ion j . ky. th e vertical map in the exact sequence analogous
For an integer j let D(j) be D with the Hodge t Q t h e a b o y e g i n c e t h e m a p f r Q m

filtration shifted by j . Then

/ i / , i i + w r v ^ +- x: to/i1m /((fc/2) + A:-l)/pJD
/((fc/2) + fe-l)) is surjec-

(as long as k-p+1 < j < p - 1 , so that ZXj) satisfies . \ n.
vv / ^ . J/y _ r

v
T\ / ^ y

 rT1//. /A 7 "I,,
;, , +u , rT3i , ' T, , 1 o n

v^ T tive, d lies in the image of H}(QV, T((k 2) + k-l)).
the hypotheses of Bloch and Kato 1990, Lemma ' . . f / V ^ P ' vv / ; ' yy

4.5]). By [Bloch and Kato 1990, Corollary 3.8.4], F r O m t h l S xt folloWS t h a t

H}(QP, V(j))/HXQp, V{j)) deH}{Qp, A'((fc/2) + fc-l)),

~ I>(j)®Qp/(l-/)!?(j)®Qp , as desired. D

where / is the Frobenius operator on crystalline co- So far, we have assumed that A[p] has a Galois sub-
homology. By [Scholl 1990, 1.2.4(ii)] and the Weil module isomorphic to Fp(l —fe). In the other case, it
conjectures, Hl(Qp,V(j)) — Hj(Qp,V(j)), since has a Galois submodule isomorphic to ¥p. Then we
j 7̂  (k —1)/2. Similarly, similarly obtain an element of order p in HI(fc/2).

WVO V'( m\\ — ffVO V'( 'W Using Flach's generalisation [1990] of the Cassels-
e\Mp, \3)) ~ /[Sip, Ujj T a t e p a i r i n g 5 w e c a n r e f l e c t t h i s a c r o s g t h e c e n t r a l

unless j = k — 1. point to get an element of order p in III(fc — 1 +
We have then h1(D(k/2)) ~ H}(Qp, T{k/2)) and (fe/2)), as desired. Our only assumption is of the

h}(D'{{k/2) + k-\)) ~ H}(Qp, T'((fc/2) + fc-l)). triviality of F}(Q, V^k/2)).
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10. HIGHER SYMMETRIC POWERS by G. Kockritz and R. Schillo on an IBM 370/168,

T , - u ,.,, -j i • r were reported in [Zagier 19771. The ratios of the ap-
Let / be one ot the cuspidal eigentorms we are con- . L ° J ^

- , . , , . , ! . /i i i ni proximate critical values turned out to be extremely
cerned with in this paper (level one, rational coem- n

 J

. j. \ -n ^ i i P xl , . close to powers of TT times fairly simple rational num-
cients). hor n > 1 one may define an n-th symmetric -,

T r ,. bers. It is very nice to see that in these rational num-
power L-iunction J

bers, the factor of p = 691 is there, exactly where
/ \ _ TT TT /-, * ft71-1 - S W w e e x P e c t ^ to ^e- See the entry for 5 = 28 in the

Lnj{s) : - | | | | (1 - appp p ) . t a b l e a t t h e e n d o f g e c t i o n 1 o f j Z a g i e r 1 9 7 7 J B

In general, when n is odd the critical points are
The Euler product converges for Res > n(fc- l ) /2+ s = ( (n - l ) / 2 ) ( f c - l ) + r with integer 1 < r < fc-1.
1 but conjecturally there is an analytic continuation When n is even the right-of-centre critical points are
to the whole complex plane, with a functional equa- even integers of the form s = (n/2)(fc - 1) + r with
tion relating the values at s and (n-l)(k-l) + k-s. 1 < r < fc- 1. Thus, r is odd when n = 2 (mod 4),
This is known for n < 3, the case n = 3 being due but even when n = 0 (mod 4).
to Garrett [1987], who shows that the sign in the For any fc = 12, 16, 18, 20, 22 or 26 and any
functional equation is - 1 . Eisenstein p, we seem to have an element of order p

This forces the symmetric cube L-function L3J(s) in the Shafarevich-Tate group IH(2(fc - 1) + (fc/2))
to vanish at the central point s = (k - 1) + fc/2. for Sym4(M). Using Flach's generalisation of the
According to the conjecture of Beilinson and Bloch Cassels-Tate pairing [Flach 1990], we can reflect this
[Bloch 1984], there should consequently be a ratio- across the central point to get an element of order p
nally defined, null-homologous algebraic cycle, of in- in HI(fc-l + (fc/2)). Then, using twice the Ramanu-
finite order in the ((fc - 1) + fc/2)-th Chow group of jan congruence trick of Section 8, we (hopefully) get
the symmetric cube of the motive attached to / . An an element of order p in UI(3(k - 1) + (ifc/2)) for
explicit construction of a candidate for such a cycle Sym6(M). Again, if it is A[p] rather than A[p](k-1)

is easily obtained by generalising the (unmodified) which has a trivial submodule, we may apply these
diagonal cycle considered in [Gross and Schoen 1995] steps in the opposite order to achieve the same re-
(where k — 2). suit. Repetition of this process should give elements

The Abel-Jacobi image of this cycle should give of order p in III((n/2)(fc-l) + (fc/2)) for Symn(M),
us (for any prime p), a nonzero element of for any even n. If p > n{k - 1) + 2 then we know

Hl(®,Sym*(A)(k-l + (k/2)). tha* * = L S,° i f n < ^ - 2 ) / ( f c " 1 ) and if n/2
1 and fc/2 have the same parity, then we expect the

Admitting this, in the case where p is an Eisenstein ratio of Lnj((n/2)(k — 1) + (fc/2)) to the other crit-
prime (for any fc), arguments analogous to those of ical values to be an appropriate power of TT times a
Sections 8 and 9 will then give us a nonzero element rational number with p dividing the numerator.
ofH}(Q, Sym4(A)(2(fc-l) + (fc/2))), which ought to Using the table in [Deligne 1979, 5.3], we find that
be isomorphic to the appropriate Shafarevich-Tate for odd n, the sign in the functional equation of
group. Lnj(s) is predicted to be —1 precisely when n =

The right-of-centre critical points for L4j(s) are 3 (mod 8), or n = 1 (mod 8) and fc/2 is odd, or
of the form s — 2(fc — l) + r with even 2 < r < fc — 2. n = 5 (mod 8) and fc/2 is even. Hence when n =

Therefore when fc/2 is even (i.e. for fc = 12,16 or 5 (mod 8) or n = 7 (mod 8) we cannot be led to
20), the Bloch-Kato conjecture leads us to expect our expectations concerning divisibility of critical
that the ratio of L4j(2(fc — 1) + (fc/2)) to any other values for Symn+1(M) more directly by using cycles
critical value is an appropriate power of TT times a for Symn(M).
rational number with p in the numerator. We have no experimental evidence for the above

For fc = 12 (/ = A), highly accurate computa- when n > 4 or fc > 12. A recurrence relation de-
tions of approximate critical values for L4cj(s) were scribed in [Watson 1949] (see also [Ramanujan 1916,
made, using over a thousand terms of the Euler Section 17]) allows the first N coefficients of A to
product. The results of these computations, made be computed in time which grows like iV3/2. But for
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n = 8 and k = 12, too many terms of the Euler prod- 12. SHIMURA'S DIFFERENTIAL OPERATORS AND

uct are required to get the necessary accuracy. For HOLOMORPHIC PROJECTION

k > 12, A must be multiplied by Eisenstein series, F o r a p o s i t i v e i n t e g e r fc> l e t Mfe b e t h e g p a c e o f h o l o .

and the time to get the first N coefficients grows like m o r p h i c m o d u i a r forms for SL2(Z), and let Sk be
JV2. This makes it too difficult to get enough terms t h e s u b s p a c e o f c u s p forms. L e t Gfe b e t h e s p a c e

of the Euler product, even when n = 4. (Using all o f ^ c o m p l e x - v a m e d functions on the upper half
primes less than iV = 3000 was not enough.) How- p l a n 6 ) n o t n e c e s s a r i l y holomorphic but satisfying
ever, there is one more place to look for evidence of t h e g a m e t r a n s f o r m a t i o n l a w a s m odular forms of
a similar phenomenon, where it turns out that the weight k

computational difficulties are not too great. Shimura defined differential operators Sx : Gx ->

GA+2, and more generally 5[r) : Gx ->• Gx+2r, by

11. A TENSOR PRODUCT L-FUNCTION 1 / A d\

Consider the forms of weights k = 12 and k' = 26 Zm XZty Oz/

and form their tensor product L-function a n d jM = sx+2r_2 . . . 6X+2SX, where

L(s) := n ((l-aa'p-)(l-a^-) ^ | = |(^_,-|-).

x (l-f3afp-s)(l-f3{3'p-s)) , G i v e n f^g eQk whose product is zero at infinity,

the Petersson inner product is defined by
with the obvious notation for roots of Hecke poly- />
nomials. (f,g) = / f{z)g(z)yk~2dy,

The critical points for the associated motive are
integers s such that k — 1 < s < k! — 1. Then where 5F is a fundamantal domain. Sturm [1980a]
5 = k — 1 + (fc;/2) is critical iff /cr > 2fc, and we defined a "holomorphic projection" operator which,
have chosen the only example for which both spaces given g G Gk satisfying certain conditions (which we
of cusp forms are one-dimensional. Using Heegner never need to worry about; but see [Sturm 1980a]
cycles for kf = 26 and the Ramanujan congruence or [Gross and Zagier 1986, pp. 288-290]) produces
for k = 12, we would expect that TT 2 L(24) /L(25) is Hol# G Sk with the property that (/,#) = (/,Holp)

a rational number with p — 691 in the numerator. for all / G Sk. If g = YJZ=O
 arn(y)qm and Hol# =

Using Maple to multiply together all terms of the ]Cm=i amQm then
Euler product for primes less than 1000, we found an , ,k_1 ^

approximation whose continued fraction has partial am = / arn(y)e~47Trnyyk~2dy.

quotients ( f c ~ 2 ) ! ^o

The effect is to delete the constant term and to re-

[9, 1, 6, 1, 3, 1, 1, 22253370239262, . . . ] . P l a c e V~J(T hY

This suggests that the exact value has continued (it —2)!
fraction [9,1,6,1,3,2]. This rational number is pre- . .

. , ^^^ ; ' Let Ek be the normalised Eisenstem series of weight
cisely 691/70. , Tx . to

A , ,, . ,, , ,. .„ To, , /a. Its g-expansion is
Actually, in the next section we will use a ditierent

method to recover this rational number 691/70 with- JS^
out any need for approximation. Then we will look Ek = l - (2k/Bk) 2^o-fc_i(n)gn,

at tensor product L-functions for level-one forms of n~

higher weights, and give an analytic reason to expect where ar(n) = ̂ 2d\nd>0 dr.

the occurrence of Eisenstein primes in the critical Given cuspidal eigenforms / = ]P anq
n of weight

values, using Ramanujan-style congruences. k' and g — ̂  bnq
n of weight A:, let's say both of level
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one, with k' > fc, let L(s) be the tensor product L- and we find that

function defined in the previous section. It is known £)(24, / , g) —24-13

[Shimura 1976] that D{25,f,g) = T342~ ( ~ 1 / 2 ) = L

L(s) = ((2s + 2-k-k')D(s,f,g), Then

u /•• ,u o- + t ,• A 2^(24) 2C(12) 212£12/12! 691
where C is the Riemann zeta function and TT —-—- = TT -^—- = -,— = .

L(25) C(14) 214£14/14! 70
oo

D(sJ,g) = y2anKn~s

~ 13. ANOTHER CALCULATION

is the Rankin convolution. Now when s = (fc'/2) + We shall see that the calculation of the previous sec-
fc-lwe find 2s + 2-k-kf = fc, and £(fe) gives us tion was a very special case and did not really give
the Eisenstein prime factor we are looking for. To a fair indication of what is going on in general. This
show that it is not cancelled by a factor in the value time let k = 12 again, but let kf = 34. The dimen-
of the Rankin convolution at another point, we use sion of S34 is 2, and the two normalised cuspidal
[Shimura 1976, Theorem 2], which tells us that eigenforms are

D{k'-l-rJ,g) = c^-\f,g8t)Exl / , = g+(-60840+ 72V2356201)g2 + . ••

, and
where

(fc'_fc_2r-l)! , h = Q+ (-60840-72V2356201)«?2 + - • •.
C ~ O ' - 2 - r ) ! O ' - f c - r - l ) r "̂  4 ' In this case (A;'/2) + fc- 1 = 17 + 11 = 28. We will

r > 0 is an integer such that k + 2r < k', and A = u s e Shimura's formula to calculate D{2^h,g) and

k'-k-2r. (In all the cases we consider, A will be D(^h^)- (Again, g is the normalised cusp form

comfortably greater than 2.) o f w e i S h t 12')

We re-examine the case k' = 26, k = 12, and L e t L( s) b e t h e t e n s o r P r o d u c t ^"function at-

evaluate the ratio TT2L(24)/L(25). For s = 24 we t a c h e d t o A a n d ̂ - T h e n

have26-l-r = 24sor = 1 and A = 26-12-2 = 12. L(s) = C(2s-A4)D(s,fug),

E12 = l + ̂ ( q + 2O49q2 + ---) so
L(30) = C(16)I>(30,/1,p)>

SO

L { 2 8 ) = C ( 1 2 ) J D ( 2 8 ' / 1 > 5 ) '

*i2^i2 = n | f % + 4098g2 + • • •) S i n c e 3 6 1 7 d i v i d e s t h e n u m era tor of B16, we might
_(l | 65520/ | 2Q49o2 + • • •)) then expect 3617 to divide the numerator of the ra-

Try 691 tional number L(30)/7r4L(28). Let us see how this

Now g = q-24q2+- • •, so gS12E12 = (-3/(iry))q+- • • f a i l s t o h a PP e n -

a n d For s = 30, r = fc'-l-30 = 3. We have

I 24" £ M = 1 + ffig>(,,+32769,2 + . . . ) ,

Since 526 is one-dimensional Hol(5r<5i2£'i2) must be (3) —153

equal to - § / . Hence °16 El6 = 2 ^ V

-(11!) „ +X6320A 27 459 153 x
^(24,/,5) = ̂ | ( 4 7 r ) 2 5 ( - l / 2 ) ( / , / ) . +^^{1~2^ + 8^~2^)q+ '

T J ^ l ^ A ^ 3 ) ? ? A 29!/ '/1QQ«^ 3405187584 ^2 | \

For s = 25 we have r = 0,A = 14 and gEu = H o l ( ^ 1 6 A16) = - ^ r ( 4 8 9 6 g 3 6 1 ^ ^ +•*• ) •
q-] , so gEi± — f. Hence Since /1 and f2 span 534 there exist a and (5 such

13! that
D(25,f,g) = ̂ [ I^(47r)25(/,/) Eol(g$E19) = =$(af1+0f3).



Dummigan: Symmetric Square L-Functions and Shafarevich-Tate Groups 395

Then D(30,/i ,#) = C7r33(^|^)a. Letting again a very smooth number. Note that the primes

ncaAK ™ / o o r ^ , 479 and 4919 are bad because they divide 2356201.
7 = - 6 0 8 4 0 + 72V2356201, w , ,. , ,, 1 u . KWe have seen that the algebraic number

y = -60840 - 72^2356201, L , 2 8)

we solve the equations for the first two coefficients: TT45(/I, / I )

a + /3 = 4896, does manage to be divisible by 691.
-/rv-l-V/? - 3405187584

/ c t - r y \J — 3 6 1 7 ,

f fl i 14. TENSOR PRODUCT L-FUNCTIONS FOR HIGHER
t O t m d , WEIGHTS

20862783833616 ± 7458334384^2356201
a> P - 4794919-3617 ' L e t / = E &ng

n and g = ^ M n be normalised
The norm of the numerator is c u s P i d a l eigenforms of level one and weights fc', fc

respectively, with k1 > k and fc'/2 odd. Let L(s) be
21 .5 .7 .17 .479.522887.85133.4919. t h e i r t e n s o r p rociuct L-function. Recall that

The 3617 in the denominator of a will completely ^ / \ = C(2s + 2 — k — k')D(s f a)

cancel the 3617 in the numerator of £(16)/TT16 . The

prime 3617 is inert in the field Q(v
/2356201). We a n d

have just seen that 3617 does not divide the alge- D{k' — 1 — r, / , g) = C7rk'~1(f^g8^ Ex),
braic number L(30)/vr49(/i, A)- w h e r e

For L(28) we do not want the factor of 691 in the , , , , .
numerator of C(12)/TT12 to be cancelled, yet look- c = (fc -k-2r-l). (_i)r4fc'-i
ing at the previous calculation it appears likely that v J'v }'
something similar will occur. This time r = 5. r > 0 is an integer such that k + 2r < fe', and A =

h' — h — 9 r
271 _ -1 I 65520 / I o n / I o 2 • \ rv K 41 .

^/12-1-h 691 W t ^ t / t----;. The point we axe most interested in is 5 = (fe72) +
We find that fe- 1. This corresponds to r = (kf/2)-k (which is

(5)^ 4095 odd) and A = fe.
9 12 12 " 87T57/5g Let 5 = 0 ( 1 ) , s ( 2 ) , . . . , s ( d ) be the distinct conju-

65520/̂ -, 2 0 1 5 ° 5 2 5 6 8 2 5 6 1 1 7 \ 2 g a t e s o f 9 u n d e r ^ e action of Gal(Q/Q) on the
+ ~69i"V ~^ry + 7T V ~ 7r3y3 +

 8TT V ~ 16TT5?/5 / 9 Fourier coefficients. Write ^(i) - ^ = 1 b$qn. Let
H , Kg be the field generated by the coefficients of g. It

but then a miracle occurs, because has been conjectured by Maeda that (for level one),
H o l r f i ^ ) = - f (4193280</-402554880g2 + . • •), t h e c o n J u S a t e s o f 9 always span the whole of Sk.

This has been confirmed for k < 2000; see [Buzzard
without any 691 in the denominator of the second 1 9 9 6 ; F a r m e r a n d J a m e s > 2001]. If it is the case,
coefficient. It is natural to suspect that this has a n d i f Bfc/2fe has a prime divisor p, then the next
something to do with Ramanujan's congruence, and proposition shows that the coefficients of g satisfy a
we shall see in the next section that this is indeed Ramanuian-style congruence
the case.

jf Proposition 14.1. Let p be a prime dividing the nu-
YLO\(Q8^E ) — — — (af +6f ) merator of Bk/2k. Letp be a prime ideal dividingp,

in the ring of integers of the field generated by the
11 coefficients of all the cuspidal eigenforms of weight

a * = 4940105264640 ±1768865280^2356201 k. Then there exists a cuspidal eigenform £ c n ^

479-4919 of weight k such that cn = (jk-i{n) (mod p) for all

This time the norm of the numerator (excluding the n > 1.

factorial) is T h i g .g p r e c i s e l y [Datskovsky and Guerzhoy 1996,

221.32.52.73.132.479.264283.4919, Theorem 2]. Note that if all the cuspidal eigenforms
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are Galois conjugate, the coefficients of g satisfy the and we get the algebraic cycles we need if we assume
same congruence modulo some conjugate of p. the Beilinson-Bloch conjecture. We also have to

Let Kf be the field generated by the Fourier co- assume that their Abel-Jacobi images are nonzero,
efficients of / . Let K = KfKg be the field gen- and that the Shafarevich-Tate group (for the tensor
erated by the Fourier coefficients of / and g. Let product at (kf/2) + k — l) is the same as the Selmer
{/i5 . . . , / d ' } b e a n orthogonal basis for Sw consist- group. To avoid divisors of p appearing in the de-
ing of normalised eigenforms. Let L be the field nominators of the projectors used to construct the
generated by the coefficients of g, fu ..., fd>. Let motives, we really should assume that p is not a
fi — X} aijQ'* • congruence prime for Sk or 5fc/.

Tl . M ̂  n n ± p ii ^ t i For Hilbert modular forms (of scalar weights) over
Theorem 14.2. Suppose that for all n > 1, bn = >. • T T J > T c o

/ w i N / . ,7 • /. • , p TS \ -,i a t o t a l l y real field b , t h e ( —1) in H i d a s L e m m a 5.3
<Tk-i\n) (mod p) (in the ring of integers ofKg), with f ' \ u , . WIF-Q] J

,. . J . . ,. . , „ / n J v.' . would have to be replaced by (—l) r [ i^ J , so we need
p dividing p. a prime divisor or Bk Ik. satisfying . r_ /nNi . . . A . . ,

7/ o r . / . • - 7 7 A * • * t o a s s u m e t h a t LF : Q is odd . As n o t e d m t h e m-
p > k —2. Let p be any prime ideal of the ring of . . . L. J . . , 1#J. .

, Tr ,. . ,. n ,i , r r n ^ troduction, this is precisely the condition we need
integers of K, dividing p. buppose that ] f i , . . . , /> r i -r /, / ,^ . -. /
. .. 7 . ' , y / , , • -j , V to make Lf(k' 2) vanish (retaining, of course, the
is linearly independent modulo any prime ideal di- . JX, ' \ , .. . : .. TTr . ,

. 7. ,. . • /• rr \ assumption that fc/2 is odd). We also assume the
vidmg p [i.e.. p is not a congruence prime tor V . . ' r — / ;1 t.
Th narrow class number of b is one, so that there is

only one cusp and therefore one Eisenstein series.
ordp,(L((fc72) + fc-l)/(7T;c/+fc-1(/,/))) > 0. In general, the factors cp(j) and #TF(j) appearing

/AT , ,i , ,i . i . . j . i rot,- -\c\nc in the Bloch-Kato conjecture are not as well under-
(Mote that this number is in iv, by bhimura 1976, J

Theorem 31.) s t o o d a s i n t h e c a s e F = Q "
For the symmetric square,

Proof. It suffices to show that

<xdf.(=£v,gWEkw,f)) > o. Df(s)=c[';^:g)E^n-
By [Hida 1985, Lemma 5.3],

a theta series, as well as an Eisenstein series (of half-
Hol(3<5,r g') = ( - l ) r Hol(^'V 5) integral weight), occurs in the Shimura-Rankin-Sel-

for any g' € M,. Letting g1 = g and noting that b e r § integral for E r = i a « n ~ S ; s e e t S t u r m 1 9 8 0 b l -
r is odd, we find BoligS^g) = 0, therefore if we W h e n s = (fc/2) + ^ - 1 we have 2s + 2 - 2A; = k,

l e t /j = g + (Bk/(2k))Ek, then it suffices to show a n d C(*0 gives us an Eisenstein prime. While there
that ordp,((f,g6(

k
r)h)/(f,f)) > 0. All (but one) of d o e s n o t s e e m t o b e a n v Particular reason for this

the coefficients of h are algebraic integers divisible P r i m e t o § e t cancelled, we can see that this is not a
by p, thanks to the Ramanujan-style congruence. satisfactory explanation. For example, when k = 22
Therefore, the coefficients ofh' := Bol(gS[r)h) are all a n d r = kl2 = U> l e t ' s s a v ^ 2 2 ) P u t s f a c t o r s o f

integral at p and divisible by p. (Viewing the (k'-2)\ 1 3 1 a n d 5 9 3 i n t o D^r + k~1)- T h e n w h e n r g ° e s

in the denominator of the formula for holomorphic UP t o 1 3 ' C(26) should put a factor of 657931 into

projection, this is where we need p > k' -2.) The D}(r + k-l), but there isn't one.

linear independence assumption implies that if h! —

E t i ®ifi then a i is divisible by p;, as required. D 15. KLINGEN-EISENSTEIN SERIES AND KUROKAWA'S
™ ,, . , , n , . ., . ,, . ., CONGRUENCES
Of course, the interest of this theorem is that it ac-
cords with what is predicted by (the generalisation Let / be one of the modular forms considered in
to nonrational coefficients of) the Bloch-Kato con- Section 3. Associated to / is its Klingen-Eisenstein
jecture, since pr-torsion in some Shafarevich-Tate series [/], a noncuspidal Siegel modular eigenform
group can be constructed just as before. (To avoid of weight k and degree two [Klingen 1967]. For
primes which might be involved in fudge factors, us, the important fact about the relation between /
suppose p > k + k'.) Since fe'/2 is odd, Lf(k

f/2) = 0 and [/] is that, if L[f](s) is the L-function naturally
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associated with the eigenform [/], then L[/](s) = force us to the conclusion that the reduction modulo
Lf(s)Lf(s — (k — 2)). p of any Galois-invariant Zp-lattice in Wp has com-

Kurokawa [1979] proved that when k = 20 there position factors isomorphic to A\p] and A[p](2 — k).

exists a cuspidal Siegel eigenform F, of weight k Note that these factors are irreducible (since the co-
and degree two, such that the Hecke eigenvalues of efficients of/ do not satisfy a congruence modulo p),
F and [/] are congruent modulo 712. Mizumoto and that we have used the Brauer-Nesbitt theorem.
[1986] proved that when k = 22 there exists a cus-

. j i a- i - r ẑ  r -u^.7 J J Proposition 15.1. Admittinq the assumptions above,
pidal Siegel eigenform F, of weight fc and degree r * ^ . '
two, such that the Hecke eigenvalues of F and [/] there eMsts a Gd^stable Zp lathee Sp m Wp sueh

are congruent modulo 61.103. In the case k = 26, ihat lf B '= Wv/SvJhen there is a nonsplit exaet

the multiplicity-one result needed to apply Mizu- se«uence of ¥p[G^l(Q/Q)]-modules
moto's general theorem follows from the calculations ^ n

in [Skoruppa 1992]. From the data in the same work ° —* A\p](2-k) —"> B\P\ —> A\p] ~ ^ °-
we check that F must be 726a (when p = 163) or , , . ,,. , ,. „

„ . , . io^rro\ x n i i i Moreover, letting s be a section tor TT as a map
7266 (when p = 187273). In all the cases above, the , ^ ' ,L . , , ,
' ^ . ' _ . . . . _ of w ̂ -vector spaces, mere exists a skew-symmetric

Fourier coefficients and Hecke eigenvalues of F are , r , i n j. r 77 n i / ^ / ^ \
/orm (/P on B[p\ such that, for all g G Ga l (Q /Q) ,

m-i ^i r ,i p and v,tt? G Sfpl, (^(^.i;, o.ty) = Y(a)cp(v,w;). Here, Y
The congruences result from the appearence of . ,, ' _. o w v ' A V^yV ' y. ' A

^ / r i l ^N . , , . r . r- 2S me (2fe —3) power of the p-cyclotomic charac-
Vf(2k — 2) in the denominator of an expression tor , _, ,. ' , r 1/ft , ' , , . r ,. . ,
,, V. • m - J. rr^inv/r- J. m o n ^er- Further, ilAvp 1(2 — fc)) and 5 Ato are isotropic
the Fourier coefficients of / Mizumoto 1981 . 7 ' v L 1;, yy . v , . r , ^

T , i ^ / i 7 o n \ ^1 -mo / i subspaces for cp. There exists a basis \vuv2\ for
Let p be 71 (when k = 20), or 61 or 103 (when , r i -^ r r L • r i * r̂ i/7 \ x L

7 oo\ 1̂ 0 1 o ^ o / \ z o^\ J i A -^[P OT^ ^ a * &a5ZtS {^1,^2} /or i4[p(fc- l ) 5?xc/i
k = 22), or 163 or 187273 (when fc = 26), and let ±1_

l \ , . , ,L ' J J, .t fr ) , ~ /,, ,
^ , , mi T TTT • r^ ^ ^ ^ - n that, when considered as bases tori(A\p\(2 — k)) and
F be as above. Thanks to Weissauer > 2001 we , A ' x ±. , . , x r
1 , 1 . , . x x. s A b J ) respectively, we have (plv^Wj) = 6^.
know there is a continuous representation \ U J / x- ,7 r v ^ ^ / j

6 - GalfO/O) —> A\it(W ) ^ ^ ^ s f °^ o w s from [Urban 1998, Proposition 1.1].
_ Now, following [Urban 1998, Section 3.4], we define

(Wp is a four-dimensional vector space over Qp), a c o c y d e c . G a l (Q/Q) ^ HomFp(^l[p], A\p](2-k))
such that foy

1. 9P is unramified at / for all primes I + p; C(g)(w) = r ^ s H -p.s^"1 .!!;)).
2. If Frob/ is a Frobenius element at / then the char-

acteristic polynomial of Frob^1 acting on Wp is This cocycle is not a coboundary since the exact
the degree four polynomial with roots reciprocal sequence above is nonsplit. The choice of section
to those of the polynomial associated to the l-th s does not affect the cohomology class of C. Since
Euler factor of LF(s). A[p] is dual to A\p](k — 1) as a Galois module, we

(This 8V exists for any prime p, not just our special „ . . N ^ ' „ ^ ^ ^ ''
^oices) (because (fc - 1) + (2 - fc) = 1). In fact, just as in

w 1 .1 r n . . . [Urban 1998, Section 3.4] (proof of Fact 2, which
We make the following assumptions. L ' 1 \

uses Proposition 15.1 above), we have
1. Wp is a four-dimensional vector space over Qp

itself. c G H\Q, (Sym2 A\p])(l)) = H\Q, A'\p](l)).
2. 6V is absolutely irreducible. „ . . ^ ^ mi 1
^ T , r . j 1 , , i ,. r i Proposition 15.2. i/ie element c gives us a nonzero

3. With respect to some symplectic torm on Wp, the ' , irirtn AUIW
£ n - x. - J • J.I r i class a G J I ( y , A (1)).

image 01 vp is contained in the group of symplec-
tic similitudes GSp4(Qp). Proof. We need to show that H°(Q, Af(l)) is trivial,

The congruence between the Hecke eigenvalues of F s o t h a t t h e m a P H ± ^ ^ M 1 ) ) "> ^ ' ( Q , ^(1)) is
and / , and the equality injective. It suffices to prove that

L[f](s) = Lf(s)Lf(s-(k-2)), H°(Q, (A[p]®A[p})(l))
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is trivial. Bearing in mind that A[p] is dual to [Buzzard 1996] K. Buzzard, "On the eigenvalues of the

A\p](k-1), an element of Hecke operator T2", J. Number Theory 57:1 (1996),

#°(Q,(A[p]®4p])(l))
^ i . . . , r . n , i M / o [Cremona and Mazur 20001 J. E. Cremona and B. Mazur,

gives a Galois-equivanant map from A[pI to .Am ( 2 - L
 u_r. ,. . , , . J ,, c u f . , ^ , „

?x , , ? , Visualizing elements m the Shafarevich-Tate group ,
fc), which must be trivial_since these are nonisomor- Experiment Math. 9:1 (2000), 13-28.
phic irreducible Fp[Gal(Q/Q)]-modules. •

_ . 7 / [Datskovsky and Guerzhoy 1996] B. Datskovsky and P.
Propos.t.on 15.3. For any prime I £ p, Guerzhoy, "On Ramanujan congruences for modular

resi d G Hl(Qh A'(l)). forms of integral and half-integral weights", Proc.

Amer. Math. Soc. 124:8 (1996), 2283-2291.
Proof. For any prime I ^ p, the restriction of c

to ^(JuA'^il)) is trivial, where I{ is an inertia [Deligne 1969] P. Deligne, "Formes modulaires et

group at I This simply follows from the trivial- representations /-adiques", pp. 139-172, exp. 355 in

ity of the FpftJ-modules A\p](2-k), B[p] and A[p], Seminaire Bourbaki, Lecture Notes in Math. 179,
i • i • T n j. xi x • • - x Springer, 1969.

which implies that the exact sequence giving rise to c *- o >
splits as a sequence of Fp[/z]-modules. Hence res^cG [Deligne 1979] P. Deligne, "Valeurs de fonctions L et

i3rl(<Q>;7Qz, A;[p](l)), so res/d e ^(Q^/Q^A'll)), periodes d'integrales", pp. 313-346 in Automorphic

which is the same as Hj(Qh A'(l)) since A1 is un- /orras, representations and L-functions (Corvallis,
ramified at / (see the proof of Theorem 3 of [Flach 0 R ' 1977)> v o L ^ e d i t e d by A- B o r e l a n d w -
•IQQQI\ 1—1 Casselman, Proc. Sympos. Pure Math. 33, Amer.

"' Math. Soc, Providence, 1979.
Though we have shown that d satisfies the local con-
ditions at all primes I ^ p, we are unable to deal with [Diamond et al. > 2001] F. Diamond, M. Flach, and
• T T T j . . . , T->xT7i • i L- Guo, "On the Bloch-Kato conjecture for adjoint
the local condition at p. But if a does give us an el- r , , c M HT ̂  r» r .. m

_\ 2/ \ i motives of modular forms , Math. Res. Lett., lo
ement of order p m III(l) for Sym (M), then Flach
1990] allows us to reflect across the central point

k - \ and get an element of order p in III(2fc-2). [Dummigan 2000] N. Dummigan, "Period ratios of

Recall that the existence of such an element was sug- modular forms", Math. Ann. 318:3 (2000), 621-636.
gested by the Bloch-Kato conjecture and the results [Faltings 1989] G . Faltings, "Crystalline cohomology and
in Section 3. p-adic Galois-representations", pp. 25-80 in Algebraic

analysis, geometry, and number theory (Baltimore,
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