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Symmetric State-Space Method for a Class
of Nonviscously Damped Systems
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Multiple-degree-of-freedom linear nonviscously damped systems are considered. It is assumed that the non-
viscousdampingforces depend on the pasthistory of velocities via convolutionintegralsover exponentiallydecaying
kernel functions. The traditional state-space approach, well known for viscously damped systems, is extended to
such nonviscously damped systems using a set of internal variables. Suitable numerical examples are provided to
illustrate the proposed approach.

I. Introduction

V ISCOUS dampingis the most common model for themodeling
of vibration damping in linear systems. This model, � rst in-

troduced by Rayleigh,1 assumes that the instantaneousgeneralized
velocities are the only relevant variables that determine damping.
Viscous damping models are used widely for their simplicity and
mathematical convenience, even though the behavior of real struc-
tural materials is, at best, poorly mimicked by simple viscous mod-
els.For this reason,it is well recognizedthat, in general,a physically
realistic model of damping will not be viscous. Damping models in
which thedissipativeforcesdependonanyquantityother than the in-
stantaneousgeneralizedvelocitiesare nonviscousdamping models.
Mathematically, any causal model that makes the energy dissipa-
tion functionalnonnegativeis a possible candidate for a nonviscous
damping model. Clearly, a wide range of choice is possible, either
based on the physics of the problem or by selecting a model a priori
and � tting its parameters from experiments. Here, we will use a
particular type of damping model that is not viscous, and through-
out the paper the terminologynonviscousdamping will refer to this
speci� c model only.

Possibly themost generalway to model dampingwithin the linear
range is to use nonviscous damping models that depend on the past
history of motion via convolution integrals over kernel functions.2

The equations of motion of an N -degree-of-freedomlinear system
with such damping can be expressed by

M Ru.t/ C
Z t

0

G G .t ¡ ¿ / Pu.¿ / d¿ C Ku.t/ D f .t/ (1)

together with the initial conditions

u.t D 0/ D u0 2 RN ; Pu.t D 0/ D Pu0 2 RN (2)

Here, u.t/ 2 RN is the displacementvector, f.t/ 2 RN is the forcing
vector, M 2 RN £ N is the mass matrix, K 2 RN £ N is the stiffness
matrix, and G G .t ¡ ¿ / is the matrix of damping kernel functions.
The kernel functions G G .t ¡ ¿ / are known as retardation functions,
heredity functions, after-effect functions, or relaxation functions in
the context of different subjects. Note that the convolution integral
approachfor the material property modeling is not new. Early work
in this area can be traced back to Biot3 in the context of viscoelastic
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materials. A main difference between Eq. (1) and corresponding
equations for viscoelastic structures is that the kernel function is
associated with damping and not stiffness. Although mathemati-
cally both are similar, conceptually they are somewhat different.
For example, in the limit when G G .t ¡ ¿/ D C±.t ¡ ¿ /, where ±.t/
is the Dirac delta function, Eq. (1) reduces to the case of viscous
damping, whereas for the viscoelastic case the equivalentwould be
the usual elastic constant (stiffness matrix).

Equation (1) is very general,and, for any engineeringapplication,
some speci� c form of G G .t/ has to be assumed. A wide variety of
mathematical expressions could be used for the kernel functions
G G .t/ as long as the rate of energy dissipation is nonnegative.Some
of the damping functions used in the literature are shown in Table 1
(Refs. 4–10).

A well-known dampingmodel, known as the fractionalderivative
model,4;11¡13 appears as a speci� c case when the Laplace transform
of G G .t/ is selected as

sG.s/ D
X

j

sº j g j

whereg j are complexconstantmatricesandº j are fractionalpowers.
Here, we will use a damping model for which the kernel function
matrix has the special form

G G .t/ D
nX

k D 1

¹k e¡¹k t Ck (3)

or, in the Laplace domain,

G.s/ D
nX

k D 1

¹k

s C ¹k
Ck (4)

The constants ¹k 2 RC are known as the relaxationparameters, and
n denotes the number of relaxation parameters used to describe the
damping behavior.This model will also be referred as the exponen-
tial damping model (models 1, 3, and 4 in Table 1) for obvious rea-
sons.A physical justi� cation (using the principlesof mechanicsand
thermodynamics) as to why a general structure should always have
this type of damping is hard to provide.From this point of view, this
damping model is on a similar footing to that of the viscous model.
However, based on engineering judgement and intuition, several
reasons behind the selection of this model could be given:

1) In the context of viscoelastic materials, the physical basis
for exponential models has been well established. In the words of
Cremer and Heckl,14 “Of the many after-effect functions that are
possible in principle,only one—the so-called relaxation function—
is physically meaningful.”

2) In a large engineering structure it is possible to have differ-
ent damping in different parts of a structure. For example, various
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Table 1 Some nonviscous damping functions in the Laplace domain

Model number Damping function Author(s) (year of publication)

1 G.s/ D
nX

k D 1

ak s
s C bk

Biot8 (1955)

2 G.s/ D E1s® ¡ E0bs¯

1 C bs¯
.0 < ®; ¯ < 1/ Bagley and Torvik4 (1983)

3 sG.s/ D G1

µ
1 C

X

k

®k
s2 C 2»k !k s

s2 C 2»k !k s C !2
k

¶
Golla and Hughes5 (1985)

and McTavish and Hughes6 (1993)

4 G.s/ D 1 C
nX

k D 1

1ks

s C ¯k
Lesieutre and Mingori7 (1990)

5 G.s/ D c
1 ¡ e¡st0

st0
Adhikari9 (1998)

6 G.s/ D c
st0

1 C 2.st0=¼ /2 ¡ e¡s t0

1 C 2.st0=¼/2
Adhikari9 (1998)

7 G.s/ D ces2=4¹

µ
1 ¡ erf

³
s

2
p

¹

´¶
Adhikari and Woodhouse10 (2001)

members of a space frame may have different damping properties,
each characterized by a relaxation parameter ¹k . Then the associ-
atedcoef� cientmatrixCk wouldhavenonzeroblockscorresponding
to the relevant elements only. One could perform experiments for
individual members and use the � nite element method to obtain
the element damping matrix, for example, C.e/

k . Using a standard
approach it is possible to assemble all of the element matrices as-
sociated with relaxation parameter ¹k to obtain a global damping
matrix Ck . This procedure may be repeated for all damping types
present in the structure to obtain ¹k and Ck for all k.

3) In a recent work, Adhikari and Woodhouse15 proposed a
method to identify ¹k and Ck from vibration measurements when
n D 1 in Eq. (3). It was alsonoted10 that,when thedampingis nonvis-
cous, forceful� ttingof viscousdampingmay producea nonphysical
result (for example, a nonsymmetriccoef� cient matrix). Thus, from
a parameter estimation point of view, the damping model in Eq. (3)
gives additional� exibility to � t measured data obtainedfrom modal
testing.

4) A mathematical rationalization of this model can be given in
termsof theLaplace transformof G G .t/. The matrix G.s/ in Eq. (4) is,
in general, a matrix of complex functions. From the theory of com-
plex variables, it is well known that a wide range of complex func-
tions can be represented in the “pole-residue” form. From Eq. (4),
it is easy to see that ¸k and Ck are directly related to the poles and
residuesof G.s/. Therefore,many damping models (except the frac-
tionalderivativemodel,whichhasbranchpointsdue to the fractional
powers) can essentially be represented in the form of Eq. (3).

Because most vibration analysis textbooks, � nite element pack-
ages, and modal analysis software only allow viscous damping,
it is useful to relate the exponential damping model with the vis-
cous damping model. From Eq. (3), observe that in the limit when
¹k ! 1; 8k, the exponential model reduces to a viscous damping
model with an equivalent viscous damping matrix

C D
nX

k D 1

Ck (5)

The aim of this paper is to develop a state-space based approach
analogous to viscously damped systems, with a view toward treat-
ing the exponentially damped system as a simple extension of the
familiar viscously damped system.

II. State-Space Formalism
The state-space methods, or � rst-order methods, have been used

extensivelyin the literature for viscouslydampedsystems with non-
proportionaldamping (see Newland,16;17 for example).The purpose
of this section is to extend the state-spaceapproach to linear systems
with an exponentialdamping model. The proposed method is based

on the introductionof a set of internal variables.Bagley and Torvik4

have used an extended state-spaceapproach for linear systems with
fractional derivative damping models. They have expressed the ex-
tended state vector in terms of various fractional-orderdifferentials
of the displacement vector. Golla and Hughes5 and McTavish and
Hughes6 have used an internal variablesbased approach, the Golla–
Hughes–McTavish (GHM) method, in the context of viscoelastic
structures. Another approach, known as the anelastic displacement
� eld (ADF) method, has been developedby Lesieutre and Mingori7

and Lesieutre and Bianchini.18 Like GHM, the ADF method is also
an internal variablebased viscoelasticmodel, but it is distinguished
from GHM in that it is � rst order in time, not second order. Mu-
ravyov and Hutton19 and Muravyov20 have proposed an extended
state-spacemethod for systems with exponentialkernels associated
with a stiffness operator. Here, the formulation is presented for two
cases, namely, 1) when all Ck matrices are of full rank and 2) when
Ck matrices have rank de� ciency.

A. Case A: All Ck Matrices are of Full Rank
We assume that

rank.Ck / D N ; 8k D 1; : : : ; n (6)

The exponential function is an eigenfunction in the sense that
the application of the operator d=dt to the exponential term e¹t

produces ¹e¹t . Therefore, we introduce the internal variables
yk.t/ 2 RN ; 8k D 1; : : : ; n, through following relationship:

yk .t/ D
Z t

0

¹k e¡¹k .t ¡ ¿ / Pu.¿ / d¿ (7)

Applying Leibniz’s rule for differentiation of an integral to
Eq. (7), one obtains

Pyk .t/ D
Z t

0

¡¹2
k e¡¹k .t ¡ ¿/ Pu.¿ / d¿ C ¹k Pu.t/ (8)

Multiplying Eq. (7) by the relaxation parameter ¹k , then adding it
to Eq. (8), yields the so-called evolution equation21

Pyk.t/ C ¹k yk.t/ D ¹k Pu.t/ (9)

When the kernel function matrix (3) is accounted for, Eq. (1) can
be rewritten as

M Ru.t/ C
nX

k D 1

Ck

»Z t

0

¹k e¡¹k .t ¡ ¿ / Pu.¿ / d¿

¼
C Ku.t/ D f.t/ (10)
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With Eq. (7), the preceding equation leads to

M Ru.t/ C
nX

k D 1

Ckyk.t/ C Ku.t/ D f .t/ (11)

Substitutingyk from Eq. (9) into the precedingequation,one obtains

M Ru.t/ C
nX

k D 1

µ
Ck Pu.t/ ¡ 1

¹k
Ck Pyk.t/

¶
C Ku.t/ D f.t/ (12)

or

M Ru.t/ C

Á
nX

k D 1

Ck

!
Pu.t/ ¡

nX

k D 1

1

¹k
Ck Pyk.t/ D ¡Ku.t/ C f .t/

(13)

Premultiplying Eq. (9) by Ck , dividing by ¹2
k , and rearranging,

we get

¡.1=¹k /Ck Pu.t/ C
¡
1
¯

¹2
k

¢
Ck Pyk.t/ D ¡.1=¹k /Ckyk .t/; 8k (14)

Now, by the use of additional state variables

v.t/ D Pu.t/ (15)

Eqs. (13), (15), and (14) can be represented in the � rst-order form
as

BPz.t/ D Az.t/ C r.t/ (16)

where

B D

2

6666666666664

nX

k D 1

Ck M ¡C1

¹1

¢ ¢ ¢ ¡ Cn

¹n

M O O O O

¡C1

¹1
O

C1

¹2
1

O O

::: O O
: : : O

¡ Cn

¹n
O O O

Cn

¹2
n

3

7777777777775

2 Rm £ m (17)

A D

2

6666666664

¡K O O O O

O M O O O

O O ¡ C1

¹1
O O

O O O
: : : O

O O O O ¡ Cn

¹n

3

7777777775

2 Rm £ m (18)

r.t/ D

8
>>>><

>>>>:

f .t/

0

0
:::

0

9
>>>>=

>>>>;

2 Rm (19)

z.t/ D

8
>>>>><

>>>>>:

u.t/

v.t/

y1.t/
:::

yn.t/

9
>>>>>=

>>>>>;

2 Rm (20)

In the preceding equations, z.t/ is the extended state vector, A
and B are the system matrices in the extended state-space, r.t/ is
the force vector in the extended state-space,and O is an N £ N null
matrix. Clearly, the order of the system m is given by

m D 2N C nN (21)

Because it is assumed that M, K, and Ck ; 8k, are symmetric ma-
trices, B is a symmetric matrix, and A is a block-diagonal and,
therefore, also a symmetric matrix.

It is useful to consider the viscous damping limit at this stage.
When ¹k ! 1; 8k, dividing Eq. (9) by ¹k , it is easy to show that

yk .t/ D Pu.t/; 8k (22)

This implies that in the viscous damping limit all internal variables
reduce to the velocity vector. For this reason, the n £ N equations
after the � rst 2N rows in Eq. (16) become trivial and can be deleted
from the formulation. Under these conditions, it is easy to see that
the equations of motion (16) reduce to the standard Duncan form
(see Ref. 22) for viscously damped systems with

B D
µ

C M

M O

¶
; A D

µ
¡K O

O M

¶

r.t/ D
»

f.t/

0

¼
; z.t/ D

»
u.t/

Pu.t/

¼
(23)

where C is given by Eq. (5). This shows that the representation of
the equations of motion by Eq. (16) is a natural generalization of
the standard state-spaceformulationfor viscouslydamped systems.

B. Case B: Ck Matrices are Rank De� cient
In this section, we assume that, in general,

rk D rank.Ck / · N ; 8 k D 1; : : : ; n (24)

This implies that the number of nonzero eigenvalues of Ck is rk .
It is useful to decompose the Ck matrices to full-rank matrices of
smaller dimensions, similar to thoseused by Golla and Hughes5 and
McTavish and Hughes6 in the context of viscoelastic structures.

Because Ck is a symmetric matrix, there exists an orthogonal
matrix Uk 2 RN £ N whose columns are the eigenvectorsof Ck , such
that

UT
k Ck Uk D

µ
dk O1k

OT
1k O2k

¶
(25)

In the preceding equation, dk 2 Rrk £ rk is a diagonal matrix con-
sisting of only the nonzero eigenvalues of Ck . O1k 2 Rrk £ .N ¡ rk /,
and O2k 2 R.N ¡ rk / £ .N ¡ rk / are the null matrices. For convenience,
partition Uk as

Uk D [U1k j U2k ] (26)

where the columnsof U1k 2 RN £ rk are the eigenvectorscorrespond-
ing to the nonzero block dk , and the columns of U2k 2 RN £ .N ¡ rk /

are the eigenvectorscorrespondingto the remaining .N ¡ rk / num-
ber of zero eigenvalues.When a rectangular transformation matrix
is de� ned as

Rk D U1k 2 RN £ rk (27)

it is easy to show that

RT
k CkRk D dk (28)

Therefore, the matrix Rk in Eq. (27) transforms the originally
rank-de� cient matrix Ck to a full-rank (diagonal)matrix of rank rk .
Note that the choice of Rk can be arbitrary and, in general, Rk may
be expressed as

Rk D Uk £
µ

Qrk

O3k

¶
(29)

where Qrk 2 Rrk £ rk is any orthogonal matrix and O3k 2 R.N ¡ rk / £ rk

is a null matrix.The matrix Rk appearingin Eq. (27) can be obtained
as a special case when Qrk is an identity (therefore, orthogonal)
matrix.
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Now, de� ne a set of internal variables of reduced dimension
Qyk.t/ 2 Rrk using the rectangular transformationmatrix Rk as

yk .t/ D Rk Qyk.t/ (30)

From this equation, it immediately follows that

Pyk .t/ D Rk
PQyk.t/ (31)

where yk .t/ is de� ned in Eq. (7). With these relationships,Eqs. (13)
and (14) can be expressed as

M Ru.t/ C

Á
nX

k D 1

Ck

!
Pu.t/ ¡

nX

k D 1

1

¹k
CkRk

PQyk .t/ D ¡Ku.t/ C f .t/

(32)

¡
1

¹k
Ck Pu.t/ C

1

¹2
k

Ck Rk
PQyk .t/ D ¡

1

¹k
CkRk Qyk .t/ (33)

BecauseEq. (33)still representsa setof N equations,we premultiply
this by RT

k to obtain a reduced set of rk equations:

¡.1=¹k /RT
k Ck Pu.t/ C

¡
1
¯

¹2
k

¢
RT

k Ck Rk
PQyk .t/

D ¡.1=¹k/RT
k Ck Rk Qyk .t/; 8k (34)

Now, Eqs. (32), (15), and (34) can be combined into a � rst-order
form as

QBPQz.t/ D QAQz.t/ C Qr.t/ (35)

where

QB D

2

66666666666664

nX

k D 1

Ck M ¡C1R1

¹1
¢ ¢ ¢ ¡CnRn

¹n

M ON ;N ON ;r1 ¢ ¢ ¢ ON ;rn

¡
RT

1 C1

¹1
OT

N ;r1

RT
1 C1R1

¹2
1

¢ ¢ ¢ Or1;rn

:::
:::

:::
: : :

:::

¡RT
1 Cn

¹n
OT

N ;rn
OT

r1 ;rn
¢ ¢ ¢ RT

n CnRn

¹2
n

3

77777777777775

2 Rm £ m

(36)

QA D

2

66666666664

¡K ON ;N ON ;r1 ¢ ¢ ¢ ON ;rn

ON ;N M ON ;r1 ¢ ¢ ¢ ON ;rn

OT
N ;r1

OT
N ;r1

¡RT
1 C1R1

¹1

¢ ¢ ¢ Or1 ;rn

:::
:::

:::
: : :

:::

OT
N ;rn

OT
N ;rn

OT
r1;rn

¢ ¢ ¢ ¡RT
n CnRn

¹n

3

77777777775

2 Rm £ m

(37)

Qr.t/ D

8
>>>>>><

>>>>>>:

f .t/

0N

0r1

:::

0rn

9
>>>>>>=

>>>>>>;

2 Rm (38)

Qz.t/ D

8
>>>>>><

>>>>>>:

u.t/

v.t/

Qy1.t/

:::

Qyn.t/

9
>>>>>>=

>>>>>>;

2 Rm (39)

In the preceding equations

m D 2N C
nX

k D 1

rk (40)

is the order of the system, Oi j are i £ j null matrices, and 0 j are
vectors of j zeros. The terms with tildes correspond to the terms in
parenthesesde� ned in Eq. (16).Again, note that the system matrices
QA and QB are symmetric.When all Ck matricesare of full rank, that is,
when rk D N ; 8k, then one can choose each Rk matrix as the identity
matrix, and Eq. (35) reduces to Eq. (16). With this symmetric state-
space representation,the system responsecan be obtained easily by
the mode superposition method, which is very similar to what is
normally used for undamped or viscously damped systems.

III. Numerical Examples
A. Example 1: Single-Degree-of-Freedom (DOF) System

Consider a simple single-degree-of-freedom (DOF) system with
nonviscous damping. The equation of motion is given by

m Ru.t/ C fd.t/ C ku.t/ D f .t/ (41)

where fd.t/, the damping force due to the nonviscous damper, is
assumed to be of the form

fd .t/ D
Z t

0

©
c1¹1e

¡¹1 .t ¡ ¿ / C c2¹2e
¡¹2.t ¡ ¿/

ª
Pu.¿ / d¿ (42)

This problem belongs to case A in Sec. II.A, that is, there is no rank
de� ciency. By the use of Eqs. (16–20), the symmetric state-space
form is given by
2

66664

c1 C c2 m ¡c1=¹1 ¡c2=¹2

m 0 0 0

¡c1=¹1 0 c1

¯
¹2

1 0

¡c2=¹2 0 0 c1

¯
¹2

1

3

77775

8
>><

>>:

Pu.t/

Ru.t/

Py1.t/

Py2.t/

9
>>=

>>;

D

2

664

¡k 0 0 0

0 m 0 0

0 0 ¡c1=¹1 0

0 0 0 ¡c1=¹1

3

775

8
>><

>>:

u.t/

Pu.t/

y1.t/

y2.t/

9
>>=

>>;
C

8
>><

>>:

f .t/

0

0

0

9
>>=

>>;
(43)

B. Example 2: Three-DOF System
A three-DOF system, shown in Fig. 1, with nonviscousdamping,

is considered. Three masses, each of mass mu , are connected by
springsof stiffnessku . The nonviscousdampingmodel of the system
is composedof two exponentialdampingmodels,as shown in Fig. 1.
The equations of motion of this model system can be represented
by Eq. (1). The mass and the stiffness matrices of the system are
given by

M D

2

4
mu 0 0

0 mu 0

0 0 mu

3

5 (44)

K D

2

4
2ku ¡ku 0

¡ku 2ku ¡ku

0 ¡ku 2ku

3

5 (45)

Fig. 1 Three-DOF system with nonviscous damping; shaded bars
represent the nonviscous dampers with damping functions given by
gi(t ¡¡ ¿ )= ¹ie¡¹i ((t ¡ ¿ )), i = 1, 2.
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The matrix of the damping function can be expressed by Eq. (3)
with n D 2, and the coef� cient matrices are given by

C1 D

2

4
c1 0 0

0 c1 0

0 0 0

3

5 ; C2 D

2

4
0 0 0

0 c2 ¡c2

0 ¡c2 c2

3

5 (46)

Both of the matrices have rank de� ciencies because one can easily
verify that

r1 D rank.C1/ D 2 · 3 (47)

r2 D rank.C2/ D 1 · 3 (48)

The order of the system matrices in the state-space m, ex-
pressed by Eq. (40), can be obtained using r1 and r2 given by
Eqs. (47) and (48). From Eq. (40), it can be easily shown that
m D 2 £ 3 C .2 C 1/ D 9. The transformationmatrices Rk; k D 1; 2,
appearing in Eqs. (36) and (37), can be obtained from Eq. (27):

R1 D

2

4
1 0

0 1

0 0

3

5 ; R2 D

2

64

0

¡1
¯p

2

1
¯p

2

3

75 (49)

With these, the systemmatrices in the state-space,givenby Eqs. (36)
and (37), are obtained as

QB D

2

666666666666664

c1 0 0 mu 0 0 0 ¡c1=¹1 0

0 c1 C c2 ¡c2 0 mu 0 ¡c1=¹1 0 c2

p
2
¯

¹2

0 ¡c2 c2 0 0 mu 0 0 ¡c2

p
2
¯

¹2

mu 0 0 0 0 0 0 0 0

0 mu 0 0 0 0 0 0 0

0 0 mu 0 0 0 0 0 0

0 ¡c1=¹1 0 0 0 0 c1

¯
¹2

1 0 0

¡c1=¹1 0 0 0 0 0 0 c1

¯
¹2

1 0

0 c2

p
2
¯

¹2 ¡c2

p
2
¯

¹2 0 0 0 0 0 2c2=¹2
2

3

777777777777775

(50)

QA D

2

66666666666664

¡2ku ku 0 0 0 0 0 0 0

ku ¡2ku ku 0 0 0 0 0 0

0 ku ¡2ku 0 0 0 0 0 0

0 0 0 mu 0 0 0 0 0

0 0 0 0 mu 0 0 0 0

0 0 0 0 0 mu 0 0 0

0 0 0 0 0 0 ¡c1=¹1 0 0

0 0 0 0 0 0 0 ¡c1=¹1 0

0 0 0 0 0 0 0 0 ¡2c2=¹2

3

77777777777775

(51)

Once these system matrices are obtained, the dynamic response
of the system can be readily obtained using a mode superposition
method.

IV. Conclusions
Multiple-DOFlinear systemswith exponentiallydecayingdamp-

ing memory kernels are considered. The proposed method is based
on an extended state-space representation of the equations of mo-
tion. This approach,in contrastto the usual statevector forviscously
damped systems, utilizes a set of internal variables in addition to the
displacementand the velocity as the state vector.Two cases, namely,
1) when all of the damping coef� cient matrices are of full rank and
2) when the dampingcoef� cientmatriceshave rank de� ciency,have
been presented. For both of the cases, the equations of motion can
be representedin terms of two symmetricmatrices.The formulation
proposed here is very similar to the standard Duncan form used in
the context of viscously damped systems. The only difference is

that the dimension of the system matrices is now more than 2N and
depends on the rank of the damping coef� cient matrices. Because
of this similarity, it may be possible to extend many system identi� -
cation, model updating, optimization, and control algorithms avail-
able for viscously damped systems to such nonviscously damped
systems.
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