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Abstract
In this paper, we propose a symmetric stereo model to han-
dle occlusion in dense two-frame stereo. Our occlusion
reasoning is directly based on the visibility constraint that
is more general than both ordering and uniqueness con-
straints used in previous work. The visibility constraint
requires occlusion in one image and disparity in the other
to be consistent. We embed the visibility constraint within
an energy minimization framework, resulting in a symmet-
ric stereo model that treats left and right images equally.
An iterative optimization algorithm is used to approximate
the minimum of the energy using belief propagation. Our
stereo model can also incorporate segmentation as a soft
constraint. Experimental results on the Middlebury stereo
images show that our algorithm is state-of-the-art.

1 Introduction
Occlusion is one of the biggest challenges in stereo. For
two-frame stereo, occluded pixels are only visible in one
image. Accurate depth and occlusion information is impor-
tant to applications in vision and robotics, such as tracking,
recognition, and path planning. In certain applications such
as 3D modeling and view interpolation, a stereo algorithm
should not only estimate accurate depths at visible areas,
but it should also provide reasonable guesses of depths at
occluded areas.

1.1 Previous work
For a comprehensive discussion on dense two-frame stereo
matching, we refer the reader to the survey by Scharstein
and Szeliski [17]. In this paper, we review two-frame
stereo algorithms that can handle occlusion. Two kinds of
hard constraints are typically used: ordering constraint and
uniqueness constraint.

The ordering constraint preserves order along scanlines
in both input images. The monotonicity constraint [9] is a
variant of the ordering constraint which requires neighbor-
ing pixels to be matched. On the other hand, the uniqueness
constraint [15] enforces a one-to-one mapping between pix-
els in two images.

Most approaches [1, 6, 11, 3] that exploit the ordering
constraint or uniqueness constraint use dynamic program-
ming. Stereo matching is formulated as finding a minimum-
cost path in the matrix of all pairwise matching costs be-
tween two corresponding scanlines. Dynamic programming
can independently yield a global minimum for each scan-
line in a polynomial time. The “horizontal” and “vertical”
discontinuities of the path correspond to the left and right
occlusions, respectively.

The simplest method that uses the uniqueness constraint
to detect occlusion is that of cross-checking [7]. In cooper-
ative algorithm [23], the uniqueness constraint is enforced
within a 3D array of match values in disparity space us-
ing an iterative update algorithm. In [12], stereo matching
is formulated as finding a subset of assignments that may
potentially correspond by graph cuts algorithm. A Potts en-
ergy to be minimized is defined on the assignments rather
than pixels. The uniqueness constraint is always satisfied
using graph cuts. To date, graph cuts consistently produces
the best results (disparity and occlusion) for frontal-parallel
scenes.

Unfortunately, the ordering and uniqueness constraints
have limitations. The ordering constraint is not always true
in general; it is violated in scenes that contain thin fore-
ground objects or narrow holes. Figure 2 shows such a
scene (“double nail illusion”). While pointA is to the left of
the thin foreground object in the left image, it is to the right
of the same object in the right image. Furthermore, the or-
dering constraint can only be enforced for each scanline in-
dependently. Without the smoothness assumption between
epipolar lines, the results of dynamic programming based
approaches often show a streaking effect.

Using a discrete representation of disparity, the unique-
ness constraint is not appropriate for scenes containing hor-
izontally slanted surfaces (Figure 1(a)), which result in cor-
respondence between unequal numbers of pixels. As ob-
served in [16], a horizontally slanted surface will appear
more horizontally stretched in one image compared with
the other. Figure 1(b) is the output of the graph cuts [12]
algorithm (www.cs.cornell.edu/people/vnk/software.html).
Neither disparity nor occlusion can be recovered correctly
using graph cut with a Potts model.
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Figure 1: Horizontally slanted object. (a) Left and right
images, (b) results using graph cuts [12], (c) our results, and
(d) ground truth. In (b-d), the disparity map is shown in the
left column while the occlusion map is shown in the right
column. Here, graph cuts with the uniqueness constraint
yields both incorrect disparity and occlusion.

1.2 Visibility constraint
In order to handle occlusions for more general scenes, we
adhere to the basic visibility constraint. All this visibility
constraint requires is that an occluded pixel must have no
match on the other image and a non-occluded pixel must
have at least one match.

The visibility constraint is self-evident because it is de-
rived directly from the definition of occlusion. A pixel in the
left image will be visible in both images if there is at least
one pixel in the right image matching it. Unlike the unique-
ness constraint, the visibility constraint permits many-to-
one matching. Furthermore, the ordering constraint need
not be satisfied. As a result, the visibility constraint is a
more flexible but weaker constraint than the ordering and
uniqueness constraints. The visibility constraint only en-
forces consistency between occlusion in one image and dis-
parity in the other.

Applying the visibility constraint is nontrivial because
both disparity and occlusion are unknown. In this paper, we
propose to enforce the visibility constraint using an algo-

rithm that iteratively performs these two steps: (1) infer the
disparity map in one view considering the occlusion map of
the other view, and (2) infer the occlusion map in one view
from the disparity map of the other view.

Step (1) improves the disparity map by enforcing piece-
wise smoothness while using the occlusion maps for both
views as constraints. Step (2) improves the occlusion map
using two observations illustrated in Figure 3.

The first observation is that if pixels on both sides of a
discontinuous boundary are visible, their disparities tend to
be unambiguous. (As an example, observe the discontinuity
between regionsC andE in Figure 3(b).) Hence, the occlu-
sion region in the other view can be directly inferred using
the visibility constraint (using the same example, region D
as shown in Figure 3(c)).

The second observation is that disparities in occlusion
regions are usually ambiguous (e.g., the hatched region in
Figure 3(b)). This observation can be verified by inspect-
ing Figure 6(a), especially the disparities in the occlusion
regions. The key is that these pixels rarely affect the occlu-
sion reasoning on the other view. For example, a pixel in
region B (no matter what disparity it ends up with inside
the hatched region) will not influence the occlusion reason-
ing, since regions A and C (where the pixel may land after
warping) have already been matched.

We use these observations to enforce the visibility con-
straint and thus estimate disparity and occlusion regions
more accurately. We now describe our symmetric stereo
model that explicitly uses the visibility constraint in an en-
ergy minimization framework and an iterative algorithm
that approximates the minimum.

2 Symmetric Stereo Model
Given a stereo image pair I = {IL, IR}, we want to com-
pute the disparity {DL, DR} and occlusion {OL, OR} for
left view IL and right view IR, respectively. For each pixel
s, its disparity ds is in the range [dmin, dmax] and its oc-

A A

(a) (b) (c) (d)

Figure 2: Double nail illusion. (a) and (b) are the left and
right input images. Point A is to the left of the thin fore-
ground object in the left image but is to the right of the
same foreground object in the right image. Our stereo al-
gorithm yields the disparity map (c) and occlusion map (d)
associated with the left image. (The same maps for the right
image are not shown here.)
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Figure 3: Occlusion reasoning. (a) A stereo image pair
{IL, IR} captures a scene with objects A to E. (b) The dis-
parity map of the left image. The disparity for the occlusion
region B is ambiguous (usually within a range specified by
the hatched area). (c) The inferred occlusion map of the
right image. The depth discontinuity between C and E in
the left image causes the occlusion regionD in the right im-
age. In addition, region B warps to either A or C, which is
already matched. Here, occlusion reasoning is independent
of the disparity for regionB.

clusion os ∈ {0, 1} is a binary variable. In this paper, we
denote D̂ and Ô as disparity and occlusion in a single view,
either left or right.

Most local stereo algorithms [17] and global stereo algo-
rithms [4, 19] only compute the disparity and occlusion in
the reference view (say, the left image). In global algorithm,
stereo matching can be formulated in an energy minimiza-
tion framework:

E(DL; I) = Ed(DL; I) + Es(DL), (1)

where the data term Ed(DL; I) measures how well the dis-
parity DL fits the given stereo pair I , and the smoothness
term Es(DL) encodes a smoothness assumption on dispar-
ity. The occlusion is either considered implicitly or treated
as an outlier process. The disparity DR of the right image
is computed independently. Here, consistency between two
views is not enforced.

The visibility constraint requires occlusion in one im-
age and disparity in the other to be consistent. Hence we
embed the visibility constraint within the visibility terms
Ev(OL, DR) and Ev(OR, DL). This allows us to formu-
late the occlusion reasoning depicted in Figure 3. Now, we
formulate the stereo matching problem with two novel visi-
bility terms:

E(DL, DR, OL, OR; I) =
Ed(DL, OL; I) + Ed(DR, OR; I)

+Es(DL, OL) + Es(DR, OR)
+Ev(OL, DR) + Ev(OR, DL). (2)

We call it the “symmetric stereo model” because of the sym-
metric relationship between {DL, OL} and {DR, OR} in
the formulation. The two input images are treated equally.

2.1 Data term
The data term only encodes the intensity consistency of
pixel correspondences for hypothesized disparity and occlu-
sion. For a single view, the data term P (I|D̂, Ô) is defined
as:

Ed(D̂, Ô; I) =
∑
s/∈Ô

ρd(F (s, ds, I)) +
∑
s∈Ô

ηo, (3)

where F (s, ds, I) is the matching cost function of pixel s
with disparity ds given observation I . ρd(x) is a truncated
L1 norm function that is robust to noise or outliers:

ρd(x) = − ln((1 − ed) exp(−|x|/σd) + ed),

where parameters σd and ed control the shape of robust
function. As matching cost, we use the intensity difference
between two gray pixels or the Euclidean distance between
two color pixels, namely, F (s, ds, I) = ||IL(xs, ys) −
IR(xs + ds, ys)||2 (for the left view), where (xs, ys) is the
image coordinates of pixel s. The matching cost is simi-
larly defined for the right view. The cost ηo is the penalty
for occlusion labeling. This term is necessary to prevent the
whole scene from being labeled as occlusion.

2.2 Smoothness term
We encode piecewise smoothness on disparity D̂ (given oc-
clusion Ô) in the smoothness term Es(D̂, Ô). Let N(s) be
the neighbors of the pixel s andC = {s, t|s < t, t ∈ N(s)}
be the set of all adjacent pixel pairs. The smoothness term
on disparity conditioned on the occlusion is

Es(D̂, Ô) =
∑

s,t∈C\B

ρp(ds, dt), (4)

where B = {s, t|os �= ot, s, t ∈ C} is the set of disconti-
nuities at the boundaries between occluded and unoccluded
pixels. This term only enforces smoothness within occluded
and unoccluded regions. Our robust function is

ρp(ds, dt) = min(λ|ds − dt|, T ), (5)

where λ is the rate of increase in the cost and T controls
the limit of the cost. There are two advantages of using this
robust function. For one, it preserves discontinuity. The
other advantage is that we can apply a very efficient imple-
mentation [8] of belief propagation to minimize the energy
involving this smoothness term (described in Section 3).



2.3 Visibility term
In order to enforce the visibility consistency constraint, we
define the visibility term Ev(OL, DR) as

Ev(OL, DR) =
∑

s

βw|os−WL(s;DR)|+
∑

s,t∈C

βo|os−ot|,

(6)
where WL(s;DR) ∈ {0, 1} is a binary map defined on the
left image. For each pixel s, its binary value in WL(s;DR)
indicates whether or not there exists one or more pixels
matching s from the right view according to the disparity
DR. The value at pixel s is set to 1 if there is no pixel in
the right view corresponding to pixel s. The binary map
WL(s;DR) can be computed by forward warping all the
pixels in right view using disparity DR. The parameter βw

controls the strength of the visibility constraint. The last
term in (6) enforces the smoothness of the occlusion. It is
a classical Ising prior that encourages spatial coherence and
is helpful to remove some isolate pixels or small holes of
the occlusion. The parameter βo controls the strength of the
smoothness. The binary map WR(s;DL) and the visibility
term E(OR, DL) are defined in a similar way.

The combination of (3), (4), and (6) is our basic stereo
model. We now describe our iterative optimization algo-
rithm to minimize the energy (2).

3 Iterative Optimization using BP
Minimizing the energy of disparity and occlusion in (2)
simultaneously is difficult because exact inference is in-
tractable. Instead, we propose an iterative optimization al-
gorithm to minimize the energy of disparity and occlusion
iteratively, using belief propagation (BP).

3.1 Markov network and belief propagation
A Markov network is an undirected graph. For a graph with
node s = 1, ..., N , the state of each node is denoted by xs.
Each hidden node is connected with an observed node ys.
The Gibbs energy of this pairwise Markov network is given
by

E(X ;Y ) =
∑

s

φs(xs, xy) +
∑

s,t,s<t

ψs,t(xs, xt), (7)

where φs(·) is the local evidence for node s and ψst(·) is
the compatibility function between node s and t. Belief
propagation is an approximate algorithm to minimize the
Gibbs energy (7). Recent empirical results on stereo match-
ing [19, 21] show that BP often gives a very good approxi-
mation.

3.2 Iterative optimization
The optimization process has two steps: 1) estimate occlu-
sion given disparity, and 2) estimate disparity given occlu-
sion.

3.2.1 Estimate occlusion given disparity
Given the current estimated disparity {DL, DR}, the energy
(2) can be written as the sum of two functions with respect
to OL and OR: E(DL, DR, OL, OR; I) = EOL + EOR

where

EOL = Ed(DL, OL; I) + Es(DL, OL) + Ev(OL, DR)
EOR = Ed(DR, OR; I) + Es(DR, OR) + Ev(OR, DL).

Then, the occlusion {OL, OR} is computed as follows:

O∗
L = argmin

OL

EOL , O∗
R = argmin

OR

EOR . (8)

Because occlusions are binary variables, Ed(DL, OL; I)
can be rewritten as:

Ed(DL, OL; I) =
∑

s

((1 − os)ρd(F (s, ds, I)) + osηo).

(9)
We ignore Es(DL, OL) because we cannot recover the dis-
parity of the pixel in the occluded region. It could be worse
to arbitrarily guess disparity in the same view. Furthermore,
the difference in disparity between adjacent pixels is weak
evidence for occlusion. Finally, by combining (6) and (9),
we get:

EOL ≈
∑

s

((1 − os)ρd(F (s, ds, I)) + osηo) +

∑
s

βw|os −W (s;DR)| +
∑

s,t∈C

βo|os − ot|. (10)

Note that the first two terms on the right hand side of (10)
can be viewed as an evidence φo

s(·) and the last term can be
viewed as a compatibility function ψo

st(·). So, (10) is the
Gibbs energy of a Markov network that is defined by evi-
dence φo

s(·) and compatibility function ψo
st(·). As a result,

we can apply the max-product version of belief propagation
to approximately minimize (10).

3.2.2 Estimate disparity given occlusion
Given the current estimation of occlusion {OL, OR}, the
energy (2) can be rewritten as the sum of two functions re-
spect to DL and DR: E(DL, DR, OL, OR; I) = EDL +
EDR where

EDL = Ed(DL, OL; I) + Es(DL, OL) + Ev(OR, DL)
EDR = Ed(DR, OR; I) + Es(DR, OR) + Ev(OL, DR).

The disparity {DL, DR} is estimated by minimizing EDL

and EDR :

D∗
L = arg minDL EDL , D∗

R = argminDR EDR (11)

The visibility term Ev(OR, DL) encodes the visibility con-
straint. Actually, the visibility constraint imposes two kinds
of constraints on the disparity DL given the occlusion OR:



First, for each pixel s in the left image, it should not match
the occluded pixels in the right image. In other words,
its disparity ds should be restricted such that OR(xs +
ds, ys) = 0. Second, for each non-occluded pixel in the
right image, at least one pixel in the left image should match
it. The restriction on ds is a local constraint that is easy to
encode. However, the second constraint is a global on dis-
parities of all pixels in the left image, which is implicitly
enforced in matching process. Therefore, in this step, we
approximate the visibility term Ev(OR, DL) by consider-
ing only the local constraint as follows:

Ev(OR, DL) ≈
∑

s

βwOR(xs + ds, ys), (12)

where OR(xs + ds, ys) indicates whether or not the corre-
sponding pixel of s is occluded, given disparity ds. Hence,
for the left view, combining (3), (4), and (12), we get

EDL ≈
∑
s/∈O

ρd(F (s, ds, I)) +
∑

s

βwO(xs + ds, ys)

+
∑

s,t∈C\B

ρp(ds, dt). (13)

Above Equation (13) can also be interpreted as the Gibbs
energy of a Markov network with respect to occlusion. The
evidence φd

s(·) is the first two terms on the right hand side
of (13) with the compatibility function ψd

st(·) being the last
term. Again, we can apply belief propagation .

In summary, our iterative optimization algorithm alter-
nates between the following two steps:

1. Estimate occlusion {OL, OR} using (8), given current
estimation of disparity {DL, DR}, and

2. Estimate disparity {DL, DR} using (11), given current
estimation of occlusion {OL, OR}.

The values of occlusion {OL, OR} are initially set to zeros
(i.e., all pixels are initially visible).

Figure 5 shows the recovered occlusion for stereo pairs
in the Tsukuba and Middlebury data sets. The iteration
number is typically 2 or 3 in our experiments. Our results
in Figure 5 appear to be very close to the ground truth.

4 Segmentation as Soft Constraint
Recently, segmentation-based stereo approaches (e.g., [20,
10, 2, 14, 22]) have demonstrated that the difficulties and
ambiguities caused by textureless or occlusion can be han-
dled by using groups of pixels with similar colors. Such
approaches assume that there are no large discontinuities
within each segment. We call this assumption the “segment
constraint” in this paper. We exploit the segment constraint

by incorporating it into our stereo model as a soft constraint:

Ed(D̂, Ô; I) =
∑
s/∈Ô

ρd(F (s, ds, I)) +
∑
s∈Ô

ηo +

∑
s

γ|ds − (asxs + bsys + cs)|, (14)

where γ controls the strength of segment constraint and
[as bs cs] are the 3D plane parameters for the segment
containing pixel s. The 3D plane parameters for each re-
gion are estimated by a robust fitting algorithm [20].

All previous segmentation-based approaches commit to
an initial segmentation result prior to 3D plane fitting and
stereo processing. This is not ideal because segmentation
errors typically cannot be undone and are thus propagated
to the stereo processing stage. Our segmentation-based ap-
proach does not suffer from this problem because the seg-
ment constraint is soft. This advantage is evident in Fig-
ure 4.

Figure 4(a) shows the mean-shift color segmentation re-
sults [5] using default parameters. In Figure 4(b), the gray
pixels are reliable pixels selected by robust 3D plane fitting
algorithm. These pixels are subsequently used for 3D plane
estimation. We ignore regions that are too small (<500 vis-

Figure 5: Occlusion maps for the Tsukuba and Middlebury
stereo data. The left column: our results. The right column:
ground-truth.



(a) Color segmentation (b) Reliable pixels (c) Plane fitting result (d) Refined result

Figure 4: The effect of soft segmentation. The first row is the result for the Sawtooth input pair and the second row for Map
input pair. In (a), the white lines are the boundaries between segments. The grey pixels in (b) are reliable pixels used for 3D
plane fitting. The 3D plane fitting results are shown in (c), with refined results using our symmetric stereo model with soft
segmentation shown in (d). Note that the refined results are an improvement, especially for the Map data.

ible pixels) for reliable 3D plane parameter estimation. Fig-
ure 4(c) shows 3D plane fitting results. The disparity of the
Sawtooth data is significantly improved, especially around
the occlusion boundaries. However, the disparity is worse
for the Map data because the segment constraint is violated.
No previous segment-based approaches [20, 10, 2, 14, 22]
have been able to handle this image well. By using the seg-
ment constraint as a soft constraint, we get better results, as
shown in Figure 4(d). The improvement is more dramatic
for the Map data; here, the errors caused by the violation of
the segment constraint are significantly reduced.

5 Parameter Setting
Table 1 lists the values for the symmetric stereo model pa-
rameters used in Tsukuba and Middlebury data. We found
the most sensitive parameter is the smoothness strength (λ
in (5)). To make our approach more practical, we propose a
technique to set the value of λ automatically.

λ T ηo σd ed βw βo γ

Automatic 2 2.5 4.0 0.01 4.0 1.4 2.0

Table 1: Parameters for Tsukuba and Middlebury data.

Our approach is based on the following intuition: if the
similarity of the data terms (matching distributions) be-
tween two neighboring pixels is high, λ should be large
to encourage the propagations between them. For a pixel
s, its matching distribution is measured by ps(ds) ∝

exp(−F (s, ds, I)). The similarity between two neighbor-
ing pixels ps and pt can be measured with a symmetric
version of the Kullback-Leiber (KL) divergence, that is,
KL(ps||pt) =

∑
i(p

i
s − pi

t)(log(pi
s) − log(pi

t)).
The average KL divergence KL is computed over the

whole image. Since we have ground truth depth for the
Tsukuba data, we use it to estimate the multiplicative con-
stant α in λ = αKL. α is found to be 5.75, which works
very well in all our experiments, even for the synthetic data
in Figures 1 and 2. Our adaptive λ selection allows our ap-
proach to consistently outperform previous approaches for
most data sets as shown in Table 2.

6 Experimental Results
All experiments are performed on a 2.8 GHz Pentium 4 PC.
The main computation cost is the belief propagation. We
adopted the implementation of belief propagation proposed
by [8] for efficiency. A data set typically takes about 45 secs
to process (e.g., Tsukuba data, 3 iterations).

To evaluate the performance of our approach, we fol-
low the methodology proposed by Scharstein and Szeliski
in [17]. The quality is measured by the percentages of bad
matching (where the absolute disparity error is greater than
1 pixel) in the image (“bad”), in the textureless region (“un-
tex.”), and in the discontinuity region (“disc.”). Note that all
occluded pixels are excluded from the evaluation.

The quantitative comparison in Table 2 and the depth
map in Figure 6 demonstrate the high-quality performance
of our approaches. Further, Figure 5 shows the visual com-



Tsukuba Sawtooth Venus Map
Algorithm

bad untex. disc. bad untex. disc. bad untex. disc. bad disc.

Symm. BP with Seg. 0.97 1 0.28 2 5.45 1 0.19 1 0.00 1 2.09 1 0.16 2 0.02 2 2.77 4 0.16 1 2.20 1

Symmetric BP 1.01 − 0.28 − 5.79 − 0.57 − 0.05 − 3.46 − 0.66 − 0.71 − 8.72 − 0.14 − 1.97 −
One way BP 1.42 − 0.64 − 8.01 − 1.18 − 0.38 − 7.71 − 1.21 − 1.57 − 15.22 − 0.15 − 1.85 −
Segm.-based GC [10] 1.23 4 0.29 3 6.94 5 0.30 4 0.00 1 3.24 4 0.08 1 0.01 1 1.39 1 1.49 20 15.46 26

Segm.+glob.vis. [2] 1.30 6 0.48 6 7.50 7 0.20 2 0.00 1 2.30 2 0.79 5 0.81 6 6.37 8 1.63 22 16.07 27

Layered [14] 1.58 8 1.06 10 8.82 9 0.34 5 0.00 1 3.35 5 1.52 11 2.96 20 2.62 3 0.37 11 5.24 11

Belief prop [19] 1.15 2 0.42 4 6.31 2 0.98 11 0.30 15 4.83 9 1.00 7 0.76 5 9.13 14 0.84 17 5.27 12

MultiCam GC [13] 1.85 11 1.94 16 6.99 6 0.62 9 0.00 1 6.86 13 1.21 9 1.96 11 5.71 7 0.31 8 4.34 10

Region-progress. [22] 1.44 7 0.55 7 8.18 8 0.24 3 0.00 1 2.64 3 0.99 6 1.37 9 6.40 9 1.49 21 17.11 28

GC+occl. [12] 1.19 3 0.23 1 6.71 3 0.73 10 0.11 10 5.71 11 1.64 14 2.75 18 5.41 6 0.61 14 6.05 13

Table 2: Comparison of results on Tsukuba and Middlebury data. The subscribe of each number is the rank and the underlined
number is the best for each data set. Note that our algorithm “Symmetric BP with segment” consistently outperforms most
of other algorithms listed. The complete set of results can be found in http://www.middlebury.edu/stereo/.

(a) One way BP (b) Symmetric BP (c) Symmetric BP with segment (d) Ground Truth

Figure 6: Results for (from top to bottom) Tsukuba, Sawtooth, Venus, and Map image pairs.



parison of recovered occlusion maps with ground truth.
“One way BP” is the result without visibility term, and
“Symmetric BP” is with it. “Symmetric BP with segment”
is the result with both visibility and segment constraints.
The disparity of occluded pixels are produced by a post-
processing method (e.g., for the left image, assigns the dis-
parity next to the right boundary of the occluded region.)
For the Tsukuba and Map data, “Symmetric BP” yields
the most significant improvements using the visibility con-
straint. For the Sawtooth and Venus data, both “Symmetric
BP” and “Symmetric BP with segment” give significant im-
provements using both visibility and segment constraints.
Note that “Symmetric BP with segment” is ranked at or very
close to the first place among more than two dozen stereo
algorithms.

In order to evaluate the accuracy of our occlusion detec-
tion, we also show the incidence of false negatives and pos-
itives in Table 3. The false negative rate is measured by the
percentage of missed occluded pixels in occluded regions,
while the false positive rate is expressed as the percentage
of detected occluded pixels in non-occluded regions. Fig-
ure 5 shows the visual comparison of our occlusion maps
with ground truth.

Tsukuba Sawtooth Venus Map

False negatives 29.9% 17.0% 25.4% 8.7%
False positives 0.7% 0.2% 0.2% 0.3%

Table 3: Occlusion detection rates.

7 Conclusions
In this paper, we have proposed a symmetric stereo match-
ing model to handle occlusion using the visibility con-
straint. The visibility constraint is a general constraint that
allows us to correctly recover horizontally slanted surfaces
and thin foreground objects. Our iterative optimization al-
gorithm, in conjunction with the soft segment constraint and
automatic parameter estimation, is validated by state-of-the-
art results.

Although our iterative optimization algorithm does not
guarantee convergence, we have not observed oscillatory
behavior in experiments. More studies are needed to fully
understand the behavior of our algorithm and perhaps re-
formulate it in an Expectation Maximization (EM) frame-
work [18].

References
[1] P. N. Belhumeur. A bayesian-approach to binocular stereop-

sis. IJCV, 19(3):237–260, 1996.

[2] M. Bleyer and M. Gelautz. A layered stereo algorithm using
image segmentation and global visibility constraints. ICIP,
pages 2997–3000, 2004.

[3] A. F. Bobick and S. S. Intille. Large occlusion stereo. IJCV,
33(3):1–20, 1999.

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts. PAMI, 23(11):1222–1239,
2001.

[5] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis. PAMI, 24(5):603–619, 2001.

[6] I. J. Cox, S. L. Hingorani, S. B. Rao, and B. M. Maggs.
A maximum-likelihood stereo algorithm. CVIU, 63(3):542–
567, 1996.

[7] G. Egnal and R. Wildes. Detecting binocular halfocclu-
sions: empirical comparisons of five approaches. PAMI,
24(8):1127–1133, 2002.

[8] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief
propagation for early vision. CVPR, Vol I:261–268, 2004.

[9] D. Geiger, B. Ladendorf, and A. L. Yuille. Occlusions and
binocular stereo. IJCV, 14(3):211–226, 1995.

[10] L. Hong and G. Chen. Segment-based stereo matching using
graph cuts. CVPR, Vol I:74–81, 2004.

[11] H. Ishikawa and D. Geiger. Occlusions, discontinuities, and
epipolar lines in stereo. ECCV, pages 425–433, 1998.

[12] V. Kolmogorov and R. Zabih. Computing visual correspon-
dence with occlusions using graph cuts. ICCV, pages 508–
515, 2001.

[13] V. Kolmogorov and R. Zabih. Multi-camera scene recon-
struction via graph cuts. ECCV, Vol III:82–96, 2002.

[14] M. Lin. Surfaces with occlusions from layered stereo. Ph.D.
thesis, Stanford University, 2002.

[15] D. Marr and T.A. Poggio. Cooperative computation of stereo
disparity. Science, 194(4262):283–287, 1976.

[16] A. S. Ogale and Y. Aloimonos. Stereo correspondence
with slanted surface: critical implication of horizontal slant.
CVPR, Vol I:568–573, 2004.

[17] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. IJCV,
47(1):7–42, 2002.

[18] C. Strecha, R. Fransens, and L. Van Gool. Wide-baseline
stereo from multiple views: a probabilistic account. CVPR,
Vol I:552–559, 2004.

[19] J. Sun, H. Y. Shum, and N. N. Zheng. Stereo matching using
belief propagation. ECCV, Vol II:510 – 524, 2002.

[20] H. Tao, H. S. Sawhney, and R. Kumar. A global matching
framework for stereo computation. ICCV, Vol I:532–539,
2001.

[21] F. Tappen and W. T. Freeman. Comparison of graph cuts with
belief propagation for stereo, using identical mrf parameters.
ICCV, Vol II:900–906, 2003.

[22] Y. Wei and L. Quan. Region-based progressive stereo match-
ing. CVPR, Vol I:106–113, 2004.

[23] C. L. Zitnick and T. Kanade. A cooperative algorithm for
stereo matching and occlusion detection. PAMI, 22(7):675–
684, 2000.


	Select a link below
	Return to Main Menu
	Return to Previous View




