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Some symmetrical properties on the statistics of two-dimensional Ising lattices are studied.
It is shown that such considerations give us very useful suggestions even for cases in which
we know no exact solution. We investigate especially the cases of the square, triangular,
honeycomb and generalized square lattices, with respect to the expressions of spontaneous
magnetizations and susceptibilities.

§ 1. Introduction

As is well known, the exact treatments of the statistics for the two-dimensional
Ising lattices have been obtained under zero magnetic field. But under finite
magnetic field, it is very difficult to solve the problem. We know the internal
energy, short range order, specific heat, entropy, etc., for the several types of lat-
tices, but on their magnetic properties we know only Yang’s” work on the spon-
taneous magnetization. It seems to us very difficult to extend the exact theory
to know the spontaneous magnetization or the susceptibilities for other types of
lattices.

The thermodynamic properties of one Ising lattice can be transformed to those
of another type of lattice. These transformations enable us to know the unknown
solution from the known one. In fact, when there are no magnetic fields, exact
solutions for several types of lattices are derived from the known one. Under the
external magnetic field, such transformations have not been successfully used.

One of us” and Fisher® derived the relations on the spontaaeous magnetiza-
tions and the susceptibilities between the honeycomb lattice and the triangular
lattice. But it is not sufficient for knowing the solution. Fisher” have obtained
the exact solution for a special model by a transformation method, but his model
seems to us too specialized to know a general feature of the Ising lattice. Basing
on the symmetry consideration, Potts” derived the expression for the spontaneous
magnetization for a triangular lattice from that of a square lattice.

- Considerations on the symmetric properties will be very useful for the case
in which we know no exact solution.
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830 I. Syozi and S. Naya

§ 2. Y-4 transformation, quasi-spherical triangle

Y-4 transformation for the anisotropic case seems very complicated at first
sight.” But there are interesting symmetry properties between parameters. The
equation for the Y-4 transformation is

Zil eXP[/"O I+ Hopto+ Hyprs) |= A exp (Tt + Toptstta + Topts), @
~O=
where H,, H,, Hy and T, T,, T, are the interaction parameters for the honeycomb
lattice and the triangular lattice respectively, and /:(:=0, 1, 2, 3) are the Ising
spin variables. For the possible values of #,=+1 we get the relations

2 ch(H,~+ H,+ H;) = A exp (T, + T+ T%)
2 Ch (Hl""Hz"q"}Ig) =4 eXp(——T1+T2—T3)

) (2)
2 Ch (Hl—i—HQ—‘Z_]g) :A exp (—Tl——T2+ Tg)
2 Ch(’_ H1+H2+H3) =A exp (Tl—Tg‘—Tg)
which are easily deformed to
Af=4(s2+ 5"+ s+ 2c10003+2)
coth 27" 1= (c1+¢ac3) / 508 3

coth 27°= (c3+cs¢1) / S5
coth 275= (cs+c16) / 515

or
1/sh? 2T =A"/4(5,8)"

]_/Sh2 2T :A4/4 (s351)* R 4
1/sh? 2T 5= A%/4(5:5,)"

where s;=sh 2H,, ¢;=ch 2H,. We can write these in symmetric form

1 _ 1 _ 1
sh? 2T, -sh? 2H, sh®27,-sh?2H, sh?27T,-sh?2H,
— s+ 522 + 532 +2¢16505+2
- c : )
(515253)

By the dual transformation from the triangular lattice (74, T4, Ts), we get again
the honeycomb lattice with interaction parameters (H,, H,, Hy').

sh 2H,/-sh 2T,=ch 2H,'-th 2T ;=th 2H; -ch 2T, =1. (6)
With (3) and (6), we have
' ch 2Hy = (c1+ cacs) / (5353)
ch 2H, = (c;+csc1) / (s350) ). )
ch 2H) = (c;+¢16) / (:8,)
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Symmetrical Properties of Two-Dimensional Ising Lattices 831

Rearranging the terms, we get

€17= — 303+ 535561\
— ’

€= — (3011 $38:1C¢ |, (8)
—_— ’

3= — (103t $15:C3

where ¢,/=ch 2H;.
Putting s/=sh 2H;/, with (5) and (6) we have

s s s” s s s 2000 2 73 (9)

= I

512 Sz;Z 532 (51525'3) ?

Egs. (8) and (9) have similarity to the “cosine law” and the “sine law” of
a spherical triangle. But the relations between H,, H, H, and H,, H,, H,
are symmetric : '

o =—ca/c/ + s3's5 ¢
Cgi': ""’Cslcl, + Sg/sl,Cg 5 (10)
o' =—c'ce/ + 55 ¢y
s® s st (sss)
s 522 532 51/2 -+ 32/2 -+ 53/2 + 261/62/6‘3, +2
2 2 2
— S + 8"+ 85"+ 2cicscs +2 =} 2 (11)
3 =Rpm.
(515253)
From (8), we can get
2
clcles +1=ky (crcacs+1). (12)
(11) and (12) give the symmetric relations
2 ” Pl Pt . fot
57 S 8 e+l alccyd 1 (518" + 585 +53/31/) =Pk 2
== = = e ——=Rp.
512 522 s ci6cs+1 C165C3+1— (515, + S8+ 5351)
(13)

According to Potts’ conjecture, the spontaneous magnetization I, for the honeycomb
lattice will be

Li=(1—kz). ‘ (14)

The similar relations for the triangular lattice will be easily obtained. Let
the dual lattice of the honeycomb lattice (H,, H,, H;) be the triangular lattice
(T, T, Ts"). Then we have

sh 2, sh 2T/ =ch 2H, th 2T/ =th 2H, ch 2T/ =1. (15)
With (11), (13) and (15), putting ¢/ =ch 27/, ¢;=ch 2T, we have

12 12 /2 1

s° S5 S5 (3152) s (5253) 2+ (5351) ’+2 (513'253) 2+ 2€165C5515283
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= (51’52/)2+ (52,33,)241‘ (53,51,)2 +2 (51,32/33/) 2+2C1,C2/03/51/32/53,
alele) +5/s's | . 6'1/6'2,6‘3/"!’51/52,53,_ (~91/+52/+33/) P 2
=t 10298 ) o (P10208 T vs A0 e TR ) ==k, (16)
€165C3 + 515253 1653+ 51583 (S17F 83 53)
I T Potts proposed that the spontancous magnetization
2 . .
Y-4 Traps. for the triangular lattice should be
H; ¢ rans.. 7 T
&l b I'=(1—Fk). (17)
ual
, =%’:is. : Trans.  (17) and (14) satisfy the condition derived by one

e Ty X4 Traps., H

TY
Fig. 1. Transformation of lattices.

of us: L (H, H,, H,)=L(T,, T, T;). When
H,—~>w or T,-0, (14) or (17) is reduced
to the spontaneous magnetization for a square
lattice :

ﬁ:@~ 1>._ (18)

312 522

§ 3. Sponteneous magnetization of the generalized square lattice

As a special case of the so-called chequer-type lattice, Utiyama” treated the
partition function of a generalized square lattice. This lattice is reduced to a
triangular, honeycomb or square lattice according as one of the parameters, for
example, L,, tends to infinity, zero or L,=L, and L,=L,; As a generalization
of (14) and (17) we arrive at the expression for the spontaneous magnetization
for a generalized square lattice :

I,.,= (1 _ 2520600+ 29595 +2 ,,_4> 1/8 (19)

21 (5:555) 2 2 (51595555) T 20105050451505354 + 251525384
where the summations extend for 7, j, & from 1to 4, excluding the congruence of
them. Hereafter we will omit this notice on the summations which will appear

frequéntly. Or with parameters for a dual lattice (L.*, L,*, Ls*, L,*), we can
rewrite (19) as a symmetric form '

I.,= (1 _stetstst o (Est R 2acc t&*ﬁ&‘i&%ﬁ?l__w) 7 (20)

51595354 (25,220 e e e, F 428 %5, 5% 5, + 2)

This symmetry on duality will suggest correctness of (19). There are several
reasons to believe the correctness of (19).
i) At the Curie point of a generalized square lattice

C169C3Cs+ 515835+ 1=2's; 55,
or in terms of Gudermannian functions gd(2L) =arctan(sh 2L),
gd(2L,) +gd(2L,) +gd(2L;) +gd(2Ly) =,

the expression (19) tends to zero, and at absolute zero of temperature (19) tends
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Symmetrical Properties of Two-Dimensional Ising Lattices 833

to unity.

ii) When L,—0, (19) tends to (14), the spontaneous magnetization of a hon-
eycomb lattice.

iii) When L,—>co, (19) tends to (17), the spontaneous magnetization of a tri-
angular lattice.

iv)  When L,=L, and L,=L,, (19) becomes (18), the spontaneous magnetization
of anisotropic square lattice.

v) Expanding (19) in power series of x;=exp(—2L;), we have

L.s=1—2(xxoxss) — 232 2/ 2i" + 2 (21075200) * — 6 (120205 204) S
4 (xyxoz57s) St — A x x i i — 30 (yaxszs) 2222+ O (22),  (21)

which coincides with the exact low temperature expansion.

§ 4. Susceptibility of one-dimensional lattice

On the susceptibility of a two-dimensional Ising lattice, there is no exact
derivation. As stated in the Introduction, some of the transformations will be
useful for the derivation of susceptibility, but, unless, at ieast, one exact solution
is found for a standard Ising lattice, such transformation will hardly be used.
Domb and Sykes,® basing on the exact high temperature expansion of the suscep-
tibility, considered the critical behavior of the ferromagnetic susceptibility by ex
trapolation. And also Fisher,” basing upon the Onsager-Kaufman’s work, concluded
that ferromagnetic susceptibility has the singularity of the following type, in a
critical region,

Np? C

* KT Q—T,/T)7

(22)

where C is a constant which depends on lattice type and %, T', N, ¢ have usual
meanings. Domb and Sykes” obtained the numerical values of C, as 0.9684 for
square lattice and 0.9295 for triangular lattice.

As an introduction, we want to summarize the results for one-dimensional Ising
lattice which can be solved exactly. As is well known, the susceptibility of a
linear chain with interaction parameter L, is, putting v,;==th L,,

N2 14v,
o . 23
xz kT 1 — U1 ( )
Or substitution of ¢;=ch 2L,, s;=sh 2L, gives
N2 1
= . 24
Zl kT Cl - Sl ( )

The ‘denominator of (24) is closely related to the expression for the partition
function of a linear chain:
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834 1. Syozi and S. Naya
log );ZNS” log (¢;— s, cos w) dw. (25)
0

L1 Lz Ll LZ
Fig. 2.

To assure the correspondence between (24) and (25), we calculate the suscepti-
bility %, for a linear chain with two interaction parameters L,, L, alternatively.

1= NiZ - atotat 3 (26)
kT Clcg"‘l_l"—SlSz

and the partition function is
log 2§~S log (c1c3-+1— 518, cos w) dw. 27)
0

In this case also, there occurs a close relationship between the expressions (26)
and (27). In the so-called ‘ semi-ferromagnetic” case, in which the magnetic
atom and non-magnetic atom alternate, we have

Np? cit o

: (28)
kT 61C2+1”“ 5159

X7, somi =
1,semi

§5. A closed form related to the susceptibility of square and
triangular lattices

Taking into consideration the relations (24), (25) and Onsager’s'” partition
function,

" w
log 2,~ So So log (¢16,— 51 €OS 1 — 5,08 wy) dw,dw,,

we can get a rough estimate of susceptibility of square lattice,

2
N 1 (29)

kT 6‘16‘2‘*51-“52

(The expression similar to this can be suggested from the combinatory consider-
ation, for example, by Temperley.'”) The expression (29) has the singularity at
the critical temperature, s;5,=1, but its character differs from (22). We modify
(29) as

AN A—st s
kT C1Ce ™ 817 8y .

(30)

Notice that the numerator of (30) is closely related to the long-range order of
the dual lattice. We can rewrite (30) as

N2 (A—or) (L=y) < 1 16viw’ 2) jM (31)

1= T
(1= (1=,

kT (1—v,—v,—00,)°

220z 1snbny |z uo1sanb Aq 190558 1/628/7/vz/elonie/did/woo dnoolwspede//:sdyy woly papeojumoq



Symmetrical Properties of Two-Dimensional Ising Lattices 835

where
v;=tanh L;, =1, 2.

Naturally, if one of the parameters v, tends to zero, (31) tends to Eq. (23) for
the one-dimensional lattice. Expanding (31) in power series of v,, we have

2= (N2 /kT) {142 (vr4+05) +2 (0 +0") + 80,042 (v +05°) 416 (00, +v104")
+2 (vt +v") + 24 (vPvy+ v105°) + 480, 0.  + 2 (v, "+ v5°) + 32 (vitva+ vivy)
+104 (v’0," 4 v,%05°) +2 (0" 4+ v,°) +40 (v, %0+ v1v,") + 180 (vs vy +vi*vy?)
+296v,°0,° + 2 (01 +vy") + 48 (v1*vy + v1vy") +280 (vi'vy' + 01 *vy")
4656 (vi*v,° +vv,t) +O, (v }. (32)

This coincides with the exact high temperature expansion up to the order of »'.
In the isotropic case where v;=v,==v, we have

Xs=

Ny (1—v)* (1__ 160 )”4

kT (1-27)-“02;2 (33)

= (N#/kT) (14 4v+ 12074 369"+ 1000* + 2769° + 7400°+ 19720+ O, (v°) ) .

In the critical region, near the Curie temperature, we have

o\ 7/4
g NE ¢ cs—_—-l<@> S 0.9617, (L,=0.4407),  (34)
KT (1—T.,/T)" s\ T,

which has the singularity of the type (22), and the numerical value of C; has
good agreement with that given by Domb and Sykes” 0.9684.
For the triangular lattice, after the same reasoning, we have

- 4 1
_ N (1= sy 2aaasnst 28’ s's) [
kT CIC26‘3+515253“51“‘52"‘83

X

_NE A-u)-edd-ud)t | |
ET (1 — 01— Uy Us— U105 — UsUs — VgU1 + V10503)°

(L +vvevs) (01+ VyU3) (Va4 0301) (vs+ V1V;) }1/4
1—16 ~——2-2220 7 s . 35
X [ (1_,‘7)12)2(1___7}22)2(1*7}32)2 v ( )

The expression (35) is reduced to the susceptibility of square lattice (30) or (31),
when one of the parameters tends to zero. Expanding (35) in power series of
v,, we have

1= (Np/kT) {1+23v;+ 220"+ 83 v,v;+ 220" + 16 2v, v, 360,055
+23v4+ 2420, 0,4 4830, v 410430, vv, 4+ 230, + 322 vty
+1042v,%v] + 21220 0,0, 4 376200, v, + O, (%)}, (36)
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836 I. Syozi and S. Naya

which coincides with the exact high temperature expansion up to the order of ©°.
In the isotropic case, we have

Np? 1—2%)° (1_~ IGUS_QjQH)1/4
ET  (1—3v—3v'+1°)? (1—v)*(1—2%)*

= (N2/kT) (1+ 6v+ 300+ 138"+ 606v* -+ 258607+ 0, (%) ). (37)

X=

At the neighborhood of the critical temperature, we have

Ny C, 1

BT aA—T,/T)y"

6,/ L 7/7[“0 9235, (L,=0.2747). (88)

The numerical value of C, has good agreement with that given by Domb and
Sykes® (0.9295).

§ 6. Extension to the honeycomb lattice

- Fisher” derived a useful relation which connects the susceptibility of honey-
comb lattice with that of triangular lattice,

X (T1, Tz, Ts) :X/‘z,sami (Hb I_Iz, H3) :";* {Z/z (Hb Hz, Ha) +XIL("‘H1, “‘Hz, _Z(i‘l)g})>
3

where T4, T, Ts and H,, H,, H; are connected by Y-4 transformation (2). The
middle part of (39) is the susceptibility of semi-ferromagnetic honeycomb-lattice.
From (35) and (39), we can get

N2 ) (s + 2¢1663+ g): /_2_ (1 . 578785 ) v
kT e +1—2's; s, X524 2c,0005+ 2/

Zh, semi T

(40)

Extension to honeycomb lattice will be suggested by the case of linear chain.
We have, comparing (40) with (26) and (28), the following expression :

LNE S eco DSy sty
kT 1663+ 1—2's;5; Y52 42¢10065+2
Zl,:gf [ { (L + 00y + 0905+ v501) (14010, — 0303~ v301) (1— 0105+ V05— 050;)

1/2
X (1 ~—V10y— VyV3+ V301) } + Zvi(l — 7)9'2) (11— °0/c2) :l/ (1 — V1V — VaU3 — UsV1) 2
X [1 —16-v," v v/ { 1+ 0109+ V9305 + v501) (140103 — V505 — V3v1)

l,’»1
X (1= 0,034 V05— v501) (1—v10,— Vy03+V501) H . (41)

This satisfies the relation (39) and, when one of the parameters H; tends to zero,
it is reduced to the susceptibility of a linear chain :
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Symmetrical Properties of Two-Dimensional Ising Lattices 837
p=NE (s’ 2aat) P tats NP atatsts 4
kT CIL‘2+ 1_‘5152 kT C1€2+ 1'”5152 )

Moreover, when one of the interaction parameters /4; tends to infinity, (41) is
reduced to that of a square lattice (30) or (31). In fact, the expression (41)
has a singularity of the type of (22) and has high temperature expansion :

1= (NP/RT) {1+ 2v;+ 22004 200+ 600,05+ 220, 0 + 630 0,0,
+ vl + 230 00412200 0,4 280,20 2 4 102020 0, + 240, 0,04
+2vitvl+ 320 v v+ 1830, 0 o+ 303 v, v i+ 230t f - 1480 o oy,
+223v 00,7+ 542300 0+ Zo ot 430 0+ 620 0t
+242v/ 00, + 6320, 0, 0 + 102007058 + 230, "0 f + 183050 fo,
+4030 v v 4+ 9620, v v, + 16280 0,20 + O, (v) ) (43)

which coincides with the exact one up to the order of »". Especially, in the
isotropic case, we have

_ N¢# (=2’ (1 +30%))”+3v (1~v2)2<1_ 162° )1’4
KT (1—30%)? (1—o%?(1+ 309

= (N©/kT) (14 3v+ 60"+ 120°+ 24v* + 48v° + 900° 4 16877
+318v°+6000°+1098v"+ O, (v™)).  (44)

Xx

§ 7. Expression for generalized square lattice
and consistency examination

Extension to the generalized square lattice, which describe the properties for
the square, honeycomb and triangular lattices, is now easy. We have

— Np# o (2524 2cic50350,+ 2515855, +2) P4 s,
kT C16C3C+ 515985+ 1—2's; s,

x_rz‘s

v <1 355 250 st 215,855 (cucacsca 1) ) f/4 45)
252 201CaC5C, 25,5555, 42

Of course, we have, for the semi-ferromagnetic generalized square lattice,

N (s’ 201650+ 2515554+ 2)

X o8, mi
sy 56 kT 01C2€3C4+ 51525384 +1 _Esisj
‘éi ,—\:j{ ' « <1__ Zsizsjzskz+2512Szi§i-§4fj—2515253-?4(61€2C3C4+1) >1/4 (46)
AR T 25201650504+ 25185535, + 2

To show that these expressions are satisfactory in the scope of our considera-
tion, we give a graphical representation of their consistency.
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838 I. Syozi and S. Naya

[ L;~>co (Divided by 2) 1
O
L, Li=Ls 7 L,
Ly=L, L0
L4"‘>0 Ll:LS
2=Ly
L, L 2 3 L L T
L1 4'—“‘——9141 _"_‘_""st>00 >Ll ’ A
| Q
L Li>00 (Divided by 2) T L0 L0
Lz—0 L0
L, ILz L, . 5 LI' L, eLl L____.__;‘Z—)oo Iflo—l—‘-l—wj—‘l > Lio-—lil_e‘é

L]:Lz ]J L1=L2

® indicates magnetic atom

O indicates non-magnetic atom

Fig. 3. Graphical representation for the consistency examination of our
expressions.

§ 8. Discussion on antiferromagnetic case

The formula mentioned above cannot be applied to the antiferromagnetic cases.
As a trial to fit the expressions to the antiferromagnetic cases, we replace

2

T

= |2
the factor (1—Z%%)"* by »‘?—E (k) = jo(l — k?* sin’w) "*deo, 47)
T

the complete elliptic integral of the second kind. For example, we have for the
case of antiferromagnetic square lattice

Np? 1 2

= E(k), Fk=ss, 48
ET cico+s1+s, @ &) P (48)

Xs

These replacements of our formulae do not affect the range of coincidence for the
high temperature expansions (32), (36) and (43) and the consistency examina-
tions. At the Curie point, the replaced expressions remain finite, unlike (30),
(41) and (45) which tend to zero for the antiferromagnetic cases. Furthermore,
the expressions behave, in the critical region, as

xzi;g’fi &~ D(T—T)log| T~T.)}, (49)

which can .be shown by the well-known properties of elliptic functions,
9E _E—K

, and for k1,
ok
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Symmetrical Properties of Two-Dimensional Ising Lattices 839
K (k) ~=log 4/|F|, k?=1—F, (50)

where K is the complete elliptic integral of the first kind. This type of critical
behavior for the antiferromagnetic case has been conjectured by Fisher,” and Sykes
and Fisher and the critical value ¢,=1/27x=0.159 obtained from (48) for the
square lattice has also good agreement with that given by them (kT%/Np*=
0.156~0.158). For the honeycomb lattice, we have $,=2/3,/37=0.123. On the
other hand, for the triangular lattice which has no transition point, the expression
decrease monotonically and has value 7,=0.339Ny?/kT at the temperature cor-
responding to its ferromagnetic Curie point.

However, these expressions diverge to infinity as (1—77,/7)7% not as —7/4
power, if applied to ferromagnetic cases. Below the critical temperature, we must
change the expressions, about which we have no satisfactory results.

§9. Conclusion

There are no reasons to doubt the correctness of the expressions for the
spontaneous magnetizations. However, it is obvious that thc cxpressions for sus-
ceptibilities cannot be exact. In fact, the high temperature cxpansions diverge
slightly as in Table I. Moreover, the discrepancy between ferromagnetic and
antiferromagnetic expressions is troublesome. Although these expressions are not
exact, these will be a milestone for the derivation of exact expressions for the
susceptibilities of two-dimensional Ising lattices.

Table I
Square Lattice Triangular Lattice Honeycomb Lattice
Exact Value | 5172084-1349209+ .. 10818v8 + 4457407 4 --. 20070v114-3696012 - ---
Fef}g‘;pll’fag- 516808 +1349209+ -+ 108146 + 4455007 -+ - 2004011+ 3692012 4 .-
ﬁggfelf:; ‘;r_ 518008+ 13540709+ --- 1082606 + 4469407 + -+ 2004011+ 3704012 ---
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