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We discuss the estimation of linear panel-data models with sequential moment restrictions using 

symrnetrically normalized generalized method of moments (GMM) estimators (SNM) and limíted 

information maximum likelihood (LIML) analogues. These estimators are asymptotically equivalent 

to standard GMM but are invariant to normalization and tend to have a smaller finite-sample bias, 

especially when the instruments are poor. We study theír properties in relation to ordinary GMM 

and mínimum distance estimators for AR(1) models with individual etfects by mean of simulations. 

Finally, as empírical illustrations, we estimate by SNM and LIML employment and wage equations 

using panels of U.K. and Spanish firms. 
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This work is motivated by a concern with the finite­

sample bias in panel data instrumental-variable (IV) esti­

mators when the instruments are weak. A linear panel-data 

model with predetermined variables [like vector autoregres­

sions (VAR's) or linear Euler equations] is typically esti­

mated by IV techniques in first-differences using aH the 

available lags of the predetermined variables as instruments. 

The specification of the equation error in first-differences 

reflects the fact that the analysis is conditional on an un­

observable individual effect. Because the number of instru­

ments increases with the time series dimension (T), the 

model generates many overidentifying restrictions even for 

moderate values of T, although the quality of these instru­

ments is often poor. 

The effect of weak instruments on the distributions of 

two-stage least squares (2SLS) and limited information 

maximum likelihood (LIML) differs substantiaHy, despite 

the fact that both estimators have the same asymptotic dis­

tribution. Although the distribution of LIML is centered at 

the parameter value, 2SLS is biased toward ordinary least 

squares (OLS), and in the completely unidentified case con­

verges to a random variable with the OLS probability limit 

as its central value. On the other hand, LIML has no fi­

nite moments regardless of the sample size, and as a con­

sequence its distribution has thicker tails than that of 2SLS 

and a higher probability of extreme values [see Phillips 

(1983) for a good survey of the literature]. As a result of nu­

merical comparisons of the two distributions involving me­

dian bias, interquartile ranges, and rates of approach to nor­

mality, Anderson, Kunitomo, and Sawa (1982) concluded 

that LIML was to be strongly preferred to 2SLS, particu­

larly if the number of instruments is large. Similar conclu­

sions emerge from the results of asymptotic approximations 

based on an increasing number of instruments as the sam­

pIe size tends to infinity; under these sequences, LIML is 

a consistent estimator but 2SLS is inconsistent (Kunitomo 

1980; Morimune 1983; and, more recentIy, Bekker 1994). 
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(In our context, these approximations would amount to al­

lowing T to increase to infinity at a chosen rate as opposed 

to the standard fixed T, large N asymptotics.) 

Despite this favorable evidence, LIML has not been used 

as much in applications as IV estimators. In the past, 

LIML was at a disadvantage relative to 2SLS on compu­

tational grounds. More fundamentaHy, applied econometri­

cians have often regarded 2SLS as a more "flexible" choice 

than LIML from the point of view of the restrictions they 

were willing to impose on their models. In effect, the IV 

techniques used for a panel-data model with predetermined 

instruments are not standard 2SLS estimators because the 

model gives rise to a system of equations (one for each time 

period) with a different number of instruments available 

for each equation. Moreover, concern with heteroscedas­

ticity has led to considering alternative ("two-step") gener­

alized method of moments (GMM) estimators that use as 

weighting matrix more robust estimators of the variances 

and covariances of the orthogonality conditions (foHowing 

the work of Chamberlain 1982; Hansen 1982; White 1982). 

In a recent article, Hillier (1990) showed that the al­

ternative normalization rules adopted by LIML and 2SLS 

are at the root of their different sampling behavior. Hillier 

also showed that a syrnmetrically normalized 2SLS esti­

mator has properties similar to those of LIML. This re­

sult motivates our focus on symmetricalIy normalized esti­

mation. Syrnmetrically normalized 2SLS, unlike LIML, is 

a GMM estimator based on structural-form orthogonality 

conditions, and it therefore can be readily extended to two­

step weighting matrices and the nonstandard IV situations 

that are of interest in dynarnic panel-data models, while re­

lying on standard GMM asymptotic theory. In this article, 

we discuss both nonrobust and robust LIML analogues and 
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symmetrically normalized GMM estimates in the panel-data 

context. 

The symmetrically normalized estimator can be de­

scribed in a simple example as follows. Consider a struc­

tural equation with a single endogenous explanatory vari­

able and a matrix of instruments Z, 

y = f30 x + u, 

with associated reduced-form equations 

y = Z7ro + VI 

X = Z"fo+V2. 

(1) 

(2) 

Both symmetrically normalized 2SLS and LIML are least 

squares estimators of the reduced form (2) imposing the 

overidentifying restrictions 7r = "ff3. Let us define 

(fiv, i'v) = arg min ( y - Zz"f 13 )' 
{3,'Y X - "f 

X (V-I ® 1) ( Y - Z"ff3 ) 
X-Z"f 

= argmin ( nA - "ff3 )' 
{3,'Y "f - "f 

X (V-I ® Z' Z) ( nA - "ff3 ) . (3) 
"f-"f 

Concentrating "f out of the least squares criterion, we obtain 

13- - . (y-f3x),Z(Z'Z)-IZ'(y_f3x) (4) 
v - argmJn (1, -f3')V(l, -13')' . 

LIML is fiv with V equal to the reduced-form resid­

ual covariance matrix, whereas symmetrically normalized 

2SLS is fiv with V equal to an identity matrix (Malinvaud 

1970; Goldberger and OIkin 1971; Keller 1975; Anderson 

1976) so that both LIML and symmetrically normalized 

2SLS solve minimum eigenvalue problems. Symmetrically 

normalized 2SLS can also be described as a GMM estima­

tor based on the unit-Iength orthogonality conditions 

Note that the asymptotic distribution of fiv does not de­

pend on the choice of V because optimal minimum dis­

tance estimators (MDE) of 13 based on (n - "ff3, i' - "f) and 

on (n - i'(3) are asymptotically equivalent. Note also that 

ordinary and symmetrically normalized 2SLS are given, re­

spectively, by the ordinary and the orthogonal regressions 

of y on x(Y = Zn and x = Zi'), and although the former 

differs from indirect 2SLS (the inverse regression of x on 

y), the latter is invariant to normalization. 

This article is organized as follows. Section 1 develops 

the relationship between symmetrically normalized GMM 

(SNM) and LIML in the context of a linear equation 

for panel data with sequential moment restrictions. We 

also present two-step SNM estimators and test statistics 

of overidentifying restrictions and compare them with ro­

bust LIML analogues. The latter are the "continuously up-
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dated GMM" estimators considered by Hansen, Heaton, and 

Yaron (1995). Section 2 compares the finite-sample proper­

ties of SNM and LIML to those of ordinary GMM and 

MDE for first-order autoregressive [AR(1)] models with 

individual effects. Section 3 reestimates the employment 

equations for a sample of U.K. firms reported by Arellano 

and Bond (1991) using SNM, LIML, and indirect GMM es­

timators. This section further illustrates the techniques by 

presenting symmetrically normalized estimates and boot­

strap confidence intervals of employment and wage VAR's 

from a larger panel of Spanish firms. Finally, Section 4 con­

eludes. 

1. SYMMETRICALLY NORMALlZED IV ESTIMATION 

Consider a model with individual effects for panel data 

given by 

Yit = x~t80 + Uit, 

Uit = r¡i + Vito 

t = 1, ... ,Tj i = 1, ... ,N, 

(6) 

The model specifies sequential moment conditions of the 

form E(vitlzf) = O, where zf = (zh ... Z~t)' is a vector of 

instruments, which may inelude current or lagged values of 

Yit and Xit. Thus, this setting is sufficiently general to cover 

models with strictly exogenous, predetermined, and endoge­

nous explanatory variables. Observations across individuals 

are assumed to be independent and identically distributed. 

Estimation will be based on a sequence of orthogonality 

conditions of the form 

t = 1, ... , T -1, 

where starred variables denote forward orthogonal devia­

tions of the original variables (Arellano and Bover 1995). 

It is convenient to rewrite the transformed model as 

(8) 

where Yi = (Yil ... Y:(T-I))" and so forth. 

The k x 1 parameter vector 80 is usually estimated by 

GMM leading to estimators of the form (Ho1tz-Eakin, 

Newey, and Rosen 1988; Arellano and Bond 1991; Cham­

berlain 1992; Arellano and Bover 1995; Ahn and Schmidt 

1995) 

where y* = (yi' .. . Yl$)', X* = (Xi' .. . X;¡)', and Z = 
(Zi ... Z~)'. Zi is a (T -1) x q block diagonal matrix whose 

tth block is zf and an optimal choice of AN is such that 

it is a consistent estimate of the inverse of E(Z;uiui' Zi). 
Under "classical" errors [i.e., when E(v~tlzf) = 0'2 and 

E(VitVi(t+j)lzf) = O for j > O and all t], E(Z~uiui'Zi) = 
0'2 E(Z;Zi), and hence the "one-step" nonrobust choice 

AN = (a-2 Z' Z)-I is optimal (a-2 , which denotes the residual 

variance, is irrelevant for estimation, but it is kept here for 

notational convenience). Altematively, the standard "two­

step" robust choice is AN = (¿i Z;üiüi' Zi)-l, where 

üi is a vector of residuals evaluated using sorne prelimi­

nary consistent estimate of 80 • Given identification, 8GMM 

is consistent and asymptotically normal as N -+ 00 for 
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fixed T. In addition, for either choice of AN , provided the 

conditions under which they are optimal choice s are satis­

fied, a consistent estimator of the asymptotic variance of 

8GMM is Vai'(8GMM ) = (X*'ZANZ'X*)-I. Moreover, let­

ting u* = y* - X*8GMM, the Sargan or GMM statistic of 

overidentifying restrictions is given by 

S - '*'ZA Z"* ~ X2 
- U N U ----r q-k' (10) 

Now, partition X* = (Xi, X2') and 80 = (8~1' 8~2)' to dis­
tinguish between nonexogenous and exogenous variables, 

such that the k2 columns of X2' are linear combinations of 

those of Z but the k1 columns of Xi are not. SNM is the 

GMM estimator of 80 based on the orthogonality conditions 
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is a minimized optimal GMM criterion it can be used as an 

alternative test statistic of overidentifying restrictions. We 

have that 

" , - d 2 
(1 + 81SNM81SNM).x --+ Xq-k, (17) 

which is asymptotical1y equivalent to the Sargan test. 

Let us now turn to consider LIML analogues or "con­

tinuously updated GMM" estimators in the terminology of 

Hansen et al. (1996). The nonrobust LIML analogue 8LIMLl 

minimizes a criterion of the form 

l(8) = (y* - X*8)'ZAN(8)Z'(y* - X*8) (18) 

with AN(8) = (Z' Z)-1 /(y* -X*8)'(y* -X*8). The result­

ing estimator is 

[ Z;(Yi - X;80)] 
E'l/Ji(80) = E (1 + 8~1801)1/2 = O. 

(11) 8LIML1 = [X* Z(Z' Z)-1 Z' X* - ix*' X*t1 

Because E['l/Ji(80)'l/J;(80)) = E(Z;uiui'Zi)/(l + 8~1801), a 
consistent estimate of the inverse of E(Z;uiui' Zi) remains 

an optimal weighting matrix for the SNM estimator. There­

fore, 

, . (y* - X*8)' M(y* - X*8) 
8SNM = argmm (8'8 ) ,(12) 

6 1 + 1 1 

where M = ZANZ'. Minimizing the criterion with respect 

to 82 we obtain a concentrated criterion that only depends 

on 81. This gives us 

81sNM = argmind~Wi'(M - M2)Widt!d~dl 
61 

= [Xt(M - M 2)Xi - ,Ü)-IXt(M - M2)Y* (13) 

and 

82SNM = (X2"MX;)-IX:;'M(y* -Xi81SNM), (14) 

where Wi = (y*, Xi), dI = (1, -8D', M 2 = MX2' 
(X2"MX2)- I X2"M, and X = mineigen[Wi'(M -M2)Wi). 
Notice also that 

X = min(y* - X*8)'M(y* - X*8)/(1 + 8~81)' (15) 

EquivalentIy, 

8SNM = (X*'MX* - Xtl.)-IX*'My* (16) 

with 

tl. = (I~1 ~) 

[if no columns of X* are perfectIy predictable from Z, or 

if the entire vector of coefficients is normalized to unity, 

then tl. = 1 and X = min eigen(W*' MW*), with W* = 
(y*, X*)). In the just-identified case, X = O, with the result 

that GMM and SNM coincide. 

Because 8GMM and 8SNM are asymptotically equivalent, 
Vai'(8GMM ) is also a consistent estimate of the asymp­

totic variance of 8SNM. An alternative natural estimator of 

var(8SNM ), however, suggested by the previous expression, 

is Vai'(8SNM ) = (X*'MX* - Xtl.)-I. Moreover, because X 

X [X*' Z(Z' Z)-1 Z'y* - ix*'y*)' (19) 

where, letting d = (1, -8')', 

i = mind'W*'Z(Z'Z)-IZ'W*d/(d'W*'W*d) 

= mineigen[W*' Z(Z' Z)-1 Z'W*(W*'W*)-I). (20) 

On the other hand, the robust LIML analogue 8LIML2 

minimizes a criterion of the same form as (18) with 

AN(ój ~ (t,Z;U;(ójUi(ój'Z;) -, (21) 

where ui(8) = yi -X;8. Therefore, LIML2, unlike LIML1 

or the SNM estimators, does not solve a simple minimum 

eigenvalue problem and requires the use of numerical opti­

mization methods. 

Both the SNM and the LIML analogues are invariant to 

normalization, but the ordinary GMM estimator is noto That 

is, if the equation is solved for an endogenous variable other 

than Yi, contrary to the case with ordinary GMM, the in­

direct estimates obtained from SNM or LIML analogues 

coincide with the direct SNM or LIML estimates, respec­

tively. [Notice that empirical likelihood estimators of the 

type considered by Qin and Lawless (1994) and Imbens 

(1997) will also be invariant to normalization due to the 

invariance property of maximum likelihood estimators.) 

Symmetrical1y normalized estimators are potential1y at­

tractive alternatives to ordinary GMM on at least two 

grounds (aside from the desirability of invariance to nor­

malization in its own right). First, they tend to have a 

smaller finite-sample bias than the GMM estimators. Hillier 

(1990) showed that, for the normal case in a standard linear 

structural equation with two endogenous variables, sym­

metrically normalized 2SLS and LIML are "spherically 

unbiased" in finite samples [meaning that the density of 

ii = dt!(did1)1/2 defined on the unit circle is symmetric 

about the true points ±a = ±dt!(didt)I/2 having modes at 

±a). However, 2SLS does not have this property. 

Second, the concentration of the densities of the symmet­

rically normalized estimators depends on the quality of the 

instruments. In the completely unidentified case, as shown 

by Hillier, these estimators have a uniform distribution on 
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the unit circle. This is in contrast with 2SLS, which con­

verges to the same limit as OLS and whose distribution is 

determined exclusively by the normalization adopted. When 

the instruments are poor, as well as when the number of in­

struments is large relative to the sample size, 2SLS tends 

to provide results that are biased in the direction of OLS 

and also large discrepancies between "direct" and "indirect" 

2SLS when using different normalizations. This situation 

has been stressed in several recent works (Bekker 1994; 

Bound, Jaeger, and Baker 1995; Angrist and Krueger 1995; 

Staiger and Stock 1997, among others). In contrast, with 

poor instruments the distributions of LIML and symmetri­

cally normalized 2SLS accurately reproduce the fact that 

the information on the structural parameters is very small. 

Although the LIML analogues and the SNM estimators 

are asymptotical1y equivalent (and in the Hillier setting ex­

hibit similar finite-sample properties as well), SNM has 

sorne disadvantages relative to the other estimators. The 

main one is that in general the results are not independent 

of the units in which the variables are measured, so that a 

sensible choice of units may be important. In contrast, or­

dinary GMM is invariant to units but not to normalization, 

and LIML is invariant to units and normalization. This prob­

lem does not arise in the autoregressive panel-data models 

Table 1. Model 1: Nonrobust Estimates 

ex =.5 ex =.8 

GMM1 SNM1 LlML1 GMM1 SNM1 LlML1 

T=4 

~ = o Median .49 .50 .50 .76 .80 .80 

% bias 2.5 .3 .6 5.6 .1 .1 

iqr .18 .19 .19 .28 .29 .29 

iq80 .35 .36 .36 .56 .61 .61 

MAE .09 .09 .09 .15 .15 .15 

~ =.2 Median .47 .49 .49 .66 .77 .77 

% bias 6.9 1.7 1.7 17.8 3.7 4.1 

iqr .23 .25 .24 .45 .57 .58 

iq80 .44 .47 .47 .93 1.26 1.29 

MAE .12 .12 .12 .25 .28 .29 

~ = 1 Median .43 .48 .48 .44 .65 .61 

% bias 14.8 3.8 3.1 44.7 19.0 23.8 

iqr .33 .36 .36 .67 .95 1.02 

iq80 .68 .77 .77 1.39 2.81 2.89 

MAE .18 .18 .18 .44 .50 .53 

T=7 

~ = O Median .47 .50 .49 .75 .80 .79 

% bias 5.0 .7 2.0 6.0 .3 1.1 

iqr .09 .09 .09 .11 .12 .12 

iq80 .16 .17 .17 .22 .23 .24 

MAE .05 .04 .04 .07 .06 .06 

~ =.2 Median .47 .50 .49 .70 .81 .78 

% bias 6.7 .8 1.8 13.0 1.2 2.7 

iqr .11 .11 .11 .18 .18 .21 

iq80 .20 .21 .21 .34 .39 .45 

MAE .06 .06 .06 .12 .09 .11 

~ = 1 Median .45 .50 .48 .61 .82 .74 

% bias 10.4 1.0 3.3 24.0 3.0 8.1 

iqr .13 .14 .14 .23 .26 .38 

iq80 .24 .26 .27 .45 .54 .86 

MAE .07 .07 .07 .20 .13 .19 

NOTE: 1,000 replications. N = 1 00, CT~ = 1. % bias gives the percentage median bias Ior all 

the estimates; iqr is the 75th-25th interquartile range; iq80 is the 9Oth-l0th interquantile range; 

MAE denotes the median absoluta error. 
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discussed later because in that case the SNM estimator is 

invariant to units and to normalization (just because in the 

autoregressive case a change in the units of the right-side 

variable leads trivially to a similar change in the units of the 

left-side variable). Another disadvantage of SNM is that the 

distinction between exogenous and nonexogenous variables 

is relevant for the specification of the estimator. This is so 

because in the case of SNM only the length of the coeffi­

cient vector for the nonexogenous variables is normalized 

to unity, and, contrary to LIML, this differs from normal­

izing to unity the entire coefficient vector. SNM, however, 

does have a computational advantage over LIML when we 

consider two-step or robust estimators. Indeed, LIML2, or 

continuously updated GMM, no longer sol ves a minimum 

eigenvalue problem, whereas two-step SNM only involves 

simple calculations that are similar to those performed for 

two-step ordinary GMM. Of course, SNM is limited to lin­

ear models, but in such context it is of interest to see if 

SNM, which is considerably faster and simpler than LIML2, 

can provide the benefits of the more complicated estimators 

and perhaps avoid problems of nonconvergence in the case 

ofLIML2. 

2. EXPERIMENTAL COMPARISONS 

The purpose of this section is to study the finite-sample 

properties of the syrnmetrically normalized estimators con­

sidered previously in relation to ordinary GMM for an 

AR(l} model with individual effects. The IV restrictions im­

plied by various versions of the model can be represented 

as simple structures on the covariance matrix of the data, 

so we can also make comparisons with the MDE of these 

covariance structures. The emphasis is not on assessing the 

value of enforcing particular restrictions in the model, as 

done, for example, by Ahn and Schmidt (1995), Arellano 
and Bover (1995), and Blundell and Bond (1998). Rather, 

we wish to evaluate the effects in small samples of using 

alternative estimating criteria that produce asymptotically 

equivalent estimators for fixed T and large N. We concen­

trate on a random-effects AR(1} model because of its sim­

plicity and the fact that it is a case that has received much 

attention in the literature. 

2.1 Models and Estimators 

Let us consider a random sample of individual time series 

of size T, yT = (Yil,"" YiT )'(i = 1, ... , N) with second­
order moment matrix E(yTy'[,) = n = {Wts}' We as sume 
that the joint distribution of YT and the unobservable time­

invariant effect TU satisfies Assumption A: 

Yit = aYi(t-l) + "li + Vit, t = 2, ... ,T, (22) 

E(Vitlyf-l) = 0, (23) 

where E("li) = ')', E(v~t) = a'f, and var("li) = a~. 
Notice that the dependence between "li and Vit is not re­

stricted by Assumption A, nor is the possibility of con­
ditional heteroscedasticity ruled out, because E(v~tIYf-l) 

need not coincide with a'f. 
Following Arellano and Bond (1991), Assumption A im­

plies (T - 2)(T - 1)/2 linear moment restrictions of the 
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form 

(24) 

These restrictions can also be represented as constraints 

on the elements of o. Multiplying (22) by Yis for s < t 

and taking expectations gives Wts = aW(t-l)s + es (t = 
2, ... T; s = 1, ... ,t - 1), where es = E(YisT/i). This means 

that, given Assumption A, the T(T+1)/2 different elements 

of O can be written as functions of the 2T x 1 parameter 

vector () = (a, el,··., eT-l,W11,··., WTT )/. 

We call this moment structure Model 1. Because it is a 

special case of the model in Section 1, all the estimators 

discussed in Section 1 can be particularized to the present 

case. Here, however, we express the IV restrictions using er­

rors in first -differences as opposed to orthogonal deviations 

to simplify the mapping with covariance structures. Notice 

that with T = 3 the parameters (a, el , e2) are just -identified 

as functions of the elements of O. 

The orthogonality conditions (24) are the only restric­

tions implied by Assumption A on the second-order mo­

ments of the data. They are not the only restrictions avail­

able, however, because (23) also implies that nonlinear func­

tions of y;-2 are uncorrelated with t!.Vit. The semiparamet­

ric efficiency bound for this model can be obtained from 

the results of Chamberlain (1992). One reason estimators 
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based on (24) may not be fully efficient asymptotically is 

that the dependence between T/i and yf may be nonlinear. 

Another reason would be unaccounted conditional hetero­

scedasticity. 

Model 1 is attractive because it is based on minimal as­

sumptions. We may be willing to impose additional struc­

ture, however, if this conforms to a priori beliefs. One pos­

sibility is to assume that the error s Vit are mean independent 

of the individual effect 'T}i given y;-l. This situation gives 

rise to Assumption A': 

(25) 

Note that Assumption A' is more restrictive than As­

sumption A. When T 2': 4, Assumption A' implies the fol­

lowing additional T - 3 moment restrictions: 

E[(Yit - aYi(t-l))(t!.Yi(t-l) - at!.Yi(t-2))] = O, 

t = 4, ... , T. (26) 

In effect, we can write E[(Yit - aYi(t-l) - 'T}i)(t!.Yi(t-l) -

at!.Yi(t-2))] = ° and, because E('T}it!.Vi(t-l)) = O, the result 
follows. 

GMM estimators of a that exploit these restrictions in ad­

dition to those in (24) were considered by Ahn and Schmidt 

(1995), but because the additional restrictions are nonlinear 

Table 2. Model 1: Robust Estimates 

a =.5 a =.8 

GMM2 SNM2 LlML2 MDE GMM2 SNM2 LlML2 MDE 

T=4 

~ = O Median .49 .50 .51 .51 .76 .80 .81 .80 

% bias 2.1 .2 1.6 2.1 4.9 .3 1.7 .0 

iqr .19 .19 .19 .12 .29 .30 .31 .10 

iq80 .36 .38 .38 .23 .58 .62 .63 .21 

MAE .09 .09 .09 .06 .15 .15 .16 .05 

~ =.2 Median .47 .49 .50 .51 .65 .76 .84 .71 

% bias 6.5 1.8 .3 1.3 19.0 4.6 5.1 11.3 

iqr .24 .25 .25 .20 .47 .55 .56 .28 

iq80 .47 .50 .51 .39 .97 1.33 1.23 .58 

MAE .12 .13 .13 .10 .27 .28 .28 .11 

~ = 1 Median .44 .47 .50 .49 .45 .64 .82 .65 

% bias 12.8 5.4 .5 2.2 43.6 19.5 2.9 19.1 

iqr .35 .38 .38 .82 .70 1.03 .94 .48 

iq80 .75 .80 .80 .56 1.53 2.82 2.22 .94 

MAE .18 .19 .19 .16 .46 .54 .47 .18 

T=7 

~ =0 Median .48 .50 .50 .51 .75 .79 .80 .81 

% bias 4.3 .4 .6 2.0 5.7 .8 .1 1.4 
iqr .10 .10 .10 .09 .13 .13 .14 .10 
iq80 .18 .19 .21 .17 .24 .25 .28 .17 
MAE .05 .05 .05 .04 .07 .07 .07 .05 

~ =.2 Median .47 .50 .50 .50 .69 .79 .81 .74 

% bias 6.2 .5 .4 .1 13.7 1.7 .9 7.8 

iqr .12 .12 .13 .12 .20 .20 .24 .17 
iq80 .23 .23 .26 .23 .39 .41 .51 .34 
MAE .06 .06 .06 .06 .13 .10 .12 .09 

~ = 1 Median .45 .49 .50 .50 .59 .77 .80 .71 

% bias 9.8 1.5 .0 .2 26.0 3.9 .1 11.1 
iqr .14 .15 .16 .15 .27 .28 .36 .22 

iq80 .28 .30 .33 .29 .53 .59 .80 .46 

MAE .08 .07 .08 .08 .22 .15 .18 .11 

NOTE: See nole lo Table 1. 
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we do not simulate them here. An alternative representation 

of the restrictions in (26) is in terms of a recursion of the 

coefficients Ct introduced previously. Multiplying (22) by 'T}i 

and taking expectations gives Ct = aCt-l +<jJ (t = 2, ... , T), 
where <jJ = 'Y2 + a~ = E(r¡l) so that Cl •.• CT-l can be writ­

ten in terms of Cl and <jJ. This gives rise to a covariance 

structure in which n depends on the (T + 3) x 1 param­

eter vector () = (a,<jJ,ct,wlt, ... ,WTT)/. Notice that with 

T = 3 Assumption A' does not imply further restrictions in 

n, with the result that a remains just-identified relative to 

the second-order moments. 

Other forms of additional structure that can be imposed 

are various versions of mean or variance stationarity con­

ditions. Assumption B, which requires the change in Yit to 

be mean independent of the individual effect 'T}i, is a partic­

ularly useful mean stationarity condition: 

E(Yit - Yi(t-l) l'T}i) = O, t = 2, ... ,T. (27) 

Notice that, given Assumption A, Assumption B implies 

that E(Yit) = 'Y/(1 - a). Relative to Assumption A and 

Model 1, Assumption B adds the following (T - 2) moment 

restrictions on n: 

t = 3, ... , T, (28) 
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which were proposed by Arellano and Bover (1995), who 

developed a linear GMM estimator of a on the basis of (24) 

and (28). Relative to Assumption A', however, Assumption 

B only adds one moment restriction, which can be written 

as E[(Yi3 - aYi2)D.Yi2] = O. In terms of the parameters Ct, 
the implication of Assumption B is that Cl = ... = CT-l 

if we move from Assumption A or that Cl = <P!(l - a) 

if we move from Assumption A'. This gives rise to Model 

2, in which n depends on the (T + 2) x 1 parameter vec­

tor () = (a,<jJ,wll, ... ,WTT)'. Notice that with T = 3,a is 

overidentified under Assumption B. 

The basic specification can be restricted further in various 

ways. For example, we could consider time series homo­

scedasticity of the form E(v;t) = a2 for t = 2, ... , T and 

stationarity of the variance of the initial conditions. The 

combination of these assumptions with the previous ones 

would give rise to additional models, sorne of which were 

discussed in detail by Ahn and Schmidt (1995). In the sim­

ulations, however, we concentrate on Models 1 and 2 be­

cause they embody linear IV restrictions that have been 

found most useful in applications. Although for Model 1 

we shall simulate the robust and nonrobust estimators dis­

cussed in Section 1, for Model2 we shall only report robust 

estimates-that is, the Arellano and Bover (1995) GMM es­

timator and its syrnmetrically normalized and continuously 

Table 3. Model 2: Robust Estimates 

a =.5 a =.8 

GMM2 SNM2 LlML2 MDE GMM2 SNM2 LlML2 MDE 

T=4 

~ = O Median .50 .51 .51 .51 .79 .81 .81 .81 

% bias .8 2.0 1.9 1.2 .9 1.5 1.7 .7 

iqr .15 .15 .15 .07 .17 .17 .17 .05 

iq80 .28 .28 .29 .14 .32 .31 .33 .09 

MAE .07 .07 .08 .03 .08 .08 .09 .02 

~ =.2 Median .50 .51 .51 .51 .79 .82 .81 .81 

% bias .9 2.5 1.9 1.8 .7 2.7 1.5 1.3 

iqr .17 .17 .19 .19 .20 .19 .22 .21 

iq80 .31 .32 .33 .33 .37 .36 .40 .36 

MAE .09 .09 .09 .09 .10 .10 .11 .10 

~ = 1 Median .52 .54 .51 .51 .85 .87 .81 .82 

% bias 3.1 8.4 1.93 2.3 5.7 9.2 1.0 2.1 

iqr .19 .20 .21 .21 .19 .18 .25 .22 

iq80 .36 .37 .39 .39 .38 .37 .43 .40 

MAE .09 .10 .11 .11 .11 .11 .12 .10 

T=7 

~ =0 Median .49 .50 .50 .51 .78 .80 .80 .80 

% bias 2.9 .1 .6 1.2 3.0 .5 .6 .4 

iqr .08 .08 .09 .06 .09 .08 .09 .04 

iq80 .15 .16 .17 .11 .17 .16 .18 .08 

MAE .04 .04 .04 .03 .05 .04 .05 .02 

~ =.2 Median .49 .50 .50 .50 .78 .80 .81 .81 

% bias 2.6 .9 .6 .6 2.4 .5 1.1 1.1 

iqr .09 .09 .10 .10 .11 .10 .12 .12 

iq80 .18 .18 .20 .20 .20 .19 .22 .22 

MAE .05 .05 .05 .05 .05 .05 .06 .06 

~ = 1 Median .50 .51 .50 .50 .83 .85 .81 .81 

% bias .7 2.9 .2 .4 3.5 5.7 .7 1.8 

iqr .10 .11 .11 .11 .12 .11 .14 .13 

iq80 .19 .20 .22 .22 .22 .21 .25 .25 

MAE .05 .05 .05 .05 .07 .07 .07 .07 

NOTE: See note to Table 1. 
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updated counterparts. We do so because the combined set of 

moments in (24) and (28) lack a sequential structure, with 

the result that there is no simple optimal one-step estimator 

under "classical" errors. 

The coefficient a together with the other free parame­

ters in the covariance structure representations of the pre­

vious models can be jointIy estimated by MD on the ba­

sis of the matrix of sample second-order moments n = 
N- 1 2:;:1 y[ yf· Such estimates have the same asymptotic 

distribution as the corresponding GMM estimators but may 

be cumbersome in more general conditional models because 

they need to solve a nonlinear optimization problem over 

a larger parameter space. It is of sorne interest, however, 

to compare their finite-sample performance with the SNM 

and LIML estimates of the random effects ARO) model. 

Optimal MDE minimize a criterion of the form 

Cd(O) = [w - w(O)l'VN1 [w - w(O)], (29) 

where VN = N- 1 2:;:1 WiW~ - ww', w = vech(n) denotes 

the T(T + 1)/2 vector containing the elements in the upper 

triangle of n, and similarly w(O) = vech[O(O)] and Wi = 

vech(y[ y;-l'). 

2.2 Monte CarIo Results 

An important issue is how instrument quality affects the 

estimators. In Model 1, this depends on the values of a 

and r = a~/ a2• To see this, note that under stationarity the 

correlation between tlYt-1 and Yt-2 is p = -(1 - a)[2(1 -
a + (1 + a)r)]-1/2, which is decreasing in a and r. For this 

Journal of Business & Economic Statistics, January 1999 

reason, we exclude from the simulations models with small 

values of a, which can be expected to perform relatively 

well. We consider cases with a = .5, .8; a~ = 0, .2, 1; T = 
4, 7; and N = 100. The variance of the random error a 2 is 

kept equal to unity for all cases. For each experiment, we 

generated 1,000 samples of N independent observations of 

(Yil, ... , YiT) from the process 

and 

Yit = aYi(t-1) + TU + Vit, t= 2, ... ,T, (31) 

with Vi = (Vil, ... , ViT)' '" N(O, 1) and Tli '" N(O, a~) inde­

pendent of Vi. 

Tables 1 and 2 (pp. 39-40) report sample medians, per­

centage biases, interquantile ranges, and median absolute 

errors (MAE's) for GMM, SNM, and LIML estimators for 

Model 1 (means and standard deviations are not reported 

because the symmetrically normalized estimators can be 

expected to have infinite moments). Table 1 contains the re­

sults for the nonrobust estimators and Table 2 for the robust 

ones. Table 2 also reports the results for the MDE, which 

is also robust. Whereas LIML2 and MDE are one-step esti­

mators, however, GMM2 and SNM2 are calculated in two 

steps. The weighting matrices of GMM2 and SNM2 are 

based on GMMl residuals. SNMl and LIMLl always have 

a smaHer bias and a larger dispersion than GMM1. When 

a~ = 0, aH estimators perform weH, but when a~ = .2 

Tabla 4. Modal 1: Nonrobust Estimates, Quantiles of the t Statistics 

T=4 T=7 

ex =.5 ex =.8 ex =.5 ex =.8 

GMM1 SNM1 L1ML1 GMM1 SNM1 L1ML1 GMM1 SNM1 L1ML1 GMM1 SNM1 L1ML1 

O"~ = O 

.05 -1.97 -1.84 -1.87 -2.16 -1.90 -2.03 -2.04 -1.66 -1.84 -2.26 -1.62 -1.95 

.10 -1.54 -1.42 -1.44 -1.74 -1.46 -1.56 -1.65 -1.27 -1.46 -1.87 -1.25 -1.51 

.25 -.86 -.74 -.75 -.98 -.73 -.78 -1.01 -.64 -.79 -1.23 -.61 -.82 

.50 -.13 -.02 -.01 -.25 .00 -.01 -.32 .04 -.08 -.53 .06 -.07 

.75 .53 .62 .64 .41 .59 .64 .37 .74 .64 .17 .73 .68 

.90 1.08 1.17 1.22 .93 1.06 1.15 .98 1.33 1.26 .75 1.29 1.30 

.95 1.41 1.48 1.53 1.20 1.30 1.41 1.33 1.70 1.65 1.10 1.61 1.67 

~= .2 

.05 -2.05 -1.89 -1.95 -2.39 -2.00 -2.38 -2.12 -1.65 -1.92 -2.51 -1.57 -2.35 

.10 -1.63 -1.47 -1.52 -1.95 -1.55 -1.88 -1.74 -1.27 -1.51 -2.13 -1.19 -1.86 

.25 -.91 -.77 -.79 -1.22 -.79 -.99 -1.08 -.63 -.82 -1.51 -.56 -1.02 

.50 -.18 -.04 -.03 -.44 -.03 -.06 -.39 .06 -.10 -.81 .09 -.13 

.75 .48 .61 .64 .25 .47 .64 .30 .73 .62 -.12 .69 .71 

.90 1.03 1.13 1.19 .71 .82 1.07 .90 1.33 1.27 .48 1.19 1.43 

.95 1.33 1.42 1.50 .92 .99 1.27 1.24 1.65 1.61 .80 1.47 1.79 

O"~ = 1 

.05 -2.20 -1.98 -2.13 -2.68 -2.16 -2.83 -2.19 -1.62 -2.03 -2.74 -1.47 -3.18 

.10 -1.74 -1.52 -1.64 -2.20 -1.64 -2.30 -1.83 -1.25 -1.62 -2.40 -1.11 -2.66 

.25 -1.04 -.81 -.88 -1.52 -.89 -1.46 -1.18 -.61 -.91 -1.79 -.51 -1.52 

.50 -.27 -.05 -.05 -.74 -.12 -.39 -.49 .07 -.13 -1.10 .12 -.28 

.75 .40 .57 .66 -.01 .27 .55 .20 .73 .62 -.40 .65 .85 

.90 .91 1.00 1.16 .46 .56 .95 .79 1.29 1.27 .20 1.05 1.69 

.95 1.17 1.23 1.41 .65 .71 1.17 1.11 1.61 1.63 .49 1.27 2.10 

NOTE: 10,000 replica1ions. N = 100, <1~ = 1. The 51h, 101h, 251h, 501h, 751h, 901h, and 951h quan1i1es Ior 1he s1andard normal dis1ribu1ion are, respec1ively, -1.64, -1.28, -.67, O, .67, 1.28, 

and 1.64. 
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or 1, the differences in the distributions of GMM 1 and the 

syrnmetrically normalized estimators become apparent: The 

higher (T~ or a, the larger the negative bias of GMM1 for a 

given T, whereas SNM1 remains essentially median unbi­

asedo The behavior of LIML1 is similar to that of SNM1, 

although in sorne cases it shows somewhat larger biases and 

dispersion. SNM1 and LIML1 have a larger interquartile 

range than GMM1, but the differences are small except in 

the almost unidentified cases (with a = .8 and T = 4). The 

MAE's of the three estimators are of a similar magnitude, 

although those for GMM1 tend to be smaller than those for 

SNM1 or LIML1 with T = 4 and larger with T = 7. 
Turning to Table 2, GMM2 and SNM2 exhibit a very sim­

ilar behavior to GMM1 and SNM1, respectively. LIML2, 

which is the robust continuously updated GMM estima­

tor, is virtually median unbiased in all the experiments, al­

though it tends to have a larger MAE than SNM2. LIML2 

was calculated by numerical optimization, and we found 

sorne instances of nonconvergence. Out of 1,000 replica­

tions, we found 86 cases of nonconvergence for the exper­

iment with a = .8, (T~ = 1, and T = 4, and 7 cases in 

each of the experiments with a = .8, (T~ = .2, T = 4, and 

a = .8, (T~ = 1, T = 7. 

The MDE has a smaller interquartile range than GMM2, 

SNM2, or LIML2, a difference that is especially notice­

able for T = 4 (with (T~ = O and a = .8, the interquartile 

range of the MDE is about three times smaller than that of 

the other estimators). As far as median bias is concerned, 

the MDE is practically unbiased when a = .5, but exhibits 

sorne larger biases when (T~ is not O and a = .8. In com-
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mon with LIML2, however, we also found several cases of 

nonconvergence for MDE, with all the cases arising almost 

exclusively in the experiments with a = .8. Specifically, 

with a = .8 and T = 4, we encountered 36, 46, and 86 

cases of nonconvergence for (T~ = O, .2, and 1, respectively, 

whereas, with T = 7, the number of cases, given in the 
same order, were 22, 35, and 118. 

With T = 7, Tables 1 and 2 clearly indicate that when 

N = 100 there is information in the data to estimate a with 
sufficient precision but that, contrary to SNM or LIML, 

GMM estimates may still be substantially biased. 

The evidence from Tables 1 and 2 suggests that Hillier's 

basic results for ordinary and syrnmetrically normalized 

2SLS estimators may have a wider applicability. In effect, 

GMM2 and SNM2, unlike 2SLS, are not only functions of 

the second moments of the data but also of the fourth-order 

moments that enter the weighting matrix of the moment 

conditions. 

Model 1 is the leading case from the point of view that 

IV estimators of structural equations with predetermined 

instruments tend to rely on orthogonality conditions that 

are similar to those in Model l. 

Table 3 (p. 41) presents the results for Model 2, which 

makes use of the restrictions derived from Assumptions 

A and B. This model incorporates the quadratic orthogo­

nality conditions given in (42). By adding the stationarity 

restrictions, however, the entire list of moment conditions 

admits a linear representation (Ahn and Schmidt 1995), so 

that GMM2 in Table 3 is a linear IV estimator (as proposed 

by Arellano and Bover 1995). All the estimators in this ta-

Table 5. Model 1.- Robust Estimates, Quantiles o( the t Statistics 

T=4 T=7 

a =.5 a =.8 a =.5 a =.8 

GMM2 SNM2 LlML2 GMM2 SNM2 LlML2 GMM2 SNM2 LlML2 GMM2 SNM2 LlML2 

(j~ = O 

.05 -2.04 -1.97 -1.91 -2.25 -2.12 -2.07 -2.49 -2.24 -2.34 -2.74 -2.24 -2.45 

.10 -1.61 -1.54 -1.47 -1.80 -1.62 -1.55 -2.01 -1.73 -1.82 -2.28 -1.79 -1.90 

.25 -.87 -.78 -.73 -1.00 -.80 -.75 -1.22 -.91 -.92 -1.47 -.94 -.92 

.50 -.11 .01 .06 -.22 .02 .05 -.33 .00 .08 -.57 -.03 .09 

.75 .58 .71 .76 .45 .72 .73 .56 .91 1.05 .28 .85 1.06 

.90 1.18 1.32 1.35 1.00 1.28 1.26 1.30 1.67 1.89 1.03 1.62 1.89 

.95 1.54 1.69 1.71 1.30 1.61 1.55 1.76 2.12 2.42 1.46 2.05 2.37 

(j~ = .2 

.05 -2.15 -2.08 -2.00 -2.68 -2.71 -2.48 -2.62 -2.31 -2.42 -3.28 -2.53 -2.98 

.10 -1.71 -1.62 -1.55 -2.15 -2.02 -1.84 -2.11 -1.79 -1.86 -2.73 -1.97 -2.22 

.25 -.93 -.83 -.76 -1.28 -1.01 -.88 -1.30 -.93 -.95 -1.88 -1.05 -1.11 

.50 -.17 .02 .05 -.43 -.05 .04 -.41 -.02 .06 -.97 -.11 .05 

.75 .54 .71 .77 .29 .75 .73 .45 .87 1.04 -.05 .81 1.15 

.90 1.13 1.31 1.34 77 1.32 1.15 1.24 1.68 1.90 .70 1.60 2.01 

.95 1.44 1.65 1.66 .98 1.76 1.37 1.69 2.13 2.44 1.13 2.06 2.46 

~ = 1 

.05 -2.36 -2.35 -2.26 -3.17 -4.44 -3.01 -2.76 -2.41 -2.55 -3.82 -3.10 -3.72 

.10 -1.83 -1.78 -1.67 -2.58 -3.22 -2.26 -2.27 -1.88 -1.96 -3.26 -2.37 -2.77 

.25 -1.09 -.95 -.82 -1.68 -1.67 -1.14 -1.44 -.98 -1.01 -2.35 -1.31 -1.39 

.50 -.25 -.05 .03 -.78 -.33 .00 -.56 -.05 .03 -1.37 -.19 .00 

.75 .46 .73 .77 .01 .70 .70 .32 .87 1.07 -.43 .82 1.26 

.90 .98 1.31 1.30 .50 1.51 1.11 1.09 1.66 1.94 .35 1.68 2.14 

.95 1.28 1.63 1.56 .70 2.52 1.40 1.51 2.11 2.46 .76 2.14 2.59 

NOTE: See note to Table 4. 
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Table 6. Employment Equations: Robust Estimates From the u.K. Sample 

Independent 
ModelA Model B 

variables GMM2 SNM2 LlML2 Indirect GMM2* GMM2 SNM2 LlML2 

tlni(t-l) .800 1.596 1.900 1.214 .825 2.186 .836 

(.048) (.105) (.173) (.056) (.216) (.060) 

tlni(t-2) -.116 -.384 .105 -.282 -.074 -.455 .344 

(.021) (.045) (.053) (.020) (.077) (.038) 

tlWit -.640 -1.897 .507 -4.638 

(.054) (.160) (.224) 

tlWi(t-l) .564 2.138 .487 1.567 .431 2.841 .615 

(.066) (.142) (.222) (.076) (.312) (.080) 

tlkit .219 .238 -1.353 .604 

(.051) (.089) (.198) 

tlki(t-l) -.077 -.787 -.235 

(.045) (.126) (.049) 

tlySit .890 1.747 .674 3.105 

(.098) (.204) (.228) 

tlYSi(t-l) -.874 -2.897 -.006 -4.101 -.115 -2.438 -.427 

(.105) (.229) (.312) (.100) (.358) (.112) 

tlYSi(t-2) .095 1.511 .126 

(.091) (.266) (.101) 

Sargan test (df) 63.0 (50) 67.1 (50) 44.5 (50) 62.8 (50) 68.3 (51) 66.5 (51) 57.8 (51) 

R2 :s far I V:S 

tlni(t-l) .271 .269 

tlwit) .193 

tlWi(t-l) .309 .289 

tlkit .108 

tlki(t-l) .158 

* Dependent variable is ,6,w,t. 

NOTE: The dependent variable is An,t. The sample period is 1979-1984 (140 eompanies). Time dummies are ineluded in all equations. Asymptotie standard errors robust to heteroseedastieity 

are reported in parentheses. Model A treats An,(t-l). AW,t. Aw,(t-l). and Ak,t as endogenous. Model B treats An,(t-l). AW,(t-l). and Aki(t-l) as endogenous. The instrument set lar 

Models A and B ineludes lags al employment dated (t- 2) and earlier. lags al wages and capital dated (t- 2) and (t- 3). and the levels and first differenees al lirm real sales and firm real stoeks 

dated (t- 2). The instrument set lar all the AR(2) models ineludes lags al employment dated (t- 2) and earlier. and lar those in the first three eolumns also lags al wages dated (t- 2) and earlier. 

The R2·s lar the IV's denote the partial R2 between the instruments and eaeh endogenous explanatory variable once the exogenous variables included in the equation have been partialled out. 

ble exhibit small median biases and dispersions, although 

when there is a difference in MAE it favors the MDE. The 

differences between GMM2, SNM2, and LIML2 are small 

in most cases without a c1ear pattem in the relation, except 

for the fact that LIML2 tended to have a smaller bias and 

it was the estimator with the highest dispersion in all the 

experiments. 

Both GMM2 and SNM2 are two-step estimators based 

on one-step GMM residuals that use all the orthogonality 

conditions from Model 2, and the inverse of the second mo­

ments of the instruments as the weighting matrix. Notice 

that this one-step estimator is not asymptotically efficient, 

not even under c1assical errors. From calculations based on 

altemative residual s (not reported), we found that the results 

for GMM2 and SNM2 were sensitive to the choice of one­

step residuals, an issue which does not arise for LIML2 or 

MDE because they are calculated in one step. (We obtained 

results for GMM2 and SNM2 estimates based on GMMl 

residuals from Model 1 and one-step residuals from Model 

2, but using an identity as the weighting matrix. As ex­

pected, the impact of using Model 1 residuals was more 

important when Model 1 estimates were highly imprecise.) 

Table 7. Employment Equations: Robust Estimates From the u.K. Sample 

Independent AR(2) Models 

variables GMM2 SNM2 LlML2 GMM2 SNM2 LlML2 

tlni(t-l) .691 1.635 1.412 .320 .827 .092 
(.051) (.074) (.067) (.053) (.065) (.047) 

tlni(t-2) -.114 -.439 -.348 .022 -.094 .218 

(.026) (.039) (.025) (.022) (.032) (.019) 

tlWi(t-l) .598 1.958 .297 

(.070) (.095) (.073) 

tlWi(t-2) .013 -.075 -.163 

(.036) (.053) (.041) 

Sargan test (df) 65.9 (50) 71.3 (50) 48.8 (50) 32.8 (25) 31.3 (25) 31.7 (25) 

R2 :s far IV:S 

tlni(t-l) .216 .152 

NOTE: See note to Table 6. 
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Finally, it is possible to make comparisons across tables. 

The interquartile ranges become smaller if we move from 

Tables 1 and 2 to Table 3. Indeed, the efficiency gains from 

enforcing stationarity restrictions are always substantial for 

all the estimators, but they are particularly important in the 

cases with a = .8 and a~ = .2 or l. 

We also investigated the finite-sample distributions of the 

standardized one- and two-step GMM, SNM and LIML 

"t statistics" for Model 1 of the form t = V- 1/ 2 (ó:_ 
a), where ó: is an estimator and v is the correspond­

ing estimated asymptotic variance. The t statistics are 

asymptotically N(O,l). Because the usual tests of hypothe­

ses and confidence intervals rely on this approximation, 

it is useful to check the accuracy of the approxima­

tion for the sample sizes and parameter values considered 

previously. 

Tables 4 and 5 (pp. 42-43) report finite-sample quantiles 

of the t statistics based on 10,000 replications for nonrobust 

and robust estimat~s, respectively. We use a larger number 

of replications because in this case the .90 and .95 quan­

tiles in the upper tail of the distribution are of special inter­

est. The median shows that the distributions of the GMM t 

statistics are shifted to the left, with the absolute value of 

the shift increasing with a, a~, and T. In contrast, the dis-
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tributions of the SNM and LIML t statistics are centered at 

values that are most of the time very c10se to O. Turning to 

the .90 and .95 quantiles, when T = 4 the differences with 

the corresponding N(O,l) quantiles are always smaller for 

the SNM and LIML t statistics than for the GMM, some­

times by a wide margino This is true for both nonrobust and 

robust t ratio s, although the latter show higher interquantile 

ranges. When T = 7, the contrast between robust and non­

robust t ratio s becomes more marked. Although the nor­

mal approximation works reasonably well for SNM 1 and 

LIML1, the distributions of SNM2 and LIML2 exhibit thick 

tails. The distributions of the GMM t ratio s with T = 7 re­

main skewed, but whereas the .95 quantiles are very low for 

GMM1, those for GMM2 tend to be c10ser to the normal 

values than those from SNM2 or LIML2. 

3. EMPIRICAL ILLUSTRATIONS 

Our first illustration of the previous methods proceeds by 

reestimating the employment equations presented by Arel­

lano and Bond (1991) using syrnmetrically normalized and 

indirect GMM estimators. The Arellano-Bond dataset con­

sists of an unbalanced panel of 140 quoted companies from 

the United Kingdom, whose main activity is manufactur­

ing and for which seven, eight, or nine continuous annual 

Table 8. VAR Estimates for Employment and Wage Equations From the Spanish Sample 

Independent 
"Model 1" restrictions 

variables GMM2 SNM2 LlML2 GMM2 SNM2 LlML2 

f:!.nil equation 

f:!.ni(l-l) .842 1.087 1.004 .748 .813 .832 

(.669; 1.015) (.894; 1.280) (.830; 1.178) (.575; .921) (.636; .988) (.661; 1.002) 

[.712; 1.209] [.959; 1.485] [.505; .976] [.629; 1.092] 

f:!.ni(t-2) -.003 -.074 -.049 .038 .030 .027 

(-.060; .054) (-.140; -.008) (-.110; .012) (-.005; .081) (-.015; .075) (-.018; .072) 

[-.146; .028] [-.244; -.039] [-.027; .084] [-.046; .073] 

f:!. Wi(l-l) .078 .222 .177 

(-.086; .242) (.046; .398) (.016; .338) 

[-.006; .412] [.124; .624] 

f:!. wi(I_2) -.053 -.074 -.068 

(-.102; -.004) (-.127; -.021) (-.121; -.015) 

[-.116; -.002] [-.138; -.020] 

Sargan test (df) 36.9 (36) 37.2 (36) 35.5 (36) 14.4 (18) 13.5 (18) 13.0 (18) 

R2:s for IV:S 

f:!.ni(l_l) .033 .022 

f:!. wi(l-l) .031 

f:!. W¡I equation 

f:!. wi(t-l) .178 .228 .063 .178 .228 .063 
(-.042; .398) (-.008; .464) (-.176; .302) (-.042; .398) (-.008; .464) (-.176; .302) 
[-.075; .405] [-.100; .482] [-.144; .429] [-.232; .519] 

f:!. wi(I-2) -.012 -.002 -.039 -.012 -.002 -.039 
(-.081; .049) (-.066; .062) (-.102; .024) (-.081; .049) (-.066; .062) (-.102; .024) 
[-.076; .042] [-.077; .052] [-.089; .045] [-.100; .060] 

Sargan test (df) 12.7 (18) 12.9 (18) 12.2 (18) 12.7 (18) 12.9 (18) 12.2 (18) 

R2 :s for IV:S 

f:!. wi(t-l) .019 

NOTE: The sample period is 1983-1990 (738 companies). TIme dummies are included in all equations. The instrument set Ior all the employment equations includes lags 01 employment dated 

(1- 2) and earlier, and lar those in the first three columns also lags 01 wages dated (1 - 2) and earlier. The instrument set lar the wage equation includes lags 01 wages dated (1 - 2) and earlier. 

The ¡¡2 's Ior the IV's denote the partial ¡¡2 between the instruments and each endogenous explanatory variable once the exogenous variables included in the equation have been partialled out. 

95% asymptotic confidence intervals based on heteroscedastlcHy-robust standard errors are in parentheses; 95% moment-restricted bootstrap confldence intervals are in brackets. The bootstrap 

confidence intervals Ior the equations in the lirst three columns are based on a distribution that satisfles a larger Sel 01 moment conditions than those in the last three columns. The reason is that 

the Iormer include lagged wages as instruments Ior the employment equation, whlch are absent Irom the latter. 
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observations are available for the period 1976-1984. The 

models are alllog-linear relationships between the number 

of employees, the average real wage, the stock of capital, a 

measure of industry output, lagged values of the previous 

variables, time durnmies, and company effects. The reader 

is referred to the Arellano and Bond article for a detailed 

description of the models and the data. 

Table 6 (pp. 44) contains the results for two different 

models estimated in first differences using IY's. Model 

A inc1udes contemporaneous wage and capital variables, 

which are treated as endogenous along with the first lag 

of employment. In this model, lagged sales and stocks are 

used as outside instruments in addition to lags of the en­

dogenous variables inc1uded in the equation. Model B only 

inc1udes lagged values of wages and capital, and it could 

be interpreted as an approximated Euler equation for em­

ployment with quadratic adjustment costs. Columns labeled 

GMM2 reproduce sorne of the results obtained by Arel­

lano and Bond. The SNM2 and LIML2 estimates are cal­

culated as described in Section 1, and for Model A there 

is an additional column containing indirect GMM2 esti­

mates that were obtained by normalizing to unity the co­

efficient of contemporaneous wages. Finally, Table 7 (p. 

44) presents GMM2, SNM2, and LIML2 estimates of sorne 

simple second-order autoregressive [AR(2)] models for em­

ployment with and without the inc1usion of lagged wages. 

As Tables 6 and 7 show, SNM2, LIML2 and indirect 

GMM2 estimates are most1y far apart from the direct 

GMM2 estimates. These results uncover the fact that the 

GMM2 estimates from the dataset of U.K. firms are proba­

bly much less reliable than what their estimated asymptotic 

standard errors would suggest. 

Our second empirical illustration is based on a similar 

but larger balanced panel of 738 Spanish manufacturing 

companies, for which there are available annual observa­

tions for the period 1983-1990 (see the Appendix for a 

description of these data). We consider a bivariate YAR 

model for the logarithms of employment and wages. The 

employment equation contains both lagged employment and 

lagged wages, but the wage equation only inc1udes its own 

lags. This model can be regarded as the reduced form of 

an intertemporal model of employment determination un­

der rational expectations (see Sargent 1978). To obtain the 

reduced form, an AR(2) process for log wages is assumed, 

and the Euler equation in the log of employment for the 

optimal contingency plans is solved. 
Table 8 (p. 45) presents GMM2, SNM2, and LIML2 es­

timates of the two equations, using only lagged variables in 

levels as instruments for equations in first-differences (the 
basic set of moment conditions that we called "Model 1 "), 

and Table 9 contains the estimates that add lagged variables 

in first-differences as instruments for equations in levels 

(Le., inc1uding the stationarity restrictions of "Model 2"). 
We also report estimates of a univariate AR(2) process for 

employment for the two models (nonrobust estimates are 
not reported but are available on request). 

In addition to asymptotic confidence intervals, for 
GMM2 and SNM2 we calculated 95% semiparametric 
bootstrap confidence intervals based on 1,000 replications 
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from the empirical distribution function of the data sub­

ject to the moment restrictions (Back and Brown 1993). 
Following Brown and Newey (1992), we drew the boot­

strap samples from the mass-point distribution that esti­

mated the probability of the ith observation as Pi = 1/[1 + 
¡l'IjJ(Yi, 8)JN, where 

N 

P = argminN-1 ¿)og[1 + ¡l'IjJ(Yi' 8W (32) 
P, i=l 

and 'IjJ(Yi,8) is the vector of orthogonality conditions for 

observation i evaluated at the appropriate parameter esti­
mates. (We were unable to obtain bootstrap confidence in­

tervals for LIML2 due to computing limitations, because 

each evaluation of LIML2 required numerical optimization 
over a larger parameter space inc1uding time durnmies.) 

Table 8 (p. 45) contains sorne interesting results. GMM2 

estimates of Model 1 are still different from SNM2 and 
LIML2 estimates but by a smaller margin than the corre­

sponding estimates for the U.K. panel. The differences be­
come even smaller for the univariate employment estimates 
that are based on half the number of moments used for the 
estimates in the first three columns. On the other hand, the 

estimates of Model 2 in Table 9 appear to be more precise, 

presumably because the additional orthogonality conditions 
are highly informative. In this case, GMM2 and SNM2 es­
timates provide very similar results. The Sargan statistics, 

Table 9. VAR Estimates for Employment and Wage Equations 
From the Spanish Sample 

"Model 2" restrictions 
Independent 
variables GMM2 SNM2 LlML2 

flnil equation 

flni(l_l) 1.163 1.208 1.624 

(1.112; 1.214) (1.137; 1.279) (1.424; 1.824) 

[1.132; 1.218] [1.143; 1.229] 

flni(I-2) -.135 -.142 -.160 

(-.172; -.098) (-.185; -.099) (-.231; -.089) 

[-.197; -.108] [-.206; -.117] 

flWi(l_l) .121 .116 .058 

(.086; .156) (.077; .155) (-.001; .117) 

[.091; .161] [.094; .164] 

flWi(I-2) -.132 -.151 -.242 

(-.171; -.093) (-.194; -.108) (-.313; -.171) 

[-.173; -.101] [-.177; -.101] 

Sargan test (df) 80.1 (48) 69.1 (48) 50.3 (48) 

fl Wil equation 

flWi(l-l) .854 .873 .869 

(.815; .893) (.834; .912) (.828; .911) 

[.825; .902] [.828; .905] 

flWi(I-2) .152 .138 .141 

(.105; .199) (.089; .187) (.090; .192) 

[.099; .186] [.094; .183] 

Sargan test (df) 71.4 (24) 72.2 (24) 71.4 (24) 

NOTE: The sample penad is 1983-1990 (738 eompanies). Time dummies are included in all 

equatlons. The instrument set Ior the employment equations includes lags 01 employment and 

wages dated (1 - 2) and earlier Ior errors in first differences. and lags 01 employment and wages 

in lirst differenees dated (1 - 1) Ior errors in levels. The instrument set Ior the wage equations 

is similar, but exeludes lagged employment in levels and lirst differences. GMM2 and SNM2 are 

two-step estimates based on one-step GMM residuals that use all the orthogonality restrictions 

Irom Model 2 and the inverse 01 the second moments 01 the Instruments as the weighting matrix. 

95% asymptotoc eonlidence intervals based on heteroscedastielty-robust standard errors are in 

parentheses; 95% moment-restricted bootstrap eonlldenee Intervals are in braekets. 
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rabie 10. VAR Estimates for Employment and Wage Equations From the Spanish Sample 

Independent 
variables GMM2 SNM2 LlML2 GMM2 SNM2 LlML2 

flnit equation 

flni(t-1) .788 1.160 1.002 .441 .815 1.517 
(.610; .966) (.888; 1.432) (.777; 1.227) (.167; .715) (.509; 1.121) (1.081; 1.952) 

[.528; 1.248] [.932; 1.903] [.217; 0.983] [.424; 1.214] 

flni(t-2) -.042 -.206 -.181 .063 .003 -.170 
(-.109; .025) (-.306; -.106) (-.271; -.091) (.002; .124) (-.062; .069) (-.268; -.072) 

[-.265; -.008] [-.567; -.120] [-.060; .120] [-.138; .090] 

flWi(t-1) .337 .650 .675 
(.151; .523) (.371; .929) (.452; .898) 

[.099; .680] [.300; 1.048] 

flWi(t-2) .001 -.040 -.018 
(-.065; .067) (-.120; .040) (-.098; .062) 

[-.150; .059] [-.261; .006] 

Sargan test (df) 30.2 (36) 23.0 (36) 24.8 (36) 23.3 (18) 24.3 (18) 16.5 (18) 

R2 S for IVs: 

flni(t-1) .064 .040 

flWi(t-1) .080 

fl Wit Equation 

flWi(t-l) -.612 -1.198 -1.246 -.612 -1.198 -1.246 

(-.984; -.240) (-1.442; -.953) (-1.509; -.983) (-.984; -.240) (-1.442; -.953) (-1.509; -.983) 

[-.962; .359] [-3.512; 2.492] [-.954; .402] [-4.893; 4.932] 

flWi(t-2) -.120 -.270 -.231 -.120 -.270 -.231 

(-.231; -.009) (-.349; -.191) (-.319; -.143) (-.231; -.009) (-.349; -.191) (-.319; -.143) 

[-.232; .102] [-.627; .348] [-.239; .183] [-1.202; .993] 

Sargan test (df) 17.3 (18) 11.0 (18) 9.3 (18) 17.3 (18) 11.0 (18) 9.3 (18) 

R2 S for /Vs 

flWi(t-1) .023 

NOTE: The sample periad is 1983-1990 (random subsample 01 200 companies). See note to Table 8. 

however, indicate a clear rejection of the stationarity restric­

tions in both the employment and the wage equations. It is 

also noticeable that, although bootstrap confidence intervals 

are always larger than the asymptotic confidence intervals, 

the differences between the two are generaHy smaH. As for 

the LIML2 parameter estimates and Sargan statistics, they 

are similar to GMM2 and SNM2 for the wage equation but 

somewhat different for the employment equation. In par­

ticular, the first lagged employment coefficient estimate is 

higher, and the Sargan statistic tums out to be much smaHer 

than those for the other estimators. 

We reestimated Model 1 with a random subsample of 

200 firms, which is similar to the size of the U.K. sam­

pIe. Interestingly, sorne of the results (reported in Table 

10) are closer to the U.K. results for similar specifications 

than those based on the fuH Spanish sample. In particular, 

the SNM2 estimates of the AR(2) model for employment 

are remarkably stable over the three datasets, but standard 

GMM2 estimates would be seriously downward biased in 

the smaHer samples. Moreover, the discrepancies between 

asymptotic and bootstrap confidence intervals in the ran­

dom subsample were greater than in the fuH sample. (Boot­

strap standard errors for the U.K. unbalanced panel were 

not calculated because they would depend on a nontrivial 

specification of the empirical distribution function for the 

unbalanced observations.) In contrast, perhaps as a result of 

a higher probability of outliers in smaH samples, the LIML2 
estimate of the leading coefficient in the AR(2) model for 

employment was a very small number in the U.K. sample 

and a very large one in the Spanish subsample of 200 firms, 

whereas it was similar to SNM2 for the fuH Spanish sample. 

FinaHy, we simulated data as close as possible to the 

AR(2) employment equation to see if the findings that we 

obtained with the subsample of 200 companies were sub­

stantiated in the Monte CarIo simulations. Random errors 

and individual effects were generated from independent 

normal distributions with variances equal to the values es­

timated from the SNM2 residuals of the fuH Spanish sam­

pIe. Because the estimated time effects showed very little 

variability, the constant was set to a common value for aH 

periods given by the average estimated time effect in lev­

els, although the estimates in the simulations included time 

dumrnies. As a consequence the model was stationary, and 

we generated (and discarded) 100 preliminary observations 

for each individual to minimize the impact of initial con­

ditions. The results for GMM2 and SNM2 are reported in 

Table 11 and confirm the impression conveyed by the real 

data (unfortunately, we were unable to simulate LIML2 due 

to computing limitations). The SNM2 estimates are almost 

median unbiased, but GMM2 shows large downward biases, 

especiaHy when N = 200. A comparison in terms of MAE's 

also favors SNM2 for both sample sizes and parameter es­

timates. Last, looking at the quantiles of the t ratios shown 

in the lower panel of Table 11, it appears that the N(O,l) 

approximation is reasonable for the SNM t ratios but not 

for the GMM t ratios. 
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Table 11. Monte CarIo Simulations for the 
AR(2) Model for Employment 

N = 738 N = 200 

GMM2 SNM2 GMM2 SNM2 

Summary o( estimates 

Median .72 .82 .55 .82 

% bias 12.0 .3 32.2 .8 

iqr .14 .15 .27 .28 

iq80 .28 .29 .56 .61 

MAE .11 .08 .26 .14 

Median .01 .03 -.02 .02 

% bias 64.6 7.0 163.3 35.4 

iqr .04 .04 .06 .08 

iq80 .07 .07 .11 .14 

MAE .02 .02 .05 .04 

Quantiles o( the t statistics 

.10 -2.44 -1.37 -3.61 -1.62 

.25 -1.75 -.74 -2.77 -.82 

.50 -1.01 .02 -1.84 .04 

.75 -.25 .77 -.97 .81 

.90 .41 1.33 -.21 1.42 

.10 -2.22 -1.55 -2.93 -1.92 

.25 -1.48 -.82 -2.16 -1.05 

.50 -.78 -.08 -1.26 -.24 

.75 -.01 .60 -.45 .60 

.90 .62 1.19 .17 1.08 

NOTE: 0<1 = .813.0<2 = .030. 'Y = .n7. ~ = .038. ~ = .01.1.000 replications. % bias 

gives the percentage median bias for all estimates; iqr is the 75th-25th interquartile range; iq80 is 

the 9Oth-1Oth interquantile range; MAE denotes the median absolute error. The 10th. 25th. 50th. 

75th. and 90th quantiles Ior the standard normal distributlon are. respectively. -1.28. -.67. O • 

. 67. and 1.28. 

4. CONCLUSIONS 

There has recently been a renewed interest in the finite­

sample properties of GMM estimators in various time series 

and cross-sectional contexts. Several works have empha­

sized the role of estimated weighting matrices for the prop­

erties of the estimators in small samples, and several alter­

native methods have been considered (Angrist and Krueger 

1995; Angrist, Imbens, and Krueger 1995; Altonji and Se­

gal 1996; Hansen et al. 1996; Imbens 1997). In contrast, 

in this artiele we have focused on the role of normaliza­

tion rules for the finite-sample properties of GMM estima­

tors that make use of standard two-step weighting matrices. 

Our work is motivated by the results of Hillier (990), who 

argued that the altemative normalization rules adopted by 

LIML and 2SLS are at the basis of their different sam­

pling behavior. Hillier showed that syrnmetrically normal­

ized 2SLS has similar finite-sample properties to those of 

LIML. This result is interesting because, unlike LIML, sym­

metrically normalized 2SLS is a GMM estimator based on 

structural-form moment conditions, and therefore it can be 

easily extended to distribution-free environments and robust 

statistics. 

In particular, syrnmetrically normalized 2SLS is well 

suited for application to the nonstandard IV situations that 

arise in linear panel-data models with predetermined vari­

ables, which are the models of interest in this artiele. These 

models are typically estimated in orthogonal deviations or 

first-differences using all the available lags as instruments. 

Usually, there are many instruments available, but they are 

of poor quality because they tend to be only weakly cor-
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related with the first-differenced endogenous variables that 

appear in the equation. 

In this article we have presented syrnmetrically normal­

ized GMM (SNM) estimators for dynamic panel-data mod­

els that are asymptotically equivalent to ordinary optimal 

GMM estimators. A by-product of the estimation is a test 

statistic of overidentifying restrictions, based on a mini­

mum eigenvalue ca1culation. We have also discussed the 

relation between robust and nonrobust SNM estimators and 

the LIML analogues. In our context, a nonrobust LIML ana­

logue in orthogonal deviations is algebraically equivalent to 

an ordinary LIML estimator that solves a minimum eigen­

value problem. The robust LIML analogue, however, is the 

continuously updated GMM estimator proposed by Hansen 

et al. (1996), which no longer involves a simple minimum 

eigenvalue ca1culation. 

We have reported Monte CarIo evidence on the perfor­

mance of nonrobust and robust GMM, SNM, and LIML 

analogue estimates for an ARO) model with individual 

effects. For this model we have considered two altema­

tive sets of moment conditions, as discussed by Arellano 

and Bond (991) and Arellano and Bover (995). Because 

for these models the IV restrictions can be expressed as 

straightforward structures on the data covariance matrix, 

using these representations we have also ca1culated MD es­

timates for comparisons with the IV estimates. Our findings 

suggest that Hillier's basic results may have a wider appli­

cability. In most cases, the differences in the behavior of 

SNM and LIML were small, and both had a smaller me­

dian bias and a larger interquartile range than GMM. The 

differences in dispersion with ordinary GMM were small, 

however, except in the almost unidentified cases. 

Finally, as an empirical illustration, we have reported es­

timates of employment and wage equations from U.K. and 

Spanish firm panels. The results show that GMM estimates 

from the (smaller) U.K. panel can be very unreliable when 

the degree of overidentification is large. The results from 

the (larger) Spanish panel produce a eloser agreement be­

tween ordinary and syrnmetrically normalized GMM es­

timates, although there is evidence that there can still be 

serious biases in GMM estimates. Sorne of these results 

are confirmed by simulating data as elose as possible to the 

empirical data. Moment-restricted bootstrap confidence in­

tervals show that asymptotic confidence intervals are often 

overoptimistic, and Sargan tests tend to reject the restric­

tions implied by the stationarity of initial conditions. 
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