Symmetries and canonical transformations of the Hubbard model on bipartite lattices

Stellan Östlund
Institute of Theoretical Physics, Chalmers University of Technology, S-41296, Göteborg, Sweden. (Version 920313)

Abstract

Recently an exact $S U(2) \otimes S U(2)$ symmetry for the half filled Hubbard model has been elucidated but has not yet been properly incorporated in many analyses of this model. We compute the irreducible representations of the symmetry group, a necessary step for any consistent mean field analysis. A proper mean field theory valid for both negative and positive U Hubbard models is then presented. A byproduct of the description is a systematic enumeration of the Lie group $S U(8)$ of unitary canonical transformations that is a direct generalization of the $S U(4)$ transformation in the theory of superfluid ${ }^{3} \mathrm{He}$ and the $S U(2)$ Bogoliubov transformation in BCS theory.

In spite of the fact that the Hubbard model has served as a paradigm for strongly correlated electrons on a lattice, only recently has it been appreciated that in addition to the ordinary $S U(2)$ spin symmetry, there exists an exact "hidden" $S U(2)$ "pseudo-spin" symmetry at half filling. [1] [2] [3] The existence of the hidden symmetry calls into question the calculations that have been done in the past on the Hubbard model, since the order parameters that have been considered have not been shown to be representations for the full symmetry group. This is a minimal requirement for a self-consistent mean field or long wavelength theory. Deficiences in previous mean field theories are further suggested by the fact that these calculations have been able to treat both the attractive and repulsive Hubbard model at the same time.

We remedy this by providing a systematic analysis of order parameters of the $S U(2) \otimes$ $S U(2)$ symmetry of the Hubbard model at half filling and show that this group forms a natural subgroup of an $S U(4)$ symmetry of the noninteracting theory. The classifications of the representations of the full symmetry group is relevant for any type of analysis of the half-filled Hubbard model. In this paper we perform a mean field analysis which can be seen to be a natural extension of Hartree-Fock and BCS theory. But here, since the action of the symmetry group turns out to mix Hartree Fock and "BCS" expectation values, a self consistent theory is only possible by taking into account the possibility of nonzero expectation values of all quadratic forms of creation and annhilation operators. A byproduct of our description is a natural extension of the theory of superfluid ${ }^{3} \mathrm{He}$ to a system with the possibility of three broken symmetries: electromagnetic gauge, spin and odd-even sublattice.

The Hubbard model at half filling is given by the Hamiltonian [4]

$$
\begin{equation*}
H=H_{0}+U \sum_{r} S(r)^{2} \tag{1}
\end{equation*}
$$

where $S(r)=\sum_{\alpha \beta} c_{\alpha, r}^{\dagger} \sigma_{\alpha, \beta} c_{\beta, r}$ and σ is the vector of Pauli matrices. The Hamiltonian H_{0} is given by the usual tight binding hopping $H_{0}=-t \sum c_{\sigma, r}^{\dagger} c_{\sigma, r^{\prime}}$ where the summation is over spin σ and grid points r and nearest neighbors r^{\prime} of an arbitrary dimensional cubic lattice. The creation operator of an electron with spin σ at site r is labelled $c_{\sigma, r}^{\dagger}$

The Hamiltonian H_{0} is diagonalized as $H_{0}=\sum_{k \alpha} \epsilon_{k}^{0} c_{\sigma, k}^{\dagger} c_{\sigma, k}$. The sum on k runs from $-\pi$ to π for each k_{j}, and the single particle energy is given by $\epsilon_{k}^{0}=-2 t \sum_{j} \cos k_{j}$ where k_{j} denotes each component of the vector k.

We define the vector $Q=(\pi \ldots \pi)$ and the operators

$$
\begin{array}{ll}
a_{k}^{\dagger} \equiv\left(a_{\uparrow, k}^{\dagger}, a_{\downarrow, k}^{\dagger}\right)=\left(c_{\uparrow, k}^{\dagger}, c_{\downarrow, k}^{\dagger}\right) & \text { when } \epsilon_{k}^{0}<0 \tag{2}\\
b_{k}^{\dagger} \equiv\left(b_{\uparrow, k}^{\dagger}, b_{\downarrow, k}^{\dagger}\right)=\left(c_{\uparrow, k+Q}^{\dagger}, c_{\downarrow, k+Q}^{\dagger}\right) & \text { when } \epsilon_{k}^{0}>0
\end{array}
$$

so that in terms of these operators

$$
\begin{equation*}
H_{0}=\sum_{k \alpha} \epsilon_{k}^{0}\left(a_{\sigma, k}^{\dagger} a_{\sigma, k}-b_{\sigma, k}^{\dagger} b_{\sigma, k}\right) \tag{3}
\end{equation*}
$$

where now the summation runs over the reduced Brillouin zone corresponding to $\epsilon_{k}^{0}<0$.
The "Lieb-Mattis" transformation Z acts on the position space creation and destruction operators $c_{\sigma, r}^{\dagger}$ through the canonical transformation $c_{\downarrow r}^{\dagger} \mapsto-1^{r} c_{\downarrow r}, c_{\uparrow r}^{\dagger} \mapsto c_{\uparrow r}^{\dagger}$, where $-1^{r} \equiv e^{i Q \cdot r}$. Spin rotations and Z act naturally on an 8-component multispinor of definite momentum: $\Psi_{k} \equiv\left(a_{k}, b_{k}, a_{-k}^{\dagger}, b_{-k}^{\dagger}\right)$. In momentum space Z can be represented by the idempotent matrix whose entries are all zero except $Z_{1,1}=Z_{3,3}=Z_{5,5}=Z_{7,7}=Z_{2,8}=Z_{4,6}=$ $Z_{6,4}=Z_{8,2}=1$. The Lieb-Mattis transformation then becomes $\Psi_{k} \mapsto Z \Psi_{k}$. It is well known that Z is an exact symmetry of H_{0} but changes the sign of the Hubbard term U. [5]- [2]

Spin rotations are defined using eight dimensional representations of the Dirac gamma matrices [6] in the "standard rep" where γ_{0} is diagonal with entries $(1,1,-1,-1)$. We define the seven 8×8 matrices β_{A} written in block form as $\beta_{0}=\left(\begin{array}{cc}\gamma_{0} & 0 \\ 0 & -\gamma_{0}\end{array}\right), \beta_{j}=\left(\begin{array}{cc}\gamma_{j} & 0 \\ 0 & \gamma_{j}^{*}\end{array}\right)$ and $\beta_{j+3}=i Z \beta_{0} \beta_{j} Z$, all for $1 \leq j \leq 3$. The notation γ_{j}^{*} denotes complex conjugate (not adjoint).

By explicit computation, it can be verified that these seven matrices β_{A} obey $\beta_{A} \beta_{B}+$ $\beta_{A} \beta_{B}=2 g_{A B}$ where $g_{A B}$ is the diagonal operator $(1,-1,-1,-1,-1,-1,-1)$ times the unit matrix. Thus β_{ν} defines an 8×8 Clifford algebra. The matrix β_{0} obeys the constraint $\beta_{0}=i \beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5} \beta_{6}$.

We define the commutators between the β matrices $M_{A, B} \equiv \frac{i}{2}\left[\beta_{A}, \beta_{B}\right]$. A series of corollaries now follow directly from the general relation between $S O(2 n)$ and $S O(2 n+1)$ and Clifford algebras of $2^{n} \times 2^{n}$ matrices. [7]
$M_{A, B}$ defines the Lie algebra of $S O(6,1)$ for $0 \leq A, B \leq 6$. The restriction $A, B \neq 0$ generates the subalgebra of $S O(6)$ which is known to be isomorphic to $S U(4)$. By construction $M_{i, j}$ for $1 \leq i, j \leq 3$ generates the $S U(2)$ subalgebra of spin rotations. Since β_{0} anticommutes with β_{A} and it can be checked that β_{0} commutes with Z we find that $Z M_{i, j} Z=M_{i+3, j+3}$ so that $M_{i+3, j+3}$ generates another $S U(2)$ subalgebra defined by the $S U(2)_{P}$ "pseudospin" symmetry that is known to be a symmetry of the Hubbard model, and corresponds to conjugating ordinary spin rotations with the Mattis-Lieb transformation Z. Since it anticommutes with all other β_{A}, the matrix β_{0} is a scalar under the $S O(6)$ defined by $M_{A, B}$ for $A, B \neq 0$.

Since the Hamiltonian H_{0} is simply given in terms of β_{0} by $H_{0}=\frac{1}{2} \sum_{k} \epsilon_{k}^{0} \Psi_{k}^{\dagger} \beta_{0} \Psi_{k}$ we see immediately that H_{0} is in fact invariant under the entire group $S O(6) \approx S U(4)$ generated by $M_{A, B}$.

To understand how this group is imbedded, we investigate a general canonical transformations of the form $\Psi_{k} \mapsto T_{k} \Psi_{k}$ and $\Psi_{-k} \mapsto T_{-k} \Psi_{-k}$. We define the matrix $g=-\beta_{1} \beta_{3} \beta_{5}=$ $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ in 4×4 block form. Preservation of the canonical anticommutation relations is then equivalent to $T_{k} g \tilde{T}_{-k}=g$. Here "tilde" indicates transpose. If we also impose the restriction that T_{k} generate a unitary transformation, we demand that $g\left(T_{-k}\right)^{*} g=T_{k}$ resulting in $T_{k}\left(T_{k}\right)^{\dagger}=1$ which identifies T_{k} as an element of $U(8)$. Demanding a global transformation results in the additional constraint $T_{k} \equiv T$ for all values of k. In terms of infinitesimal generators $T_{k} \approx\left(1+G_{k}\right)$ we then have three conditions

$$
\begin{align*}
g G_{k} g & =-\tilde{G}_{-k} & & \text { canonical } \\
g G_{k} g & =\left(G_{-k}\right)^{*} & & \text { unitary } \tag{4}\\
G_{k} & =G \quad \forall_{k} & & \text { global }
\end{align*}
$$

The entire group of unitary canonical transformations is therefore a copy of $U(8)$ for
each k in the "positive reduced Brillouin zone", defined here as the first Brillouin zone mod the operations $k \mapsto k+(\pi . . \pi)$ and $k \mapsto-k$. This generates an $S U(8)$ analog of the $S U(2)$ Bogoliubov transformation of BCS theory and the $S U(4)$ theory of ${ }^{3} \mathrm{He}$; [8] a doubling of the degrees of freedom occurs for each non-conserved variable in the set of particle number, spin and momentum $(\pi \ldots \pi)$. The subgroup of global transformations is generated by all matrices $i \beta_{0}, \beta_{A}$ and all commutators of these seven matrices defines the Lie algebra of $S O(7)$. Direct computation shows that the group $S O(6)$ previously identified is the largest unitary subgroup that commutes with β_{0}.

We have thus shown that the most general set of canonical transformations that mix particles and holes, spin and momentum $(\pi \ldots \pi)$ is given by the product of a copy of $S U(8)$ for each value of k in the positive reduced Brillouin zone. Requiring commutability with H_{0} breaks this down to $S O(6) \approx S U(4)$ and finally requiring commutability with the Hubbard model breaks this down to global $S U(2) \otimes S U(2)$. All these embeddings are generated by Lie subalgebras created by commutators of subsets of the Clifford algebra.

Mean field theory are built on expectation values of the form $\left\langle c_{\sigma, p}^{\dagger} c_{\delta, q}>\right.$ and $<c_{\sigma, p}^{\dagger} c_{\delta, q}^{\dagger}>$ but in order to construct self consistent mean field theories of the Hubbard model we must use irreducible representations that transform properly under $S U(2) \otimes S U(2), Z$ and if possible connects to the $S O(6)$ symmetry of the noninteracting theory. The pseudospin symmetry mixes the Hartree, Fock and BCS terms and all these must therefore be incorporated in the representations. All this can be elegantly accomplished by using the matrices β_{A}.

We shall use the standard $S U(4)$ notation of labeling reps by bold face numerals that coincide with their dimensionality, and complex conjugate reps by a star. For $S U(4)$ reps $1,4,6,10$ and 15 , only 4 and 10 are inequivalent from their complex conjugate. We first note that Ψ_{k} forms an 8 dimensional reducible rep of $S U(4)$. Since β_{0} commutes with the generators $M_{A, B}$ the projection operator which decomposes the 8-dimensional rep into two 4 -d reps $\mathbf{4} \oplus \boldsymbol{4}^{*}$ is precisely $\left(1 \pm \beta_{0}\right)$.

In order to understand how the group acts on operators we next decompose tensor
products such as $\Psi_{p}^{\dagger} \otimes \Psi_{q}$ into irreducible representations. These are given by [9] $\mathbf{4} \otimes \boldsymbol{4}^{*}=$ $1 \oplus 15$ and $\mathbf{4} \otimes 4=\mathbf{6} \oplus \mathbf{1 0}$. This then yields the decomposition $\Psi_{p}^{\dagger} \otimes \Psi_{q} \approx\left(\mathbf{4} \oplus \mathbf{4}^{*}\right) \otimes$ $\left(\mathbf{4}^{*} \oplus \mathbf{4}\right)=2(\mathbf{1} \oplus \mathbf{1 5}) \oplus 2(\mathbf{6}) \oplus\left(\mathbf{1 0} \oplus \mathbf{1 0}^{*}\right)$.

When $S U(4)$ breaks down to $S U(2)_{S} \otimes S U(2)_{P}$, these reps branch [9] according to

$$
\begin{align*}
4 & \mapsto\left(D^{\frac{1}{2}} \otimes D^{\frac{1}{2}}\right) \\
6 & \mapsto\left(D^{1} \otimes D^{0}\right) \oplus\left(D^{0} \otimes D^{1}\right) \tag{5}\\
10 & \mapsto\left(D^{1} \otimes D^{1}\right) \oplus\left(D^{0} \otimes D^{0}\right) \\
15 & \mapsto\left(D^{1} \otimes D^{1}\right) \oplus\left(D^{1} \otimes D^{0}\right) \oplus\left(D^{0} \otimes D^{1}\right)
\end{align*}
$$

where $D^{\nu} \otimes D^{\mu}$ indicates the D^{ν} rep of $S U(2)_{P}$ and D^{μ} indicates the spin μ rep of $S U(2)_{S}$. Here subscript P and S denote "pseudospin" and "spin" respectively.

Using this information, we see that when $\Psi^{\dagger}{ }_{p} \otimes \Psi_{q}$ splits into irreducible reps of $S U(2)_{P} \otimes$ $S U(2)_{S}$, we induce a decomposition into $4\left(D^{0} \otimes D^{0}\right) \oplus 4\left(D^{1} \otimes D^{0}\right) \oplus 4\left(D^{0} \otimes D^{1}\right) \oplus 4\left(D^{1} \otimes D^{1}\right)$

The branching of the irreducible reps are most easily described by associating a polynomial of fermion operators with a matrix: $\mathcal{O}_{p, q}(m) \equiv \sum_{i, j}\left(\bar{\Psi}_{p}\right)_{i} m_{i j}\left(\Psi_{q}\right)_{j}$ where we have defined $\bar{\Psi}_{p} \equiv \Psi_{p}^{\dagger} \beta_{0}$. We further define the $8 \times 8 S U(2) \otimes S U(2)$ scalar matrix Γ by $\Gamma=i \beta_{0} \beta_{1} \beta_{2} \beta_{3}=\left(\begin{array}{cc}\gamma_{5} & 0 \\ 0 & \gamma_{5}\end{array}\right)$ where γ_{5} indicates the ordinary pseudoscalar $\gamma_{5}=i \gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}$.

The coefficients linking the 8×8 matrices to each of the invariant spaces that form reps of $S U(4)$ and of Z can then be neatly represented by products of the beta matrices. We denote the four $S U(2)_{P} \otimes S U(2)_{S}$ scalars by Υ with the following superscripts: $\Upsilon^{0}=1-\beta_{0}$, $\Upsilon^{0^{*}}=1+\beta_{0}, \Upsilon^{1}=\left(1+\beta_{0}\right) \Gamma, \Upsilon^{1^{*}}=-\left(1-\beta_{0}\right) \Gamma$. To make subsequent formulas simple we also need to define $\Omega_{0}=\Omega^{0}=\Gamma, \hat{\Omega_{0}}=\hat{\Omega^{0}}=\Gamma, \Omega_{i}=\Omega^{i}=\beta_{i}$ and $\hat{\Omega}_{i}=-\hat{\Omega}^{i}=i \beta_{i+3}$. With all these definitions, the irreducible reps can be written in the following natural " 4 -vector" form

$$
\begin{align*}
&\left(\Upsilon_{\mu, \nu}^{\tau}\right)_{p, q} \equiv \mathcal{O}_{p, q} \quad\left(\Upsilon^{\tau} \Omega^{\mu} \hat{\Omega}_{\nu}\right) \tag{6}\\
&\left(\Upsilon_{\mu, \nu}^{\tau^{*}}\right)_{p, q} \equiv \mathcal{O}_{p, q}\left(\Upsilon^{\tau^{*}} \hat{\Omega}_{\nu} \Omega^{\mu}\right)
\end{align*}
$$

where $0 \leq \mu, \nu \leq 3$.

We can now classify all possible bilinear order parameters according to their irreducible reps of $S U(4)$ and $S U(2)_{S} \otimes S U(2)_{P}$ using the following linear combinations whose relation to usual Fermi operators are suggested by their symbols. Sum over repeated indices is implied.

$$
\begin{array}{rlc}
M_{p, q}^{a b, j} & = & <a_{\delta, p}^{\dagger}\left(\sigma_{j}\right)_{\delta, \tau} b_{\tau, q}> \\
N_{p, q}^{a b} & =c & <a_{\delta, p}^{\dagger} b_{\delta, q}> \\
\Delta_{p, q}^{a b, \mu} & =<a_{\delta, p}^{\dagger}\left(i \sigma_{2} \sigma_{\mu}\right)_{\delta, \tau} b_{\tau,-q}^{\dagger}> \tag{7}\\
\Delta_{p, q}^{* a b, \mu} & =<a_{\delta,-p}\left(i \sigma_{2} \sigma_{\mu}\right)_{\delta, \tau} b_{\tau, q}>
\end{array}
$$

and similar definitions for $M_{p, q}^{a a, j}$ etc. We have defined σ_{0} to be the identity matrix.
The different reps of $S U(4)$ can be be naturally organized into 4×4 form, where each column transforms as a 4 -vector under $S U(2)_{S}$ and each row transforms as a 4 -vector under $S U(2)_{P}$, i.e. the zero component transforms as a scalar, and the one two three component like an ordinary vector under the respective rotation group. Each irreducible rep of $S U(4)$ is contained in exactly one of the diagrams by combining appropriate subblocks. The subblocks are easily identified by matching the dimensionality. We use the notation (10) $\equiv D^{1} \otimes D^{0}$ etc.

$$
\begin{equation*}
<\left(\Upsilon_{\mu \nu}^{0}\right)_{p, q}>=[\mathbf{1}]_{p, q} \oplus[\mathbf{1 5}]_{p, q} \mapsto[00]_{p, q} \oplus[(01) \oplus(10) \oplus(11)]_{p, q} \tag{8}
\end{equation*}
$$

$N_{-q,-p}^{a a}-N_{p, q}^{b b}$	$\Delta_{-q, p}^{a b, 0}+\Delta_{-q, p}^{* b a, 0}$	$-i \Delta_{-q, p}^{a b, 0}+i \Delta_{-q, p}^{* b a, 0}$	$N_{-q,-p}^{a a}+N_{p, q}^{b b}-\delta_{p, q}$
$M_{-q,-p}^{a a, x}+M_{p, q}^{b b, x}$	$\Delta_{-q, p}^{a b, x}+\Delta_{-q, p}^{* b a, x}$	$-i \Delta_{-q, p}^{a b, x}+i \Delta_{-q, p}^{* b a, x}$	$M_{-q,-p}^{a a, x}-M_{p, q}^{b b, x}$
$M_{-q,-p}^{a a, y}+M_{p, q}^{b b, y}$	$\Delta_{-q, p}^{a b, y}+\Delta_{-q, p}^{* b a, y}$	$-i \Delta_{-q, p}^{a b, y}+i \Delta_{-q, p}^{* b a, y}$	$M_{-q,-p}^{a a, y}-M_{p, q}^{b b, y}$
$M_{-q,-p}^{a a, z}+M_{p, q}^{b b, z}$	$\Delta_{-q, p}^{a b, z}+\Delta_{-q, p}^{* b a, z}$	$-i \Delta_{-q, p}^{a b, z}+i \Delta_{-q, p}^{* b a, z}$	$M_{-q,-p}^{a a, z}-M_{p, q}^{b b, z}$

$$
\begin{equation*}
<\left(\Upsilon_{\mu \nu}^{1}\right)_{p, q}>=[\mathbf{6}]_{p, q} \oplus[\mathbf{1 0}]_{p, q} \mapsto[(01) \oplus(10)]_{p, q} \oplus[(00) \oplus(11)]_{p, q} \tag{10}
\end{equation*}
$$

$-N_{p, q}^{a b}+N_{-q,-p}^{a b}$	$\Delta_{p,-q}^{a a, 0}+\Delta_{-q, p}^{* b, 0}$	$-i \Delta_{p,-q}^{a a, 0}+i \Delta_{-q, p}^{* b b, 0}$	$N_{p, q}^{a b}+N_{-q,-p}^{a b}$
$M_{p, q}^{a b, x}+M_{-q,-p}^{a b, x}$	$-\Delta_{p,-q}^{a a, x}+\Delta_{-q, p}^{* b, x}$	$i \Delta_{p,-q}^{a a, x}+i \Delta_{-q, p}^{* b, x}$	$-M_{p, q}^{a b, x}+M_{-q,-p}^{a b, x}$
$M_{p, q}^{a b, y}+M_{-q,-p}^{a b, y}$	$-\Delta_{p,-q}^{a a, y}+\Delta_{-q, p}^{* b, y}$	$i \Delta_{p,-q}^{a a, y}+i \Delta_{-q, p}^{* b, y}$	$-M_{p, q}^{a b, y}+M_{-q,-p}^{a b, y}$
$M_{p, q}^{a b, z}+M_{-q,-p}^{a b, z}$	$-\Delta_{p,-q}^{a a, z}+\Delta_{-q, p}^{* b b, z}$	$i \Delta_{p,-q}^{a a, z}+i \Delta_{-q, p}^{* b b, z}$	$-M_{p, q}^{a b, z}+M_{-q,-p}^{a b, z}$

The other two independent blocks $\Upsilon^{\tau^{\star}}$ are obtained essentially by taking the hermitian conjugate of the forms above. Phase factors are incorporated in our definition of the representation so that under the transformation Z each of the reps represented in this manner transforms to its transpose: $Z\left(\Upsilon_{\mu, \nu}^{\tau}\right)_{p, q} Z=\left(\Upsilon_{\nu, \mu}^{\tau}\right)_{p, q}$. Under the adjoint operation

$$
\begin{align*}
& \left(\left(\Upsilon_{\mu, \nu}^{\tau}\right)_{p, q}\right)^{\dagger}=\left(\Upsilon_{\mu, \nu}^{\tau^{*}}\right)_{-q,-p}=-g\left(\Upsilon_{\mu \nu}^{\tau}\right)^{*} g \tag{12}\\
& \left(\left(\Upsilon_{\mu, \nu}^{\tau^{*}}\right)_{p, q}\right)^{\dagger}=\left(\Upsilon_{\mu, \nu}^{\tau}\right)_{-q,-p}=-g\left(\Upsilon_{\mu \nu}^{\tau^{*}}\right)^{*} g \tag{13}
\end{align*}
$$

where g is the tensor defined above Eq. 4 .
A general mean field theory consistent with translational invariance within a sublattice and $S U(2) \otimes S U(2)$ must obey $\left(\Upsilon_{n, n^{\prime}}^{\tau}\right)_{p, q}=0$ unless $p \neq q$. We must then consider the possibility of nonzero expectation values of bilinears of the form $<\left(\Upsilon_{\mu, \nu}^{\tau}\right)_{k, k}>$. To simplify subsequent formulas, we define the operators $\left(\Upsilon_{\mu, \nu}^{ \pm}\right)_{p, q}=\frac{1}{2}\left(\left(\Upsilon_{\mu, \nu}^{1}\right)_{p, q} \pm\left(\Upsilon_{\mu, \nu}^{1 *}\right)_{p, q}\right)$ and define the order parameters

$$
\begin{equation*}
\bar{\Upsilon}_{0, n^{\prime}}^{\tau}=\sum_{q}<\left(\Upsilon_{0, n^{\prime}}^{\tau}\right)_{q, q}> \tag{14}
\end{equation*}
$$

We then take all possible nonvanishing terms of this form in the Hubbard potential and find that after considerable calculation the effective interaction is given by

$$
\begin{gather*}
U \sum_{p}\left(\bar{\Upsilon}_{0, n^{\prime}}^{+}\left(\Upsilon_{0, n^{\prime}}^{+}\right)_{p, p}-\bar{\Upsilon}_{n, 0}^{+}\left(\Upsilon_{n, 0}^{+}\right)_{p, p}\right)+ \tag{15}\\
\left(\bar{\Upsilon}_{0, n^{\prime}}^{0}\left(\Upsilon_{0, n^{\prime}}^{0}\right)_{p, p}-\bar{\Upsilon}_{n, 0}^{0}\left(\Upsilon_{n, 0}^{0}\right)_{p, p}\right)
\end{gather*}
$$

where repeated indices are summed over. Since $\Upsilon_{\mu, \nu}^{\tau}$ is transposed under Z, we see that the interaction is indeed odd under changing the sign of U, and the mean field theory behaves properly under $S U(4), Z$ and the entire group $S U(2) \otimes S U(2)$.

We identify $\Upsilon_{n, 0}^{\tau}$ as the order parameters that measures spontaneously broken $S U(2)_{S}$ symmetry. The order parameters that measure broken $S U(2)_{P}$ symmetry are $\Upsilon_{0, n^{\prime}}^{\tau}$. To understand these we convert $\bar{\Upsilon}_{n, n^{\prime}}^{\tau}$ to real space and define $\Delta_{r}^{0} \equiv<c_{\uparrow, r}^{\dagger} r_{\downarrow, r}^{\dagger}>$. We find that

$$
\begin{align*}
& \bar{\Upsilon}_{0, n^{\prime}}^{0}=\sum_{r} \quad\left(-1^{r} R e \Delta_{r}^{0}, \quad-1^{r} \operatorname{Im} \Delta_{r}^{0}, \quad\left(n_{r}-1\right) \quad\right) \\
& \bar{\Upsilon}_{n, 0}^{0}=\sum_{r}\left(\begin{array}{ccc}
M_{r}^{x}, & M_{r}^{y}, & M_{r}^{z}
\end{array}\right) \tag{16}\\
& \bar{\Upsilon}_{0, n^{\prime}}^{+}=\sum_{r} \quad\left(\quad \operatorname{Re} \Delta_{r}^{0}, \quad \operatorname{Im} \Delta_{r}^{0}, \quad-1^{r}\left(n_{r}-1\right)\right) \\
& \left.\bar{\Upsilon}_{n, 0}^{+}=\sum_{r} \begin{array}{ccc}
-1^{r} M_{r}^{x}, & -1^{r} M_{r}^{y}, & -1^{r} M_{r}^{z}
\end{array}\right)
\end{align*}
$$

To work further with the mean field theory, we can fix a value in $S U(2)_{S} \otimes S U(2)_{P}$ parameter space to determine the direction of spontaneously broken symmetry, and thereby without loss of generality, choose

$$
\begin{equation*}
0=\bar{\Upsilon}_{0,1}^{\tau}=\bar{\Upsilon}_{0,2}^{\tau}=\bar{\Upsilon}_{1,0}^{\tau}=\bar{\Upsilon}_{2,0}^{\tau} \tag{17}
\end{equation*}
$$

as an additional condition which resolves the ground state $S U(2)_{S} \otimes S U(2)_{P}$ degeneracy.
We see that by restricting ourselves to Eq.[17] we are permitting to be nonzero precisely those expectation values that transform as the z component of spin and pseudospin. Rotations about the pseudospin z is the subgroup $U(1)$ of electromagnetic gauge transformations. Our choice of $S U(2)_{P}$ parameterization and broken symmetry axis selects exactly those ground states that have definite particle number, and leads to the standard "Hartree Fock" results for the Hubbard model that define the z axis to be the axis of broken $S U(2)_{S}$ symmetry. (See for instance Ref. [4])

Results from that analysis are unambigous for repulsive Hubbard model with $U>0$. Making use of standard results we obtain a Neel ordered ground state, i.e. all $\bar{\Upsilon}_{\mu, \nu}^{\tau}=0$ except $\bar{\Upsilon}_{3,0}^{+} \neq 0$.

Since we have constructed the order parameters to transform simply under the LiebMattis transformation, we find a ground state for $U<0$ with all $\bar{\Upsilon}_{\mu, \nu}^{\tau}=0$ except $\bar{\Upsilon}_{0,3}^{+}$i.e. a charge density wave which is analogous to Neel order along the z axis. However, since the pseudospin axis can be arbitrarily chosen, long wavelength excitations above the mean field
ground state of the half filled negative U Hubbard model mixes charge-density wave and the s-wave superconducting order parameter. [10] This is the analog of the antiferromagnetic spin density waves in the repulsive Hubbard model. A consequence of this analysis is that a mean field calculation that searches for s-wave pairing in the $U<0$ Hubbard model will find the same ground state energy as a mean field analysis assuming only a charge density wave. However, the full theory is necessary to understand the Goldstone modes that in the negative-U Hubbard model mix s-wave pairing and charge-density waves.

To summarize, we have systematically enumerated the representations of the important symmetries of noninteracting electrons on a lattice and shown how the representations branch when the symmetry of the free theory is broken by the Hubbard term. A tangible consequence has been a careful validatation of the standard mean field theory theory of the positive U Hubbard model, and calculation of the analogous Goldstone modes for negative U. We can of course "quickly" derive these modes by transforming each component of the Neel order parameter with the Lieb-Mattis transformation [10], but the present analysis shows that indeed no other nonzero order paramenters have been negleced in that argument.

I. ACKNOWLEDGMENTS

The author would like to thank Martin Cederwall, Bengt Nilsson and Ulf Ottoson for useful conversations.

REFERENCES

[1] S.C. Zhang, Phys. Rev. Lett. 65120 (1990); Int. J. Mod. Phys. B 5, 153 (1991); C.N. Yang and S.C. Zhang , Mod. Phys. Lett. B4 759 (1990); S.C. Zhang, Phys. Rev. B. 42 ,1012 (1991)
[2] S. Östlund, G. Mele, Phys. Rev.B44 (1991) 12413.
[3] J. Brad Marston, Ian Affleck, Phys. Rev. B 3911538 (1989)
[4] E. Fradkin, Field theories of condensed matter systems, Addison Wesley, (1991).
[5] H. Shiba, Prog. Theor. Phys 48 , 2171 (1972); V.J. Emery, Phys. Rev. B. 14, 2989 (1976); E.H. Lieb and F.Y. Wu, Phys. Rev. Lett.20, 1445 (1968).
[6] J.D. Bjorken and S.D. Drell, Relativistic Quantum Fields, McGraw-Hill, 1965.
[7] W. Miller, Symmetry Groups and Their Applications, Academic Press, New York (1972)
[8] A.J. Leggett, Rev. Mod. Phys. 47, 331, (1975).
[9] W.G. McKay, J. Patera, Tables of dimensions, indices and branching rules for representations of simple Lie algebras, Marcel Dekker, Inc, New York (1981); R. Slansky, Phys. Reports 79 ,1 (1981)
[10] R. Micnas, J. Ranniger, S. Robaszkiewitz, Rev. Mod. Phys.62, 331 (1990).

