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Abstract

Recently an exact SU(2) ⊗ SU(2) symmetry for the half filled Hubbard

model has been elucidated but has not yet been properly incorporated in

many analyses of this model. We compute the irreducible representations of

the symmetry group, a necessary step for any consistent mean field analysis.

A proper mean field theory valid for both negative and positive U Hubbard

models is then presented. A byproduct of the description is a systematic

enumeration of the Lie group SU(8) of unitary canonical transformations

that is a direct generalization of the SU(4) transformation in the theory of

superfluid 3He and the SU(2) Bogoliubov transformation in BCS theory.
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In spite of the fact that the Hubbard model has served as a paradigm for strongly

correlated electrons on a lattice, only recently has it been appreciated that in addition to

the ordinary SU(2) spin symmetry, there exists an exact ”hidden” SU(2) ”pseudo-spin”

symmetry at half filling. [1] [2] [3] The existence of the hidden symmetry calls into question

the calculations that have been done in the past on the Hubbard model, since the order

parameters that have been considered have not been shown to be representations for the

full symmetry group. This is a minimal requirement for a self-consistent mean field or long

wavelength theory. Deficiences in previous mean field theories are further suggested by

the fact that these calculations have been able to treat both the attractive and repulsive

Hubbard model at the same time.

We remedy this by providing a systematic analysis of order parameters of the SU(2) ⊗

SU(2) symmetry of the Hubbard model at half filling and show that this group forms a

natural subgroup of an SU(4) symmetry of the noninteracting theory. The classifications

of the representations of the full symmetry group is relevant for any type of analysis of

the half-filled Hubbard model. In this paper we perform a mean field analysis which can

be seen to be a natural extension of Hartree-Fock and BCS theory. But here, since the

action of the symmetry group turns out to mix Hartree Fock and ”BCS” expectation values,

a self consistent theory is only possible by taking into account the possibility of nonzero

expectation values of all quadratic forms of creation and annhilation operators. A byproduct

of our description is a natural extension of the theory of superfluid 3He to a system with the

possibility of three broken symmetries: electromagnetic gauge, spin and odd-even sublattice.

The Hubbard model at half filling is given by the Hamiltonian [4]

H = H0 + U
∑
r

S(r)2 (1)

where S(r) =
∑

αβ c†α,rσα,βcβ,r and σ is the vector of Pauli matrices. The Hamiltonian H0 is

given by the usual tight binding hopping H0 = −t
∑

c†σ,rcσ,r′ where the summation is over

spin σ and grid points r and nearest neighbors r′ of an arbitrary dimensional cubic lattice.

The creation operator of an electron with spin σ at site r is labelled c†σ,r
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The Hamiltonian H0 is diagonalized as H0 =
∑

kα ε0
k c†σ,kcσ,k. The sum on k runs from

−π to π for each kj, and the single particle energy is given by ε0
k = −2t

∑
j cos kj where kj

denotes each component of the vector k.

We define the vector Q = (π...π) and the operators

a†k ≡ (a†↑,k, a
†
↓,k) = (c†↑,k, c

†
↓,k) when ε0

k < 0

b†k ≡ (b†↑,k, b
†
↓,k) = (c†↑,k+Q, c†↓,k+Q) when ε0

k > 0
(2)

so that in terms of these operators

H0 =
∑
kα

ε0
k(a

†
σ,kaσ,k − b†σ,kbσ,k) (3)

where now the summation runs over the reduced Brillouin zone corresponding to ε0
k < 0.

The ”Lieb-Mattis” transformation Z acts on the position space creation and destruc-

tion operators c†σ,r through the canonical transformation c†↓r 7→ −1rc↓r, c†↑r 7→ c†↑r, where

−1r ≡ eiQ·r. Spin rotations and Z act naturally on an 8-component multispinor of definite

momentum: Ψk ≡ (ak, bk, a
†
−k, b

†
−k). In momentum space Z can be represented by the idem-

potent matrix whose entries are all zero except Z1,1 = Z3,3 = Z5,5 = Z7,7 = Z2,8 = Z4,6 =

Z6,4 = Z8,2 = 1. The Lieb-Mattis transformation then becomes Ψk 7→ ZΨk. It is well known

that Z is an exact symmetry of H0 but changes the sign of the Hubbard term U . [5]- [2]

Spin rotations are defined using eight dimensional representations of the Dirac gamma

matrices [6] in the ”standard rep” where γ0 is diagonal with entries (1, 1,−1,−1). We define

the seven 8× 8 matrices βA written in block form as β0 =

 γ0 0

0 −γ0

, βj =

 γj 0

0 γ∗
j

 and

βj+3 = iZ β0 βj Z, all for 1 ≤ j ≤ 3. The notation γ∗
j denotes complex conjugate (not

adjoint).

By explicit computation, it can be verified that these seven matrices βA obey βAβB +

βAβB = 2gAB where gAB is the diagonal operator (1,−1,−1,−1,−1,−1,−1) times the unit

matrix. Thus βν defines an 8 × 8 Clifford algebra. The matrix β0 obeys the constraint

β0 = iβ1β2β3β4β5β6.
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We define the commutators between the β matrices MA,B ≡ i
2
[βA, βB]. A series of

corollaries now follow directly from the general relation between SO(2n) and SO(2n + 1)

and Clifford algebras of 2n × 2n matrices. [7]

MA,B defines the Lie algebra of SO(6, 1) for 0 ≤ A, B ≤ 6. The restriction A, B 6= 0

generates the subalgebra of SO(6) which is known to be isomorphic to SU(4). By con-

struction Mi,j for 1 ≤ i, j ≤ 3 generates the SU(2) subalgebra of spin rotations. Since

β0 anticommutes with βA and it can be checked that β0 commutes with Z we find that

ZMi,jZ = Mi+3,j+3 so that Mi+3,j+3 generates another SU(2) subalgebra defined by the

SU(2)P ”pseudospin” symmetry that is known to be a symmetry of the Hubbard model,

and corresponds to conjugating ordinary spin rotations with the Mattis-Lieb transformation

Z. Since it anticommutes with all other βA, the matrix β0 is a scalar under the SO(6)

defined by MA,B for A, B 6= 0.

Since the Hamiltonian H0 is simply given in terms of β0 by H0 = 1
2

∑
k ε0

kΨ
†
kβ0Ψk we see

immediately that H0 is in fact invariant under the entire group SO(6) ≈ SU(4) generated

by MA,B.

To understand how this group is imbedded, we investigate a general canonical transfor-

mations of the form Ψk 7→ TkΨk and Ψ−k 7→ T−kΨ−k. We define the matrix g = −β1β3β5 = 0 1

1 0

 in 4×4 block form. Preservation of the canonical anticommutation relations is then

equivalent to TkgT̃−k = g. Here ”tilde” indicates transpose. If we also impose the restric-

tion that Tk generate a unitary transformation, we demand that g(T−k)
∗g = Tk resulting in

Tk(Tk)
† = 1 which identifies Tk as an element of U(8). Demanding a global transformation

results in the additional constraint Tk ≡ T for all values of k. In terms of infinitesimal

generators Tk ≈ (1 + Gk) we then have three conditions

gGkg = −G̃−k canonical

gGkg = (G−k)
∗ unitary

Gk = G ∀k global

(4)

The entire group of unitary canonical transformations is therefore a copy of U(8) for
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each k in the ”positive reduced Brillouin zone”, defined here as the first Brillouin zone mod

the operations k 7→ k + (π..π) and k 7→ −k. This generates an SU(8) analog of the SU(2)

Bogoliubov transformation of BCS theory and the SU(4) theory of 3He; [8] a doubling of

the degrees of freedom occurs for each non-conserved variable in the set of particle number,

spin and momentum (π...π). The subgroup of global transformations is generated by all

matrices iβ0, βA and all commutators of these seven matrices defines the Lie algebra of

SO(7). Direct computation shows that the group SO(6) previously identified is the largest

unitary subgroup that commutes with β0.

We have thus shown that the most general set of canonical transformations that mix

particles and holes, spin and momentum (π...π) is given by the product of a copy of SU(8)

for each value of k in the positive reduced Brillouin zone. Requiring commutability with H0

breaks this down to SO(6) ≈ SU(4) and finally requiring commutability with the Hubbard

model breaks this down to global SU(2) ⊗ SU(2). All these embeddings are generated by

Lie subalgebras created by commutators of subsets of the Clifford algebra.

Mean field theory are built on expectation values of the form < c†σ,pcδ,q > and < c†σ,pc
†
δ,q >

but in order to construct self consistent mean field theories of the Hubbard model we must use

irreducible representations that transform properly under SU(2)⊗SU(2), Z and if possible

connects to the SO(6) symmetry of the noninteracting theory. The pseudospin symmetry

mixes the Hartree, Fock and BCS terms and all these must therefore be incorporated in

the representations. All this can be elegantly accomplished by using the matrices βA.

We shall use the standard SU(4) notation of labeling reps by bold face numerals that

coincide with their dimensionality, and complex conjugate reps by a star. For SU(4) reps

1,4,6, 10 and 15, only 4 and 10 are inequivalent from their complex conjugate. We first

note that Ψk forms an 8 dimensional reducible rep of SU(4). Since β0 commutes with the

generators MA,B the projection operator which decomposes the 8-dimensional rep into two

4-d reps 4⊕ 4∗ is precisely (1± β0).

In order to understand how the group acts on operators we next decompose tensor
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products such as Ψ†
p ⊗Ψq into irreducible representations. These are given by [9] 4⊗ 4∗ =

1 ⊕ 15 and 4 ⊗ 4 = 6 ⊕ 10. This then yields the decomposition Ψ†
p ⊗ Ψq ≈ (4 ⊕ 4∗)⊗

(4∗ ⊕ 4) = 2 (1⊕ 15) ⊕ 2 (6) ⊕ (10⊕ 10∗).

When SU(4) breaks down to SU(2)S ⊗ SU(2)P , these reps branch [9] according to

4 7→ (D
1
2 ⊗D

1
2 )

6 7→ (D1 ⊗D0) ⊕ (D0 ⊗D1)

10 7→ (D1 ⊗D1) ⊕ (D0 ⊗D0)

15 7→ (D1 ⊗D1) ⊕ (D1 ⊗D0) ⊕ (D0 ⊗D1)

(5)

where Dν ⊗Dµ indicates the Dν rep of SU(2)P and Dµ indicates the spin µ rep of SU(2)S.

Here subscript P and S denote ”pseudospin” and ”spin” respectively.

Using this information, we see that when Ψ†
p⊗Ψq splits into irreducible reps of SU(2)P⊗

SU(2)S, we induce a decomposition into 4(D0⊗D0)⊕ 4(D1⊗D0)⊕ 4(D0⊗D1)⊕ 4(D1⊗D1)

The branching of the irreducible reps are most easily described by associating a poly-

nomial of fermion operators with a matrix: Op,q(m) ≡ ∑
i,j(Ψ̄p)imij(Ψq)j where we have

defined Ψ̄p ≡ Ψ†
pβ0. We further define the 8 × 8 SU(2) ⊗ SU(2) scalar matrix Γ by

Γ = iβ0β1β2β3 =

 γ5 0

0 γ5

 where γ5 indicates the ordinary pseudoscalar γ5 = iγ0γ1γ2γ3.

The coefficients linking the 8× 8 matrices to each of the invariant spaces that form reps

of SU(4) and of Z can then be neatly represented by products of the beta matrices. We

denote the four SU(2)P ⊗SU(2)S scalars by Υ with the following superscripts: Υ0 = 1−β0,

Υ0∗ = 1 + β0, Υ1 = (1 + β0)Γ, Υ1∗ = −(1− β0)Γ. To make subsequent formulas simple we

also need to define Ω0 = Ω0 = Γ, Ω̂0 = Ω̂0 = Γ, Ωi = Ωi = βi and Ω̂i = −Ω̂i = iβi+3. With

all these definitions, the irreducible reps can be written in the following natural ”4-vector”

form

(Υτ
µ,ν)p,q ≡ Op,q (Υτ ΩµΩ̂ν)

(Υτ∗
µ,ν)p,q ≡ Op,q (Υτ∗

Ω̂νΩ
µ)

(6)

where 0 ≤ µ, ν ≤ 3.
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We can now classify all possible bilinear order parameters according to their irreducible

reps of SU(4) and SU(2)S ⊗SU(2)P using the following linear combinations whose relation

to usual Fermi operators are suggested by their symbols. Sum over repeated indices is

implied.

Mab,j
p,q = < a†δ,p(σj)δ,τbτ,q >

Nab
p,q = < a†δ,pbδ,q >

∆ab,µ
p,q = < a†δ,p(iσ2σµ)δ,τb

†
τ,−q >

∆∗ab,µ
p,q = < aδ,−p(iσ2σµ)δ,τbτ,q >

(7)

and similar definitions for Maa,j
p,q etc. We have defined σ0 to be the identity matrix.

The different reps of SU(4) can be be naturally organized into 4 × 4 form, where each

column transforms as a 4-vector under SU(2)S and each row transforms as a 4-vector under

SU(2)P , i.e. the zero component transforms as a scalar, and the one two three component

like an ordinary vector under the respective rotation group. Each irreducible rep of SU(4) is

contained in exactly one of the diagrams by combining appropriate subblocks. The subblocks

are easily identified by matching the dimensionality. We use the notation (10) ≡ D1 ⊗D0

etc.

< (Υ0
µν)p,q >= [1]p,q ⊕ [15]p,q 7→ [00]p,q ⊕ [(01)⊕ (10)⊕ (11)]p,q (8)

Naa
−q,−p −N bb

p,q ∆ab,0
−q,p + ∆∗ba,0

−q,p −i∆ab,0
−q,p + i∆∗ba,0

−q,p Naa
−q,−p + N bb

p,q − δp,q

Maa,x
−q,−p + M bb,x

p,q ∆ab,x
−q,p + ∆∗ba,x

−q,p −i∆ab,x
−q,p + i∆∗ba,x

−q,p Maa,x
−q,−p −M bb,x

p,q

Maa,y
−q,−p + M bb,y

p,q ∆ab,y
−q,p + ∆∗ba,y

−q,p −i∆ab,y
−q,p + i∆∗ba,y

−q,p Maa,y
−q,−p −M bb,y

p,q

Maa,z
−q,−p + M bb,z

p,q ∆ab,z
−q,p + ∆∗ba,z

−q,p −i∆ab,z
−q,p + i∆∗ba,z

−q,p Maa,z
−q,−p −M bb,z

p,q

(9)

< (Υ1
µν)p,q >= [6]p,q ⊕ [10]p,q 7→ [(01)⊕ (10)]p,q ⊕ [(00)⊕ (11)]p,q (10)
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−Nab
p,q + Nab

−q,−p ∆aa,0
p,−q + ∆∗bb,0

−q,p −i∆aa,0
p,−q + i∆∗bb,0

−q,p Nab
p,q + Nab

−q,−p

Mab,x
p,q + Mab,x

−q,−p −∆aa,x
p,−q + ∆∗bb,x

−q,p i∆aa,x
p,−q + i∆∗bb,x

−q,p −Mab,x
p,q + Mab,x

−q,−p

Mab,y
p,q + Mab,y

−q,−p −∆aa,y
p,−q + ∆∗bb,y

−q,p i∆aa,y
p,−q + i∆∗bb,y

−q,p −Mab,y
p,q + Mab,y

−q,−p

Mab,z
p,q + Mab,z

−q,−p −∆aa,z
p,−q + ∆∗bb,z

−q,p i∆aa,z
p,−q + i∆∗bb,z

−q,p −Mab,z
p,q + Mab,z

−q,−p

(11)

The other two independent blocks Υτ?
are obtained essentially by taking the hermitian

conjugate of the forms above. Phase factors are incorporated in our definition of the repre-

sentation so that under the transformation Z each of the reps represented in this manner

transforms to its transpose: Z(Υτ
µ,ν)p,qZ = (Υτ

ν,µ)p,q. Under the adjoint operation

((Υτ
µ,ν)p,q)

† = (Υτ∗

µ,ν)−q,−p = −g(Υτ
µν)

∗g (12)

((Υτ∗

µ,ν)p,q)
† = (Υτ

µ,ν)−q,−p = −g(Υτ∗

µν)
∗g (13)

where g is the tensor defined above Eq. 4.

A general mean field theory consistent with translational invariance within a sublattice

and SU(2) ⊗ SU(2) must obey (Υτ
n,n′)p,q = 0 unless p 6= q. We must then consider the

possibility of nonzero expectation values of bilinears of the form < (Υτ
µ,ν)k,k >. To simplify

subsequent formulas, we define the operators (Υ±
µ,ν)p,q = 1

2
((Υ1

µ,ν)p,q ± (Υ1∗
µ,ν)p,q) and define

the order parameters

Υ
τ
0,n′ =

∑
q

< (Υτ
0,n′)q,q > (14)

We then take all possible nonvanishing terms of this form in the Hubbard potential and find

that after considerable calculation the effective interaction is given by

U
∑

p

(
Υ

+

0,n′(Υ+
0,n′)p,p −Υ

+

n,0(Υ
+
n,0)p,p

)
+(

Υ
0
0,n′(Υ0

0,n′)p,p −Υ
0
n,0(Υ

0
n,0)p,p

) (15)

where repeated indices are summed over. Since Υτ
µ,ν is transposed under Z, we see that the

interaction is indeed odd under changing the sign of U , and the mean field theory behaves

properly under SU(4), Z and the entire group SU(2)⊗ SU(2).
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We identify Υτ
n,0 as the order parameters that measures spontaneously broken SU(2)S

symmetry. The order parameters that measure broken SU(2)P symmetry are Υτ
0,n′ . To

understand these we convert Υ
τ

n,n′ to real space and define ∆0
r ≡< c†↑,rc

†
↓,r >. We find that

Υ
0
0,n′ =

∑
r ( −1rRe∆0

r, −1rIm∆0
r, (nr − 1) )

Υ
0
n,0 =

∑
r ( Mx

r , My
r , M z

r )

Υ
+
0,n′ =

∑
r ( Re∆0

r, Im∆0
r, −1r(nr − 1) )

Υ
+

n,0 =
∑

r ( −1rMx
r , −1rMy

r , −1rM z
r )

(16)

To work further with the mean field theory, we can fix a value in SU(2)S⊗SU(2)P parameter

space to determine the direction of spontaneously broken symmetry, and thereby without

loss of generality, choose

0 = Υ
τ
0,1 = Υ

τ
0,2 = Υ

τ
1,0 = Υ

τ
2,0 (17)

as an additional condition which resolves the ground state SU(2)S ⊗ SU(2)P degeneracy.

We see that by restricting ourselves to Eq.[17] we are permitting to be nonzero pre-

cisely those expectation values that transform as the z component of spin and pseudospin.

Rotations about the pseudospin z is the subgroup U(1) of electromagnetic gauge transfor-

mations. Our choice of SU(2)P parameterization and broken symmetry axis selects exactly

those ground states that have definite particle number, and leads to the standard ”Hartree

Fock” results for the Hubbard model that define the z axis to be the axis of broken SU(2)S

symmetry. (See for instance Ref. [4] )

Results from that analysis are unambigous for repulsive Hubbard model with U > 0.

Making use of standard results we obtain a Neel ordered ground state, i.e. all Υ
τ
µ,ν = 0

except Υ
+
3,0 6= 0.

Since we have constructed the order parameters to transform simply under the Lieb-

Mattis transformation, we find a ground state for U < 0 with all Υ
τ

µ,ν = 0 except Υ
+

0,3 i.e. a

charge density wave which is analogous to Neel order along the z axis. However, since the

pseudospin axis can be arbitrarily chosen, long wavelength excitations above the mean field
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ground state of the half filled negative U Hubbard model mixes charge-density wave and the

s-wave superconducting order parameter. [10] This is the analog of the antiferromagnetic

spin density waves in the repulsive Hubbard model. A consequence of this analysis is that

a mean field calculation that searches for s-wave pairing in the U < 0 Hubbard model will

find the same ground state energy as a mean field analysis assuming only a charge density

wave. However, the full theory is necessary to understand the Goldstone modes that in the

negative-U Hubbard model mix s-wave pairing and charge-density waves.

To summarize, we have systematically enumerated the representations of the impor-

tant symmetries of noninteracting electrons on a lattice and shown how the representations

branch when the symmetry of the free theory is broken by the Hubbard term. A tangible

consequence has been a careful validatation of the standard mean field theory theory of

the positive U Hubbard model, and calculation of the analogous Goldstone modes for nega-

tive U . We can of course ”quickly” derive these modes by transforming each component of

the Neel order parameter with the Lieb-Mattis transformation [10], but the present analysis

shows that indeed no other nonzero order paramenters have been negleced in that argument.
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