Symmetries and conservation laws: Consequences of Noether’s theorem

Jozef Hanc?
Technical University, Vysokoskolska 4, 042 00 Kosice, Slovakia

Slavomir Tuleja”
Gymnazium arm. gen. L. Svobodu, Komenskeho 4, 066 51 Humenne, Slovakia

Martina Hancova®
P. J. Safarik University, Jesenna 5, 040 11 Kosice, Slovakia

(Received 30 December 2002; accepted 23 May 2003

We derive conservation laws from symmetry operations using the principle of least action. These
derivations, which are examples of Noether’s theorem, require only elementary calculus and are
suitable for introductory physics. We extend these arguments to the transformation of coordinates
due to uniform motion to show that a symmetry argument applies more elegantly to the Lorentz
transformation than to the Galilean transformation. 2@®4 American Association of Physics Teachers.
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I. INTRODUCTION by the particle,® which leads to the reformulation of our
basic question about symmetry: What changes can we make

“It is increasingly clear that the symmetry group of nature in the_ worldline that do not Iea(_j to changes in either the
is the deepest thing that we understand about nature todaynagnitude or the form of the action? .
(Steven Weinbeng' Many of us have heard statements such We will explore and apply symmetry operations to the
as for each symmetry operation there is a corresponding co@ction along an infinitesimally small path segment. Because
servation law. The conservation of momentum is related téhe action is additive, conclusions reached about a path seg-
the homogeneity of space. Invariance under translation ife€nt apply to the entire path. The simplest examples of sym-
time means that the law of conservation of energy is validmetry show the independence of the action on the difference
Such statements come frohoether's theoremone of the I some quantity such as position, time, or arfglhen
most amazing and useful theorems in physics. such_ a symmetry exists, No_ether’s theorem tells us that a
When the German mathematician Emmy Noether prove®hysical quantity corresponding to this symmetry is a con-
her theoren?;® she uncovered the fundamental justification Stant of the motion that does not change along the entire path
for conservation laws. This theorem tells us that conservatioRf the particle’ The existence of such a constant implies a
laws follow from the symmetry properties of nature. Sym-conservation law, which we then identify.
metries(called “principles of simplicity” in Ref. 2 can be Section Il briefly describes our software that helps stu-
regarded as a way of stating the most fundamental propertiégents study the action and its connection to conservation
of nature. Symmetries limit the possible forms of new physi-laws. Section lll analyzes four examples of symmetry opera-
cal laws. The deep connection between symmetry and corlons: translation in space and time, rotation thrpugh a fixed
servation laws requires the existence of a minimum principléngle, and symmetry under uniform linear motion, namely
in nature: the princip|e of least action. In classical mechanihe Ga“lean transfpl’matlon. The fII’St thl’ee Symmetl’les Iead
ics, symmetry arguments are developed using high leveP three conservation laws: momentum, energy, and angular
mathematics. On the other hand, the corresponding physicBlomentum. Section IV extends the analysis to symmetry in
ideas often are much easier to understand than the matfelativity, showing that these conservation laws exist in that
ematical derivations. realm. Moreover, for uniform linear motion the symmetry
In this paper we give an elementary introduction to the@rgument applies more elegantly to _the Lorentz transforma-
relation between symmetry arguments and conservatioHOn than to the Galilean transformation.
laws, as mediated by the principle of least action. We shall !N the following we often talk about variations or changes
use only elementary calculus so that our approach can b the action. Consistent with standard practice, we will only
used in introductory university physics classes. be interested in variations representing infinitesimal _flrst-
Because the paper deals mainly with symmetry, it is im-order changes in the action. To keep_ the arguments simple,
portant how we define or characterize this concept in théVe also assume that the particle’s invariant masgrest
framework of introductory physics. We adopt Feynman'sm353 does not change during the motion to be studied.
simple description of symmetry from his lectures on
physics? which says that anything is symmetrical if one can
subject it to a certain operation and it appears exactly thdl- SOFTWARE
Salr_?keea;t:;rmzr? pv?/rea\t/lv(i)l?.c oncentrate on symmetry in physi- We start with the well-known definitior! Qf actior_wlfor a
cal laws. The quéstion is what can be done to a physical Ia\B""rt'CIe of Massn that moves from S‘?me initial position at
so that this law remains the same. Noether's theorem derivet"® f1 10 some final position at time,:
conservation laws from symmetries under the assumption tp
that the principle of least action governs the motion of a S:J (KE-PBdt, (1a)
particle in classical mechanics. This principle can be phrased E
as “The action is a minimum for the patworldline) taken  or equivalently
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S=(KE4— PE,)(t,—t;). (1b) Eqg. (1b), the action along this straight segment in zero po-

. o tential is (the consideration for uniform potential is analo-
Here KE,, denotes the time averaged kinetic energy ang|, PE gous

the time averaged potential energy betweéerandt,. We )
use the notation KE and PE as symbols for kinetic and po- o _}m(Xz—Xl) @)
tential energies, respectively, because they are more mne- ~°f seament 2 70 (t,—t))

monic than the traditional symbolandV. If we change the positions of both observed events by a

Action is not a familiar quantifyfor many students, so we fixed displacemend, the action remains unchangédvari-

employ an interactive computer prograto help them de- and, because the value of the action depends only on the
velop an intuition about the nature of the action and the

rinciple of least action. By using an interactive com uterdifference between the positione; +a—(x; +a) =X, —X;.
P P - BY g PUter e principle of least action is symmetrical with respect to a

dlsplqy, the student cannot only explore the operation of th(ﬁxed displacement of the position. Noether’s theorem im-
principle of least action, but also study the relation between

s prniple and conseration s i speciiccasog . _L1e% 15 115 S/Tnety 8 conectn wih  conseniton
In carrying out this manipulation, the student naturally works, ™ ' C i
with the central concepts of a worldliria graph of the time Iaw related to symmetry under space translation is conserva
d L . : tion of momentum.

ependence of a particle’s positjaand an evenfa point on
a worldline. Unlike the trajectory in space, the worldline
specifies completely the motion of a particle. For background o ,
on the symmetry properties of nature, we suggest that out- Principle of least action and momentum

students read a selection from Ref. 10. Think of the motion of a free particle along theaxis. To
explore the connection between the principle of least action
and the conservation of momentum, we take advantage of
the additive property of the action to require that the action
along an arbitrary infinitesimal section of the true worldline
o have a minimal valué' Thus we consider three successive
A. Translation in space infinitesimally close events, 1, 2, and 3 on the particle’s
worldline and approximate a real worldline by two con-
cted straight segments,andB (see Fig. 2.
t Because we are considering translation in space, we fix the
Irst and last events, 1 and 3, and change the space coordinate
of the middle event 2 so as to minimize the value of the

[ll. SYMMETRY AND CONSERVATION LAWS IN
NEWTONIAN MECHANICS

We first examine the symmetry related to translation in
space. When we perform an experiment at some location a
then repeat the same experiment with identical equipment
another location, then we expect the results of the two ex-
periments to be the same. So the physical laws should b&

symmetrical with respect to space translation. total actionS. Thi.s minimum pondition corres.ponds to a zero
As a simple example, consider the action of a free particle/alue of the derivative of with respect tax,:
(in zero potential or uniform potentjamoving along thex ds

axis between two events[1;,x;] and 2[t,,x,] infinitesi- —= 3
. . dx,
mally close to one another along its worldline. Because the
worldline section is considered to be straight, the particle Because the action is an additive quantity, the total action
moves at constant velocity= (x,—X;)/(t,—t;) and there- equals the sum of the actions for segmeatand B, so S

fore with a constant kinetic energy (1f8y2. According to  =S(A)+S(B). If we use Eq.(2), we can write
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t
>
31 h B t Fig. 3. Three infinitesimally close events 1, 2, 3 on the actual worldline. We

shift this worldline through a fixed infinitesimal displaceman#én arbitrary
Fig. 2. Segment of the worldline of a particle that passes through threelisplacement can be composed from a sequence of such infinitesimal dis-
infinitesimally close events, for which every smooth curve can be approxiplacements.
mated by two connected straight segments.

1 (X=X 1 (X3—X%p)?2 Fig. 3 only coordinate,; changes, which creates the world-
S=§m—_ +§m—_ . (4 line 1*23), then event 3(only x; changes, which creates
(to—tq) (t3—tp) N : :
) o . 1*23*) and finally event 2only x, changes, which creates
If we perform in Eq.(4) the derivative indicated in E¢3), 1*2*3*). The total change in action for displacementan

we obtain the condition: be written as:
AaS:Asl_,l*+A83_,3*+A82_,2*, (7)
(Xa—=X1) (X3—X2) .
t,—10) = =ty (5) whereASl_&*, ASZ_,Z_*, -ASg,_,g* denotes t_he changes in
2 1 3 "2 the action after the shifts in the corresponding events.
The expression on the left-hand side of Eg). is the mo- Equation(6) tells us thatA,S is always zero. The final
mentump, for segmentA while the expression on the right- changeAS,_.,+ must also be zero, from the principle of least
hand side is the momentupy for segmentB, so pa=pg - action applied to the new worldline. Hence E(®. and (7)

We could continue and add other segme@isD, E,... to  give
cover the entire worldline that describes the particle motion. _AS —AS, ®)
For all these segments the momentum will have the same 11 -8

value, which yields the conservation law of momentum. Thelf we now calculate the changes in the action in ), we
action for this free particle depends only on the change of thebtain the conservation law of momentum. Because the dis-
coordinatex and the result of this dependence is the conserplacement is infinitesimal, we can write:

vation of the particle’s momentum.

: S : ds
However, this derivation uses only the displacement of A5, ,=5(1*23)-5(123 = —a, (9a)
one event on the worldline. Therefore, we have not yet dem- dxq
onstrated the relation between the conservation of momen- ds
tum and the symmetry of translation in space in which all  As; ., =5(1*23*)-S(1*23)= — a. (9b)
three events are displaced. dxs
2. Symmetry and the conservation of momentum If we substitute Eq(9) into Eq. (8) and use the fact that the

i . fixed infinitesimal displacement is arbitrary, we havé
Now we show the straightforward relation between the

symmetry of translation in space and conservation of mo-  dS _dS
mentum. Again consider three infinitesimally close events on dx; dxs
the worldlinex(t) of the free particle shown in Fig. 8he
extension to the entire worldline will be discussed later
We shift the worldlinex(t) so that every event changes its

(10

The application of the derivatives in E¢LO) to the ex-
pression for the action in Ed4) yields the identical result
- : PR i for a free particle as Eqb5), but this time as a result of
position by a flxed.|nf|n|te5|mal dlspl-acemeql The new spatial translation of the entire incremental worldline seg-
events create a shifted worldline which we indicate by an,ont Thus the left-hand side of E(L0) can also be inter-
asterisk:x* (t). As pointed out, the form of the action for reteq as the momentum at event 1 and the right-hand side as
x* (t) remains unchanged and does not depend on the parafhe momentum at event 3.
etera. Thus the change in action with respect to the displace- The preceding considerations can be applied to the entire
menta Is zero: worldline x(t). We did not specify the location of the seg-
A,S=S(1*2*3*)—S5(123=0. (6)  mentsA andB. Therefore, an arbitrary number of additional
] o ) _ segments can be added between them. Then we shift the
Note that the worldlinec* (t) is just as valid as the origi- segments as befor@ee Fig. 4. By the same analysis we
nal one. Therefore the worldline* (t) also obeys the prin- conclude that the momentum for segménteffectively the
ciple of least action. In translating frox(t) to x* (t) we do  momentum at event)lhas the same value as for segmBnt
not need to shift all the events simultaneously. The saméeffectively at event 8 The arbitrariness of position of these
effect is obtained if we first change the position of evefinl segments on the worldline means that the value of the mo-
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x A According to Egs.(11) and (12), the values of the actions

- x*(t) S(A) andS(B) for segmentA andB are equal to
A 1A NECREANN 13
S( )_EmA_tA_ 5 ta, (139
segment  N\ge--— ; 1 AX3 X3+ X
4 x(¢ — Tm——B_ 3 72
® : S(B) > Mt PE( > | Ate. (13b)
segment
B The principle of least action leads to the following condition
for the total actionS
>
dS d[S(A)+S(B
) ds_disa+se)] _ 14

dt, dt,

Fig. 4. Following the same analysis as before, we conclude that the mome : : : ; _

tum at event 1 is the same as at event 3. The events 1 and 3 can be choggnwe Su?ﬁtlt?te Eq(13) II?)ttO .Eq' (14), differentiate, and re

arbitrarily. The arbitrariness of position of these events on the worldline@/Tange the terms, we obtain

implies the same value of momentum at every p@iveny along the whole 2 2

worldline of the moving object. Em AXi + E(XZ+X1 _ Em Axg + PE( X3t Xz
27 A2 2 2 At 2

) . (15

mentum remains constant at every event on the worldlineThe expressions on both sides of Ef) are sums of aver-
Thus. in classical mechanics. the g mmetrv of spatial trans:Zlge kinetic and potential energies. For infinitesimally close

us, , (€ Sy y of sp MSevents, Eq(15) gives an equality for the instantaneous val-
lation means that momentum is conserved for a free particle;

2 2
The invariance of the action with respect to translation in4€S (1/72Jnvs + PEs=(1/2)mvg + PRs, and expresses the
space is also called the homogeneity of space, which meag@nservation of mechanical energy.
that all points in space are equivalent. In other words, it does N€Xt we carry out an argument that translates all three
not matter where an experiment is performed. Therefore, wdMesty, tp, andt; by the same amount similar to the way
can state that the law of momentum conservation result¥€ translated positions for the momentum case. Equations

from the homogeneity of space. (6)—(8) apply to the present case as well, and aI;o @Y.
when the derivatives are taken with respect to time rather

than position. Then the result of the temporal translation is

B. Translation in time an equation similar to Eq10):
It is easy to envision the symmetry related to translationin dS dS 16
time. Repeating an experiment on identical initial systems dt, dtg’ (16)

yields the same result when the two experiments are sepa-

rated by a lapse of time. Our conclusion is that physical lawd'hich yields Eq.(15) multiplied by (—1). We again obtain
should not change with translation in time. conservation of energy, but this time as a result of symmetry

Again we will show the relation of translation in time under time_ translation. For infinites_imally close events, the
symmetry to a relevant conservation law. We start with areft-hand side of Eq(16) also can be interpreted as the nega-
expression for the action of a particle moving in thdirec- Ve Of the total energy at event 1 and the right-hand side as
tion along an infinitesimally small worldline segment in a the negative of the energy at event 3. The energy is a con-
potential field described by PEY. As in Sec. Il Athe action  Stant of the motion for the entire worldlint). Similar to

for this segment can be written according to Etp) as the last paragraph of Sec. Il A, we can say that the symme-
try of translation in time, or in other words the homogeneity
1 (Xp—xp)? X1+ X
Stor segmem:z m -P 2

of time, implies conservation of energy.
(ta—tq)

where the potential energy is evaluated at the average posi- ) i
tion along the segment. Now suppose that we translate the: Rotation through a fixed angle

timet by an amount-. It is easy to see that the gction will not We now trace the implications of another symmetry, sym-
change, because only the difference of the tipe; 7—(t.  meyry under rotation in space. If we rotate an experimental
+7)=1t,— 1y, appears in the equation for the action. So thesetyp through a fixed angle, the experiment will yield the
action is symmetrical with respect to a fixed displacement okame result. If this symmetry were not true, a laboratory in
time t. What conservation law is related to this time symme-New York would not be able to verify what is measured in
try? We will show that it is conservation of energy. another laboratory in Los Angeles. Indeed, repeating the ex-
We follow the same line of reasoning as for the case oferiment in New York must lead to the same results as the
translation in space, but now we fix all position and timeearth rotates. So physical laws should remain invariant with
coordinates with the exception bf. Think of a particle that  respect to rotation.
moves along thes axis in the potential field with potential  We use polar coordinates to determine which conservation
energy PEX). To simplify the algebra, we denote space andlaw corresponds to this symmetry and consider the planar

(tp—ty), (1D

time differences by motion of a particle in a spherically symmetric potential field
AXA=Xp—X;, AXg=Xs—Xy, of energy PE(). As be_for_e! we consider the expressiqn_ for
12 the action along the infinitesimal segment. The definition

Atpa=t,—t;, Atg=tz—t,. (12) (1b) shows that the action is equal to
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1, 91, 4y mriAgoA_ rgAes

segment 4 m (22)
At At
/ T2, 02, A B

/ @ Equation(21) represents conservation of angular momentum
/ L7 U\ segment B L, soL,=Lg. The rate of change of the angle is the angular

/ﬂ (pA,/ velocity w. Thus Eg.(21) can be expressed asnriwA

~ A T T3 0313 =Mriwg.
//% (E)F/’/ A derivation dealing with the fixed change in the angle
e coordinate for all three events, similar to those of the previ-
P > ous cases of translations in space and time, yields
O dS dS

“de, des’ (22
Fig. 5. Path segment of planar motion with three infinitesimally close points ®1 ®3
whose positions are described by polar coordinates. The ragfug) rep-  which immediately implies conservation of angular momen-
resents the average position of_ the p_article on seg_rAeBD. All coordi- tum (21). Moreover, the left-hand side of E¢22) can be
nates of thg points 1, 2, 3 are fixed Wlth th_e exception of _the angle °°°rd'interpreted as the angular momentum at point 1 and the
nate ¢,, which we vary to satisfy the principle of least action. right-hand side as the angular momentum at point 3. Angular
momentum is conserved for the entire path. The result is that
symmetry under rotation through a fixed angle implies con-
1 AS? servation of angular momentum.
Stor segment 5 M7~ PETay)AL. 17 The condition that physical laws remain invariant with
respect to rotation through a fixed angle is called the isotropy
The incremenis is the length of a path segment traveled by of space. That is, space has the same properties in every
the particle during the time intervalt andr ,, is the average direction. Therefore conservation of angular momentum re-
position of the particle on this segment. sults from the isotropy of space.
Consider three infinitesimally close points on the real path
of a particle and approximate the real path by a broken line
consisting of two infinitesimally small segments and B D. Galilean transformation
(Fig. 5). (In this case we do not display a worldline because™"
it would require curves in three-dimensional space—timie.  Fjnally, we present a simple example of an interesting and
find the required expression for the action in polar coordi-yery important symmetry: symmetry under uniform linear
nates, we use the Pythagorean theorem. The infinitesim@hotion, known in classical mechanics as Galileo’s principle

lengthsAs, andAsg of segmentsA andB are of relativity. We will be surprised to find that the classical
5 .2 2 action is not invariant under a Galilean transformation.
Asp=Ara+(radea), Consider again a free particle moving along thexis
) ) 5 (18)  between closely adjacent events 1 and 2 as observed in a
Asg=Arg+(rgAes)”, laboratory frame, where the action takes the fd@n The

where Ara=r,—r;, Apa=¢,—¢;, Arg=rz—r,, and (slowly moving rocket observer, moving with a velocity,,

Agg=p3—p,. If we substitute Eq(18) into Eq. (17), we with respect to the laboratory, calculates the particle’s action
find values of the action for segmenas B: given by the same equation
’ N2
1 Ari+riAei , 1 (x3—X{)
S(A)= —m—————F = PHr,)At,, 19 Stor segment s M—————- (23
( ) 2 AtA E( A) A ( a 2 t2_t1
1 Ar2+r2Aq2 Here we use primes for rocket coordinates, not for the de-
- B B=¥B rivative. If we apply the Galilean transformation
S(B) 5 m Aty PErg)Atg. (19b
X' =X—vt, t'=t (24

Once again, note that the action for these two segments de-
pends only on the difference in thecoordinate, and not on for the rocket coordinates to E(23), we obtain the follow-
the ¢ coordinate itself. As before, we conclude that neithering form of the actionS’ in the laboratory frame:

S(A) nor S(B) will change as we increase afl coordinates
by a fixed angleb, becausep,+® — (@1 +P)=pr,— ¢1. AS

a result, the motion of the particle is symmetrical with re-
spect to a fixed change in angfe Conservation of angular

, 1 (X xy)?
Sfor segment_zm t,—t, —UreM(X2—X1)

momentum which arises from this symmetry is derived as + 3muly(t—ty). (25
follows. " . D This form of action is not the same as E@). The action is
The condition of stationary actiofis expressed as: not invariant under a Galilean transformation. Which action,
dS  d[S(A)+S(B)] Sin Eq. (2) or S’ in Eq. (25), governs the motion of the
—=————"=0. (200  particle in the laboratory? Or is the Galilean transformation
de, de, incorrect? According to Appendix A everything is consistent.
We substitute Eq(19) into Eq. (20), differentiate and do The two actionsSand S’ differ by a function that depends
some rearrangement and obtain: only on the coordinates of a given eveR{(x,t)=—uv,mx
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+3mv2t, so the mechanical laws are the same as deter- mAt

mined by usingS as they are by using'. A, ~ Erelaiivistic= constant, (30)
If we use slightly more general considerations, but reason-
ing similar to that employed previously,we can demon- mr?A ¢

strate that the corresponding conservation law to Galilean T:Lrelativistic: constant,
transformation(24) is related to the uniform motion of the

center of mass. where A7 is the particle’s proper time. As for the Lorentz

transformation, there also exists a corresponding conserva-
IV. SYMMETRY AND CONSERVATION LAWS IN tion law, but its derivation goes beyond the scope of this

RELATIVITY papers

A. Action in relativity We see that the theory of relativity eliminates the asym-

] o _ metry of the action under translation. The invariance of the

‘We have shown that the classical action is not symmetricalction under all the transformations we have considered

with respect to uniform linear motion, but all laws of motion makes the theory of relativity a more beautiful and elegant

remain unchanged under a Galilean transformation. We b&heory than the Newtonian theory of classical mechanics.

lieve th(_":lt this asymmetry for the principle of least action is |t gne uses the correct expression for the actimmproper

not aCC|denta|, but rather results from the fact that the Galtime)' the constants of motion also can be derived for R)enera'
S.

ilean transformation and Newton’s laws are only approxi-re|ativity without complicated or advanced mathemat
mate laws of motion. Symmetry under uniform linear motion

is a basic assumption of Einstein s.spemal relativity. V. SUMMARY
We consider the same free particle, but now we use the
special theory of relativity. The action for linear segment We have discussed the connection between symmetries

between 1 and 2 has the forth: and conservation laws provided by Noether’s theorem using
)\ 12 only elementary calculus. This approach can be used to help

B 2 v familiarize students with the powerful consequences of sym-

Stor segment= — M (1_ ?) At, (26) metry in the physical world. In addition, students can see a

unified and systematic approach to all the conservation laws,

where ¢ is the velocity of light,At=t;—t,, andv=(x, mediated by Noether’s theorem and the principle of least

—X41)/(t,—1t;). It can be seen from E@26) that Newtonian  action.

mechanics is a special case of relativistic mechanics in the All our considerations can be easily generalized to three

low-velocity limit (v<c): dimensions. We note that all symmetries in this paper are
one-parameter transformations, which provide the central

12 1 conservation laws using the most common form of Noether’s
1=5 5 |At=5mu ZAt—mcPAt. (27)  theorem related to the invariance of the Lagrandsee Ap-
c pendix B. Reference 17 and the pedagogically oriented
According to Appendix A, if we tak& (x,t) = —mct, Eq.  Refs. 18 and 19 give clear, elegant, and more mathematically

(27) will give the same laws of motion for a free particle as Precise (but much more mathematically orienjedpplica-
the classical Newtonian action in E(®). tions of Noether’s theorem to particle dynamics.

S~-mdc?

B. Lorentz transformation ACKNOWLEDGMENTS

Now we outline the symmetry argument connected to the This paper was written after we read Taylor and Wheeler’s
relativistic Lorentz transformation which has the formm ( general relativity boot sent to us along with other materials

=1): by Taylor, who also made very helpful suggestions for this
paper. The authors also wish to thank Nilo C. Bobillo Ares
X=y(X' +vpt’), t=vy(t'tvex’), (28  for helpful advice. Slavko Chalupka provided important dis-

cussion and encouragement and gave us the opportunity to

- _2\12 i { ! _ :
yvhere Y=1(1-v) ™" Herevy _has the same meaning as 40k an experimental course in quantum mechanics using
in Sec. IlID. We express the actid@6) along a segment of gome of these ided8.

the worldline:

Sor seqment — ML (ta—t1)2— (x5 x1)2] V2 (2090  APPENDIX A: THE ADDITION OF CERTAIN

o : . . TERMS TO THE ACTION HAS NO EFFECT ON THE
The expression in the square root is the particle’s proper time \vs OF MOTION

(wristwatch timg between the two events, which is easily

verified to be an invariant under the Lorentz transformation. Think of two expressions for the acti®{12) andS* (12)
Hence the relativistic action is symmetrical under a transforfor a given worldline between any two events 1 and 2 in

mation connected to uniform linear motion. space—time. Suppose that these two expressions are related
Noether’s theorem can be used also in relativity. The samey each other as
procedure used in Sec. Il can be repeated in special relativ-
ity to yield the laws of conservation of relativistic energy, S*(12)=S(12)+F(2)— F(1), (31)
momentum, and angular momentum:
where F is an arbitrary function that depends only on the
m_Ax_  —constant space and time coordinates of a given event. For example,
A7 Prelaivistic™ ’ F(1) could be the value oF at the event 1. Then laws of
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motion are the same for both forms of action. Why? ZElethoni_C mail: jozef.hanc@tuke.sk

We answer this question by repeating the same procedurgElectronic mail: tuleja@stoniine.sk
as for earlier symmetries, starting with three events 1, 2, anqgle;trf:’“'c mail: haSCOV?N@.chence'“pjs'Sk bartic dthe L .
3. If we apply Eq.(31), we obtain the following equations - P. Feynman and S. Weinberlementary Particles and the Laws o

. I ' Physics(Cambridge U.P., Cambridge, 1999. 73.

relating actionS and S* for segment 1-2 and 2-3: 2In reality, there are two Noether's theorems and their converses. The first
one refers to the invariance of the action with respect to a group of sym-
metries where the symmetry transformations depend analytically on many
arbitrary finite parameters. The second theorem deals with the invariance

S* (12=S(12)+F(2)—F(1), (32a of the action with respect to a group for which the transformations depend

on arbitrary functions and their derivatives instead of on arbitrary param-

eters. Our paper considers one-parameter symmetry transformations.

Therefore, it is connected with the first theorem. See E. Noether, “Invari-
" _ ante Variationsprobleme,” Nachr. v. d. Ges. d. Wiss. Ziitidgen, Math-

S (23 =S(23) +F(3)—F(2). (32b phys. Klasse, 235-2571918; English translation by M. A. Tavel, “In-
variant variation problem,” Transport Theory Stat. Me&h(3), 183—207
(197)). Both papers are available dittp://www.physics.ucla.edufcwp/
Phase2/NoetheAmalie Emmy@861234567.htrnl
3N. Byers, “E. Noether’s discovery of the deep connection between sym-
metries and conservation laws,” Isr. Math. Conf. Prb2, 67—-82(1999.

“R. P. Feynman, R. B. Leighton, and M. San@lae Feynman Lectures on
Physics(Addison—Wesley, Reading, MA, 1983/0l. I, Chap. 11, p. 11-1

S*(123=S(123 +F(3)—F(1). (33 or Chap. 52, p. 52-1.

SMore accurately, the principle says that a particle moves along that path

for which the action has a stationary value. So it is frequently and correctly

called the principle of stationary action. See |. M. Gelfand and S. V.
The two total actionS* andSin Eq. (33) differ only in the Fomin, Calculus of Variations(Prentice—Hall, Englewood Cliffs, NJ,
difference inF at the fixed events 3 and 1. If we change the 1963, Sec. 32.2 or D. J. Morin{http://www.courses.fas.harvard.edu/
space or time coordinat@enerallyu,) of the middle event . ~Physl6/handouts/textbook/chS.pdChap. 5.

. . . . 5Generally such a quantity is called a cyclic or ignorable coordinate; H.
2, this difference remains constant. So the minim&aind Goldstein Classical Mechanic§Addison—Wesley, New York, 1970p. 48

S* yield the same position of event 2, or in other words, the o Ref. 5.

first derivatives ofSandS* with respect tau, are the same  "Every quantity that depends on position coordinates and velocities and

(all other variables being fixgd whose value does not change along actual trajectories is called a constant
of the motion.
8We recommend a more detailed described procedure for introducing action
in J. Hanc, S. Tuleja, and M. Hancova, “Simple derivation of Newtonian

The total actionS* (123) is the sum 0f323 and (32by):

mechanics from the principle of least action,” Am. J. Phy, 386—-391
E = E (34) (2003.
du, duy’ ®The idea of using computers comes from E. F. Taylor. See E. F. Taylor, S.

\Vokos, J. M. O’'Meara, and N. S. Thornber, “Teaching Feynman’s sum
over paths quantum theory,” Comput. Ph{¢2 (2), 190-199(1998 or E.
F. Taylor, Demystifying Quantum Mechanjcéhttp://www.eftaylor.com
According to Eq.(34), the principle of least action fo8* Our software is based on Taylor’s.
. . . 10, 0
gives the same partlcle’s path as in the cass dhe laws of R. P. FeynmanThe Character of Physical LawRandom House, New
motion are unchanged if an additive constéhe difference  ,, 0" 1994, Chap. 4.

. . . - ., .~ UReference 4, Vol. II, Chap. 19, p. 19-8 or the more detailed discussion in
in an arbitrary function between final position and initial 5 g P P

position of a particlgis added to the actioft. 2strictly speaking, in these and the following cases we should use the more
traditional notation of partial instead of total derivatives. But in all cases it
is clear which coordinates are variable and which are fixed.
BIn that case it is necessary to consider the invariance of the action up to an
additive constantthe difference in any arbitrary function between final

position and initial position of a particiewhich will give conservation of
APPENDIX B: NOETHER'S THEOREM AND THE motion of the center of mass. See also Refs. 17 or 18.
LAGRANGIAN The relativistic formula for the action is given in Ref. 4, Vol. Il, Chap. 19.

We use the concept of invariance of mass that is used by E. F. Taylor and

, . . J. A. Wheeler, irSpacetime Physics: Introduction to Special Relatiiy
Noether’s theorem determines the connection betweeny, rrceman, New York, 19922nd ed.

constants of the motion and conditions of invariance of thesthe conservation law corresponding to the Lorentz transformation is de-
action under different kinds of symmetry. The function rived in L. D. Landau and E. M. LifshitzThe Classical Theory of Fields
KE-PE in Newtonian mechanics is called the Lagrangian and (Pergamon, London, 1975vol. 2, pp. 41-42.

i i 1E. F. Taylor and J. A. WheeleExploring Black Holes: An Introduction to

is denoted by the symbdl. So we can writeSy segment General RelativitfAddison—Wesley Longman, New York, 200@haps.
=,AS_LAL (Do not confuse the symbdl for _the action 1 and 4; also available ghttp://www.eftaylor.com The authors use a
with the symbolL for angular momentum used in Sec. II)C.  yery similar, easy, and effective variational method.

If we discuss symmetry transformations such that time iS’p. Havas and J. Stachel, “Invariances of approximately relativistic
transformed identicallyt* =t, or transformations involving  Lagrangians and the center of mass theorem. I,” Phys. R8E.(5),

a uniform time translationt* =t+ r, whereAt=At*, then 181636‘16;";(1969- ‘Nosther i i esical mechanice.”
the invariance of the Lagrangian implies the invariance of X;nc'Jth;s:sAGr(ezs)’ 1,\712(?13;(51;8%?”6”1 In discrete classical mechanics,
the action. Therefore, most textbooks state Noether’S the(lsc. M. Giordano and A. R. Plastino, “Noether’s theorem, rotating poten-
rem as: for each symmetry of the Langrangian, there is aijals, Jacobi's integral of motion,” Am. J. Phy86 (11), 989-995(1998.
corresponding conserved quantity. 2The substance of this article was used by the authors as subjects for stu-
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dent projects dealing with a special topic on the principle of least action in www.LeastAction.host.9k or see Edwin Taylor’'s websitexhttp://

a semester quantum mechanics course for future teachers of physics at themww.eftaylor.com/leastaction.htiml which also includes our newest,
Faculty of Science, P. J. Safarik University, Kosice, Slovakia. To continually updated and expanded materials.

obtain our materials and corresponding software, séwutp:/ 2. D. Landau and E. M. LifshitzMechanics(Butterworth—Heinemann,
leastaction.topcities.com (the mirror site (http:// Oxford, 1976, Sec. 1.2.

SYMMETRY AS INDIFFERENCE

Without meaning to appear sacrilegious, | like to think of symmetries as representing aspects of
nature that its Creator didn’t care about. If the Creator cared about something, | feel sure that there
would be some mechanism for letting us know that it had changed. But a symmetry is precisely
something that you can change without knowing it has changed. Thus, in my opinion, in a certain
sense the quantity being changed is unimportant. Symmetries are principles of indifference.

Morton Tavel, Contemporary Physics and the Limits of Knowled@eutgers University Press, New Brunswick
NJ, 2002, p. 34.

Submitted by Alan DeWeerd.
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