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In driven-dissipative systems, the presence of a strong symmetry guarantees the existence of several steady

states belonging to different symmetry sectors. Here we show that, when a system with a strong symmetry is

initialized in a quantum superposition involving several of these sectors, each individual stochastic trajectory

will randomly select a single one of them and remain there for the rest of the evolution. Since a strong symmetry

implies a conservation law for the corresponding symmetry operator on the ensemble level, this selection of a

single sector from an initial superposition entails a breakdown of this conservation law at the level of individual

realizations. Given that such a superposition is impossible in a classical, stochastic trajectory, this is a a purely

quantum effect with no classical analogue. Our results show that a system with a closed Liouvillian gap may

exhibit, when monitored over a single run of an experiment, a behaviour completely opposite to the usual notion

of dynamical phase coexistence and intermittency, which are typically considered hallmarks of a dissipative

phase transition. We discuss our results with a simple, realistic model of squeezed superradiance.

Driven dissipative systems are ubiquitous in many body

physics and cavity QED [1–12]. These systems are typ-

ically gapped and feature a unique, non-equilibrium steady

state. In the regime of a dissipative phase transition (DPT),

however, this gap vanishes and the null-space of the Liou-

villian is spanned by several compatible steady-states. [13–

22]. Due to their fundamental interest and practical appli-

cations, such as enhanced metrological properties [23, 24],

DPTs have attracted a significant amount of attention, with

much work being devoted to study the associated phenom-

ena of bistability [3–5, 22, 25–28], hysteresis [2, 29], inter-

mittency [6, 26, 29–32], multimodality [25, 31], metastabil-

ity [33] and symmetry breaking [34–36]. All these effects are

understood as different manifestations of the coexistence of

several non-equilibrium phases. In particular, many exper-

iments will look for intermittency as the hallmark of such

phase coexistence [6, 26, 29–32]. Intermittency is a phe-

nomenon defined by a random switching between periods of

high and low dynamical activity (for instance in the rate of

photon emission). This behaviour, which is observed during

a single run of the experiment, is conveniently described us-

ing the formalism of quantum jumps in which the system is

characterized in terms of a pure wavefunction that undergoes

stochastic evolution [37–39].

The timescale τ of this intermittency is given by the inverse

of the Liouvillian gap or asymptotic decay rate (ADR), i.e.

the eigenvalue λ2 of the Liouvillian operator L with the sec-

ond largest real part [23, 40, 41]. Since a DPT is defined by

a vanishing Liouvillian gap [13, 14], it will necessarily im-

ply that τ diverges. In most typical situations, this closing is

reached in the thermodynamic limit of a many-body system.

Consequently, for any finite system, the long-time limit where

intermittency is observable will, at least formally, exist. There

are, however, situations in which the Liouvillian gap vanishes

exactly and such a long-time limit cannot be taken. This is

the case of systems featuring a strong symmetry [42]. Liou-

villians L with a strong symmetry have a degenerate steady

∗ carlos.sanchezmunoz@physics.ox.ac.uk

state—implying that λ2 = 0—and an associated conservation

law for the symmetry operator, Ȧ = L†A = 0 [42, 43]. Since

the Liouvillian gap is closed exactly for any system size, the

long-time limit of intermittency described before does not ex-

ist, and the dynamics is split into different, unconnected er-

godic symmetry sectors.

In this work, we study the quantum trajectories of open

quantum systems with a strong symmetry. We show that,

when initialized in a superposition involving different sym-

metry sectors, the system will evolve towards a single one

of them in each individual trajectory, remaining there for the

rest of the realization. This non-ergodic phenomenon, that we

term dissipative freezing, is in stark contrast with the typical

looked-for phenomenology of intermittency in a DPT and pre-

dicts a completely different dynamical behaviour at the level

of individual realizations of the experiment. Related effects

have already been discussed in different contexts: in Ref. [44]

exponential stability of subspaces for quantum trajectories

was demonstrated; in Ref. [45] it was shown that a quantum

stochastic master equation describing non-demolition mea-

surements converges to a pure state; in Ref. [46] a similar

effect was discussed for quantum Markov chains. An im-

portant result of our work is to relate this phenomena to the

symmetries of the master equation. Notably, it implies that

the conservation law for the strong-symmetry operator is bro-

ken at the level of trajectories and can only be recovered under

ensemble-averaging. This is a purely quantum phenomenon,

since it requires an initial superposition of different symmetry

sectors that cannot be implemented classically, i.e. a single

classical trajectory is always fully realistic and located in only

one of this sectors. Understanding this phenomena is impor-

tant for the dynamical characterization of dissipative systems

with a closed Liouvillian gap. This limit has been proven

relevant in quantum metrology, since it yields a Heisenberg

scaling (quadratic in time) of the quantum Fisher informa-

tion [23].

To discuss the effect of dissipative freezing, we analyse

a model that can be solved numerically, yet displays a rich

variety of non-ergodic dynamics. This model consists of

a coherently-driven spin ensemble with squeezed, collective
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FIG. 1. Steady state observables for a finite system size N = 50.

Dashed lines indicate the critical line Ωc(θ). (a) Spin magnetization

M ≡ 〈Sz〉/J , featuring ferromagnetic (F) and thermal (T) phases.

(b) Spin squeezing ξ2⊥ ≡ N〈∆Sx〉
2/〈S〉2.

spin decay, which can be implemented by adiabatic elimina-

tion of a cavity mode coupled to a multi-component atomic

condensate via cavity-assisted Raman transitions [47–51].

Model and phase diagram.— The master equation describ-

ing the dynamics of the N -spin ensemble is (~ = 1):

ρ̇ = −iΩ[Sx, ρ] +
Γ

2J
LDθ

[ρ], (1)

where LO[ρ] ≡ 2OρO† −{O†O, ρ} is the usual Lindblad su-

peroperator [52], and the operator Dθ describes the quantum

jumps undergone by the system, Dθ ≡ cos(θ)S−+sin(θ)S+.

In these equations, S± and Sz are collective spin opera-

tors obeying angular momentum commutation relations, Ω
is the driving amplitude, Γ is the quantum-jump rate, and

J = N/2 is the total angular momentum, which is con-

served in the dynamics. The squeezed decay operator Dθ

includes both S− and S+, with a weight parametrized by

the angle θ and an associated dark state which is a spin-

squeezed state for θ 6= (0, π/2) [50]. Fig. 1 depicts the phase

diagram in the (Ω, θ) plane in terms of the magnetization

and spin-squeezing, featuring two types of non-equilibrium

phases (discussed in more detail in Ref [53]) i) The ferromag-

netic (F) phase is characterized by a well-defined magnetiza-

tion, diverging spin-squeezing at the phase transition, small

fluctuations in the counting distributions of quantum jumps,

high purity and ergodic dynamics. Any initial state eventu-

ally relaxes into a stationary, almost pure gaussian steady-

state. In the thermodynamic limit, this phase is well de-

scribed within a Holstein-Primakoff approximation. ii) In

the thermal (T) phase the steady-state is highly mixed, and

close to the infinite-temperature state ρ ∝ 1. This phase is

characterized by zero mean magnetization, small purity, large

spin fluctuations, high rate of quantum jumps and large fluc-

tuations in the output field. The transition from the ferro-

magnetic to the thermal phase occurs at the critical driving

Ωc(θ) = Γ(cos2 θ − sin2 θ). All the results presented here

apply to the case θ ≤ π/2, trivially extended to θ ≥ π/2 by a

spin flip. Hence, we have a spin-up and spin-down version of

each phase, denoted as F↑/↓ and T↑/↓ in Fig. 1.

Liouvillian eigenvalues and symmetries.— In the large driv-

ing limit of the thermal phase the Liouvillian features a partic-

ularly interesting spectrum of eigenvalues that can be derived

analytically [53, 54]:

λ±q,k = ±iqΩ−
Γθ

2J
q2 −

χθ

4J
[q + k(1 + k + 2q)] , (2)

with Γθ ≡ Γ(cos θ + sin θ)2, χθ ≡ Γ(cos θ − sin θ)2,

q = 0, 1, . . . 2J , k = 0, 1, . . . 2J − q. Equation (2) shows

that, besides the steady-state eigenvalue λ0,0 = 0, other eigen-

values with zero real part can be obtained in two ways: either

reaching the thermodynamic limit J → ∞, or setting θ = π/4
(χθ = 0). For any fixed q, limJ→∞ Re[λ±q,k] = 0, which

implies eigenstates with finite, purely imaginary eigenvalues

and, therefore, the absence of stationarity and emergence of

oscillatory dynamics in the long-time limit [55], which has

recently attracted attention in similar models [56, 57]. The fo-

cus of this paper is, however, the situation θ = π/4, where

the Liouvillian gap closes exactly for any system size due to

the presence of a strong symmetry, i.e., an operator A that sat-

isfies [H,A] = 0 and [Lµ, A] = 0, with H the Hamiltonian

and Lµ the set of quantum-jump operators of the master equa-

tion [42]. In the model considered here, A = Sx. All the

ρ
(m)
0 = |m〉〈m| built from eigenstates |m〉 of Sx are steady

states of the dissipative dynamics [58].

Dissipative freezing of the dynamics.— The exact closing

of the Liouvillian gap for any system size in the presence of

a strong symmetry differs from the usual situation in which

this closing, characteristic of a DPT [3, 6, 13, 14], occurs in

the thermodynamic limit [3–6, 22, 25, 26, 29–32]. In the pres-

ence of a strong symmetry, multiple degenerate steady states

can exist [42] and the actual steady state of the system is then

composed of a particular superposition of these states, fixed

by the initial conditions [14, 33]. Since in this case the evolu-

tion is not necessarily ergodic, it is not guaranteed that a single

trajectory will switch among these states, which is the main

assumption behind the notion of intermittency [6, 26, 29–32].

More importantly, we want to clarify whether the conservation

law Ȧ = 0 will apply at the level of an individual trajectory,

since, to the best of our knowledge, this is only guaranteed

when A is unitary.

The model of squeezed superradiance that we consider here

represents, in the particular case θ = π/4, one of the sim-

plest implementations of a strong symmetry. The unraveling

of the evolution in individual trajectories in this model reveals

an effect that we term “dissipative freezing” of the dynamics.

The phenomenon is depicted in Fig. 2 (a–c): after initializ-

ing the state in a given superposition—in this example, of the

Sx eigenstates |0〉, |3〉 and |5〉—the wavefunction eventually

evolves into a single one of the eigenstates, with the occu-

pation of any of the other ones decaying exponentially with

time. The evolution is thus effectively frozen in one eigen-

state for any individual realization of the dynamics, and the

conservation law Ṡx = 0 is broken.

An eigenstate of a strong symmetry is stationary under this

stochastic evolution. To prove this, we consider the gen-

eral form of any wavefunction undergoing a stochastic, dis-

sipative evolution described by H̃ and the set of quantum
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FIG. 2. Three different quantum trajectories at θ = π/4 for the same

initial state (a superposition of three eigenstates of Sx). Panels (a-c)

show the three possible types of trajectories that occur. The inset in

(a) shows the exponential decrease of the occupation of non-selected

states. Parameters: J = 5, Ω = 0.8Γ.

jump operators {Lµ}. Starting from an initial state |ψ(t0)〉,
the wavefunction evolves for a time t experiencing n quan-

tum jumps at times (t1, . . . , tn) < t with jump operators

(L(1), . . . , L(n)), where L(i) ∈ {Lµ}. The form of the wave-

function is then given by a nonunitary evolution |ψ(t)〉 =
1
N Ũ(t, tn, . . . , t0)|ψ(t0)〉, where N is a normalizing constant,

and Ũ(t, tn, . . . , t0) is an evolution operator given by:

Ũ(t, tn, . . . , t0) = e−iH̃(t−tn)
n
∏

m=1

L(m)e−iH̃(tm−tm−1),

(3)

with
∏n

m=0Om ≡ On · On−1 · . . . · O0. Let us consider a

strong symmetry operator A, so that [A, Ũ ] = 0. Therefore,

if |ψ(t0)〉 is an eigenstate of a strong symmetry A|ψ(t0)〉 =
λ|ψ(t0)〉, we obtain

A|ψ(t)〉 = AŨ(t, tn, . . . , t0)|ψ(t0)〉

= Ũ(t, tn, . . . , t0)A|ψ(t0)〉 = λ|ψ(t)〉, (4)

i.e. an eigenstate of A remains unchanged at the level of in-

dividual trajectories. This proof can be easily extended to the

eigenstates of any power An. This fact may suggest that any

quantum trajectory could eventually get “trapped” into one of

these eigenstates, in a picture somewhat analogue to dark-state

cooling [59] or population trapping [60]. However, for this to

happen, the combination of non-Hermitian Hamiltonian evo-

lution and quantum jumps (which have opposing effects on

the occupancy of each eigenstate) should bring the system into

one of these eigenstates in the first place. It is a priori not cer-

tain that this will occur.

Here, we prove that this is indeed the case when ρ̇ =
−iΩ[A, ρ] + Γ/(2J)LA{ρ}; i.e. dynamics with a single

quantum jump L and a general, Hermitian strong-symmetry

A ∝ H ∝ L. We set t0 = 0 and consider an initial state

|ψ(0)〉 =
∑

m cm(0)|m〉, expanded in the basis of eigenstates

of A, |m〉, with eigenvalue m. For any general quantum tra-

jectory that evolves for a time t undergoing n quantum jumps,

the probability for the final state to be in an eigenstate of |m〉
takes the form [53]:

p(m; t, n) =
1

N

(

e−|m|2 |m|2α
)tΓ/J

|cm(0)|2, (5)

with α = nJ/(tΓ) and N a normalizing constant. The expo-

nent tΓ/J in Eq. (5) tends to enhance the maximum of the

function in parenthesis as time increases. Hence, after nor-

malization, p(m; t, n) tends to zero for all m except for the

optimum value. Since the function e−xxα has a maximum at

x = α, only the eigenstates |m〉 from the subspace of A†A
yielding the minimum |α− |m|2| have a non-zero occupancy

in the long-time limit t ≫ J/Γ. Equation (5) thus encapsu-

lates the essence of the dissipative freezing effect and is the

main result of this paper: for t ≫ J/Γ, any general trajec-

tory will be trapped in an eigenspace of A†A, consequently

breaking the conservation law Ȧ = 0 if initialized in a su-

perposition of different eigenspaces. In the long-time limit,

the total number of jumps recorded in a trajectory allows one

to unambiguously determine, from those eigenspaces of A†A
having an overlap with the initial state, which one has the sys-

tem been trapped into.

For the particular case that we study in this paper, H ∝
L ∝ A = Sx, m = −J, . . . J . In this case, the eigenstates of

A†A = S2
x are doubly degenerate. For t ≫ J/Γ, the proba-

bility distribution for any quantum trajectory is p(m; t, n) ∝
∑

m(δm,m̃+δm,−m̃)|cm(0)|2, with m̃ the natural number ≤ J

closest to
√

nJ/(tΓ). The resulting probability distribution

versus n/t is plotted in Fig. 3(a) for an initial state composed

of an equal superposition of all the eigenstates.

The phenomenon can be interpreted in terms of a quantum-

measurement description of dissipative dynamics [61–63].

The information provided by the quantum jumps makes the

eigenspaces of A†A with a particular eigenvalue increasingly

likely, and continuously updates the state accordingly. We

stress that this picture applies to any dissipative dynamics and

that this update is different from a projective measurement of

A†A that would collapse the system into one of its eigenstates.

In most situations, the update after each jump is not able to

freeze the state due to the non-Hermitian evolution between

jumps, which also changes the occupancy of these eigenstates.

In our case, this is prevented by the strong symmetry, and the

effect of the jumps pile up, giving rise to the phenomenon of

dissipative freezing.

Multimodality. Having demonstrated the absence of inter-

mittency in the presence of a strong symmetry, it is important

to discuss the implications in other phenomena that are usu-

ally also linked to DPTs and dynamical phase coexistence,

such as the multimodality of the activity distribution [32].
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Bright phase
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FIG. 3. (a) Probability distribution for any quantum trajectory at

time t = 100J/Γ, versus the number of jumps n, in the model of

squeezed superradiance for θ = π/4, J = 10. The initial state is an

equal superposition of all the eigenstates |m〉 of Sx. The resulting

wavefunction always freezes into an eigenstate of S2

x. Inset shows

the probability distribution for the value n/t = 5 indicated by the

dashed line. (b) pT (K) at T = 3 · 103/Γ in the case of our model.

N = 20, Ω = 0.8Γ, θ = π/4 (strong symmetry point). (c) 〈k〉s
versus θ, featuring the coexistence between a bright and a dark phase

in the vicinity of θ = π/4.

We analyse the problem from the framework of the thermo-

dynamics of quantum trajectories. The activity is defined as

the mean number of quantum jumps undergone by the sys-

tem per unit time, which can be expressed through the prob-

ability distribution pT (K) of counting K jumps on a time

T . In the theory of thermodynamics of quantum trajecto-

ries [32, 64], the activity in the long time limit is postulated

to follow a large deviation principle pT (K) ≍ e−Tϕ(K/T ),

where the rate function ϕ(K/T ) = − ln pT (K)/T has the

properties of an entropy density [65]. Equivalently, the cu-

mulant generating function also has a large deviation form

Z = 〈esK〉 ≍ etλ(s). Here, λ(s) plays the role of a free

energy, related to the entropy by a Legendre transformation

λ(s) = maxk[ks − ϕ(k)]. λ(s) encapsulates the statisti-

cal properties of the trajectories, and it allows to write the

mean activity as 〈k〉 ≡ 〈K〉/T = ∂λ(s)/∂s|s=0. λ(s) can

be obtained as the largest eigenvalue of the tilted Liouvillian

Ws(ρ) = L(ρ)− (1− es)LρL†, with L the operator inducing

the jumps that we are recording. Once λ(s) is found this way,

the Legendre inverse transformation ϕ(k) = maxs[ks−λ(s)]
allows us to obtain ϕ(k). This relation, however, requires λ(s)
to be differentiable for all s ∈ R or, equivalently, ϕ(k) to be

concave for all k ∈ R [65].

In the presence of a strong symmetry, however, ϕ(k) is non-

concave and, therefore, λ(s) is non-analytic. To show this, we

consider a strong symmetry A with eigenstates |m〉 and only

one quantum jump operator, L =
√

Γ/JA. For an initial

state ρ(0) =
∑

m cm(0)|m〉〈m|, the quantum-jump probabil-

ity distribution takes the form [53]:

pT (K) =
∑

m

1

K!

(

TΓ|m|2

J

)K

e−Γ|m|2T/Jcm(0), (6)

which is dependent on the initial state via the coefficientes

cm(0). This equation presents the multimodal structure de-

picted in Fig. 3(b), plotted for the particular case of our model,

A = Sx. Each steady state ρ
(m)
0 = |m〉〈m| with non-zero

overlap with ρ(0) manifests as a distinct peak in the counting

distribution pT (K), centered at the value Km = T |m|2Γ/J ,

which is the emission rate expected for that particular state.

The multimodal structure of pT (K)—and consequently of

ϕ(k)—cannot be obtained from λ(s) through an inverse Leg-

endre transformation [65], therefore, it points towards a non-

analicity of λ(s). As we prove in the Ref [53], this non-

analicity consists of a discontinuity of 〈k〉s ≡ ∂λ(s)/∂s at

s = 0, as it is usually described in the context of dynami-

cal phase transitions [32, 40, 41, 64, 66]. A first-order phase

transition in 〈k〉s is therefore linked to the phenomenon of

dissipative freezing.

Our model allows us to explore how this discontinuity turns

into a continuous crossover as we depart from the strong-

symmetry point θ = π/4. This is shown in Fig. 3(c), where

we plot 〈k〉s versus θ. For θ = π/4, the limit s→ 0+ features

a bright phase characterized by a high activity, whereas for

s→ 0− we find a dark phase with virtually no quantum jumps

(see insets). Away from this point, we obtain a crossover con-

sistent with the first-order phase transition smoothed by finite-

size effects usually observed in finite many-body systems un-

dergoing a DPT [32]. It implies that λ(s) is analytic, and that,

in the long-time limit, pT (K) is unimodal. Unimodality is a

consequence of intermittency: the switching between differ-

ent dynamical phases destroys the multimodal distribution for

times longer than τ = −Re(1/λ2) [23]. Therefore, inter-

mittency is unequivocally connected to a crossover in 〈k〉s at

s = 0, and dissipative freezing, to a discontinuous, first-order

transition. Alternatively, dissipative freezing can be described

as the survival of multimodality in the long-time limit.

The survival of multimodality is of strong importance in

the context of enhanced quantum metrology, where it has

been proven that there is a Heisenberg scaling of the quan-

tum Fisher information for times shorter than the correlation

time τ [23]. Since systems with a strong symmetry will fea-

ture an asymptotic quadratic scaling of the quantum Fisher

information for all times, our results may be of relevance in

the design of sensing protocols aimed to exploit this feature
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on continuous Bayesian parameter estimation from photon

counting [63, 67, 68]. Beyond the model considered here, our

results have strong implications for the dynamical characteri-

zation of DPTs in more complex systems where the existence

of a strong symmetry can provide a way to tune the Liouvil-

lian gap to zero without the need of reaching a thermodynamic

limit.
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[17] M. Benito, C. Sánchez Muñoz, and C. Navarrete-Benlloch, De-

generate parametric oscillation in quantum membrane optome-

chanics, Phys. Rev. A 93, 023846 (2016).

[18] L. M. Sieberer, S. D. Huber, E. Altman, and S. Diehl, Dynam-

ical Critical Phenomena in Driven-Dissipative Systems, Phys.

Rev. Lett. 110, 195301 (2013).
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