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Abstract— Control algorithms, like model predictive control,
can be computationally expensive and may benefit from being
executed over the cloud. This is especially the case for nodes
at the edge of a network since they tend to have reduced
computational capabilities. However, control over the cloud
requires transmission of sensitive data (e.g., system dynamics,
measurements) which undermines privacy of these nodes. When
choosing a method to protect the privacy of these data, efficiency
must be considered to the same extent as privacy guarantees to
ensure adequate control performance. In this paper, we review a
transformation-based method for protecting privacy, previously
introduced by the authors, and quantify the level of privacy it
provides. Moreover, we also consider the case of adversaries
with side knowledge and quantify how much privacy is lost as
a function of the side knowledge of the adversary.

I. INTRODUCTION

A. Motivation

With an increasing connectivity of devices, there has been

a marked growth in the use of cloud-based services, where a

powerful server provides memory and computation to clients.

In control, these ideas took form into control over the cloud

— a technique where a controller is placed on the cloud,

while both measurements and control inputs are exchanged

by the plant and the cloud over a communication channel.

Control over the cloud provides numerous advantages,

such as the opportunity to outsource expensive tasks to the

cloud, easier installation and maintenance [1], and access

to information from all of the cloud’s clients for control

decisions [2]. Several works [2], [3] have shown practical

feasibility of model predictive control (MPC) over the cloud.

Notwithstanding the benefits of control over the cloud,

the exposure of systems to the cloud can cause security

vulnerabilities in a variety of applications [4], [5], including

control of process plants and traffic infrastructure. One of

the attacks exploiting these vulnerabilities is eavesdropping.

In control over the cloud, an eavesdropping attack happens

when an adversary listens in on the communication to capture

information about the model, objective, and trajectory [6].

Traditionally, eavesdropping attacks are prevented with

encryption - the client and the cloud establish a shared key
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with which they encrypt transmitted messages and decrypt

the messages they receive. This technique, however, fails to

protect the system if the privacy breach occurs within the

cloud. Hence, there is a need for control-over-the cloud meth-

ods that do not require the incoming data to be decrypted by

the cloud. While approaching this problem, one must surely

keep in mind two other important concerns: efficiency and

safety. We must not achieve privacy at the cost of degradation

of control performance either due to delays in the feedback

loop or inaccurate control inputs.

B. Related work

So far the problem of privacy in control over the cloud has

been approached under the frameworks of homomorphic en-

cryption, differential privacy, and algebraic transformations.

Homomorphic encryption techniques allow the cloud to

perform the necessary computations on encrypted data with-

out decrypting it [7]. Fully homomorphic encryption (FHE)

was considered in [8]. Unfortunately, FHE is impractical for

online optimization due to its execution time [7]. This has

led to increased interest in partially homomorphic encryption

(PHE), see [1], [6], [9], [10]. While improved, execution time

remains a valid concern in PHE methods [6].

The notion of differential privacy was also recently applied

to privacy in control (see [11], [12]). The main idea of these

methods is to perturb the response to a data query with

appropriate noise. However, to achieve more privacy, the user

must sacrifice accuracy (i.e., add more noise), which, in the

context of control, degrades the control performance.

Algebraic transformation methods, to which this work

relates, were created to preserve privacy of optimization

problems. The main idea of these methods is to provide the

cloud with a different, but equivalent optimization problem.

Then, the optimal solution to the original problem can be re-

covered from the optimal solution of this equivalent problem,

provided by the cloud. These methods found applications in

control due to their efficiency and guaranteed optimality of

the solution [13]. For example, in [14] the authors propose

a hybrid transformation-based method to preserve privacy of

an MPC controller in networked control systems. In [15],

transformation-based methods are used to provide privacy in

a specific problem of AC optimal power flow.

C. Contributions

While efficiently enforcing privacy in control systems is

difficult, some features of dynamical systems can be used

to our advantage. We propose to use isomorphisms and

symmetries of the dynamics as a source of transformations
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so as to keep not only the optimization problems, but also

the resulting plant dynamics, equivalent. The advantages of

this approach are increased computational efficiency, com-

putation on encoded data and simplicity of design.

The proposed method was initially introduced in [16].

As opposed to [14], it applies to a more general class of

quadratic programs and provides encoding for the state and

the output. In comparison to [15], our method is also more

general since it is applied to a wider class of problems and

considers the scenarios when the output is different from the

state. In [17], this method was extended to networked control

systems with several agents and a single cloud. In this work,

we address two issues that were not discussed in [16], [17]:

1) we propose a measure of privacy and compute it for the

different scenarios discussed in the paper;

2) we quantify how much privacy is lost when an adversary

has access to side knowledge.

II. PROBLEM DEFINITION

A. Plant dynamics and control objective

We consider discrete-time affine plants, denoted by Σ, and

described by:

Σ :
x̄k+1 = Āx̄k + B̄ūk + c̄

ȳk = C̄x̄k + d̄,
(II.1)

where Ā ∈ R
n×n, B̄ ∈ R

n×m, C̄ ∈ R
p×n, c̄ ∈ R

n, and

d̄ ∈ R
p describe the dynamics, and x̄ ∈ R

n, ū ∈ R
m and

ȳ ∈ R
p denote the state, input and output of the system,

respectively. We assume that system Σ is controllable and

observable. We also assume, without loss of generality, that

ker B̄ = 0 and Im C̄ = R
p, since we can always eliminate

linearly independent columns (resp. rows) from B̄ (resp. C̄).

To simplify notation, we lift every affine map Ax + c to

a linear map as follows:

Ax+ c 7→

[

A c
0 1

] [

x
1

]

. (II.2)

Applying (II.2) to (II.1), we obtain:

xk+1 ,

[

x̄k+1

1

]

=

[

Ā c̄
01×n 1

] [

x̄k
1

]

+

[

B̄
0

]

uk

, Axk +Buk

yk ,

[

ȳk
1

]

=

[

C̄ d̄
0 1

] [

x̄k
1

]

, Cxk.

(II.3)

In what follows we conceal the inner structure for sim-

plicity. Nevertheless, the reader should remember that we

are dealing with affine maps. This is also true for the affine

maps we will use to define isomorphisms. We refer to system

(II.3) as the triple Σ = (A,B,C).

We call a triple {xk, uk, yk}k∈N a trajectory of Σ if it

satisfies (II.1) for all k ∈ N.

Additionally, we consider a cost function

J : Rn × (Rm)N+1 → R for N ∈ N ∪ {+∞} that, by

comparing trajectories, allows formulating different control

objectives. We consider quadratic cost functions given by:

J(x, u) =

N
∑

k=0

∆ηTkM∆ηk, (II.4)

where ∆ηk =
[

xk − x∗k uk − u∗k
]T

, x = {x0, ..., xN}
and u = {u0, ..., uN}. Sequences x∗ = {x∗0, ..., x

∗
N} and

u∗ = {u∗0, ..., u
∗
N} denote the desired setpoints. We define

M ∈ R
(n+m+1)×(n+m+1) to be a positive-definite matrix.

Along with the cost, control objectives require certain

constraints to be satisfied at all times. We define them as:

Dηk ≤ 0, k = 0, ..., N, (II.5)

where ηk =
[

xk uk
]T

and D ∈ R
h×(n+m+1). Note that,

despite appearing to be linear, these constraints are in fact

affine, in view of the construction (II.2).

We also assume that there are n+ 1 linearly independent

constraints on the state xk. This is a valid assumption

since real-world systems usually have a bounded operational

envelope (e.g., maximum velocity or maximum pressure).

B. Attack model and privacy objectives

The cloud is considered to be a curious but honest adver-

sary: the cloud adheres to the agreed-upon protocol, but may

try to extract confidential information by keeping record of

all communicated messages.

The interaction between the plant and the cloud is per-

formed in two steps:

1) Handshaking: the plant communicates to the cloud

a suitably modified version of its model, cost, and

constraints. In return, the cloud agrees to find the input

minimizing the cost, subject to model and constraints;

2) Plant execution: the plant repeatedly sends a suitably

modified version of its measurements to the cloud. The

cloud computes a new input based on the received

measurements and sends it to the plant, where it is

suitably modified before being applied to the plant.

We intentionally used the vague expression “suitably mod-

ified”. Making this expression concrete requires that we first

define the knowledge available to the plant. We consider the

following three scenarios.

1) the cloud has no knowledge about the plant;

2) the cloud has no knowledge about the plant, except for

knowing what its sensors and actuators are;

3) the cloud has complete knowledge about the plant

dynamics.

These scenarios dictate which modifications can be applied.

For more details on the scenarios, refer to [16].

III. MAIN DEFINITIONS AND

SUMMARY OF PREVIOUS RESULTS

In this section, we recap the results from [16] to provide

the context for the main result of this work. The key notions

that were discussed in [16] are those of isomorphism and

symmetry of control systems.
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Let us denote by Sn,m,p the set of all controllable and

observable linear control systems with state, input and output

dimensions n, m, and p, respectively.

Definition III.1. An isomorphism of control systems in

Sn,m,p is a quadruple ψ = (P, F,G, S) comprising a change

of state coordinates P : R
n → R

n, a state feedback

F : Rn → R
m, a change of coordinates in the input space

G : Rm → R
m and a change of coordinates in the output

space S : Rp → R
p, where P and S are affine invertible

maps, F is an affine map, and G is a linear invertible map.

Let us also denote the set of isomorphisms of Sn,m,p

described in Definition III.1 as Gn,m,p. The set Gn,m,p forms

a group with function composition as the group operation1.

This allows us to define a group action of Gn,m,p on Sn,m,p.

Definition III.2. Each element ψ ∈ Gn,m,p acts on

Σ ∈ Sn,m,p to produce ψ∗Σ given by:

ψ∗Σ = (P, F,G, S)∗(A,B,C)

= (P (A−BG−1F )P−1, PBG−1, SCP−1)

, (Ã, B̃, C̃).

(III.1)

This map is called an isomorphism action.

The isomorphism ψ maps the trajectory {xk, uk, yk}k∈N

of Σ to the trajectory {x̃k, ũk, ỹk}k∈N of ψ∗Σ as follows:

x̃k = Pxk ũk = Fxk +Guk ỹk = Syk. (III.2)

Similarly, the isomorphism ψ induces transformation on

the control objectives (i.e., the cost and constraints) by

modifying ηk as follows:

η̃k =

[

x̃k
ũk

]

=

[

P 0
F G

] [

xk
uk

]

, Lηk. (III.3)

Therefore, to express the cost function J and constraints in

(II.5) in terms of modified states x̃ and inputs ũ, we need to

use a modified cost and modified constraints:

J̃(x̃, ũ) = ψ∗J (x, u) =
N
∑

k=0

∆η̃Tk M̃∆η̃k, (III.4)

D̃η̃k ≤ 0, k = 0, ..., N, (III.5)

where M̃ = L−TML−1 and D̃ = ψ∗D = DL−1.

Let us now define S̄n,m,p to be a set of all quadruples
(

Σ, J,D, {xk, yk, uk}k∈N

)

such that {xk, yk, uk}k∈N
is a

trajectory of Σ minimizing cost function J under constraints

D, where D contains n+1 linearly independent constraints

on xk. Similarly to Sn,m,p, we can define a group action of

Gn,m,p on S̄n,m,p in view of the previous discussion.

Therefore, we can use the action of Gn,m,p to define the

equivalence relation on S̄n,m,p.

Definition III.3. Let Ω = (Σ, J,D, {xk, uk, yk}k∈N) and

Ω̃ = (Σ̃, J̃ , D̃, {x̃k, ũk, ỹk}k∈N) be elements of S̄n,m,p. The

equivalence relation ∼G on S̄n,m,p, denoted by Ω ∼G Ω̂, is

1A composition of two isomorphisms is given by ψ2 ◦ ψ1 =
(P2P1, G2F1 + F2P1, G2G1, S2S1), the identity is ψe = (I, 0, I, I)
and the inverse is given by ψ−1 = (P−1,−G−1FP,G−1, S−1).

Algorithm 1 (Plant (P)⇐⇒ Cloud (C))

Input: P: ψ, Σ, J , D, yk, ũk;

C: ỹk, Σ̃, J̃ , D̃
Output: P: Σ̃, J̃ , D̃, ỹk;

C: ũk
Phase 1: Handshaking

1: P: Encode Σ̃ = ψ∗Σ, J̃ = ψ∗J and D̃ = ψ∗D;

2: P: Output Σ̃, J̃ , and D̃ to the cloud;

Phase 2: Execution

3: P: Encode measurements as ỹk = Syk and send to the

cloud;

4: C: Use ỹk to estimate the state x̃k and compute the input

ũk minimizing J̃ subject to the constraints D̃ and the

dynamics Σ̃;

5: C: Send ũk to the plant;

6: P: Use ψ to decode ũk and produce uk using (III.2).

defined by the existence of ψ ∈ Gn,m,p such that Ω̃ = ψ∗Ω,
— i.e., Σ̃ = ψ∗Σ, J̃ = ψ∗J , D̃ = ψ∗D, and {x̃k, ũk, ỹk}k∈N

is given in terms of {xk, uk, yk}k∈N as in (III.2).

The equivalence class of Ω ∈ S̄n,m,p via equivalence

relation ∼G is the set:

[Ω] , {Ω′ ∈ S̄n,m,p|∃ψ ∈ Gn,m,p such that Ω′ = ψ∗Ω}

For a given system Σ, there is also a special subgroup in

Gn,m,p called the subgroup of symmetries.

Definition III.4. Let Σ ∈ Sn,m,p. An isomorphism ψ of Σ is

a symmetry of Σ if ψ∗Σ = Σ. The subgroup of symmetries

of Σ is denoted here by Kn,m,p(Σ).

In [16], we have proposed to use Algorithm 1 to preserve

privacy of information communicated to the cloud. We have

shown that, by using this scheme, information communicated

to the cloud remains consistent (i.e., after the modification,

the resulting trajectory remains a valid trajectory of the mod-

ified dynamics) and the plant is able to perfectly reconstruct

the desired input (i.e., the optimal solution of the original

optimization problem) from the cloud’s input.

We use isomorphisms to prevent the cloud from dis-

tinguishing between isomorphic systems and, thus, keep

the communicated system private from the cloud. We now

formalize the notion of indistinguishability.

Definition III.5. A protocol renders two quadruples Ω and

Ω̂ indistinguishable by the cloud if the exchanged messages,

when using the protocol between the cloud and plant Ω, and

the exchanged messages, when using the protocol between

the cloud and plant Ω̂, can be made the same.

Theorem III.6 (Theorem III.6 in [16]). Algorithm 1 renders

isomorphic systems Ω = (Σ, J,D, {xk, uk, yk}k∈N
) and

Ω̃ = (Σ̃, J̃ , D̃, {x̃k, ũk, ỹk}k∈N
) by the cloud.

The result described in Theorem III.6 states that the

cloud cannot differentiate between any two plants, costs,

constraints or trajectories contained in the same-equivalence
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class, thereby protecting the privacy of the system. In what

follows, we quantify the amount of privacy provided.

IV. QUANTIFYING PRIVACY

Our scheme ensures privacy by preventing the cloud from

knowing which quadruple Ω in its equivalence class [Ω] it

is interacting with. Clearly, the larger the equivalence class,

the more privacy is guaranteed. Since each equivalence class

has infinitely many elements, we cannot use cardinality as

a measure of privacy. In this section, we show that each

equivalence class is a smooth manifold and we quantify

privacy using the dimension of this manifold.

We begin by considering the stabilizer subgroup of

Kn,m,p(Ω) ⊂ Gn,m,p for some Ω ∈ S̄n,m,p defined by:

Kn,m,p(Ω) = {ψ ∈ Gn,m,p|ψ∗Ω = Ω}. (IV.1)

We note that Kn,m,p(Ω) ⊂ Kn,m,p(Σ) since the stabilizer

subgroup must preserve dynamics. To gain insight about the

stabilizer subgroup Kn,m,p(Ω), let us consider the subgroup

of symmetries Kn,m,p(Σ) in more detail.

In [18], Respondek gives a characterization of symme-

tries of (A,B). For pairs (A,B), the output is no longer

relevant and the isomorphisms degenerate into the form

φ = (P, F,G). This result can be interpreted to state that

the symmetry φ is uniquely determined by its P . We use the

results from [18], [19] to characterize the symmetry subgroup

of a controllable system (A,B), denoted by Kn,m(A,B).

Proposition IV.1. Let (A,B) be a controllable linear system.

Then, dim Kn,m(A,B) = m(n+ 1)−
∑k1

i=2 ri−1ri, where:

r1 = rank B,

ri = rank Si−1(A,B)− rank Si−2(A,B), i = 2, ...,m,

Sj(A,B) =
[

B AB ... AjB
]

, j = 1, ...,m− 1.

Using this result, we can estimate the dimension of

Kn,m,p(Σ). To go from keeping (A,B) invariant to keeping

(A,B,C) invariant, we need to find S that keeps C invariant.

In other words, assuming that we have found (P, F,G)
that preserves (A,B), we need to additionally find S such

that C = SCP−1. Since we assume C is surjective, this

equation has at most one solution. This gives an upper

bound on the dimension of the subgroup of symmetries

dim Kn,m,p(Σ) ≤ m(n+ 1)−
∑k1

i=2 ri−1ri. In future work,

we plan to further investigate the symmetry subgroup of Σ
in order to find what exactly dim Kn,m,p(Σ) is equal to.

To find a transformation P that keeps Ω invariant, let us

use the assumption that we have n+ 1 linearly independent

constraints on the state xk expressed by the constraint matrix

D. Therefore, any ψ ∈ Kn,m,p(Ω) must satisfy:

DL−1 = D ⇐⇒ DL = D

⇐⇒

[

D11 0
D21 D22

] [

P 0
F G

]

=

[

D11 0
D21 D22

]

=⇒ D11P = D11.

Given that D11 ∈ R
h1×(n+1) is injective, the last equality

is satisfied if and only if P = I . Since P uniquely defines

F , G and S, we also have that the only isomorphism that

keeps Ω invariant is ψ = ψe = (I, 0, I, I) . Therefore, the

only element of Kn,m,p(Ω) is φe = (I, 0, I, I).
Let us now define the orbit map:

fΩ : Gn,m,p → S̄n,m,p

ψ 7→ ψ∗Ω.
(IV.2)

Since Kn,m,p(Ω) is trivial, we can show that fΩ is injective.

The result of the discussion above can be formalized in

the following statement.

Lemma IV.2. Let Ω = (Σ, J,D, {xk, uk, yk}k∈N) be an

arbitrary system in S̄n,m,p. Then, fΩ : Gn,m,p → S̄n,m,p,

mapping ψ to ψ∗Ω, is injective.

To facilitate further results, we show that S̄n,m,p is a

smooth manifold and Gn,m,p is a Lie group. The proofs are

omitted to conserve space, but provided in [20].

Lemma IV.3. Let S̄n,m,p denote the set of controllable and

observable systems along with costs and constraints. Then,

S̄n,m,p is a smooth manifold.

Lemma IV.4. Let Gn,m,p be the isomorphism group. Then,

Gn,m,p is a Lie group of dimension n(n+ 1) +m(n+ 1) +
m2+p(p+1) acting smoothly, freely, and properly on S̄n,m,p.

Consider the first scenario from Section II, in which the

cloud does not know anything about the system. In this

scenario, the plant encodes Ω using any isomorphism ψ ∈
Gn,m,p that can be regarded as a private key used to encode

and decode the information exchanged with the cloud. Using

the previous lemmas, we prove the following result.

Proposition IV.5. Let Ω ∈ S̄n,m,p. Assuming that the cloud

has no knowledge about the plant, the cloud cannot distin-

guish between Ω and any other system in the uncertainty set

[Ω]G of dimension equal to:

dim Gn,m,p = n(n+ 1) +m(n+ 1) +m2 + p(p+ 1),

if Algorithm 1 is used.

Proof. In Theorem III.6 we have shown that Algorithm 1

makes isomorphic systems indistinguishable by the cloud.

This means that, for the cloud, the uncertainty set is the set

of systems isomorphic to Ω, i.e. the equivalence class [Ω]G .

From Lemmas IV.3 and IV.4, we know that S̄n,m,p is a

smooth manifold, and Gn,m,p is a Lie group acting smoothly,

freely and properly on S̄n,m,p. Hence, by quotient manifold

theorem [21], we have that the orbit space S̄n,m,p/Gn,m,p is a

smooth manifold of dimension dim S̄n,m,p−dim Gn,m,p and

the quotient map π : S̄n,m,p → S̄n,m,p/Gn,m,p is a smooth

submersion. Using submersion level set theorem [21], we

can further show that, the orbit [Ω]G = π−1(ω), where ω is

a representative element of this orbit in the orbit space, is a

submanifold with dimension dim Gn,m,p.

Proposition IV.5 is used to quantify privacy of other

scenarios presented in Section II.

Consider the second scenario, where the cloud does not

know the plant but knows which sensors and actuators are
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used. We can no longer pick an arbitrary isomorphism since

it could lead to inputs and outputs inconsistent with existing

sensors and actuators. This inconsistency would signal the

cloud that the plant is being dishonest about its measurements

and undermine the trust of their communication. Therefore,

we need to restrict the group of isomorphisms used for en-

coding to those that keep the inputs and outputs unchanged.

These isomorphisms are given by any composition of ψ1 =
(P, 0, I, I) for any P ∈ GL(n,R) and ψ2 ∈ Kn,m,p(Σ). It

can be shown that this set of isomorphisms forms a subgroup

that we denote by Hn,m,p(Σ) ⊂ Gn,m,p.

Corollary IV.6. Let Ω ∈ S̄n,m,p. Then, if we assume that the

cloud knows the sensors and actuators used by the plant, the

cloud cannot distinguish between Ω and any other system in

the uncertainty set [Ω]H of dimension dim Hn,m,p(Σ), where

n(n+1) ≤ dim Hn,m,p(Σ) ≤ n(n+1)+m(n+1)−

k1
∑

i=2

ri−1ri,

(IV.3)

if Algorithm 1 is used.

Proof. From Theorem III.6, we know that Algorithm 1

makes isomorphic systems indistinguishable by the cloud.

However, since the cloud knows the sensors and actuators,

the uncertainty set is no longer the equivalence class under

the entire group of isomorphisms Gn,m,p, but the equivalence

class under a smaller group Hn,m,p(Σ), denoted by [Ω]H.

It can be shown that Hn,m,p(Σ) is a Lie subgroup of

Gn,m,p. This subgroup Hn,m,p(Σ) is a product manifold of

Kn,m,p(Σ) and a space of invertible affine maps. Since the

dimension of a product manifold is a sum of its factors’

dimensions and we know bounds on Kn,m,p(Σ) (see the

discussion after Proposition IV.1), the bounds on dimension

of Hn,m,p(Σ) are given by (IV.3). The result follows by

applying Proposition IV.5 for Hn,m,p(Σ).

In the third scenario, where the cloud possesses the

complete knowledge of dynamics, we are free to use only the

isomorphisms from the symmetry subgroup ψ ∈ Kn,m,p(Σ).

Corollary IV.7. Let Ω ∈ S̄n,m,p. Assuming that the

cloud has the complete knowledge of dynamics, the cloud

cannot distinguish between Ω and any other system in

the uncertainty set [Ω]K (i.e., the equivalence class of

Ω defined by the action of Kn,m,p(Σ)) of dimension

dim Kn,m,p(Σ) ≤ m(n+ 1)−
∑k1

i=2 ri−1ri.

Proof. The proof of this statement is similar to that of

Corollary IV.6. The dimension of Kn,m,p(Σ) is given by

Proposition IV.1.

To illustrate the main results of this section, consider the

following example.

Example IV.8. Consider a drone with linearized dynamics

given in [22] and a bounded operational envelope (i.e.,

constraints on the extreme values of its state). From linear

model in [22], we observe that n = 12, m = 4, and p = 4
and r-numbers are the following: r1 = 4, r2 = 4, r3 = 2,

r4 = 2. Suppose we decide to offload the control of this

drone to the cloud. Let us evaluate the privacy guarantees

Algorithm 1 can provide in each of the scenarios described

in Section II.

In the first scenario, when the cloud has no prior knowl-

edge about the drone, we can choose any ψ ∈ Gn,m,p.

Therefore, using Propositon IV.5, we estimate the dimension

of the uncertainty set to be 240.

In the second scenario, when the cloud knows what sensors

and actuators the drone has, we must choose an isomorphism

ψ ∈ Hn,m,p(Σ) to keep inputs and outputs consistent. A

practical example of this could be if the cloud was owned

by a company that provides computations specifically for

drones. In this case, we use Corollary IV.6 and estimate the

dimension of the uncertainty set to be between 156 and 180.

Finally, when the cloud has complete knowledge about the

plant, we are forced to choose a symmetry ψ ∈ Kn,m,p(Σ)
to keep the dynamics unchanged. This scenario could, for

example, occur if the cloud belongs to the drone’s manufac-

turer. Using Corollary IV.7, we estimate the dimension of the

uncertainty set to be less or equal than 24. Unfortunately, we

generally cannot provide a guarantee for the lower bound in

this scenario. The dimension of the uncertainty set, however,

can be found exactly by finding Kn,m,p(Σ) for a given Σ.

In future work, we plan to give a better quantification

of the dimension of Kn,m,p(Σ), which will directly affect

statements of Corollaries IV.6 and IV.7 by changing the

estimates for the dimension of the equivalence classes.

V. SIDE KNOWLEDGE

The guarantees provided in Section IV no longer hold if

the adversary has partial knowledge about the encoding iso-

morphism. The cloud can obtain this through some external

channels or through some prior knowledge about the system.

Recall that by Lemma IV.4, Gn,m,p is a Lie group of

dimension n(n + 1) + m(n + 1) + m2 + p(p + 1). Sup-

pose the cloud has partial knowledge about the encoding

isomorphism. We represent the partial knowledge available to

the cloud by a projection from Gn,m,p onto a k-dimensional

vector space. Let us define ρ : Gn,m,p → R
k to be a surjective

map of constant rank k, providing side knowledge about

the encoding isomorphism. Then, we can say that the cloud

knows some vector l ∈ R
k, where:

l = ρ(P, F,G, S). (V.1)

Note that this map is not known to us, and the results that

follow do not require the knowledge of this map.

Side knowledge does not change the result of Theorem

III.6, however the privacy guaranteed by the scheme changes.

It is obvious that the size of the uncertainty set constructed by

isomorphisms that satisfy (V.1) is no greater and, in general,

smaller than the one constructed with no side knowledge.

Moreover, the uncertainty set is no longer an equivalence

class because the preimage of ρ does not necessarily have a

group structure.

Let us show that the object defined by (V.1) on Gn,m,p is

still a manifold.
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Lemma V.1. Let Gn,m,p be the group of all isomorphisms,

ρ : Gn,m,p → R
k be a surjective map of constant rank k and

assume the cloud knows that l = ρ(P, F,G, S). Then, ρ−1(l),
representing the possible encoding isomorphisms used by

the client, is a properly embedded submanifold of dimension

n(n+ 1) +m(n+ 1) +m2 + p(p+ 1)− k.

Let us now consider the map fΩ defined earlier in (IV.2).

It was shown in Lemma IV.2 that fΩ is injective. The image

of fΩ(ρ
−1(l)) constitutes the uncertainty set, between the el-

ements of which the cloud cannot distinguish. Therefore, the

goal of this section is to find the dimension of fΩ(ρ
−1(l)).

Proposition V.2. Let Ω ∈ S̄n,m,p. Suppose that Algorithm

1 is used and the cloud has the side knowledge about the

selected isomorphism ψ ∈ Gn,m,p:

ρ(ψ) = l ∈ R
k, (V.2)

where ρ : Gn,m,p → R
k is a surjective map of constant rank

k. Then, assuming the cloud has no knowledge about the

plant and given fΩ is the orbit map for action of Gn,m,p, the

cloud cannot distinguish between Ω and any other system in

the uncertainty set U = fΩ(ρ
−1(l)) of dimension n(n+1)+

m(n+ 1) +m2 + p(p+ 1)− k.

The proofs for Lemma V.1 and Proposition V.2 are omitted

to conserve space, but provided in [20].

Proposition V.2 shows that the proposed scheme degrades

gracefully with side knowledge — i.e., side knowledge

allows the cloud to reduce the dimension of the uncertainty

set only by the amount of side knowledge and not more.

Moreover, this result can be generalized for other scenarios

considered in Section IV using similar proofs.

To illustrate, consider again Example IV.8 and assume the

cloud has no knowledge about the plant. If we suppose that

the adversary possesses side knowledge about 40 elements

of the chosen isomorphism, then the dimension of the

uncertainty set is bound to decrease from 240 to 200.

VI. CONCLUSION

In this paper, we have extended the results of the

transformation-based privacy algorithm we introduced in

[16]. The proposed algorithm has benefits over existing

solutions due to its computational efficiency at the client,

conceptual simplicity and connection to the properties of

dynamical systems. We have, for the first time, provided a

criterion for measuring the amount of privacy provided by

the proposed algorithm. Moreover, we have considered the

implications of the adversary having side channels, other than

its direct communication with the client, from which it is able

to learn information about the system. In the future, we want

to give a better quantification of the privacy in scenarios,

where the cloud has some knowledge about plant dynamics,

by studying the dimension of Kn,m,p(Σ). Furthermore, we

wish to determine how this algorithm performs in practice -

in particular, we would like to see how privacy is affected

if we only have a finite number of keys (i.e., Gn,m,p is no

longer infinite) because this accurately models what happens

in real computer-based systems.
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