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The symmetries and similarities of the zero-pressure-gradient turbulent boundary layer
(ZPGTBL) are investigated to derive the full set of similarity variables, to derive the sim-
ilarity equations, and to obtain a higher-order approximate solution of the mean velocity
profile. Previous analyses have not resulted in all the similarity variables. We perform a
symmetry analysis of the equations for ZPGTBL using Lie dilation groups, and obtain
local, leading-order symmetries of the equations. The full set of similarity variables were
obtained in terms of the boundary layer parameters. The friction velocity was shown to
be the outer-layer velocity scale. The downstream evolutions of the boundary thickness
and the friction velocity are obtained analytically. The dependent similarity variables
are written as asymptotic expansions.By asymptotically matching the expansions, an
approximate similarity solution up to the third order in the overlapping layer are ob-
tained. These results are obtained from first principles without any major assumptions
and a turbulence model. The similarities and differences between ZPGTBL and turbulent
channel flows in terms of the similarity equations, the gauge functions and the approx-
imate solutions are discussed. In particular, the leading-order expansions are identical
for ZPGTBL and channel flows, supporting the notion of universality of the near-wall
layer. In addition, the logarithmic frictionlaw for ZPGTBL is accurate to all orders while
it is only accurate at the leading order in channel flows. The results will help further
understand ZPGTBL and the issue of universality of the near-wall layer in wall-bounded
turbulent flows.

1. Introduction

The zero-pressure-gradient turbulent boundary layer (ZPGTBL) is the most funda-

mental of turbulent boundary layers, and has been studied extensively (e.g., Klebanoff

1954; Schlichting 1956; Clauser 1956; Monin & Yaglom 1971; Sreenivasan 1989; Pope

2000; McKeon & Sreenivasan 2007; Nagib et al. 2007; Marusic et al. 2010; Smits et al.

2011). The flow consists of two layers with different scaling. The inner layer has viscous

scaling and the mean velocity follows the law of the wall, and is considered universal

(Prandtl 1925). The outer layer does not explicitly depend on the viscosity and the mean
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velocity obeys the velocity defect law (von Kármán 1930). There is a matching sublayer

between the outer and inner layers where the mean velocity is generally considered to

follow the log law (von Kármán 1930).

The most important fundamental understanding of a boundary layer is its similar-

ity equations and similarity solution. The zero-pressure-gradient laminar boundary layer

(the Blasius boundary layer, Blasius 1908) has the well-known similarity solution. By

expressing the variables in the partial differential equations for the boundary layer in

terms of the similarity variables, the equations were reduced to an ordinary differential

equation, the solution of which is the similarity solution. The downstream evolutions

of the boundary layer thickness and the surface stress were obtained analytically. By

contrast, there has not been a similarly successful development for ZPGTBL to date,

despite of the extensive past research devoted to the topic. Tennekes & Lumley (1972)

were the first to obtain the leading-order mean momentum similarity equation and to

use it to predict the log law. However, the boundary layer thickness ∆ was defined by

Clauser (1956) using an integral quantity, rather than the boundary layer parameters.

In addition, its downstream evolution as well as that of the friction velocity was not

predicted. With this definition of ∆, the non-dimensional outer layer wall-normal coordi-

nate, the independent similarity variable, was not fully defined, in contrast to the Blasius

boundary layer, making it difficult to derive the higher-order similarity equations and to

analyse the similarities. Oberlack & Khujadze (2006) performed a Lie group analysis of

the two-point correlation and found a linear growth of ∆. Monkewitz et al. (2007) used

the same definition of the boundary layer thickness and derived an expression for the

downstream evolution of the momentum thickness, which depends on the shape factor

H , while no expression for ∆ was provided. They also fitted experimental data to asymp-

totic expansions with the gauge functions depending on the friction Reynolds number.

George & Castillo (1997) used the Reynolds-averaged boundary layer equations without

the viscous terms to obtain a similarity solution. However, as will be shown in the

present work, by eliminating the viscous stress terms alone, the equations do not have a

similarity solution as a function of the local wall-normal coordinate.
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In the meantime, much progress in understanding ZPGTBL has come from experi-

ments. Coles (1956) proposed the wake function empirically based on experimental data,

which is the departure from the log law in the outer layer. The combination of the two is

proposed as the outer layer similarity profile. Much of the later work on the outer layer

similarities has been based on the wake function, e.g., Perry et al. (1994), Nagib et al.

(2007), McKeon & Morrison (2007), Marusic et al. (2015) and Vallikivi et al. (2015).

Nevertheless, the wake function lacks an analytic origin. To gain a comprehensive under-

standing of the similarities of ZPGTBL, in the present work we will perform a symmetry

analysis of the Reynolds-averaged boundary layer equations to derive analytically the full

set of similarity variables, the evolution of the boundary layer thickness, the evolution

of the friction velocity and the ordinary differential equations describing the similarity

solution. We will then employ the method of matched asymptotic expansions obtain a

higher-order approximate solution. To our best knowledge, this is the first time such an

analysis has been carried out.

Parallel to the research on ZPGTBL, there also have been much effort to investi-

gate turbulent channel and pipe flows, which are amenable to more rigorous asymptotic

analysis (e.g., Millikan 1938; Afzal 1976), including higher-order corrections to the log

law. The near-wall, “constant stress” layer in ZPGTBL is commonly believed to have

much in common with channel flows, i.e., the near-wall layers in these wall flows are

believed to be universal, with the log law as the leading-order velocity profile. There

is also evidence against universality (e.g., McKeon & Morrison 2007; Nagib et al. 2007;

Marusic et al. 2015). However, there has been essentially no theoretical analysis on the

similarities and differences regarding the Reynolds number dependence between these

flows, e.g., no higher-order asymptotic expansions for ZPGTBL to be compared to those

for the channel flows. The present work will help shed some light on the important issue

of the universality of the near-wall layers.

There have also been arguments questioning the inner-layer similarity among these

flows. George & Castillo (1997) claimed that the mean advection terms in the momentum

equation for ZPGTBL fundamentally changes the scaling of the outer layer mean velocity
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profile. They argued that the velocity defect scales with the free-stream velocity Ue rather

than the friction velocity u∗. This scaling also leads to a power-law velocity profile in

the overlapping layer, which is not universal, with Reynolds number dependent exponent

and coefficients. On the other hand, Jones et al. (2008) argued that both Ue and u∗ are

valid scaling candidates. In the present work we show that same as in channel and pipe

flows, the friction velocity is the correct scale for the velocity defect in ZPGTBL.

The rest of the paper is organized as follows. In Section 2 we perform a symmetry

analysis using Lie dilation groups and obtain the full set of similarity variables. We then

derive the similarity equations as singular perturbation equations, obtain an approximate

solution as asymptotic expansions and make some comparisons with measurements in

Section 3, followed by Discussions and Conclusions.

2. Symmetry analysis

The Naiver-Stokes equations have a number of symmetries. One of them is that the

equations are invariant under a one-parameter Lie dilation group (e.g., Bluman & Kumei

1989, Frisch 1995, Cantwell 2002), which is closely related to the scaling properties and

the similarity of the solution. Since invariance of the equations under the group trans-

formation requires a constant Reynolds number, full similarity of the solution is possible

only when the Reynolds number is fixed. However, it has long been recognized that the

energy-containing and flux-carrying statistics in turbulent flows at high Reynolds num-

bers are approximately Reynolds number invariant. The leading-order flow behaviors,

including similarity properties, are approximately independent of the Reynolds number.

This approximate Reynolds number invariance is associated with spontaneous breaking

of symmetries of the Navier-Stokes equations from laminar to turbulent flows as the

Reynolds number increases. Therefore, while the symmetries of laminar flows are exact,

the symmetries of turbulent flows are only approximate. The concept of spontaneous sym-

metry breaking and approximate symmetry first emerged in condensed matter physics

and later were key to predicting certain non-zero mass particles in Yang-Mills gauge fields

(Higgs 1964, 2014; Castellani 2003). As we will show in the following, the symmetries
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of ZPGTBL also can only be at the leading order and be approximate. In the present

work, we seek the leading-order symmetries and similarity properties and determine the

higher-order corrections to account for any Reynolds-number dependence.

We use Lie dilation groups to analyse the symmetries of the Reynolds-averaged bound-

ary layer equations. Similar to the Navier-Stokes equations, the boundary layer equations

also have certain group transformation properties. Once found, the group can be used to

determine the similarity variables of the equations. Then using the similarity variables,

the partial differential boundary layer equations can be reduced to ordinary differential

equations, whose solution is the similarity solution. For ZPGTBL, the equations are the

mean momentum equation and the Reynolds stress budget (or the shear-stress budget

and the turbulent kinetic budget for our analysis). We need to identify the Lie dilation

group under which all three in this set of equations are invariant.

We now analyse the Lie dilation group of the equations. The Reynolds-averaged mo-

mentum equation for ZPGTBL can be written in a form similar to that given by Tennekes & Lumley

(1972)

U
∂U

∂x
+ V

∂U

∂y
= −

∂uv

∂y
−

∂

∂x
(u2 − v2) + ν

∂2U

∂y2
, (2.1)

where U , V , uv, u2, v2, and ν are the streamwise and normal mean velocity components,

the Reynolds shear stress, the Reynolds normal stress components and the kinematic

viscosity, respectively. The finite form of the dilation group is

x̃ = eax, ỹ = eby, Ũ = U, Ũ − Ue = eg(U − Ue), ∂Ũ = eg∂U, Ṽ = ecV,

ũv = eduv, ũ2 = ed1u2, ṽ2 = ed1v2.
(2.2)

where a, b etc., are the group parameters. Note that the mean velocity can dilate differ-

ently than statistics of the velocity fluctuations, which has been pointed out by She et al.

(2017) based on the argument of random dilation groups. In the context of ZPGTBL,

dilation can be thought of as rescaling of the physical variables for the given free-stream

velocity Ue and ν. The streamwise velocity U in this problem cannot dilate because the

free-stream velocity, once specified, is fixed. However, the velocity defect and the velocity

differential ∂U can dilate (e.g, dilate along with u∗ and y). We will examine the possibili-

ties that U−Ue and ∂U do and do not dilate. Here we first examine the symmetry if they
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not dilate. Substitute 2.2 into 2.1 and drop the tildes in the equations for convenience

hereafter, we have

e−aU
∂U

∂x
+ ec−bV

∂U

∂y
= −ed−b∂uv

∂y
− ed1−a ∂

∂x
(u2 − v2) + e−2bν

∂2U

∂y2
. (2.3)

For the equation to be invariant under the dilation group, the exponents for each term

must be equal:

− a = c− b = d− b = d1 − a = −2b. (2.4)

Therefore

a = 2b, c = −b, d = −b, d1 = 0. (2.5)

Thus 2.1 with the boundary condition (U = Ue for y → ∞) is invariant under a one-

parameter dilation group,

x̃ = e2bx, ỹ = eby, Ũ = U, ∂Ũ = ∂U, Ṽ = e−bV, ũv = e−buv. ũ2 = u2, ṽ2 = v2, (2.6)

A one-parameter dilation group fully determines the scaling of the variables in the prob-

lem and can be used to identify the similarity variables. The group specified by 2.5 is

essentially the same as that for the zero-pressure-gradient laminar (Blasius) boundary

layer (Cantwell 2002). It (a = 2b) indicates a growth rate for the boundary layer thick-

ness δ ∼ x
1
2 , the same as the Blasius boundary layer, but is inconsistent with that of the

turbulent boundary layer. We further consider the shear-stress budget,

U
∂uv

∂x
+ V

∂uv

∂y
= −u

∂p

∂y
+ v

∂p

∂x
− v2

∂U

∂y
−

∂uv2

∂y
+ ν

∂2uv

∂y2
− ǫuv, (2.7)

where ǫuv is the dissipation rate, which is generally negligible. For this equation to be

invariant, the exponents for the terms on the l.h.s and the second term on the r.h.s. must

satisfy

d− a = c+ d− b = d1 − b, (2.8)

which leads to d = a−b, inconsistent with 2.5. Therefore, there is no dilation group under

which both equations 2.1 and 2.7 are invariant. Consequently, there is no full similarity

solution for which the velocity defect scales as the Ue.

We now examine the symmetry if the velocity defect and the velocity differential dilate
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as

Ũ − Ue = eg(U − Ue), ∂Ũ = eg∂U, (2.9)

The streamwise mean advection term then can be written as

U
∂U

∂x
= Ue

∂U

∂x
+ (U − Ue)

∂U

∂x
. (2.10)

The exponents must satisfy

g − a = 2g − a, (2.11)

resulting in g = 0, the velocity defect cannot dilate. Therefore, as in the case of the (full)

Navier-Stokes equations for a general turbulent flow, there are no exact symmetries for

the full ZPGTBL equations. Only approximate symmetries are possible. In seeking the

approximate symmetries, we recognise that viscous effects are negligible in the outer layer

whereas they play a leading-order role in the inner layer, indicating that the approximate

symmetries are not global, but local. In the following we analyse the symmetries of the

outer and inner layers separately.

2.1. Outer layer symmetry

For the outer layer, the leading-order symmetries or the symmetries of the leading-order

equations can be obtained by dropping the Reynolds-number-dependent terms. These

symmetries similar to the approximate symmetries of the Navier-Stokes equations previ-

ously investigated (e.g., Grebenev & Oberlack 2007). We first drop the viscous term in

the mean momentum equation, which is explicitly Reynolds-number dependent and is a

higher-order term. We note that as shown above, due to the (full) advection term (2.10)

U − Ue and ∂U do not dilate. For the momentum equation to be invariant under the

dilation group, the exponents must satisfy,

− a = c− b = d− b = d1 − a. (2.12)

Therefore

c = b− a, d = b− a, d1 = 0. (2.13)
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The mean momentum equation is therefore invariant under the two-parameter dilation

group

x̃ = eax, ỹ = ebx, Ũ = U, ∂Ũ = ∂U, Ṽ = eb−aV, ũv = eb−auv, ũ2 = u2, ṽ2 = v2,

(2.14)

which does not fully determine the scaling of the variables. To determine the scaling

we need to identify a one-parameter group by relating the parameters a and b. To do

so we further consider the shear-stress budget with the viscous terms dropped. For this

equation to be invariant, the exponents must satisfy

b− 2a = 2b− 2a− b = −b. (2.15)

Therefore

a = b, (2.16)

resulting in a one-parameter dilation group. However, this group indicates that the

Reynolds shear stress does not dilate, i.e., it is a constant, and that δ grows linearly,

inconsistent with the known behaviours of the turbulent boundary layer. Therefore,

dropping the explicitly Reynolds-number-dependent viscous terms alone, as done by

George & Castillo (1997), does not lead to the correct local symmetries. The reason

is that there are other higher-order terms in the equations that do not contain the vis-

cosity, but are implicitly Reynolds-number dependent. They also need to be identified

and dropped in order to obtain the leading-order outer-layer symmetries and the leading-

order outer similarity solution.

To identify the higher-order terms, we perform an order of magnitude analysis of the

equations. Again we first consider the scaling choice U − Ue ∼ Ue. With this choice,

the shear production of the TKE scales as −uv(∂U/∂y) ∼ u2
∗
Ue/δ. Since it is the only

production term, the TKE scales as k ∼ U2
e . The velocity variances scale the same way.

The dissipation rate would scale as k3/2/δ ∼ U3
e /δ (Taylor 1935), asymptotically larger

than the production rate, indicating that the scaling choice U − Ue ∼ Ue is inconsistent

with the scaling of the dissipation rate. Therefore, the velocity defect cannot scale as Ue.

With Ue ruled out, the only scaling choice for the velocity defect is U − Ue ∼ u∗, as
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there are no other velocity scales in the problem. Again, to obtain the one-parameter

dilation group that is consistent with the leading-order local symmetries of the outer

layer, additional terms that do not contain ν, but still depend on the Reynolds number

must be identified and dropped. We perform an order of magnitude analysis of the mean

momentum equation and the shear stress budget to identify the leading-order terms,

which are Reynolds-number independent. The orders of magnitude of the terms in the

mean momentum equation are

Ue
∂U

∂x
+ (U − Ue)

∂U

∂x
+ V

∂U

∂y
= −

∂uv

∂y
−

∂(u2 − v2)

∂x
+ ν

∂2U

∂y2

Ue
u∗

L

u∗

2

L
V
u∗

δ
=

u2
∗

L

u2
∗

δ

u2
∗

L
ν
u∗

δ2

O(1) O(
u∗

Ue
) O(

u∗

Ue
) O(1) O(

u∗

Ue
) O(Re−1

∗
),

(2.17)

where the streamwise and wall-normal length scales are L and δ respectively. The advec-

tion due to Ue must be of O(1) to balance the Reynolds shear stress gradient, resulting

in Ue/L ∼ u∗/δ. The mean continuity equation is used to obtain V ∼ δu∗/L ∼ u2
∗
/Ue.

Multiplying the equation by δ/u2
∗
gives the orders of magnitude in the third line in 2.17.

The orders of magnitude of the terms in the Reynolds shear stress budget are

Ue
∂uv

∂x
+ (U − Ue)

∂uv

∂x
+ V

∂uv

∂y
= −(u

∂p

∂y
+ v

∂p

∂x
)−

∂uv2

∂y
− v2

∂U

∂y
+ ν

∂2uv

∂y2
− ǫ12

u3
∗

δ

u3
∗

L

δ

L

u3
∗

δ

u3
∗

δ

u3
∗

δ
ν
u2
∗

δ2

O(1) O(
u∗

Ue
) O(

u∗

Ue
) O(1) O(1) O(Re−1

∗
).

(2.18)

The turbulent transport term (the second on the right-hand side) and the dissipation

terms are small but we do not have the exact order of magnitudes. Multiplying the

equation by δ/u3
∗
gives the orders of magnitude. The orders of magnitude of the TKE
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budget are

Ue
∂k

∂x
+ (U − Ue)

∂k

∂x
+ V

∂k

∂y
= −uv

∂U

∂y
−

∂pv

∂y
−

∂ 1

2
(u2 + v2 + w2)v

∂y
+ ν

∂2k

∂y2
− ǫ

u3
∗

δ

u3
∗

L

u3
∗

L

u3
∗

δ

u3
∗

δ

u3
∗

δ
ν
u∗

δ2
u3
∗

δ

O(1) O(
u∗

Ue
) O(

u∗

Ue
) O(1) O(1) O(1) O(Re−1

∗
) O(1).

(2.19)

Note that this order of magnitude analysis is only intended for identifying the leading-

order equations. It does not necessarily provide an accurate estimate of the higher-order

terms. An accurate estimate will be made in section 3, after the similarity variables have

been identified.

From equations 2.17 – 2.19 we obtain the leading-order mean momentum equation,

shear stress budget, and TKE budget.

Ue
∂U

∂x
= −

∂uv

∂y
, (2.20)

Ue
∂uv

∂x
= −u

∂p

∂y
+ v

∂p

∂x
− v2

∂U

∂y
. (2.21)

Ue
∂k

∂x
= −uv

∂U

∂y
−

∂pv

∂y
−

∂ 1

2
(u2 + v2 + w2)v

∂y
− ǫ. (2.22)

We now consider the dilation group of these equation. The velocity-pressure gradient

term the shear stress budget scales the same as the production. The pressure transport

and turbulent transport terms in the TKE budget scale the same as the production.

Therefore, they should dilate in the same way as the production terms. For them to be

invariant the exponents must satisfy

g − a = d− b, (2.23)

d− a = d1 + g − b, (2.24)

and

d1 − a = d+ g − b =
3d1
2

− b, (2.25)

respectively, leading to d = d1 = 2b − 2a and g = b − a, and hence a two-parameter
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dilation group

x̃ = eax, ỹ = ebx, Ũ − Ue = eb−a(U − Ue), ∂Ũ = eb−a∂U,

ũv = e2b−2auv, ũ2 = e2b−2au2, ṽ2 = e2b−2av2, ũ∗ = eb−au∗.

(2.26)

To obtain the one-parameter dilation group under which the outer layer is invariant,

an additional relationship is needed. (If one assumes incorrectly that U − Ue ∼ Ue,

one obtains a = b, the same as 2.16. Therefore, from a mathematical point of view,

the problem with this assumption is that it over-specifies the dilation exponents.) It is

obtained by asymptotically matching the outer layer with the inner layer. One could

proceed with 2.26 and determine the relationship between a and b when performing

matching. However, this would result in a much lengthier derivation. Here we will instead

use an ansatz, the logarithmic friction law, to provide this relation. We will show later that

the group and the subsequent analysis including matching indeed lead to the logarithmic

friction law (and also confirms U −Ue ∼ u∗ as the correct scaling for the velocity defect).

This essentially amounts to guessing the solution of an equation and verifies it later using

the equation. The friction law dilates as

Ue

u∗eg
=

1

κ
ln

u∗δe
g+b

ν
+ C =

1

κ
(ln

u∗δ

ν
+ g + b) + C. (2.27)

Since the equation is invariant under the dilation group, we have

Ue

u∗

= eg
{ 1

κ
(ln

u∗δ

ν
+ g + b) + C

}
=

1

κ
ln

u∗δ

ν
+ C. (2.28)

Therefore

(eg − 1)
{ 1

κ
ln

u∗δ

ν
+ C

}
= (eg − 1)

Ue

u∗

= −
g + b

κ
eg. (2.29)

This equation provides an implicit relationship between the exponents g and b, thereby

resulting in a one-parameter dilation group.

The relationship between g and b given by equation (2.29) is Reynolds-number depen-

dent, and therefore varies with the downstream location. Unlike the Blasius boundary

layer, for which the ratios of the exponents in the dilation group are constants (Cantwell

2002), the ratios among a, b, and g etc., obtained from equations (2.21 and 2.29) are not,

and depend on Ue/u∗ and therefore also depend on x, indicating that the group trans-
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formation and the symmetry are not only local in the wall-normal direction, but also

in the streamwise direction. Rather than directly solving the implicit equation 2.29 to

determine the relationship between the exponents of the local dilation group, we examine

differential dilation with exponents dg, da, and db etc. Equation (2.29) now becomes

dg
Ue

u∗

= −
dg + db

κ
. (2.30)

Thus

dg = −
db

κUe
u∗

+ 1
= −

da

κUe
u∗

+ 2
. (2.31)

From the continuity equation, we obtain

dg − da = dc− db, dc = 2dg. (2.32)

The one-parameter local dilation group therefore is

x̃ = x+ dx = edax, ỹ = y + dy = edby, Ũ − Ue = U + dU = edg(U − Ue),

Ṽ = V + dV = e2dgV, ũv = uv + duv = e2dguv, ũ2 = u2 + du2 = e2dgu2,

ṽ2 = v2 + dv2 = e2dgv2, ũ∗ = u∗ + du∗ = edgu∗.

(2.33)

It has the infinitesimals

u∗, −(κ
Ue

u∗

+ 2)x, −(κ
Ue

u∗

+ 1)y, (κ
Ue

u∗

+ 1)δ, 2V. (2.34)

It can also be written as

dx = xda, dy = ydb, dU = (U − Ue)dg, dV = 2V dg, duv = 2uvdg,

du2 = 2u2dg, dv2 = 2v2dg, du∗ = u∗dg.

(2.35)

Note that the boundary layer thickness δ dilates in the same way as y. From 2.51 or 2.35

we can obtain the characteristic equations for the group

du∗

u∗

= −
dy

y(κUe

u∗

+ 1)
= −

dδ

δ(κUe

u∗

+ 1)
= −

dx

x(κUe

u∗

+ 2)
=

dV

2V
. (2.36)

From the first and the fourth terms we obtain

x ∼ u−2
∗

eκUe/u∗ , (2.37)
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and its non-dimensional form

Uex

ν
= Rex ∼

U2
e

u2
∗

eκUe/u∗ . (2.38)

Similarly we can obtain

δ ∼ u−1
∗

eκUe/u∗ , V ∼ u2
∗
. (2.39)

The non-dimensional form of δ is

Ueδ

ν
= Reδ ∼

Ue

u∗

eκUe/u∗ . (2.40)

Equations 2.38 and 2.40 are functions of Ue/u∗, which can be used as a parameter to

determine the dependence of δ on x. To our best knowledge, these are new analytic results

that have not been obtained previously. Taking the ratio of δ and x we have

δ/x ∼ u∗, δ/x ∼ u∗/Ue. (2.41)

Non-dimensionalising the variables using 2.37 - 2.41 and Ue, we obtain the similarity

variables for the outer layer as

Uo =
U − Ue

u∗

, Vo =
V Ue

u2
∗

, yo =
yUe

xu∗

, uvo =
uv

u2
∗

, u2
o =

u2

u2
∗

, v2o =
v2

u2
∗

. (2.42)

Equation 2.42 defines the full set of similarity variables for the problem for the first time.

In particular, the independent variable yo is defined using the boundary layer parameters

(x, Ue, u∗, and ν), similar to that in the Blasius boundary layer. In previous studies of

ZPGTBL, yo was not fully defined as the normalizing variable was not specified in terms

of the boundary layer parameters, in contrast to that in the Blasius boundary layer.

In addition, Vo was also not fully defined previously. The dependent variables in 2.42

in general are functions of yo and a Reynolds number. With the similarity variables

fully defined, we can derive the similarity equations. Since a turbulent boundary layer is

mathematically a singular perturbation problem, we will obtain an approximate solution

using the method of matched asymptotic expansions without employing a turbulence

model.
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2.2. Inner layer symmetries

We first perform an order-of-magnitude analysis to obtain the leading-order equations

for the inner layer. The results for the mean momentum equation are

U
∂U

∂x
+ V

∂U

∂y
= −

∂uv

∂y
−

∂(u2 − v2)

∂x
+ ν

∂2U

∂y2

u2
∗

L

u2
∗

L

u2
∗

δν

u2
∗
ln( δ

δν
)

L
ν
u∗

δ2ν
δν
L

δν
L

O(1)
δν
L

ln(
δ

δν
) O(1),

(2.43)

where δν is the viscous length scale. Multiplying the equation by δν/u
2
∗
results in the

orders of magnitude in the third line. The scaling of the second term on the r.h.s. is

obtained using the estimate of Townsend (1976). The orders of magnitude of the shear-

stress budget are

U
∂uv

∂x
+ V

∂uv

∂y
= −(u

∂p

∂y
+ v

∂p

∂x
)−

∂uv2

∂y
− v2

∂U

∂y
+ ν

∂2uv

∂y2
− ǫ12

u3
∗

L

u3
∗

L

u3
∗

δν

u3
∗

δν

u3
∗

δν
ν
u2
∗

δ2ν
δν
L

δν
L

O(1) O(1) O(1) O(1)

(2.44)

Multiplying the equation by δν/u
3
∗
results in the estimates in the third line. The orders

of magnitude of the TKE budget are

U
∂k

∂x
+ V

∂k

∂y
= −uv

∂U

∂y
−

∂pv

∂y
−

∂ 1

2
(u2 + v2 + w2)v

∂y
+ ν

∂2k

∂y2
− ǫ

u3
∗

L

u3
∗

L

u3
∗

δν

u3
∗

δν

u3
∗

δν

νu2
∗

δ2ν

u3
∗

δν
δν
L

δν
L

O(1) O(1) O(1) O(1) O(1).

(2.45)

The pressure transport term in principle can of O(1), i.e., it scales as u3
∗
/δν , although

DNS results of Spalart (1988) shows that the numerical value is small.

We now perform a Lie group analysis to obtain the similarity variables in the inner

layer. The leading-order mean momentum equation is

0 = −
∂uv

∂y
+ ν

∂2U

∂y2
. (2.46)

The dilation group is

ỹ = eby, Ũ = egU, ũv = e2guv, (2.47)
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For equation 2.46 to be invariant, the exponents must satisfy

2g − b = g − 2b, b = −g. (2.48)

From the continuity equation, we have

g − a = c− b, c = −a. (2.49)

These group paameters are also consistent with the dilation properties of 2.44 and 2.45.

The dilation group now is

x̃ = eax, ỹ = e−gy, Ũ = egU, Ṽ = e−aV, ũv = e2guv, (2.50)

where a and g are related by 2.29. The infinitesimals of the group are

u∗, −(κ
Ue

u∗

+ 2)x, −y, (κ
Ue

u∗

+ 2)V. (2.51)

The characteristic equations for the group are

du∗

u∗

= −
dy

y
= −

dx

x(κUe
u∗

+ 2)
=

dV

V (κUe

u∗

+ 2)
. (2.52)

From the first two terms we have

u∗ ∼ y−1. (2.53)

The last two terms lead to

V ∼ x−1. (2.54)

Therefore we obtain the similarity variables for the inner layer as

Ui =
U

u∗

, Vi =
V x

ν
, yi =

yu∗

ν
= y+, uvi =

uv

u2
∗

. u2
i =

u2

u2
∗

, v2i =
v2

u2
∗

, (2.55)

where Vi is new and has not been properly defined previously.

3. Approximate solution using matched asymptotic expansions

In a typical Lie group analysis of differential equations, after the symmetries and sim-

ilarity varables are identified, the similarity equations are obtained and the similarity

solution is sought. In the case of turbulent flows, the similarity equations are unclosed

and cannot be solved without a turbulence model. Therefore, we employ the method of

matched asymptotic expansions to obtain an approximate solution without a turbulence



16 C. Tong

model. The similarity variables are written as asymptotic expansions with similarity vari-

ables identified in section 2 as the leading-order variables. They are substituted into the

(full) ZPGTBL equations to obtain the perturbation equations and to identify the higher-

order variables. A higher-order approximate solution are then obtained using asymptotic

matching.

3.1. Outer expansions

We write the outer layer similarity variables as asymptotic expansions

Uo(yo, Re∗) = Uo1(yo)+∆1(Re∗)Uo2(yo)+∆2(Re∗)Uo3(yo)+∆3(Re∗)Uo4(yo)+..., (3.1)

uvo(yo, Re∗) = uvo1(yo)+∆1(Re∗)uvo2(yo)+∆2(Re∗)uvo3(yo)+∆3(Re∗)uvo4(yo)+ ...,

(3.2)

where ∆k are gauge functions, chosen such that the similarity variables Uok etc. are of or-

der one. Substituting 3.1 into the mean momentum equation, we obtain the perturbation

equation for Uo. A detailed derivation is given in Appendix.

(−1 +
1

κUe

u∗

+ 2
)yo

dUo1

dyo
−

u∗

Ue

Uo2

κUe

u∗

+ 2
+

u∗

Ue
yo

dUo2

dyo
(−1 +

1

κUe

u∗

+ 2
)

−Re−1
∗

Uo3

(
1 +

−2
κUe

u∗

+ 2

)
+Re−1

∗

dUo3

dyo

(
− yo +

yo
kUe

u∗

+ 2

)

−2
u3
∗

U3
e

Uo4

(
1 +

−2
kUe

ux

+ 2

)
+

u2
∗

U2
e

dUo4

dyo

(
− yo +

yo
kUe

ux

+ 2

)

−
u∗

Ue

U2
o1

κUe

u∗

+ 2
+

u∗

Ue
Uo1

{dUo1

dyo
(−yo +

yo
k ue

u∗

+ 2
)−

u∗

Ue

Uo2

κUe

u∗

+ 2
+

u∗

Ue

dUo2

dyo
(−yo +

yo
k ue

u∗

+ 2
)
}

+
u∗

Ue
Vo

dUo

dyo

= −
duvo
dyo

+ 2
u∗

Ue

(u2
o − v2o)

kUe

u∗

+ 2
−

u∗

Ue

(
− yo +

1

kUe

u∗

+ 2

)d(u2
o1 − v2o1)

dyo
−

U2
e

u2
∗

(u2
o2 − v2o2)

kUe

u∗

+ 2

−
u2
∗

U2
e

(
− yo +

1

kUe

u∗

+ 2

)d(u2
o2 − v2o2)

dyo
+Re−1

∗

∂2Uo

∂y2o
.

(3.3)

The leading-order mean momentum equation is

− yo
dUo1

dyo
= −

duvo1
dyo

, (3.4)

which is identical to that obtained by Tennekes & Lumley (1972), suggesting that their

definition of the boundary layer thickness and the non-dimensional wall-normal coordi-
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nate are equivalent to δ and yo in the present work at the leading order. However, their

definition would not lead to the higher-order similarity equations derived here as they

will involve more integral variables. The second-order and third-order equations can be

obtained by collecting the terms containing Re∗ and u2
∗
/U2

e respectively in 3.3.

Similarly, the perturbation equation for the Reynolds shear stress is derived in Ap-

pendix.

−
2uvo

kUo

u∗

+ 2
+

duvo1
dyo

yo(−1 +
1

kUe

u∗

+ 2
)−

u∗

Ue

uvo2

kUo

u∗

+ 1
+

u∗

Ue

duv02
dyo

(yo +
yo

kUo

u∗

+ 2
)

−Re−1
∗

uvo3
(
1 +

−2
κUe

u∗

+ 2

)
+Re−1

∗

duvo3
dyo

(
− yo +

yo
kUe

u∗

+ 2

)

−2
u3
∗

U3
e

uvo4
(
1 +

−2
kUe

ux

+ 2

)
+

u2
∗

U2
e

duvo4
dyo

(
− yo +

yo
kUe

ux

+ 2

)

−
u∗

Ue

2Uouvo

kUo

u∗

+ 2
+

u∗

Ue
Uo

duvo2
dyo

yo(−1 +
1

kUe

ux

+ 2
) + (

u∗

ue
)2Uo1

−2uvo2
kUe

ux

+ 2

−
u2
∗

U2
e

Uo1
duvo2
dyo

(−1 +
−1

kUe

ux

+ 2
) +

u∗

Ue
Vo

∂uvo
∂yo

= −
(
u
∂p

∂y
+ v

∂p

∂x

)

o

− v2o
∂Uo

∂yo
+Re−1

∗

∂2uvo
dy2o

.

(3.5)

The leading-order shear-stress budget is

− yo
duvo1
dyo

= −
(
u
∂p

∂y
+ v

∂p

∂x

)

o

− v2o
dUo1

dyo
. (3.6)

The mean momentum equation and the Reynolds-stress budget are not a closed set of

equations. Solving them directly requires modeling the unclosed velocity-pressure interac-

tion term. However, using the method of matched asymptotic expansions, we can obtain

an approximate solution in the matching layer without a turbulence model. Since the

outer expansions are not valid in the near wall region (the inner layer), inner expansions

are needed to approximate the solution in this region, and are obtained in the following.

3.2. Inner expansions

Similar to the outer similarity variables, the inner similarity variables depend on y+ and

Re∗. We write them as asymptotic expansions,

Ui(y
+, Re∗) = Ui1(y

+) + δ1(Re∗)Ui2(y
+) + δ2(Re∗)Ui3(y

+) + ..., (3.7)
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uvi(y
+, Re∗) = uvi1(y

+) + δ1(Re∗)uvi2(y
+) + δ2(Re∗)uvi3(y

+) + δ3(Re∗)uvi4(y
+) + ...,

(3.8)

where δk etc. are gauge functions. Substituting 2.55, we obtain the inner equations. The

details are given in Appendix. The inner mean momentum equation up to the order of

Re−1

δ u∗/Ue is

−Re−1

δ

u∗

Ue

{
U2
i + y+

dUi

dy+

}
+Re−1

δ Vi
dUi

dy+
= −

∂uvi
∂y+

+
d2Ui

dy+2

−Re−1

δ u2
i −Re−1

δ y+
du2

i

dy+
+ 2Re−1

δ

u∗

Ue
v2i +Re−1

δ

u∗

Ue
y+

∂v2i
∂y+

.

(3.9)

The inner shear-stress budget up to the order of Re−1

δ u∗/Ue is

−Re−1

δ Ui

( uvi

kUe

u∗

+ 2
+ y+

duvi
dy+

)
+ Re−1

δ Vi
duvi
dy+

= −
(
u
∂p

∂y
+ v

∂p

∂x

)

i

−v2i

(dUi1

dy+
+Re−1

δ

dUi2

dy+
+Re−1

δ

u∗

κUe

dUi3

dy+

)
+

d2uvi1
dy+2

+Re−1

δ

d2uvi2
dy+2

+Re−1

δ

u∗

κUe

d2uvi3
dy+2

.

(3.10)

3.3. Matching the expansions

We now match the velocity expressed as the outer and inner expansions

U = Ue+u∗Uo = Ue+u∗

{
Uo1(yo)+

u∗

Ue
Uo2(yo)+Re−1

∗
Uo3(yo)+

u2
∗

U2
e

Uo4(yo)+...
}
, (3.11)

U = u∗Ui = u∗

{
Ui1(y

+) +Re−1

δ Ui2(yo) +Re−1

δ

u∗

Ue
Ui3(yo) + ...

}
. (3.12)

Asymptotically matching the leading-order terms Ue + u∗Uo1 and u∗Ui1 results in the

log law

Uo11 =
1

κ
ln yo + C, Ui11 =

1

κ
ln y+ +B. (3.13)

Matching (u∗/Ue)Uo2 and Re−1

δ Ui2 results in

Uo21 ∼ yo, Ui2 ∼ y+. (3.14)

Matching Re−1
∗

Uo3 and Ui1 gives

Uo3 ∼ y−1
o , Ui12 ∼ (y+)−1. (3.15)

Matching the outer expansion with Ui3 requires the so-called block matching involving

several terms in the outer expansion (Bender & Orszag 1978),

Uo12 +
u∗

Ue
Uo22 +

u2
∗

U2
e

Uo4. (3.16)
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The results are

Uo12 ∼ yo, Uo22 ∼ yo ln yo, Uo4 ∼ yo ln
2 yo,

Ui3 ∼ y+ ln2 y+. (3.17)

Inserting the matching results into 3.11 and 3.12 we obtain the outer expansion as

U = Ue+u∗

{ 1

κ
ln yo+C+Auyo+Bu

u∗

Ue
yo+Au

u∗

Ue
yo ln yo+CuRe−1

∗
y−1
o +Au

u2
∗

U2
e

yo ln
2 yo+...

}
,

(3.18)

and the inner expansion as

U = u∗

{ 1

κ
ln y+ +B + Cu(y

+)−1 +BuRe−1

δ y+ +AuRe−1

δ

u∗

Ue
y+ ln2 y+ + ...

}
. (3.19)

From 3.18 and 3.19 we obtain the friction law

Ue

u∗

=
1

κ
ln

y+

yo
+B − C =

1

κ
ln

u2
∗
x

Ueν
+B − C, (3.20)

which also confirms the anstaz used in section 2.1 to obtain the outer layer symmetry.

Note that when obtaining the friction law, each term in the higher-order expansions

in the outer and inner layers match and cancel each other except for any log-law-like

terms, which do not cancel, just like the (leading-order) log law. However, log-law-like

terms come from matching terms that have the same scales in both the outer and in-

ner expansions (Tong & Ding 2020). From the gauge functions it is clear that only the

leading-order terms have the same scale. Therefore, there are no higher-order low-law-like

terms; therefore the logarithmic friction law 3.20 is accurate.

Similarly we obtain the matching results for uv as

uv = u2
∗

{
−1+Auvyo+Buv

u∗

Ue
yo+Auv

u∗

Ue
yo ln yo+CuvRe−1

∗
y−1
o +Auv

u2
∗

U2
e

yo ln
2 yo+ ...

}
,

(3.21)

and

uv = u2
∗

{
− 1 + Cuv(y

+)−1 +BuvRe−1

δ y+ +AuvRe−1

δ

u∗

Ue
y+ ln2 y+ + ...

}
. (3.22)

From the leading-order momentum equation 3.4, we obtain Auv = 1/κ. While the di-

lation group 2.33 is Reynolds number dependent, the leading-order expansions (solution)

of the boundary layer equations are not.
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3.4. Preliminary comparison with measurements

Determining the non-dimensional coefficients, including the expansion coefficients in the

theoretical prediction requires comparisons with experimental results. In particular, given

the large amount of existing data, determining the expansion coefficients require exten-

sive comparisons, and is beyond the scope of the present work, which focuses on the

theoretical development. Such comparisons will be carried out in future works, perhaps

in collaboration with experimental groups. In this work we make preliminary comparisons

of the prediction of the non-dimensional velocity Ue/u∗ and the non-dimensional outer

layer thickness Reδ = Ueδ99/ν as a function of the non-dimensional downstream distance

Rex = Uex/ν with the experimental data of Marusic et al. (2015) (the SP40 configura-

tion). The measured values of Ue/u∗ are used as the parameter to obtain the theoretical

values ofRex and Reδ using equations 3.23 and 3.24. The von Kármán constant κ = 0.420

and the non-dimensional coefficient for δ99 are determined by fitting equation 3.24 to the

experimental data. The virtual origin of x = −1.744 m and the non-dimensional coeffi-

cient for x are obtained by fitting 3.23 to the data. In particular, the values of Ue/u∗ and

δ99 at x = 1.6 m are used to determine the non-dimensional coefficients. The kinematic

viscosity is taken as the value in Marusic et al. (2015), ν = 15.1×10−6 m/s2. The results

are

Rex = 0.06024
U2
e

u2
∗

eκUe/u∗ , (3.23)

and

Reδ = 0.02204
Ue

u∗

eκUe/u∗ . (3.24)

We then have

δ99 = 0.3659
xu∗

Ue
, yo =

yUe

xu∗

= 0.3659
y

δ99
. (3.25)

Figures 1 and 2 show that with these numerical values of the coefficients, the theoretical

prediction has an excellent agreement with the experimental results. It is interesting to

note that the values of the von Kármán constant obtained is different from the value of

0.384 obtained in the same experiment and by Nagib et al. (2007), but much closer to that
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Figure 1. Non-dimensional velocity Ue/u∗ as a function of the non-dimensional downstream
distance Rex = Uex/ν. Circles: experimental data from Marusic (2015) (the SP40 configuration);
Solid line: Theoretical prediction of equation 3.23.
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Figure 2. Non-dimensional boundary layer thickness Ueδ/ν as a function of the non-dimensional
downstream distance Rex = Uex/ν. Circles: experimental data from Marusic (2015) (the SP40
configuration); Dashed line: Theoretical prediction of equation 3.24.

of Vallikivi et al. (2015) (0.40) and the typical value of 0.421 in pipe flows (McKeon et al.

2004; McKeon & Morrison 2007). We emphasize that these are preliminary comparisons

with a single set of experimental data. Nevertheless, they might still shed some light on

the way in which the von Kármán constant is determined from the velocity profile and

needs further attention.
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Here we also provide a list of predictions to be evaluated using experimental data in

future works.

(1)Comprehensive assessment of the downstream evolution of the friction velcity and

the boundary layer thickness. In particular, the virtual origion, the von Kármán con-

stant and the non-dimensional coefficients in 3.23 and 3.24 should be evaluated.

(2)The logarithmic friction law 3.20. Note that there are no higher-order corrections to

this law. Therefore, when plotting Ue/u∗ vs ln(u2
∗
x/Ueν), a straightlie should extend

down to relatively modest Reynolds numbers. Such comparisons will also provide

another evaluation of the von Kármán constant

(3)Comprehensive evaluation of the expansion coefficients in the asymptotic expansions

3.18 or 3.19 of velocity profile in the overlapping region. The extent of the log region

can be evaluated and comparisons with channel flows can be made.

(4)A new evaluation of the von Kármán constant using the measured mean velocity

profile and the predicted higher-order prediction in the overlapping region (log law

plus the higher-order corrections), rather than the log law alone, as done previously.

This allows determination of the constant using data obtained at moderate Reynolds

numbers, rather than chasing the seemingly ellusive high Reynolds numbers.

(5)Comprehensive evaluation of the expansion coefficients in the asymptotic expansions

3.21 or 3.22 of Reynolds shear-stress profile in the overlapping region.

4. Discussions

The asymptotic expansions are an approximate solution of the boundary layer equa-

tions in the matching layer. They allow us to compare and contrast ZPGTBL with channel

flows. In channel flows (and pipe flows), the leading-order mean momentum equation in

the outer layer is a balance between the shear stress derivative and the mean pressure

gradient (Afzal 1976), with the latter imposing the linear variation of the leading-order

(linear) variation of the Reynolds shear stress. The Reynolds shear-stress budget is a

balance between shear production and velocity-gradient–pressure interaction. While the

mean velocity itself does not appear in the mean momentum equation, the mean velocity
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gradient is “adjusted” to balance the Reynolds stress budget. This is where the constant

stress condition is needed for the log law (through the pressure-strain-rate correlation).

In ZPGTBL the leading-order mean momentum balance is between the mean advection

due to the free-stream velocity Ue and the shear stress derivative. The leading-order

(linear) variation of the Reynolds shear stress results from the log law. It is interesting

to observe that while the non-dimensional leading-order Reynolds shear stress derivative

equals 1/κ, the leading-order shear stress in the boundary layer can be written as

uv = u2
∗

{
− 1 +

1

κ
yo

}
= u2

∗

{
− 1 +

0.3659

κ

y

δ99

}
. (4.1)

The coefficient for the second term on the r.h.s. is not very different from the value

of one in channel flows. The mean advection depends on the growth of the boundary

layer thickness and the variations of u∗; therefore the mean momentum balance is more

delicate. The Reynolds shear stress balance is among the mean advection, production and

velocity gradient-pressure interaction respectively. Again, due to the mean advection, the

balance is also more delicate. However, in the near-wall region (yo ≪ 1), the advection

term is of higher-order. Therefore the Reynolds shear stress balance is similar to that in

channel flows.

The functional forms of the leading-order terms for both the outer (Uo = (1/κ) ln yo +

C + Auyo) and inner expansions (Ui = (1/κ) ln y+ + B + Cu(y
+)−1) are identical for

channel flows and ZPGTBL. Therefore the von Kármán constant and the extent of

the log layer at the leading order should be asymptotically identical for both flows.

Physically this is because the leading-order scaling of the turbulence fluctuations (e.g.,

the velocity variances and the pressure-strain-rate correlation) are the essentially same

for both channel flows and the boundary layer. Therefore, there is no reason to believe

that the log law would not be universal. However the values of Au and Cu determine the

onset of the log layer, i.e., the lowest y+ and the highest y/δ values for the log layer.

Given that the leading-order Reynolds shear-stress budget contains an advection term,

we might expect Au to be different from its counterpart in channel flows.

In channel flows, the lowest (second-order) order correction terms to (or deviations
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from) the leading-order terms are of order Re−1
∗

in both the outer and inner layers,

whereas in ZPGTBL they are of order u∗/Ue ∼ ln−1 Re∗ in the outer layer, larger than

in channel flows, and are of order Re−1

δ in the inner layer, smaller than in channel flows.

This suggests that the deviations from the leading order are larger toward the outer layer

and smaller toward the inner layer in ZPGTBL than in channel flows.

In channel flows there is a second-order (and more at the higher orders) logarithmic

term in the mean velocity (Afzal 1976), indicating that the observed coefficient for the

logarithmic part of the profile, which is usually taken as the (apparent) von Kármán

constant, is Reynolds-number dependent. Note that the von Kármán constant is de-

fined as the coefficient for the leading-order logarithmic profile. Such a term is absent in

ZPGTBL. As a result, at finite Reynolds numbers we will observe departures from the

log law in ZPGTBL, rather than a Reynolds-number-dependent (apparent) von Kármán

constant.

The physics related to the corrections are also different in the two flows. In channel flows

it is due to (higher-order) viscous effects in the outer layer and (higher-order) variations

of the shear stress in the inner layer respectively. The former depends explicitly on the

Reynolds number whereas the latter has an implicit dependence through other variables

(variations of the shear stress). In ZPGTBL, the leading-order the corrections in the

outer layer are caused by the advection due to the velocity defect, advection due to

the wall-normal mean velocity, and the streamwise derivative of the velocity variance

differences. The dependence of the Reynolds number is implicit, through the effects of

the Reynolds number on the growth of the boundary layer thickness and the variations

of u∗, as none of the variables are directly dependent on the viscosity. In the inner layer,

the corrections are caused by advection due to the vertical velocity.

The leading-order logarithmic friction law for channel flows is accurate to O(Re−1
∗

).

For ZPGTBL, equation 3.20 indicates that it is accurate, without any higher-order cor-

rections. Therefore, the logarithmic friction law is more accurate in ZPGTBL than in

channel flows.
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5. Conclusions

We performed a symmetry analysis of the equations for ZPGTBL using Lie dilation

groups, and obtained local, leading-order symmetries of the equations. The full set of

similarity variables was obtained from the characteristic equations of the group. The

dependent similarity variables, which are generally functions of the independent similar-

ity variable (the local non-dimensional normal coordinate) and Reynolds numbers, were

written as asymptotic expansions, with the gauge functions depending on the Reynolds

numbers. Using the asymptotic expansions the perturbation equations for the outer and

inner layers were obtained and the gauge functions were determined. Matching the ex-

pansions resulted in an approximate similarity solution of ZPGTBL in the overlapping

layer. Expansion terms up to the third order were obtained. To our best knowledge, these

results have not been obtained previously. Furthermore, they were obtained from first

principles without any major assumptions. The main results are as follows.

(1)We showed that similar to the Navier-Stokes equations at high Reynolds numbers

(turbulent flows), the Reynolds-averaged boundary layer equations for ZPGTBL do

not have global symmetries, only have local, approximate symmetries. We obtained

the leading-order Lie dilation symmetries, i.e., invariance under Lie dilation groups,

in both the outer and inner layers.

(2)We showed that the friction u∗ is the scale for the velocity defect. Using the free-

stream Ue as the scale, as suggested by some previous studies, would lead to an

inconsistency with the scaling of the TKE dissipation rate.

(3)We derived analytically from the boundary layer equations the non-dimensional

friction velocity u∗/Ue and the non-dimensional boundary layer thickness Ueδ/ν as

functions of the non-dimensional downstream distance Uex/ν using the characteristic

equations of the group. When using the von Kármán constant, the virtual origin of the

boundary layer, and two non-dimensional coefficients determined from the experimen-

tal data of Marusic et al. (2015), the theoretical prediction shows excellent agreement

with the data.

(4)From the symmetry analysis, the independent similarity variable for the outer
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layer wall-normal coordinate was obtained using the boundary layer parameters as

yo = yUe/(xu∗), analogous to that in the Blasius boundary layer. Previously the

non-dimensionalising variable was not fully defined, i.e., not using the boundary layer

parameters.

(5)The leading-order similarity equations, which are ordinary differential equations,

were obtained. The dependent similarity variables, written as asymptotic expansions,

were used to derive the perturbation equations, which also contain the higher-order

similarity equations and have not been obtained previously. The gauge functions for

the outer layer are determined as u∗/Ue, Re−1
∗

, u2
∗
/U2

e , ... Those for the inner layer

are Re−1

δ , Re−1

δ u∗/Ue, ... These gauge functions are in contrast to those for channel

flows, which are Re−1
∗

, Re−2
∗

, ..., for both the outer and inner layers. The approximate

solution in the overlapping layer as asymptotic expansions were obtained. Using the

method of matched asymptotic expansions to obtain an approximate solution avoided

a turbulence model.

(6)While the leading-order outer equations for ZPGTBL are different from those for

channel flows, the leading-order expansion terms in the overlapping layer are formally

identical. This result provides analytic support to the notion that the log law and the

broader leading-order mean flow are asymptotically universal in this layer.

(7)The higher-order expansions for the ZPGTBL and channel flows are different. With

the log law at the leading order in ZPGTBL without any other logarithmic terms, the

logarithmic friction law is accurate. By contrast, in channel flows it has a logarithmic

term at the second order. Therefore the friction law is only accurate at the leading

order.

(8)The second-order corrections to the leading-order outer-layer expansions are asymp-

totically larger in ZPGTBL than in channel flows, whereas those to the leading-order

inner-layer expansions are smaller in ZPGTBL than in channel flows. Due to these

differences, we might expect the onset and possibly the extent of the logarithmic pro-

file in measurements and simulations to be different. This issue will be investigated in

a future work.

The asymptotic expansions obtained in the present work will also provide a more
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systematic approach to assess the asymptotic behaviours of ZPGTBL using experimental

data. For example, the log law is often investigated using the measured mean velocity

profile. While the mean profile exhibits an approximate logarithmic dependence only at

sufficiently high Reynolds numbers, the log law is a leading-order term in the profile,

a result of matching the leading-order outer and inner profiles with the same velocity

scale (Tong & Ding 2020). It is present even at moderate Reynolds numbers. At such

Reynolds numbers it may be obscured by the other leading-order and higher-order terms

in the mean velocity profile. However, in principle it can be obtained experimentally

by determining the coefficients of the other terms in 3.18, e.g., using measurements at

several Reynolds numbers and then subtracting these terms from the mean profile. The

issue of the asymptotic scaling of ZPGTBL perhaps could be better addressed through

collaboration among the theoretical and experimental groups.
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Appendix A. Derivation of the outer and inner layer perturbation

equations

Equation 2.17 suggests that ∆1 = u∗/Ue ≈ ln−1 Re∗, which is confirmed by A8. It

also shows that ∆2 = Re−1
∗

. With these gauge functions the perturbation and similarity

equations for the mean momentum equation in the outer layer are derived as follows.

∂U

∂x
=

du∗

dx
Uo + u∗

d

dx

{
Uo1 +∆1Uo2 +Re−1

∗
Uo3 +∆3(Re∗)Uo2(yo)

}
, (A 1)
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where

d

dx

{
Uo1 +∆1Uo2

}
=

dUo1

dyo
yUe(

−1

x2u∗

+
−1

xu∗

du∗

dx
) +

d∆1

dx
Uo2 +∆1

dUo2

dyo
yue

=
dUo1

dyo
(
−yo
x

+
−yo
u∗

du∗

dx
) +

1

Ue

du∗

dx
Uo2 +∆1

dUo2

dyo
(
−yo
x

+
−yo
u∗

du∗

dx
).

(A 2)

The non-dimensional form of its contribution to the advection is

x

Ueu∗

Ueu∗

d

dx

{
Uo1 +∆1Uo2

}
=

dUo1

dyo
(−yo −

x

u∗

yo
du∗

dx
) +

x

Ue

du∗

dx
Uo2 +∆1

dUo2

dyo
(yo +

x

u∗

yo
du∗

dx
)

=
dUo1

dyo
(−yo +

yo

κUe

u∗

+ 2
)−

u∗

Ue

Uo2

κUe

u∗

+ 2
+∆1

dUo2

dyo
(−yo +

yo

κUe

u∗

+ 2
). (A 3)

The term

1

κUe

u∗

+ 2
=

u∗

κUe
− 2

( u∗

κUe

)2

+ ..., (A 4)

and therefore contains both ∆1 and ∆3. The Uo3 term is

d

dx
(Re−1

∗
Uo3) =

dRe−1
∗

dx
Uo3 +Re−1

∗

dUo3

dx

= −Re−2
∗

dRe∗
dx

+Re−1
∗

dUo3

dyo
yUe(

−1

x2u∗

+
−1

xu2
∗

du∗

dx
)

= −Re−2
∗

Uo3

ν

1

Ue
(u2

∗
+ 2xu∗

du∗

dx
) +Re−1

∗

dUo3

dyo
yUe(

−1

x2u∗

+
−1

xu2
∗

du∗

dx
).

(A 5)

Its non-dimensional form is

x

Uou∗

Ueu∗

dRe−1
x Uo3

dx
= −

u∗xRe−2
∗

u∗

Uo3

ν
(u2

∗
+ 2xu∗

du∗

dx
)+

Uexu∗

Ueu∗

Re−1
∗

dUo3

dyo
yUe(

−1

x2u∗

+
−1

xu2
∗

du∗

dx
)−

= −Re−2
∗

Uo3

(u2
∗

Ue

x

ν
+

2x2u∗

Ueν

(−u∗)

x(κkUe

u∗

+ 2)

)
+

= −Re−2
∗

Uo3

(
Re∗ +Re∗

−2
κUe

u∗

+ 2

)
+Re−1

∗

dUo3

dyo

(
− yo +

yo
kUe

u∗

+ 2

)
.

The Uo4 term is

d∆3Uo4

dx
=

d∆3

dx
Uo4 +∆3

dUo4

dx
= ∆

′

3

Rex
dx

Uo4 +∆3

dUo4

dx
, (A 6)

with the non-dimensional form

xUe

Ueu∗

Ueu∗

d∆3Uo4

dx
= x∆

′

3

dRex
dx

Uo4 + x∆3

dUo4

dx

= x∆
′

3

Uo4

Ueν

(
u2
x + 2xux

−ux

x(kUe

ux

+ 2)

)
+∆3

dUo4

dyo

(
− yo +

yo
kUe

ux

+ 2

)

= ∆
′

3RexUo4

(
1 +

−2
kUe

ux

+ 2

)
+∆3

dUo4

dyo

(
− yo +

yo
kUe

ux

+ 2

)
.

(A 7)
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The non-dimensional advection term due to the velocity defect is

x

Ueux
(U − Ue)

∂U

∂x
=

x

Ueu∗

u∗Uo
∂U

∂x
=

x

Ue
Uo

∂U

∂x

=
x

Ue
Uo

{
(Uo1 +∆1Uo2)

dux

dx
+ u∗

dUo1 +∆1Uo2

dx

+(Re−1
∗

Uo3 +∆2Uo4)
du∗

dx
+ u∗

d

dx
(Re−1

∗
Uo3 +∆3Uo4)

}

=
u∗

Ue

(
Uo1 +∆1Uo2 +Re−1

∗
Uo3 +∆3Uo4

)2 −1

kUe

ux

+ 2

+
u∗

Ue

{dUo1

dyo
(−yo +

yo

κUe

u∗

+ 2
)−

u∗

Ue

Uo2

κUe

u∗

+ 2
+∆1

dUo2

dyo
(−yo +

yo

κUe

u∗

+ 2
)
}

−
u∗

Ue
UoRe−1

∗
Uo3

(
1 +

2

kUe

u∗

+ 2

)
+

u∗

Ue
UoRe−1

∗
Uo3

dUo3

dyo

(
− yo +

yo

kUe

ux

+ 2

)
. (A 8)

Equation A8 shows that

∆3 =
(u∗

Ue

)2
=

1

ln2 Re∗
. (A 9)

Thus

∆
′

3 =
−2

ln3 Re∗

d lnRe∗
dRe∗

. =
−2

ln3 Re∗

1

Re∗
. (A 10)

The advection due to the normal velocity is obtained as

dU

dy
= u∗

dUo

dy

dyo
dy

= u∗

dUo

dyo

Ue

u∗x
, (A 11)

V
∂U

∂y
=

u2
∗

Ue
Vo

dUo

dyo

Ue

x
=

u2
∗

x
Vo

dUo

dyo
, (A 12)

and

x

Ueu∗

u2
∗

x
Vo

dUe

dyo
=

u∗

Ue
Vo

dUo

dyo
. (A 13)

The shear-stress derivative is

duv

dy
= u2

∗

duvo
dyo

dyo
dy

= u2
∗

duvo
dyo

Ue

xu∗

,

x

Ueu∗

duv

dy
=

x

Ueu∗

u2
∗

duvo
dyo

ve
xu∗

=
duvo
dyo

.

(A 14)

The viscous term is

ν
∂2U

∂y2
= ν

Ue

x

∂2Uo

∂y2o

Ue

xu∗

, (A 15)

x

Ueu∗

ν
Ue

x

∂2Uo

∂y2o

Ue

xu∗

=
ν

xu∗

Ue

u∗

∂2Uo

∂y2o
=

ν

∂u∗

∂2Uo

∂y2o
= Re−1

∗

∂2Uo

∂y2o
. (A 16)
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The derivative of the normal stress difference is

∂u2
∗
(u2

o − v2o)

∂x
= 2u∗

∂u∗

dx
(u2

o − v2o) + u2
∗

∂

∂x

(
u2
o1 − v2o1 +∆1(u2

o2 − v2o2) + ...
)

= 2u∗

∂u∗

dx
(u2

o − v2o) + u2
∗

d(u2
o1 − v2o1)

dyo
yUe

( −1

x2u∗

−
1

xu2
∗

∂u∗

∂x

)

+u2
∗

d∆1

dx
(u2

o2 − v2o2) + u2
∗

d(u2
o2 − v2o2)

dyo
yUe

( −1

x2u∗

−
1

xu2
∗

∂u∗

∂x

)
.

(A 17)

Its non-dimensional form is

x

Ueu∗

∂(u2 − v2)

∂x
= 2

x

Ue

du∗

dx
(u2

o − v2o) +
x

Ueu∗

u2
∗
yUe

( −1

x2u∗

−
1

xu2
∗

du∗

dx

)d(u2
o1 − v2o1)

dyo

+
x

Ueu∗

u2
∗

−u∗

Uex

u2
o2 − v2o2
κUe

u∗

+ 2
+ +

u∗

Ue

(u∗

Ue
yo +

u∗

Ue
yo

1

κUe

u∗

+ 2

)d(u2
o2 − v2o2)

dyo

= −2
u∗

Ue

(u2
o − v2o)

kUe

u∗

+ 2
+

u∗

Ue

(
− yo +

1

kUe

u∗

+ 2

)d(u2
o1 − v2o1)

dyo
+

U2
e

u2
∗

(u2
o2 − v2o2)

kUe

u∗

+ 2

+
u2
∗

U2
e

(
− yo +

1

kUe

u∗

+ 2

)d(u2
o2 − v2o2)

dyo
.

(A 18)

Using A3, A 5, A 7, A 8, A 13, A 14, A 16, A 18, and 2.1, we obtain the non-dimensional

outer momentum equation 3.3.

The outer shear-stress budget are obtained as follows.

∂uv

∂x
= uvo

∂u2
∗

∂x
+ u2

∗

∂uvo
∂x

= 2uvou∗

−u∗

x(kUe

u∗

+ 2)

+u2
∗

{duvo
dyo

yUe(
−1

x2u∗

+
−1

xu2
∗

du∗

dx
) +

d∆1

dx
uvo2 +∆1

duvo2
dyo

yUe(
−1

x2u∗

+
−1

xu2
∗

du∗

dx
)

+
d

dx
(Re−1

∗
uvo2) +

d∆3uvo4
dx

}
.

(A 19)

Its non-dimensional form up to the order of ∆1 is

x

Ueu2
∗

Ue
∂uv

∂x
= −

2uvo

kUe

u∗

+ 2
+
duvo1
dyo

yo(−1+
1

kUe

u∗

+ 2
)−

u∗

Ue

uvo2

kUe

u∗

+ 1
+
u∗

Ue

duv02
dyo

(yo+
yo

kUe

u∗

+ 2
).

(A 20)

The order Re∗ term is

d

dx
(Re−1

∗
uvo2) =

dRe−1
∗

dx
uvo3 +Re−1

∗

uvo2
dx

= −Re−2
∗

dRe∗
dx

uvo3 +Re−1
∗

duvo3
dyo

yUe(
−1

x2u∗

+
−1

xu2
∗

du∗

dx
)

= −Re−2
∗

uvo3
ν

1

Ue
(u2

∗
+ 2xu∗

du∗

dx
) +Re−1

∗

duvo3
dyo

yUe(
−1

x2u∗

+
−1

xu2
∗

du∗

dx
).

(A 21)
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The non-dimensional form is

x

Uou∗

Ueu∗

dRe−1
x uvo3
dx

= −
u∗xRe−2

∗

u∗

uvo3
ν

(u2
∗
+ 2xu∗

du∗

dx
)+

Uexu∗

Ueu∗

Re−1
x

duvo3
dyo

yUe(
−1

x2u∗

+
−1

xu2
∗

du∗

dx
)

= −Re−1
x uvo3

(
1 +

−2
κUe

u∗

+ 2

)
+Re−1

∗

duvo3
dyo

(
− yo +

yo
kUe

u∗

+ 2

)
.

(A 22)

The order ∆3 term is

d∆3uvo4
dx

=
d∆3

dx
uvo4 +∆3

duvo4
dx

= ∆
′

3

dRex
dx

uvo4 +∆3

duvo4
dx

, (A 23)

with the non-dimensional form

xUe

Ueu∗

Ueu∗

d∆3uvo4
dx

= x∆
′

3

dRex
dx

uvo4 + x∆3

duvo4
dx

= x∆
′

3

uvo4
Ueν

(
u2
x + 2xux

−ux

x(kUe

ux

+ 2)

)
+∆3

duvo4
dyo

(
− yo +

yo
kUe

ux

+ 2

)

= −2
u3
∗

U3
e

uvo4
(
1 +

−2
kUe

ux

+ 2

)
+

u2
∗

U2
e

duvo4
dyo

(
− yo +

yo
kUe

ux

+ 2

)
.

(A 24)

The advection due to the velocity defect is

x

Ueu2
∗

(U − Ue)
∂uv

∂x
= −

u∗

Ue

2Uouvo

kUo

u∗

+ 2
+

u∗

Ue
Uo

duvo2
dyo

yo(−1 +
1

kUe

ux

+ 2
) + (

u∗

ue
)2Uo1

−2uvo2
kUe

ux

+ 2

−
u2
∗

U2
e

Uo1
duvo2
dyo

(−1 +
−1

kUe

ux

+ 2
).

(A 25)

The advection due to the normal velocity is

∂uv

∂y
= u2

∗

∂uvo
∂yo

Ue

xu∗

, V
∂uv

∂y
=

u2
∗

Ue
Vou

2
∗

∂uvo
∂yo

Ue

xu∗

x

Ueu2
∗

V
∂uv

∂y
=

u∗

Ue
Vo

∂uvo
∂yo

.

(A 26)

The shear-stress production is

v2o
∂U

∂y
= u2

∗
v2ou∗

∂Uo

∂yo

Ue

xu∗

,

x

Ueu2
∗

v2
∂U

∂y
= v2o

∂Uo

∂yo
.

(A 27)

The viscous diffusion is

∂2uv

∂y2
= u2

∗

∂2uvo
dy2o

(
Ue

xu2
∗

),

x

Ueu2
∗

ν
∂2uv

∂y2
=

xν

Ueu2
∗

U2
e

x2

d2uvo
dy2o

=
ν

u∗x

Ue

u∗

∂2uvo
dy2o

=
ν

Ueδ

Ue

u∗

∂2uvo
dy2o

=
ν

u∗δ

∂2uvo
dy2o

.

(A 28)
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Combining the above terms we obtain the outer shear-stress budget 3.5.

The perturbation momentum equation for the inner is derived as follows.

∂U

∂x
=

∂u∗Ui

∂x
=

du∗

dx
Ui + u∗

∂(Ui1 + δ1Ui2 + ....)

∂x

=
du∗

dx
Ui + u∗

{dUi1

dy+
dy+

dx
+

dδ1
dx

Ui2 + δ1
dUi2

dy+
dy+

dx
+ ...

}

=
du∗

dx
Ui +

u∗y

ν

(du∗

dx

(dUi1

dy+
+ δ1

dUi2

dy+
+ ...

)
+ u∗

dδ1
dx

Ui2,

(A 29)

where dy+/dx = (y/ν)(du∗/dx). The non-dimensional advection due to U is

δν
u2
∗

U
∂U

∂x
=

ν

u3
∗

u∗Ui

{du∗

dx
Ui +

u∗y

ν

(du∗

dx

(dUi1

dy+
+ δ1

dUi2

dy+
+ ...

)
+ u∗

dδ1
dx

Ui2

}

=
ν

u2
∗

Ui

{ −u∗Ui

x(kUe

u∗

+ 2)
+ y+

−u∗

x(kUe

u∗

+ 2)

(dUi1

dy+
+ δ1

dUi2

dy+
+ ...

)}

∼
{
−

ν

Ueδ
U2
i −

ν

Ueδ
y+Ui

(dUi1

dy+
+ δ1

dUi2

dy+
+ ...

)} 1

kUe

u∗

+ 2

∼ Re−1

δ

1

kUe

u∗

+ 2

{
− U2

i − y+Ui

(dUi1

dy+
+ δ1

dUi2

dy+
+ ...

)}
,

(A 30)

where ν/(u∗x) ≈ ν/(Ueδ) has been used. The shear-stress derivative is

∂uv

∂y
= u2

∗

∂uvi
∂y+

u∗

ν
. (A 31)

The advection due to V is

∂U

∂y
= u∗

∂Ui

∂y+
u∗

ν
,

∂2U

∂y2
= u∗

∂2Ui

∂y+2
(
u∗

ν
)2, (A 32)

V
∂U

∂y
=

ν

δ

u∗

Ue
u∗Vi

u2
∗

ν

∂Ui

∂y+
,

δν
u2
∗

V
∂U

∂y
=

ν

δUe
Vi

∂Ui

∂y+
. (A 33)

The normal-stress difference derivative is

∂u2 − v2

∂x
=

∂u∗Ueu2
i

∂x
−

∂u2
∗
v2i

∂x
=

du∗

dx
Ueu2

i + u∗Ue
∂u2

i

∂x
−
(
− 2u∗

du∗

dx
v2i + u2

∗

∂v2i
∂x

)

= −
u∗

x

1

kUe

u∗

+ 2
Ueu2

i + u∗Ue
∂u2

i

∂y+
y

ν

du∗

dx
−
(
2u∗

u∗

x

v2i
kUe

u∗

+ 2
+ u2

∗

dv2i
dy+

y

ν

du∗

dx

)

= −
u∗

x

1

kUe

u∗

+ 2
Ueu2

i − u∗Ue
y

ν

u∗

x

1

kUe
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(A 34)

where the scaling u2 ∼ u2
∗
lnRe∗ ∼ u∗Ue (Townsend 1976) has been used. Its non-
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dimensional form is
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(A 35)

The inner perturbation equation up to the order of Re−1

δ u∗/Ue is
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(A 36)

The inner shear-stress budget is obtained as follows.

∂uv
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, (A 37)
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The advection term due to V is
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The production is
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The viscous diffusion is
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The inner shear-stress budget up to the order of Re−1

δ u∗/Ue is obtained as
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