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◮ Symmetries have been much used in control theory for

feedback design

◮ It has been applied to mobile robot control, passive walking

... but suprisingly much less for observer design

◮ They generally allow to reduce the complexity of the

control problem. As a matter fact it was realized recently it

also reduces the complexity of observer design for

non-linear systems possessing symmetries.
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Introductive example: SLAM

According to the tutorial article of Hugh Durrant-Whyte and Tim

Bailey (IEEE 2006):

◮ The simultaneous localization and mapping (SLAM)

problem asks if it is possible for a mobile robot to be placed

at an unknown location in an unknown environment and for

the robot to incrementally build a consistent map of this

environment while simultaneously determining its location

within this map.

◮ A solution to the SLAM problem has been seen as a holy

grail for the mobile robotics community as it would provide

the means to make a robot truly autonomous.



Introductive example: SLAM - usual model

◮ The vehicle state is defined by the position x ∈ R
2 and the

orientation of the vehicle axis θ in the reference frame.

◮ The landmarks are modeled as points and represented by

their position pi ∈ R
2 where 1 ≤ i ≤ N.

◮ measurements = relative position to environmental

landmarks.

zi = R−θ(pi − x) 1 ≤ i ≤ N



Introductive example: SLAM

The trusted equations of motion are based on non-holonomic

constraints

d

dt
x = u Rθe1,

d

dt
θ = uv ,

d

dt
pi = 0 1 ≤ i ≤ N

where e1 = (1,0)T and Rθ is the rotation matrix of angle θ. The

measurements are

zi = R−θ(pi − x) 1 ≤ i ≤ N

In a stochastic independent white Gaussian state

measurements noises are added.



Introductive example: SLAM

◮ Simultaneous localization and mapping principle :

Estimate x , θ,pi , 1 ≤ i ≤ N at the same time.

◮ Extended Kalman Filter SLAM: Consider the estimation

problem above as an observer design problem and build

an EKF, i.e.

d

dt
x̂ = uR

θ̂
e1 +

N
∑

1

Lk
x (ẑk − zk ),

d

dt
θ̂ = uv +

N
∑

1

Lk
θ (ẑk − zk ),

d

dt
p̂i =

N
∑

1

Lk
i (ẑk − zk ), 1 ≤ i ≤ N

where ẑk = R
−θ̂

(p̂k − x̂) and where the Li ’s are tuned via

the usual EKF equations.



Introductive example: SLAM

What is wrong with the update ?

d

dt
x̂ = uR

θ̂
e1 +

N
∑

1

Lk
x (ẑk − zk )

where zk = R−θ(pk − x).

◮ It is not natural to “correct" variables expressed in the

reference frame with measurements in the vehicle frame

◮ Do the L′

is adapt automatically (one way or another the L′

is
must depend on θ) ?

◮ Yes but the gain matrix (hence the covariance matrix) can

not converge ...



Introductive example: SLAM
Simulation1 results illustrate this shortcoming of EKF SLAM:

1Estimated and true trajectory and landmark for one landmark and a car

moving over a circular path with a 20% measurment noise.



Introductive example: SLAM
Simulation results illustrate this shortcoming of EKF SLAM:



Introductive example: SLAM

◮ A natural way to circumvent those drawbacks would be to

modify the updates

d

dt
x̂ = uR

θ̂
e1 +

N
∑

1

Lk
xR

θ̂
(ẑk − zk )

where zk = R−θ(pk − x).

◮ Those kinds of heuristic modifications are encompassed in

the general framework of symmetry-preserving observers

presented in this talk.

◮ The theory allows to find judicious modifications leading to

the following results (see next slide).



Introductive example: SLAM
A symmetry-based modification of the EKF algorithm leads to stability



Linear and non-linear observer design: Luenberger observer,

Extended Kalman Filter.



The linear case:

d

dt
x = Ax + Bu y ,u known signals

y = Cx + Du

Linear observer

A stable filter mixing the input and output signals u(t) and y(t):

d

dt
x̂ = Ax̂ + Bu(t) − L(Cx̂ + Du(t) − y(t))



The linear case:

d
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A stable filter mixing the input and output signals u(t) and y(t):

d

dt
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Is x̂ a good estimate of x?



The linear case:

d

dt
x = Ax + Bu y ,u known signals

y = Cx + Du

Linear observer

A stable filter mixing the input and output signals u(t) and y(t):

d

dt
x̂ = Ax̂ + Bu(t) − L(Cx̂ + Du(t) − y(t))

Is x̂ a good estimate of x?

Error system for e := x̂ − x

d

dt
e = (A − LC)e

The error system is autonomous (separation principle...)



The linear case:

d

dt
x = Ax + Bu y ,u known signals

y = Cx + Du

Linear observer

A stable filter mixing the input and output signals u(t) and y(t):

d

dt
x̂ = Ax̂ + Bu(t) − L(Cx̂ + Du(t) − y(t))

The celebrated Kalman Filter admits M,N as “tuning"

parameters (Gaussian noise covariances chosen by the user)

and we get

L = −PCT N

d

dt
P = AP + PAT + M−1 − PCT NCP



The nonlinear observation problem:

For a system with dynamics described by

d

dt
x = f (x ,u)

equipped with sensors yielding measurements

y = h(x ,u)

We focus on observers such that the evolution of x̂(t) is given

by :

d

dt
x̂ = F (x̂ , y ,u)



Examples2

Observers of the form ?

d

dt
x̂ = F (x̂ , y ,u)

Estimator, observer, filter, etc:

d

dt
x̂ = f (x̂ ,u) − L(x̂ , y) ·

(

h(x̂ ,u) − y
)

◮ Luenberger observer, gain scheduling, high gains, ...

◮ Extended Kalman Filter

2See, e.g., G. Besançon (Ed.): Nonlinear Observers and Applications;

Springer(2007). J.P. Gauthier, I. Kupka: Deterministic Observation Theory

and Applications (2001).



Extended Kalman Filter

d

dt
x̂ = f (x̂ ,u) − L(x̂ , y) ·

(

h(x̂ ,u) − y
)

Let e = x̂ − x . We have up to second order terms in e

d

dt
e = (A(t) − L(t)C(t))e

M,N are tuning parameters and the EKF is based on

A(t) =
∂f

∂x
(x̂ ,u) L = −PCT N

C(t) =
∂h

∂x
(x̂ ,u)

d

dt
P = AP + PAT + M−1 − PCT NCP

◮ Tuning? Domain of convergence? Computational cost?



Symmetry-preserving observers: theory and recent results



Symmetry group of a system of differential equations

◮ A thing is symmetrical if one can subject it to a certain

operation and it appears exactly the same after the

operation

◮ How can a dynamical model be "symmetrical" ?

◮ What operation can we do to a an experiment, and leave

the result the same ?
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Symmetry group of a system of differential equations

Let G be a group, and M be a set.

Definition
A group action is defined on M if to any g ∈ G on can associate

a diffeomorphic transformation φg : M → M such that

φgh = φg ◦ φh, (φg)−1 = φg−1

Definition
G is a symmetry group of a system of differential equations

defined on M if it maps solutions to solutions. In this case we

say the system is invariant.

Definition
A vector field w on M is said invariant if the system d

dt z = w(z)
is invariant.



Symmetry group of a system of differential equations

Illustrative example. M = R
2, and the symmetry group is made

of horizontal translations. We have φg(z1, z2) = (z1 + g, z2)
T

where g ∈ G = R.



Symmetry group of a system of differential equations
Another way to see invariance is the following :

Proposition

If the system
d

dt
z = w(z)

is invariant, then for any g ∈ G if we let

φg(z) = Z

we have
d

dt
Z = w(Z )

Definition
A scalar invariant is a function I : M → R such that

I(φg(z)) = I(z) for all g ∈ G. In other words

I(Z ) = I(z)



Symmetry group of a system of differential equations

Consider now the general non-linear system

d

dt
x = f (x ,u)

Consider also the local group of transformations on X × U

φg(x ,u) =
(

ϕg(x), ψg(u)
)

, (1)

Definition
The system d

dt x = f (x ,u) is said invariant if it is invariant to the

group action (1).

It means
d

dt
X = f (X ,U)

where (X ,U) = (ϕg(x), ψg(u)) for all g ∈ G.



Symmetry-preserving observers

We would like the observer to be an invariant system for the

same symmetry group.

Definition
The observer

d

dt
x̂ = F (x̂ ,u, y)

is invariant or “symmetry-preserving" if it is an invariant system

for the group action

(x̂ , x ,u, y) 7→
(

ϕg(x), ϕg(x̂), ψg(u),h(ϕg(x), ψg(u))
)

.

The observer is unchanged by the transformation, i.e.

d

dt
X̂ = F (X̂ ,U,Y )

where (X̂ ,U,Y ) =
(

ϕg(x), ϕg(x̂), ψg(u),h(ϕg(x), ψg(u))
)

.



Symmetry-preserving observers
Invariant system and invariant observer in the phase space.



Symmetry-preserving observers

Theorem: Every invariant candidate observer reads3

d

dt
x̂ = f (x̂ ,u) + W (x̂)L

(

I(x̂ ,u),E(x̂ ,u, y)
)

E(x̂ ,u, y)

◮ E(x̂ ,u, y) invariant output error

◮ W (x̂) =
(

w1(x̂), ..,wn(x̂)
)

invariant frame

◮ I(x̂ ,u) invariant

◮ L(I,E) freely chosen n × p gain matrix

Definition
The smooth map (x̂ ,u, y) 7→ E(x̂ ,u, y) ∈ R

p is an invariant output

error (invariant counterpart of ŷ − y) if

◮ E
(

X̂ ,U,Y
)

= E(x̂ ,u, y) for all x̂ ,u, y (invariant)
◮ the map y 7→ E(x̂ ,u, y) is invertible for all x̂ ,u (output)
◮ E

(

x̂ ,u,h(x̂ ,u)
)

= 0 for all x̂ ,u (error)

3Bonnabel, Martin, Rouchon: Symmetry-preserving observers (IEEE-TAC,

2008).



Symmetry-preserving observers: Illustration with the SLAM example

Non-linear invariant system (no noise):

d

dt
x = u Rθe1,

d

dt
θ = uv ,

d

dt
pi = 0 1 ≤ i ≤ N

Symmetry group SE(2): rotations and translations in the

reference frame.

ϕg(x ,p1, · · · ,pN) = (Rθ0
x + x0,Rθ0

p1 + x0, · · · ,Rθ0
pN + x0)

◮ Invariant output error : ẑi − zi

◮ Every invariant observer reads

d

dt
x̂ = uR

θ̂
e1 + R

θ̂
(

N
∑

1

Lk
x (ẑk − zk )),

d

dt
θ̂ = uv +

N
∑

1

Lk
θ (ẑk − zk ),

d

dt
p̂i = R

θ̂
(

N
∑

1

Lk
i (ẑk − zk ))



So what?

◮ So far, building invariant observers essentially amounts to

writing the correction terms in the same frame as the

estimated vectors.

◮ Does the theory goes beyond?

◮ The answer is yes. The error equation has very interesting

properties4.

◮ The most striking results are obtained when there are as

many symmetries as the dimension of the state space; i.e.

the state space coincides with its symmetry group.

◮ This should not apply to EKF SLAM as the state space is

2N + 3 dimensional whereas the symmetry group is of

dimension 3.

4see Bonnabel, Martin, Rouchon (IEEE TAC 2008).



Some applications

Before going into more theoretical properties, let us present

some applications.

The method was successfully used for data fusion of GPS and

IMU as an alternative to EKF. Three main groups worked on the

use of those observers for data fusion applications :

◮ in Australia: see e.g. Mahony, Hamel, Pflimlin (CDC 2005,

IEEE-TAC 2008)

◮ in Portugal: e.g. Vasconcelos, Silvestre and Oliveira (CDC

2008)

◮ in France: e.g. Martin, Salaun (CDC 2008), Bonnabel,

Rouchon (Springer 2005)



Some applications at Ecole des Mines

◮ An invariant observer with constant gains was designed for

quadrotor applications. The low computational cost

allowed an implementation on a cheap (5$) 8-bit

micro-controller. 5

◮ Fusion of odometry/GPS/IMU was experimented on a car6.

5See PhD Thesis of Erwan Salaün.
6Bonnabel, Salaun, Control Engineering Practice, 2011.



Particular case where the state space is a Lie group
Let X = G. The system is assumed to be invariant to left

multiplications i.e.
d

dt
X = XΩ(t).

The considered group action is

ϕg(x) = gX

where g,X ∈ G. The system is invariant to the transformation

as
d

dt
(gX ) = (gX )Ω(t)

In the SLAM problem the motion of the car ẋ = uRθe1, θ̇ = uv

can be viewed as a left-invariant system on the Lie group SE(2):

X =

(

Rθ x

01×2 1

)

, Ω =

(

ωx ue1

01×2 0

)

, with ωx =

(

0 −uv

uv 0

)



Particular case where the state space is a Lie group
Consider the natural (right) invariant state error η = X̂X−1.

Suppose there is an invariant output error E(η). Consider the

invariant observer:

d

dt
X̂ = X̂Ω + L(E(η))X̂
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Suppose there is an invariant output error E(η). Consider the

invariant observer:

d

dt
X̂ = X̂Ω + L(E(η))X̂

We have

d

dt
X−1 = −X−1ẊX−1 = −X−1XΩX−1 = −ΩX−1



Particular case where the state space is a Lie group
Consider the natural (right) invariant state error η = X̂X−1.

Suppose there is an invariant output error E(η). Consider the

invariant observer:

d

dt
X̂ = X̂Ω + L(E(η))X̂

We have

d

dt
X−1 = −X−1ẊX−1 = −X−1XΩX−1 = −ΩX−1

Using this property, the error equation is

d

dt
η = X̂ΩX−1 + L(E(η))η − X̂ΩX−1 = L(E(η))η



Particular case where the state space is a Lie group
Consider the natural (right) invariant state error η = X̂X−1.

Suppose there is an invariant output error E(η). Consider the

invariant observer:

d

dt
X̂ = X̂Ω + L(E(η))X̂

We have

d

dt
X−1 = −X−1ẊX−1 = −X−1XΩX−1 = −ΩX−1

Using this property, the error equation is

d

dt
η = X̂ΩX−1 + L(E(η))η − X̂ΩX−1 = L(E(η))η

The error equation is completely autonomous !



Particular case where the state space is a Lie group

The linearized system around any trajectory reads

d

dt
δη = LCδη

with fixed C. Several benefits:

◮ A constant gain observer is easily tuned for (at least) local

convergence around every trajectory with a good local

behavior (interesting practical property)7.

◮ For several ground and aerial vehicles, a (local) separation

principle on Lie groups holds around the trajectories

around which the linearized system is time-invariant

(connection to the work of Bullo and Murray, Samson and

Morin, etc.) 8.

7Bonnabel, Martin, Rouchon (IEEE TAC 2009)
8Bonnabel, Martin, Rouchon, Salaun (IFAC, 2011)



Particular case where the state space is a Lie group

The covariance update of the Extended Kalman Filter behaves

as if the system were linear and time-invariant9:

ẋ = 0, y = CX .

L = −PCT N

d

dt
P = M−1 − PCT NCP

◮ Autonomy is the key for numerous powerful convergence

results for observers on Lie groups10.

◮ Even when the state space is not a Lie group, there is a

large set of trajectories around which the error equation is

autonomous.

9Bonnabel (CDC 2007); Bonnabel, Martin, Salaun (CDC 2009)
10Bonnabel, Martin, Rouchon (CIFA 2006). Lageman, Trumpf, Mahony

(MTNS 2008), Vasconcelos, Silvestre and Oliveira (CDC 2008)



Application to EKF SLAM



Application to EKF SLAM

Consider the following matrix representation:

X =

(

Rθ x

01×2 1

)

, Pi =

(

Rθ pi

01×2 1

)

,

Ω =

(

ωx ue1

01×2 0

)

, Ωi =

(

ωx 0

01×2 0

)

The equations of the system

d

dt
x = u Rθe1,

d

dt
θ = uv ,

d

dt
pi = 0 1 ≤ i ≤ N

can be written

d

dt
X = XΩ,

d

dt
Pi = PiΩi , 1 ≤ i ≤ N

and the system can be viewed as a left-invariant dynamics

system on the (huge) Lie group G × · · · × G.



Application to EKF SLAM

Let ηx = X̂X−1, ηi = P̂iP
−1
i be the invariant state error.

Relative position to landmarks (measurements)

Ei = R
θ̂
(ẑi − zi)

is a function of (ηi − ηx).

Consider

the following invariant observer (invariant to right multiplications)
d
dt X̂ = X̂Ω + LX (E1, · · · ,EN)X̂ , d

dt P̂i = P̂iΩi + Li(E1, · · · ,EN)P̂i

The (non-linear) error equation is completely autonomous !



Application to EKF SLAM

With the initial notation, the observer is

d

dt
θ̂ = uv + Lθ(E),

d

dt
x̂ = uR

θ̂
e1 + Lθ(E)e3 ∧ x̂ + Lx(E),

d

dt
p̂i = Lθ(E)e3 ∧ p̂ + Li(E)

where E = {R
θ̂
(ẑi − zi),1 ≤ i ≤ N}. The invariant state error is

η = (θ̃, x̃ , p̃1, · · · , p̃n) where

θ̃ = θ̂ − θ, x̃ = x̂ − R
θ̃
x , p̃i = p̂i − R

θ̃
pi

The error equation is autonomous. The linearized error

equation writes
d

dt
δη = LCδη

where L can be freely chosen and C is a fixed matrix.



Application to EKF SLAM: simulations with a 20% noise

Linearized system

d

dt
δη = (LC)δη

Kalman filtering

L = −PCT N

d

dt
P = M−1−PCT NCP

with M,N tuning

matrices.



Application to EKF SLAM

◮ The covariance matrix converges as if the system was

linear, time-invariant and stationnary.

◮ Compute the gain matrix offline ! The computational

burden is lowered and a lot more landmarks can be

included in the map.

Now let us propose a special tuning of the gains having very

interesting properties.



Application to EKF SLAM

The following constant gain observer is globally convergent

Proposition

Consider the SLAM problem without noise. The following

observer

d

dt
θ̂ = uv ,

d

dt
x̂ = uR

θ̂
e1,

d

dt
p̂i = ki R

θ̂
(ẑi − zi)

with ki > 0 is such that d
dt (Rθ̂

(ẑi − zi)) = −ki R
θ̂
(ẑi − zi)

Proof: we have d
dt (θ̂ − θ) = uv − uv = 0. And

R
θ̂
(ẑi − zi) = (p̂i − x̂i) − R

θ̂−θ
(pi − xi). Thus

d

dt
(R

θ̂
(ẑi − zi)) = ki R

θ̂
(ẑi − zi) + −uR

θ̂
e1 + R

θ̂−θ
uRθe1.

The blue term = 0.



Application to EKF SLAM

This new algorithm as several advantages:

◮ The algorithm possesses convergence properties as the

landmarks estimation errors ẑi − zi go to zero exponentially

◮ Such global properties generally allow a great robustness

to noise.

◮ The estimation of the landmarks are decoupled, and the

ki ’s must be chosen accordingly to the level of noise

associated with the i-th observation.

◮ The algorithm complexity is linear in N whereas in Kalman

filtering scales in N2. The number of landmarks, typically

N = 1000, can be much increased !



Conclusion



Conclusion

◮ The theory of symmetry-preserving observers offers a

versatile geometric framework to “put" some physics in the

design of non-linear observers in robotics problems

◮ The simplicity of those observers as well as the hope for

convergence properties has made them a challenger to

usual EKF for UAV state estimation

◮ The application to SLAM looks promising but still needs to

be checked againts experiments (implementation,

robustness to uncorrect data associations etc.)

◮ It works in 3D.

◮ Future work includes application to visual SLAM (bearing

only measurements).

◮ A proper theory of invariant noises must be elaborated



Thank you, any questions?
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