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Abstract: In this paper we use the AdS/CFT correspondence to refine and then es-

tablish a set of old conjectures about symmetries in quantum gravity. We first show

that any global symmetry, discrete or continuous, in a bulk quantum gravity theory

with a CFT dual would lead to an inconsistency in that CFT, and thus that there are no

bulk global symmetries in AdS/CFT. We then argue that any “long-range” bulk gauge

symmetry leads to a global symmetry in the boundary CFT, whose consistency requires

the existence of bulk dynamical objects which transform in all finite-dimensional irre-

ducible representations of the bulk gauge group. We mostly assume that all internal

symmetry groups are compact, but we also give a general condition on CFTs, which we

expect to be true quite broadly, which implies this. We extend all of these results to the

case of higher-form symmetries. Finally we extend a recently proposed new motivation

for the weak gravity conjecture to more general gauge groups, reproducing the “convex

hull condition” of Cheung and Remmen.

An essential point, which we dwell on at length, is precisely defining what we mean

by gauge and global symmetries in the bulk and boundary. Quantum field theory

results we meet while assembling the necessary tools include continuous global symme-

tries without Noether currents, new perspectives on spontaneous symmetry-breaking

and ’t Hooft anomalies, a new order parameter for confinement which works in the

presence of fundamental quarks, a Hamiltonian lattice formulation of gauge theories

with arbitrary discrete gauge groups, an extension of the Coleman-Mandula theorem

to discrete symmetries, and an improved explanation of the decay π0 → γγ in the

standard model of particle physics. We also describe new black hole solutions of the

Einstein equation in d+ 1 dimensions with horizon topology Tp × Sd−p−1.
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1 Introduction

It has long been suspected that the consistency of quantum gravity places constraints

on what kinds of symmetries can exist in nature [1]. In this paper we will be primarily

interested in three such conjectural constraints [2, 3]:

Conjecture 1. No global symmetries can exist in a theory of quantum gravity.

Conjecture 2. If a quantum gravity theory at low energies includes a gauge theory

with compact gauge group G, there must be physical states that transform in all finite-

dimensional irreducible representations of G. For example if G = U(1), with allowed

charges Q = nq with n ∈ Z, then there must be states with all such charges.

Conjecture 3. If a quantum gravity theory at low energies includes a gauge theory

with gauge group G, then G must be compact.
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These conjectures are quite nontrivial, since it is easy to write down low-energy

effective actions of matter coupled to gravity which violate them. For example Einstein

gravity coupled to two U(1) gauge fields has a Z2 global symmetry exchanging the two

gauge fields, and also has no matter fields which are charged under those gauge fields.

If we instead use two R gauge fields, then we can violate all three at once. Conjectures

1-3 say that such effective theories cannot be obtained as the low-energy limit of a

consistent theory of quantum gravity: they are in the “swampland” [4–7].1

The “classic” arguments for conjectures 1-3 are based on the consistency of black

hole physics. One argument for conjecture 1 goes as follows [3]. Assume that a con-

tinuous global symmetry exists. There must be some object which transforms in a

nontrivial representation of G. Since G is continuous, by combining many of these

objects we can produce a black hole carrying an arbitrarily complicated representation

of G.2 We then allow this black hole to evaporate down to some large but fixed size in

Planck units: the complexity of the representation of the black hole will not decrease

during this evaporation since the Hawking process depends only on the geometry and

is uncorrelated with the global charge (for example if G = U(1) then positive and nega-

tive charges are equally produced). According to Bekenstein and Hawking the entropy

of this black hole is given by [8, 9]

SBH =
Area

4GN

, (1.1)

but this is not nearly large enough to keep track of the arbitrarily large representa-

tion data we’ve stored in the black hole. Thus either (1.1) is wrong, or the resulting

object cannot be a black hole, and is instead some kind of remnant whose entropy

can arbitrarily exceed (1.1). There are various arguments that such remnants lead

to inconsistencies, see eg [10], but perhaps the most compelling case against either of

these possibilities is simply that they would necessarily spoil the statistical-mechanics

interpretation of black hole thermodynamics first advocated in [8]. This interpretation

has been confirmed in many examples in string theory [11–16].

The classic argument for conjecture 2 is simply that once a gauge field exists,

then so does the appropriate generalization of the Reissner-Nordstrom solution for any

representation of the gauge group G. The classic argument for conjecture 3 is that at

least if G were R, the non-quantization of charge would imply a continuous infinity in

1Note however that the charged states required by conjecture 2 might be heavy, and in particular

they might be black holes.
2More rigorously, given any faithful representation of a compact Lie group G, theorem A.11 below

tells us that all irreducible representations of G must eventually appear in tensor powers of that

representation and its conjugate. If G is continuous, meaning that as a manifold it has dimension

greater than zero, then there are infinitely many irreducible representations available.
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the entropy of black holes in a fixed energy band, assuming that black holes of any

charge exist, which again contradicts the finite Bekenstein-Hawking entropy. Moreover

non-abelian examples of noncompact continuous gauge groups are ruled out already

in low-energy effective field theory since they do not have well-behaved kinetic terms

(for noncompact simple Lie algebras the Lie algebra metric Tr (TaTb) is not positive-

definite).

These arguments for conjectures 1-3 certainly have merit, but they are not com-

pletely satisfactory. The argument for conjecture 1 does not apply when the symmetry

group is discrete, for example when G = Z2 then there is only one nontrivial irreducible

representation, but why should continuous symmetries be special? In arguing for con-

jecture 2, does the existence of the Reissner-Nordstrom solution really tell us that a

charged object exists? As long as it is non-extremal, this solution really describes a

two-sided wormhole with zero total charge. It therefore does not obviously tell us any-

thing about the spectrum of charged states with one asymptotic boundary.3 We could

instead consider “one-sided” charged black holes made from gravitational collapse, but

then we must first have charged matter to collapse: conjecture 2 would then already

be satisfied by this charged matter, so why bother with the black hole at all? To really

make an argument for conjecture 2 based on charged solutions of general relativity that

do not already have charged matter, we need to somehow satisfy Gauss’s law with a

non-trivial electric flux at infinity but no sources. It is not possible to do this with triv-

ial spatial topology. One possibility is to consider one-sided charged “geons” created by

quotienting some version of the Reissner-Nordstrom wormhole by a Z2 isometry [18],

but this produces a non-orientable spacetime and/or requires that we gauge a discrete

Z2 symmetry that flips the sign of the field strength. Depending on what kinds of mat-

ter fields exist these operations may not be allowed, for example there could be fermions

which require the spacetime manifold to admit a spin structure. Another possibility is

to consider extremal Reissner-Nordstrom black holes, where the electric flux ends on a

timelike singularity, but again it is not clear if this is really allowed without knowing

more about the structure of quantum gravity. Finally the argument for conjecture 3

implicitly relies on that for conjecture 2, since one needs to assume that a continuous

3A common response to this complaint is that we should view the ends of the Reissner-Nordstrom

wormhole as “objects” in their own right, which could exist even without the other end, but why

should we? It certainly does not follow from classical general relativity, and semiclassically charged

black holes are always pair-produced unless we make them out of charged matter. In [17] it was argued

that the question of whether or not a wormhole can be cut is a UV-sensitive one, which can be resolved

only with input from a complete quantum gravity theory such as AdS/CFT, and we also take this

point of view here. In the end we agree that wormholes should always be cuttable, but this is more

like a consequence of conjecture 2 rather than an argument for it.
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infinity of Reissner-Nordstrom wormholes implies a continuous infinity of charged black

holes, and the argument also does not work if the gauge group G is discrete. We thus

feel that there is considerable room still to improve our understanding of conjectures

1-3.

A more “empirical” approach to these conjectures is simply to observe that they

seem to be true in all known string compactifications [2, 5, 19]. In particular there do

not seem to be any discrete global symmetries. But again this is also not particularly

satisfying: this type of reasoning will never tell us why conjectures 1-3 are correct.

The main goal of this paper is to use our best set of quantum gravity theories, those

provided by the AdS/CFT correspondence, to justify conjectures 1-3. Our arguments

are partly based on those given in [17] for case of G = U(1), but they are more

systematic. Indeed we will for the most part use general group-theoretic language

which applies equally well to continuous and discrete symmetry groups.

Roughly speaking our main results are the following:

(i) Any global symmetry in the bulk of AdS/CFT would be inconsistent with the

local structure of the degrees of freedom in the CFT, so no such symmetries can

exist.

(ii) A compact global symmetry in a holographic CFT corresponds to a compact

gauge symmetry in the bulk, with the same symmetry group in either description.

(iii) A holographic CFT with a compact global symmetry G must have have local

operators that transform in all finite-dimensional irreducible representations of

G. These are then dual to objects in the bulk charged under all representations

of G.

(iv) There is a simple condition on the set of CFTs, which we believe holds in all

CFTs with discrete spectrum and a unique stress tensor, which requires the full

internal global symmetry group of that CFT to be compact.

There are several problems with these results as stated: the most obvious is that

we have not said what we mean by gauge and global symmetries. For example in

any quantum field theory, the projection operator onto the 42nd eigenstate of the

Hamiltonian is a hermitian operator that commutes with the Hamiltonian. Does this

mean it generates a symmetry? Should it have a Noether current? Do we expect it

to correspond to a gauge symmetry in the bulk? Moreover aren’t gauge symmetries

just redundancies of description? How can something which is unphysical be dual

to something which is physical? What if there is a bulk gauge theory which is in a
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Figure 1. A bulk time slice viewed from above, with the boundary timeslice Σ split up into

disjoint spatial regions Ri. We’ve shaded the entanglement wedge of each Ri grey, and the

point in the center lies in none of these entanglement wedges.

confining and/or Higgs phase? Is it still dual to a global symmetry in the CFT? What

precisely would we mean by a global symmetry of a gravitational theory if one existed?

Resolving these questions will be our first order of business, and will require careful

consideration of some deep issues in quantum field theory and quantum gravity. Our

main innovation is perhaps in introducing the notion of “long-range gauge symmetry”

in section 3, which formalizes the idea of a weakly-coupled gauge field. It also gives

a new order-parameter for confinement in the presence of fundamental quarks, which

could be useful in many circumstances. Roughly speaking we use the presence of a

global symmetry in the dual CFT to diagnose the phase of a gauge theory in the bulk,

but we strip the holography out of this and give a strictly bulk definition which makes

sense even if there is no gravity. Also in section 2 we discuss the validity of Noether’s

theorem at some length, giving examples of quantum field theories with continuous

global symmetries that do not have Noether currents, and explaining both why such

examples are possible and why they do not affect our later arguments for points (i-iv).

We also point out a connection between anomalies and Noether’s theorem, which we

use to clarify the usual discussion of pion physics in the standard model of particle

physics.

The precise formulations of and arguments for (i-iv) are presented in sections 4-6,

and are actually quite simple once we have all the terminology straight. To give a flavor

of our methods, we here sketch our arguments for points (i) and (iii) for the special case

of G = U(1) (point (ii) ends up being basically equivalent to point (iii) once the relevant

definitions are in place, and our argument for (iv) is simple and self-contained enough

that we just present it in section 6). Indeed say that we had a U(1) global symmetry
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in the bulk: we would then also have a U(1) global symmetry in the boundary theory.

By Noether’s theorem, this would be generated by a conserved current Jµ. The usual

argument from here is to simply observe that this current is dual to a dynamical gauge

field in the bulk [20], contradicting our assumption that the symmetry was global. This

argument however fails for discrete symmetries: an argument which generalizes better

to arbitrary symmetry groups is as follows. Split a spatial slice Σ of the boundary into

a disjoint set of small regions Ri, as shown in figure 1. We can write the symmetry

generator which rotates by an angle θ as

U(θ,Σ) ≡ eiθ
∫
Σ ∗J =

∏

i

e
iθ

∫
Ri

∗J
. (1.2)

Now since we have assumed the existence of a nontrivial bulk global symmetry, there

must be a localized object that is charged under this symmetry. Moreover there must

be a charged operator φ† that creates it, obeying

U †(θ,Σ)φU(θ,Σ) = eiqθφ, (1.3)

where q is the charge of the object.

But now there is a problem: for small enough regions Ri, (1.2) and (1.3) are

inconsistent. Roughly speaking this is because the finite spatial support of the operators

e
iθ

∫
Ri

∗J
ensures that from the bulk point of view they are localized “near the boundary”,

and thus by bulk causality must commute with the operator φ when it is located near

the center of the bulk, as in figure 1. We can formalize this by noting that we can

arrange for the operator φ to be in the complement of the “entanglement wedge” of

each of the Ri’s, which is the natural bulk subregion dual to Ri [21–24]. This means

that within a “code subspace” of sufficiently semiclassical states, φ can be represented

in the CFT with spatial support only on the complement of any particular Ri, and thus

within this subspace must commute with all of the e
iθ

∫
Ri

∗J
[25, 26].4 But then satisfying

(1.3) is impossible, so there must not have been such a bulk global symmetry in the

first place. The key input in this argument was Noether’s theorem, which as we explain

more below is basically a consequence of the local structure of the boundary CFT, and

our general argument for arbitrary symmetry groups will rely on a generalization of

that theorem (hence our need to treat that theorem carefully in section 2).

4This argument is complicated by the fact that bulk local operators do not really exist, since they

must be “dressed” by Wilson lines, etc, to make them invariant under bulk diffeomorphisms and

internal gauge symmetries. But this dressing must also commute with our assumed global symmetry,

since otherwise that symmetry would have to be gauged as well. We will discuss this further in section

4 below when we define what we mean by a global symmetry in gravity.
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Our argument for point (iii) proceeds on similar lines. Following [17] we consider

the algebra of a Wilson line in the minimal-charge representation of U(1) threading

the AdS-Schwarzschild geometry from one boundary to the other (see figure 18 below)

with the exponential of the integrated electric flux over one of the spatial boundaries

e
− iθ

q2

∫
⋆F
ei

∫
Ae

iθ

q2

∫
⋆F

= eiθei
∫
A. (1.4)

The locality of the boundary CFT implies that this electric flux is an operator with

nontrivial support only on one of the CFTs, and its algebra with the Wilson line is

apparently nontrivial for all θ ∈ (0, 2π). But this is only possible if a single copy of

the CFT has states of minimal charge, since otherwise there would be a 0 < θ < 2π

for which the exponential of the integrated flux would be trivial and thus have to act

trivially on the Wilson line. For example if there were only even charges, so that
1
q2

∫
⋆F = 2n in all states, then we would have e

iπ

q2

∫
⋆F

= 1. Thus all charges must be

present.

To ease the presentation we will first establish (i-iv) only for internal global symme-

tries, which send all operators at a point to other operators at the same point, and wait

until section 7 to discuss spacetime global symmetries such as boosts and rotations. In

that section we also give a discrete generalization of the Coleman-Mandula theorem.

In section 8 we will then show that analogous conjectures also hold for higher-form

symmetries, which we review for the convenience of the reader. The arguments for

spacetime and higher-form symmetries are mostly the same as for ordinary internal

global symmetries, but several interesting new subtleties arise. The higher-form ver-

sions of the conjectures have some interesting interplay with the original conjectures,

which we discuss.

Finally in section 9 we briefly consider the “weak gravity conjecture” of [5]. In [17]

it was pointed out that arguments similar to those we use in proving (i-iv) motivate

the idea that any bulk gauge field is emergent, and it was shown that a simple model

of such an emergent gauge field, the CP
N−1 σ-model of [27, 28], automatically obeys

a version of the weak gravity conjecture. We will show that this argument can be

generalized to gauge groups other than U(1), and in particular for gauge group U(1)k

reproduces the rather nontrivial “convex hull condition” introduced in [29]. We view

this as evidence that the “emergence” explanation of the weak gravity conjecture is on

the right track, although we are unfortunately not able to resolve the long-standing

debate over what the precise version of the conjecture should be [5, 30, 31].

Various technical results and reviews are presented in the appendices, and may be

referred to as needed.

It is worth discussing what our results do not exclude. The most important thing

they do not exclude is approximate global symmetries in quantum gravity. Indeed these
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are quite common in string theory, and arise basically anytime that the low-energy

effective action for the appropriate light degrees of freedom does not have relevant

or marginal terms which break a possible global symmetry. For example even in the

standard model this happens with B−L symmetry (B and L separately are broken by

anomalies). Our arguments will only exclude bulk global symmetries which are good

symmetries acting on the entire Hilbert space of quantum gravity, including black hole

states. In contrast, approximate symmetries which emerge in the way just described

are good only in some low-energy subspace. It is very important for phenomenology to

understand how approximate such global symmetries can be (see e.g. [32]), for example

are there lower bounds on the sizes of the coefficients of operators which violate them

in the low energy effective action? We will not answer this question here, but we view

it as ripe for future study.

A second restriction on our results is that they apply only in theories of quan-

tum gravity which are holographic. In fewer than four spacetime dimensions there are

known examples of quantum gravity theories which are precisely formulated using lo-

cal gravitational path integrals, with the string worldsheet being an especially simple

example. There is no obstruction to such theories having global symmetries: indeed

in the string worldsheet theory target space isometries and worldsheet parity give ex-

amples of internal and spacetime global symmetries. In this context it is interesting to

note that in fact several of our arguments as stated work only for at least three (bulk)

spacetime dimensions. For example the situation in figure 1 requires spatial locality in

the boundary theory. We believe however that it is the absence of holography which

is the real culprit, for example the oriented version of pure three-dimensional Einstein

gravity has spatial reflection and time reversal as global symmetries even though our

arguments would have applied there had it been holographic. More discussion on how

these theories avoid being holographic is given in [33], along with further references.

Finally we apologize for the length of this paper, which is the result of our efforts

to be careful about the many subtleties involved in what at heart are relatively simple

arguments. We have done our best to structure the paper in a modular way, and we

encourage readers to skip to whichever subjects they find interesting without feeling

the need to read all intervening material. To aid this process, we have included markers

in sections 2 and 3 to indicate which material is essential in getting to our arguments

for conjectures 1-3: one good strategy might be to read only the definitions in the

beginnings of these sections and then jump straight to section 4. Sections 5 and 6 are

more or less independent, and section 9 is especially so. Obviously the appendices are

only there for those who want them. A short overview of our arguments is also available

in [34].
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1.1 Notation

In this paper we discuss quantum field theory at a higher level of rigor than is usual,

but still not at a level that would satisfy a mathematician. In particular we will not

give a formal set of axioms which defines quantum field theory. This is unavoidable,

since there is currently no such set of axioms which is both necessary and sufficient to

capture the full range of examples of interest, but it puts us in the awkward position

of “proving” statements about objects which we have not defined. To make this less

piecemeal, we here state a few basic ideas which we expect to be part of any reasonable

definition of quantum field theory.

• We will for the most part be interested in quantum field theories on Lorentzian

manifolds of the form Σ×R, where Σ is some spatial manifold and R is time. We

will view the metric gµν on Σ × R as a background gravitational field. A given

quantum field theory may or may not make sense on a specific choice of Σ and

gµν , but for each choice where it does there is a Hilbert space and a (possibly

time-dependent) Hamiltonian.

• For any subregion R of any Cauchy slice Σ, there is an associated von Neumann

algebraA[R] acting on this Hilbert space [35]. Intuitively one should think ofA[R]

as the algebra of operators localized in the domain of dependence D[R] of R. We

will not attempt to list all of the properties these operator algebras should obey,

but two essential ones are that bosonic/fermionic operators in spacelike-separated

regions should commute/anticommute, and that A[R] ⊂ A[R′] if R ⊂ D[R′].

• There are a set of operator-valued distributions, conventionally just called local

operators, with the property that integrating such a local operator against a

smooth test function with support only in D[R] produces an element of A[R].5

• More generally one can have surface operators, which are operator-valued distri-

butions localized to a submanifold (possibly with boundary) of Σ × R of non-

maximal codimension. These again can be smeared to obtain elements of A[R]

provided that the support of the smearing lives only in D[R].

• There is a local operator transforming in the symmetric tensor representation of

the Lorentz group, the stress tensor Tµν , which is covariantly conserved and has

5This isn’t quite correct, because the operator we obtain this way might not be bounded, while

elements of von Neumann algebras are bounded. So what we should really do is take the hermitian

and anti-hermitian parts of this smeared operator, and then either exponentiate them or use their

spectral projection operators to get “honest” elements of A[R].
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the property that any continuous isometry with Killing vector ξµ is generated

on the Hilbert space by the Tµνξ
ν . Its insertion into time-ordered expectation

values is defined by the derivative of those expectation values with respect to the

background metric:

〈TO1(x1, g) . . .On(xn, g)T
µν(x)〉g ≡ −i 2√

−g(x)
δ

δgµν(x)
〈TO1(x1, g) . . .On(xn, g)〉g.

(1.5)

Note that the derivative with respect to the metric can act on any metric-

dependence in the operators Oi(xi, g), leading potentially to contact terms.

We want to be clear that this is not a complete list of axioms. For example there should

be axioms which imply that the local and surface operators generate the full operator

algebra, and also that the vacuum cannot be annihilated by operators with compact

support. We have not included such axioms not because they are not important, but

rather because we are not sure what their final forms will be and we do not want to

imply that there are not additional axioms we don’t know about.

We emphasize that in this paper the word “operator” will always means a map

from a Hilbert space to itself. Although this may seem like it should not need any

explanation, it is becoming common to see the word used in situations where this is

not the case. For example one sometimes sees a Wilson loop wrapping a temporal circle

called an operator, when more precisely it should be interpreted as a modification of the

theory which changes both the Hilbert space and the Hamiltonian. This tendency has

arisen from an alternative axiomatic trend in quantum field theory which is based on

formal path integrals on general manifolds, not necessarily of the form Σ×R, in which

arbitrary functionals of the fields can be inserted, and one downplays any Hilbert space

interpretation of the result. This approach has the advantage of being covariant, but the

disadvantage of being tied to the Lagrangian formalism. One can escape this reliance

on having a Lagrangian by simply defining a quantum field theory to be the list of all

possible insertions and their expectation values on all possible backgrounds, but this

surely will not be the most efficient way of encoding this information. In particular such

a definition will not include a priori the constraints that come from insisting that such

expectation values do have a Hilbert space interpretation when appropriate, in which

many insertions do correspond to actual operators, so this needs to be imposed by hand.

In this paper the operator algebra is essential, so we will primarily use the algebraic

approach outlined in the above bullet points. We will however also occasionally use the

formal path integral insertion point of view, especially in Lagrangian examples where

it is most natural.
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We will make frequent use of differential forms. There is still no universally stan-

dard convention for the basic operations on these, so we here describe ours. They

coincide with those in [36] except for the sign of the Hodge star, which differs by a fac-

tor of (−1)p(d−p) and instead agrees with, eg, [37, 38]. Differential forms are completely

antisymmetric tensors, whose components thus obey

ωµ1...µp
= ω[µ1...µp], (1.6)

where the brackets on the right-hand side denote a signed average over permutations

of the indices:

T[µ1...µp] =
1

p!

∑

π∈Sp

sπTµπ(1)...µπ(p)
, (1.7)

where Sp denotes the symmetric group on p elements and sπ is one if π is even and

minus one if π is odd. The wedge product of ω a p-form and σ a q-form is defined as

(ω ∧ σ)µ1...µpν1...νq
=

(p+ q)!

p!q!
ω[µ1...µp

σν1...νq ], (1.8)

and the exterior derivative of ω is

(dω)µ0µ1...µp
= (p+ 1)∂[µ0ωµ1...µp]. (1.9)

The completely antisymmetric symbol ǫ̂ in d dimensions is defined as

ǫ̂ = dx1 ∧ dx2 ∧ . . . ∧ dxd, (1.10)

while the ǫ tensor is defined as

ǫ =
√
|g|ǫ̂. (1.11)

In particular note that in Lorentzian signature we have ǫ0...d−1 = − 1√
|g|
.6 The integral

of a d-form ω over a d-dimensional manifold is defined as
∫

M

ω =
(−1)s

d!

∫
ddx
√

|g|ǫµ1...µdωµ1...µd
, (1.12)

where s is zero in Euclidean signature and one in Lorentzian signature. Contrary

to appearances, the right hand side of (1.12) depends neither on the metric nor the

signature, and moreover if N is a d + 1 manifold with boundary then we have Stokes

theorem ∫

N

dω =

∫

∂N

ω. (1.13)

6We are of course using the vastly superior “mostly-plus” signature for the metric.
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Finally the Hodge star operation mapping a p-form to a d− p form is defined as

(⋆ω)µ1...µd−p
=

1

p!
ǫν1...νpµ1...µd−p

ων1...νp . (1.14)

A few useful identities, with ω again a p-form and σ a q-form, are

ω ∧ σ = (−1)pqσ ∧ ω
d(ω ∧ σ) = dω ∧ σ + (−1)pω ∧ dσ

ǫµ1...µd
ǫµ1...µd = (−1)sd!

⋆ ⋆ ω = (−1)p(d−p)+sω. (1.15)

We will occasionally use Dirac fermions, for which we take the γ-matrices to obey

{γµ, γν} = 2gµν (1.16)

and define the Dirac conjugate to be

ψ = ψ†γ0. (1.17)

In even spacetime dimensions we define the chirality operator to be

γd+1 = i−d/2γ0 . . . γd−1, (1.18)

which e.g. is equal to +1 on left-moving spinors for d = 2 and +1 on left-handed

spinors for d = 4.

In Yang-Mills theory we take the gauge field Aa
µ to be real, and the matrix gen-

erators Ta of any representation of a compact Lie algebra to be hermitian. The

structure constants Cc
ab are defined via [Ta, Tb] = iCc

abTc, The covariant derivative

is Dµ = ∂µ − iAa
µTa. For logical clarity we will maintain a distinction between lowered

indices in the adjoint representation and raised indices in its inverse-transpose, even

though in the compact case these representations are unitarily equivalent.

We always assume that any group we discuss is a Lie group, meaning that the

group is a smooth manifold and multiplication and inversion are smooth maps. We

have found that physicists are sometimes surprised to learn that this definition includes

discrete groups such as SL(2,Z) and Zn, which are zero-dimensional Lie groups. In

particular any finite group is a compact Lie group with the discrete topology. Following

standard physics parlance, we will refer to Lie groups with dimension zero as “discrete”

and Lie groups with dimension greater than zero as “continuous”, but we emphasize

that multiplication and inversion are continuous (and in fact smooth) regardless of the

dimension. We throughout adopt a convention that representations of a Lie group on a
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Hilbert space must be continuous, so when we encounter homomorphisms from G into

the set of linear operators on Hilbert space which are not necessarily continuous we will

just refer to them as homomorphisms (recall that a map f from one group to another

is a homomorphism if f(g1)f(g2) = f(g1g2) for all g1, g2). In appendix A we explain

our group theory conventions in more detail, and briefly review those aspects of the

theory of Lie groups and their representations which are necessary for our arguments.

The results are mostly standard but some may not be familiar to all physics readers.

Finally we will always assume that in any CFT which we are discussing, the vacuum

on Sd−1 is normalizable and we can therefore use the state-operator correspondence.

We view this as necessary to produce reasonable low-energy particle physics in the dual

theory of asymptotically-AdS quantum gravity.

2 Global symmetry

What is a symmetry in quantum mechanics? The definition most of us learn as under-

graduates is that a system with Hilbert space H and Hamiltonian H has a symmetry

with group G if there exist a set of distinct unitary operators U(g) on H, labeled by

elements g ∈ G, which respect the group multiplication7

U(g)U(g′) = U(gg′), (2.1)

and which all commute with H. More abstractly, there is a faithful homomorphism U

from G into the set of unitary operators on H, such that U(g) commutes with H for

any g ∈ G. This definition however is deficient in two respects:

• It is not general enough to include spacetime symmetries. For example Lorentz

boosts and time-reversal both do not commute with H, and the latter is repre-

sented with an antiunitary operator instead of a unitary one.

• In quantum field theory it is too general, since it includes operations which do not

respect the local structure of the theory. For example consider the “U(1) symme-

try” generated by the projection onto the 42nd eigenstate of H: this commutes

with H, but acts very non-locally.

In this paper we will not discuss spacetime symmetries until section 7, so the first point

is currently no trouble. The second however is a serious problem, since in quantum

7One occasionally also encounters the more general multiplication law U(g)U(g′) = eiα(g,g
′)U(gg′),

which is described by saying that the symmetry is represented projectively on the Hilbert space. This

possibility does not seem to be realized in an interesting way in quantum field theory on Rd, we explain

why in appendix B.
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field theory the symmetries which are interesting seem to always be those which respect

locality. We therefore propose a definition of what it means to have a global symmetry

in quantum field theory:8

Definition 2.1. A Lorentz-invariant quantum field theory in d spacetime dimensions

has a global symmetry with symmetry group G if the following are true:

(a) If we study the theory on the spacetime manifold Rd with flat metric, with flat

time slices Σt
∼= Rd−1, then for each time slice Σt there is a unitary homomorphism

U(g,Σt), not necessarily continuous, from G to the set of unitary operators on

the Hilbert space.

(b) For any g ∈ G and R ⊂ Σt, we have

U †(g,Σt)A[R]U(g,Σt) = A[R], (2.2)

where A[R] is the algebra of operators in D[R]. Moreover if R is bounded as

a spatial region, then the map fU : G × A[R] → A[R] defined by f(g,O) =

U †(g,Σt)OU(g,Σt) has the property that its restriction to any uniformly bounded

subset of A[R] is jointly continuous in the strong operator topology (see appendix

C for definitions of these terms, although we encourage most readers not to worry

too much about continuity).

(c) For any g ∈ G not equal to the identity, there exists some local operator O for

which

U †(g,Σt)O(x)U(g,Σt) 6= O(x). (2.3)

(d) For any g ∈ G and x ∈ Rd, we have

U †(g,Σt)Tµν(x)U(g,Σt) = Tµν(x), (2.4)

where Tµν is the stress tensor of the theory.

We first observe that condition (d) tells us that the U(g,Σt) commute with the

Hamiltonian and thus are independent of t, so from now on we will just call them

8The idea of a non-Lagrangian definition of global symmetry along these lines goes back at least

to [39, 40], although those authors did not include condition (d) (neutrality of the stress tensor). A

Euclidean definition related to this one appeared more recently in [41], but condition (c) (faithfulness)

was not included, and the spacetime was not restricted to Rd, as it must be if we wish global symmetries

with gravitational ’t Hooft anomalies to be included. We comment further on the definition of [41]

at the end of this subsection. Also note that definition 2.1 applies only to quantum field theories, we

give a modified definition for gravitational theories in section 4 below.
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U(g,Σ). In fact condition (d) tells us something much stronger, it tells us that for any

g ∈ G, U(g,Σ) is unchanged by arbitrary continuous deformations of Σ. It is therefore

sometimes said that the U(g,Σ) are topological operators. Condition (b) tells us that

the U(g,Σ) give a linear action of G on the set of local operators at each point, and

moreover condition (d) tells us that this linear action can be taken to be identical at

each point in Rd. Indeed if we choose a basis On(0) for the set of local operators at the

origin, we can use spacetime translations to extend this to a basis On(x) at each point

in Rd. We then have

O′
n(x) ≡ U †(g,Σ)On(x)U(g,Σ) =

∑

m

Dnm(g)Om(x), (2.5)

where D(g) is independent of x. Condition (c) tells us that D(g) is nontrivial for all g

except the identity.

We have so far not referred to U(g,Σ) andD(g) as representations of G. The reason

is that in our conventions any Lie group representation is required to be continuous

(see appendix A), while we did not require U(g,Σ) to be continuous and we required

D to be continuous in the strong operator topology only on uniformly-bounded subsets

of A[R]. We have adopted only these relatively weak requirements because we want

our definition of global symmetry to apply to spontaneously-broken global symmetries,

and we will see soon that U(g,Σ) is not necessarily continuous for a symmetry which

is spontaneously broken. For unbroken symmetries however, meaning symmetries for

which there is a ground state on which they act trivially, we show in appendix C that the

continuity requirement in condition (b) of definition 2.1 implies that U(g,Σ) is indeed

continuous, and thus gives a representation of G on the Hilbert space. Moreover we

also show that in this case D is continuous without any domain restriction in a different

topology on A[R], which is defined by the two-point function in the ground state. Thus

in this topology D does give a representation of G on the set of local operators: in fact

it is a unitary representation since the set of states obtained by acting on the invariant

vacuum with On(x) (smeared against a smooth test function of compact support) will

transform in the inverse-transpose representation of D, which therefore must be unitary

since U(g,Σ) is. We relegate further discussion of operator continuity to appendix C,

where we also give more motivation for the continuity assumption in condition (b).

To get some intuition for definition 2.1, let’s consider a few simple examples. One

example is the Z2 symmetry φ′ = −φ of the three dimensional real scalar theory with

Lagrangian

S = −1

2

∫
d3x

(
∂µφ∂µφ+m2φ2 +

λ

6
φ4

)
. (2.6)
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Another example is the U(N) symmetry φ′
i =

∑
j Uijφj of the three-dimensional theory

of N complex scalars φi with Lagrangian

S = −
∫
d3x

(
∂µφ∗

i ∂µφi +m2φ∗
iφi +

λ

6
(φ∗

iφi)
2

)
. (2.7)

A more nontrivial example is the U(1) symmetry generated by B − L, with B baryon

number and L lepton number, in the standard model of particle of physics (without

gravity).

An example of something which is not included is the U(1) gauge symmetry of

quantum electrodynamics. There are no local operators which are charged under it,

contrary to (c), and in fact if we study the theory on a compact spatial manifold without

boundary then the gauge symmetry acts trivially on the Hilbert space. We discuss this

in much more detail in section 3. Another thing which is not included is the “ZN

center symmetry” of pure Yang-Mills theory with gauge group SU(N) [42, 43]. This

is a symmetry under which only line operators are charged, so again it does not obey

(c). The modern understanding of center symmetry is that it is really a “one-form

symmetry” in the sense of [41], so we postpone further discussion to section 8 below.

As already mentioned, spacetime symmetries are also not included. In a similar vein,

the higher Kac-Moody symmetries in 1 + 1 dimensional current algebra are also not

included, since they have a nontrivial algebra with the stress tensor.

Something which is included is a global symmetry with an ’t Hooft anomaly, such

as the chiral phase rotation ψ′ = eiγ
5θψ of a massless Dirac Fermion in 3+1 dimensions

S = −i
∫
d4xψ/∂ψ. (2.8)

This symmetry is broken if we turn on a background nonchiral U(1) gauge field with∫
ddx

√−gFαβFµνǫ
αβµν 6= 0, or a background metric with

∫
ddx

√−gǫαβµνR γδ
αβ Rµνγδ 6=

0, but in our definition 2.1 we have turned on no background fields of any kind.9 We

will discuss ’t Hooft anomalies in more detail in subsections 2.4-2.6 below, but we note

now that for applications to AdS/CFT it will be very convenient to introduce a notion

of when a global symmetry extends to a more general spatial geometry Σ:

Definition 2.2. A global symmetry of a quantum field theory is preserved on a spatial

geometry Σ if, after quantizing the theory on Σ, there is a homomorphism U(g,Σ)

from G into the set of unitary operators whose action by conjugation preserves the

9These particular ’t Hooft anomalies cannot destroy the symmetry if the spacetime topology is R4

and the background fields vanish at infinity, since the integrals in question always vanish for topological

reasons, but there are other ’t Hooft anomalies which can.
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local algebras A[R], with the same continuity requirement as in definition 2.1, as well

as a basis On(x) for the local operators at each point x ∈ Σ×R, such that U(g,Σ) acts

on the On(x) with the same linear map D that appeared in eq. (2.5) for the theory on

Rd.10 In particular this action is still faithful and preserves the stress tensor.

The Σ we will predominantly consider is the sphere Sd−1 with a round metric; for

conformal field theories we will argue below that any global symmetry is preserved on

this geometry since it is conformally flat. In fact in this case U(g,Σ) and D(g) are

equivalent due to the state-operator correspondence. We postpone further discussion

of which global symmetries are preserved in the presence of a background gauge field

to section 2.4.

If the volume of Σ is infinite, such as for Σ = Rd−1, we need to consider the possibil-

ity of spontaneous symmetry breaking. It is sometimes said that if a global symmetry

is spontaneously broken, the symmetry operators U(g,Σ) do not exist (see eg a com-

ment in section 10.4 of [44]). Our point of view will be that in this situation we take

the Hilbert space on Σ to include a special kind of direct sum over the superselection

sectors associated to any degenerate vacua, in which case the U(g,Σ) do exist, and

there are local operators which are charged under them as in eq. (2.5).11 Our direct

sum is special because we choose a nonstandard inner product on the vacuum space:

if b is the set of order parameters which label the degenerate vacua |b〉, then we take

〈b|b′〉 =
{
1 b = b′

0 b 6= b′
(2.9)

even if the order parameters are continuous. For each b there is a superselection sector

spanned by states of the form

O1(x1) . . .Om(xm)|b〉, (2.10)

where the On are local operators, each transforming in a represention Dn of G.12 The

full Hilbert space is then obtained from countable superpositions of such states which

10In general there are ambiguities in how to extend a flat space local operator to curved space, arising

from the possibility of adding multiples of the curvature tensor. Our On(x) should be extensions of

their flat space analogues up to these ambiguities, and our requirement that (2.5) continues to hold

on Σ× R restricts them.
11It is important here that our definition 2.1 excludes things like the higher Kac-Moody symmetries

of 2D current algebra which do not commute with the stress tensor: these do not lead to degenerate

vacua or superselection sectors even though the vacuum is not invariant.
12In the presence of a “long range gauge symmetry with dynamical charges”, introduced in definition

3.1 below, we should also allow the On to be line operators connecting infinity to itself or to a charged

operator in the interior of Σ.
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are normalizable in the inner product (2.9). States in different superselection sectors

are always orthogonal. The symmetry operators act as

U(g)O1(x1) . . .Om(xm)|b〉 = D1(g
−1)O1(x1) . . . Dm(g

−1)Om(xm)|gb〉, (2.11)

which is clearly well-defined. The infrared divergences which appear in perturbative

computations of the matrix elements of the spontaneously broken charges, sometimes

used to argue that U(g,Σ) does not exist, are here properly interpreted as ensuring

that U(g,Σ) has zero matrix element between any two states in the same superselec-

tion sector. These divergences do however also imply that when the symmetry which is

spontaneously broken is continuous, meaning G has positive dimension as a Lie group,

then U(g,Σ) is not continuous as a map from G to the set of unitary operators: no

matter how close g is to the identity, if it is not actually the identity then acting with

U(g,Σ) on any state |ψ〉 in a given superselection sector gives another state which is

orthogonal to |ψ〉. By contrast we do expect the action of the symmetry by conjugation

on A[R] for bounded regions to be as continuous as it is in the unbroken case, since

that action should not depend on whether or not the volume of Σ is finite or infinite.

Thus we see that the continuity properties required in definition 2.1 are consistent with

spontaneous symmetry breaking, which is therefore included (see appendix C for more

discussion of continuity). In what follows we will mostly discuss unbroken global sym-

metries, since we will only consider compact Σ in the boundary CFT, but we will argue

that the global symmetries which are forbidden in the bulk include spontaneously bro-

ken ones (spontaneous global symmetry breaking is possible for quantum field theories

in AdS [45], so ruling it out is nontrivial).

Finally we note that in [41], symmetries were defined not as operators on the

Hilbert space associated to a Cauchy slice Σ, but instead as formal path integral inser-

tions which should make sense on any codimension-one closed oriented submanifold.13

We here briefly comment on how this relates to our definition 2.1. The basic idea is

illustrated in figure 2: we can assemble such an insertion by using two of our U(g,Σ)

operators to surround whatever the surface in question encloses. Instead of defining a

single operator of the theory quantized on Σ, this instead defines a family of such op-

erators, obtained by conjugating whatever operators are inserted in the interior of the

surface by the symmetry. In appendix D we explain in more detail how the construction

of figure 2 can be extended to any closed oriented codimension-one submanifold in Rd.

13We here adhere to the terminology explained in the introduction: “path integral insertions” are

defined without reference to a Hilbert space formalism. They can be sometimes be given Hilbert space

interpretations as operators, and we will use that term only when an insertion can and is being given

such an interpretation.
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Figure 2. Constructing a symmetry insertion on a torus in the path integral of a QFT

on a spacetime that is topologically R3: the “upper” operator on the left hand side is a

deformation of U †(g,R2), while the “lower” operator is a deformation of U(g,R2). If we

bring them together the blue sections cancel, leaving the green torus. Since the U(g,R2)

commute with Tµν they are topological, so it does not matter where we join them. If there

are no charged insertions inside the torus then we can further collapse it to nothing, while

if a charged operator is inserted inside the torus, say an operator O at the black dot in the

figure, then the joint insertion amounts to inserting U †(g,R2)OU(g,R2) = D(g)O into the

path integral.

2.1 Splittability

When a global symmetry in quantum field theory is continuous, meaning that the

symmetry group G has dimension greater than zero as a Lie group, we usually expect

the existence of a set of conserved currents Jµ
a transforming in the adjoint representation

of G. For Lagrangian theories this seems to follow from a local version of Noether’s

theorem [44, 46]. Indeed say that we define a continuous symmetry as a continuous

family of local changes of variables

φ′
i(x) = φi(x) + ǫafa,i(φ(x), ∂φ(x), . . .) +O(ǫ2) (2.12)

that leave the product of the path integral measure and action invariant

Dφ′eiS[φ
′] = DφeiS[φ]. (2.13)

If we now allow the group coordinates ǫa to be position dependent, then by locality we

have

Dφ′eiS[φ
′] = DφeiS[φ]−i

∫
ddx

√−gJµ
a ∂µǫa+O(ǫ2) = DφeiS[φ]+i

∫
ddx

√−gǫa∇µJ
µ
a+O(ǫ2) (2.14)

for some nonzero local functional Jµ
a of the fields. In the second equality we have taken

ǫa to vanish at any boundaries of the spacetime, justifying an integration by parts.
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Integrating both sides of this equation over field space, and changing variables on the

left hand side, we then find
∫

DφeiS[φ] =
∫

DφeiS[φ]+i
∫
ddx

√−gǫa∇µJ
µ
a+O(ǫ2) (2.15)

for arbitrary ǫa, which is possible only if ∇µJ
µ
a = 0 as an operator equation so this

establishes the existence of a conserved current.

So far however no satisfactory non-Lagrangian formulation of this theorem has been

found, nevermind proven. There is however an obvious guess for what such a theorem

might say:

Conjecture 4. Naive Noether Conjecture: Any quantum field theory with a con-

tinuous global symmetry, as defined via definition 2.1, has a conserved current whose

integral infinitesimally generates that symmetry.

No proof of this conjecture has ever been given, and in fact this is for a good reason:

there are quantum field theories, and even Lagrangian quantum field theories, where

this conjecture is false! But is there something strange about these theories? And

moreover is there something analogous to the existence of Noether currents for discrete

symmetries? In this subsection and the following one we discuss these questions in

some detail.14

We begin with a definition:15

Definition 2.3. A global symmetry of a quantum field theory which is preserved on a

spacetime R×Σ is splittable on Σ if for every open spatial subregion R ⊂ Σ and every

g ∈ G there is a unitary operator U(g, R) such that we have

U †(g,R)OU(g, R) =
{
U †(g,Σ)OU(g,Σ) ∀O ∈ A[R]

O ∀O ∈ A[Int(Σ−R)]
. (2.16)

We leave arbitrary how the U(g,R) act on operators which are neither in A[R] nor

A[Int(Σ−R)], and in particular we do not restrict how they act on operators localized

right on the boundary of R. We however can and will always arrange that if Ri are a

finite disjoint set of open subregions of Σ whose boundaries do not intersect, then
∏

i

U(g,Ri) = U(g,∪iRi). (2.17)

14Readers who are primarily interested in quantum gravity may wish to simply take it on faith that

the splittability we define momentarily holds for any global symmetry and proceed to subsection 2.3,

since the ensuing discussion is perhaps primarily of interest to quantum field theory experts. A similar

signpost there will suggest further omissions for casual readers.
15The idea of this definition goes back to [47–49], although they didn’t give it a name.
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This definition is related to Noether currents as follows: if Jµ
a is a current for a

global symmetry, with G a compact connected Lie group, then since for any such group

the exponential map is surjective, we can define operators

U
(
eiǫ

aTa , R
)
≡ eiǫ

a
∫
R
dd−1x

√
γnµJ

µ
a = eiǫ

a
∫
R
⋆Ja , (2.18)

which clearly obey the criteria (2.16), (2.17). Thus a compact connected global sym-

metry with a Noether current is always splittable on any Σ for which it is preserved.

Splittability however also can apply to discrete symmetries: for example in the Ising

model, U(−1, R) is the operator which flips all the spins in region R and does nothing

in the complement of R. We have left what happens at the edges of the regions arbi-

trary because in quantum field theory it will be UV-sensitive, or in other words it will

depend on precisely how we regulate the U(g,R) at the edges.16

It is clear that if we can show that all global symmetries are splittable, we will

have proven at least some kind of abstract version of Noether’s theorem. In fact this

is precisely the context in which the notion of splittability was first introduced in the

algebraic quantum field theory community [47–49]. We now revisit this issue from a

more modern point of view. We’ll begin by giving a lattice argument that all global

symmetries are splittable, to help us identify the relevant issues for the continuum

discussion that follows. We phrase this argument as a theorem, which shows that

for finite tensor product systems, a unitary operator which acts locally on all local

operators must itself be built out of local unitary operators:

Theorem 2.1. Let H be a finite-dimensional Hilbert space that tensor factorizes as

H = ⊗iHi, and let U be a unitary operator on H with the property that for any tensor

factor Hi and any operator Oi which acts nontrivially only on Hi, O′
i ≡ U †OiU also

acts nontrivially only on Hi. Then U =
∏

i Ui, where each Ui acts nontrivially only on

Hi.

There is a nice “information-theoretic” proof of this theorem, but since the method

is a bit far from the rest of this paper we relegate it to appendix E. To see how this

theorem relates to splittability, consider a spin system whose Hilbert space is the tensor

product of a bunch of individual spins. We can imagine the spins are arranged in a

lattice, as in figure 3. By theorem 2.1, any symmetry operator U(g,Σ) which acts

locally on the spins can be decomposed as U(g,Σ) =
∏

i Ui(g), with i labelling the

16To really get something well-defined in the continuum, we should fatten the location of the ambi-

guity in each U(g,R) to a small open neighborhood of ∂R: this is what was done in [47–49], but to

lighten the notation we will keep this implicit.
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R

Figure 3. Splittability of any global symmetry for a lattice theory. Here each dot is a spin,

so a spatial region R, shaded blue, corresponds to a subset of the spins, shaded red. To

produce a localized symmetry operator we take the product over the Ui(g) associated to the

red spins.

spins and Ui(g) acting nontrivially only on spin i. So then we may simply define

U(g,R) ≡
∏

i∈R
Ui(g), (2.19)

which clearly has the property that it acts in the same way as U(g,Σ) on operators

with support only in R, while it acts trivially on operators with support only on the

complement of R. In figure 3, the included tensor factors live at the red dots. At

least to the extent that this lattice model is a good model for quantum field theory, we

should expect all symmetries to be splittable.

In attempting to generalize theorem 2.1 to continuum quantum field theory, we

immediately encounter the problem that the Hilbert space of a quantum field theory

never has the tensor product structure assumed in theorem 2.1: any finite-energy state

will have an infinite amount of spatial entanglement between the fields in a region

R and those in its complement Σ − R. This may seem decisive against proving the

splittability of global symmetries along these lines, but in fact there is a standard axiom

in algebraic quantum field theory which allows this lattice argument to be generalized

to the continuum. This axiom gives a clever way to extend the notion of a tensor

product structure of the Hilbert space to continuum quantum field theory, and is given

as follows [50–52]:

Definition 2.4. A quantum field theory is said to have the split property on Σ if for

any two open regions of bounded size R, R′ ⊂ Σ which obey Closure[R] ⊂ Interior[R′],

there exists a von Neumann algebra N , which is a type I factor, such that

A[R] ⊂ N ⊂ A[R′]. (2.20)

Here A[R], A[R′] are the algebras of operators in R and R′ respectively.
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A type I factor algebra, which is a von Neumann algebra with trivial center and

containing a minimal projection, is always isomorphic to the set of all the operators

on some Hilbert space (see eg. [53]), so we can view the split property as saying that,

although the Hilbert space does not factorize based on spatial regions (in fact the

algebra A[R] is expected to be type III for any nontrivial R), by gradually “thinning

out” the algebra between R and R′ we can find a tensor factor whose operator algebra

contains all the (bounded) operators on R and none of the operators on the complement

of R′. Given a quantum field theory obeying the split property on Σ, it can be argued

fairly straighforwardly that any global symmetry is splittable on Σ [47–49], basically

along the lines of theorem 2.1.

Is the split property actually true in quantum field theory? It has been shown

explicitly in various free theories with Σ = Rd−1 [50, 54, 55], and also in certain in-

teracting theories with Σ = R [56], and there are general arguments for it based on

the notion that the energy spectrum of the theory quantized on Σ = Rd−1 should be

“well-behaved” in a technical sense which is called nuclearity [51, 57]. We are not

aware of any quantum field theory that does not obey the split property on Σ = Rd−1.

The situation is more subtle for quantum field theories on manifolds with nontrivial

topology, we will see in the following section that there are reasonable quantum field

theories which do not obey the split property on more complicated spatial topologies.

And moreover we will see that in these theories we can indeed have symmetries which

are not splittable on those topologies! It may seem that a failure of splittability on

nontrivial manifolds is of relatively obscure technical interest, but we emphasize that if

the symmetry group is continuous, then this must imply the non-existence of a Noether

current; if one existed we could use it to construct U(g,R) for any region R on any spa-

tial manifold Σ using equation (2.18). We believe that these observations are unknown

in the algebraic quantum field theory literature, which has focused almost exclusively

on spatial Rd−1 (see however [58–60] for recent work which is somewhat related).

Splittability on spatial Rd−1 is not quite sufficient for our purposes in AdS/CFT,

where we will want to use it on spatial Sd−1. We have not attempted to prove this split-

tability using the energetic arguments of [51, 57], but based on our study of examples

we expect that it should follow for d > 2 from splittability on spatial Rd−1. In conformal

field theory however we can do better: there for d ≥ 2 we can argue that a symmetry

which is splittable on spatial Rd−1 must always be splittable on Sd−1. This is because

we can use the state-operator correspondence to explicitly define the matrix elements

of U(g,R) on Sd−1 in terms of its matrix elements on Rd−1. This will be enough for

our quantum gravity arguments below, but as splittability and Noether’s theorem are

interesting on their own as issues in quantum field theory, we will now study them a bit

further, focusing on the question of what modification of the naive Noether conjecture
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(4) would be necessary to obtain a true statement with no counterexamples. We aim

to motivate a general picture where non-pathological quantum field theories which do

not obey the split property on some spatial manifold Σ should be deformable to ones

that do obey it for any Σ by adding a finite number of arbitrarily massive degrees of

freedom, and that in such theories the Noether conjecture should hold.

2.2 Unsplittable theories and continuous symmetries without currents

How might we obtain a quantum field theory that does not obey the split property?

Any theory which is obtained from a lattice theory with a tensor product structure,

like that in figure 3, seems likely to obey the split property in the continuum limit.

But what if even in the lattice theory we do not have this tensor product structure?

For example we could have a theory whose Hilbert space is obtained by imposing local

constraints on a tensor product theory, e.g. a lattice gauge theory. We do not have

a complete understanding of which lattice theories have continuum limits obeying the

split property and which do not, nor for that matter do we expect that all contin-

uum QFTs have lattice formulations, but with this motivation we can construct a few

examples of unsplittable symmetries which clarify the issue and motivate the general

picture we conjectured at the end of the previous subsection. These examples may

seem contrived, since they rely on noncompact gauge groups and/or decoupled free

theories. In subsection 2.5 we will give two interacting examples based on the ABJ

anomaly, which basically work in the same way as our examples here. Unsplittable

discrete global symmetries are easily obtained in theories with compact gauge group,

we will already meet one in this subsection, but a noncompact gauge group seems hard

to avoid if we want to produce an unsplittable continuous global symmetry. We will

comment on why this is so at the end of this subsection.

The simplest gauge theory with a continuous global symmetry is a pure gauge

theory with gauge group R× R:

S = −1

4

∫

M

ddx
√−gFaµνF

µν
b δab = −1

2

∫

M

Fa ∧ ⋆Fbδ
ab. (2.21)

Here a, b = 1, 2, and there is a U(1) global symmetry which rotates the two gauge

fields into each other. This theory provably obeys the split property on Rd [55], but we

will see that it does not on more general manifolds and moreover we will see that this

symmetry is itself not splittable on those manifolds. There must therefore be something

wrong with the Noether current for this symmetry. The Noether procedure outlined

around equation (2.14) gives a Noether current which in differential form notation is

⋆ J = ǫabAa ∧ ⋆Fb, (2.22)
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with

ǫab =

(
0 1

−1 0

)
. (2.23)

We see however that under a gauge transformation

A′
a = Aa + dλa, (2.24)

we have

⋆ J ′ = ⋆J + ǫabdλa ∧ ⋆Fb = ⋆J + d
(
ǫabλa ⋆ Fb

)
, (2.25)

where in the second equality we have used the equation of motion d ⋆ Fa = 0. The

current constructed by the Noether procedure is not gauge-invariant! It is however

gauge-invariant up to a total derivative, so if we integrate it over a closed manifold Σ

we get a well-defined charge

Q(Σ) ≡
∫

Σ

⋆J. (2.26)

The gauge non-invariance of J is a potential obstruction to any attempt to define

localized symmetry operators U(g,R). For example if we define a localized charge

Q(R) ≡
∫

R

⋆J, (2.27)

then apparently we have the gauge transformation

Q(R)′ = Q(R) + ǫab
∫

∂R

λa ⋆ Fb. (2.28)

How are we to reconcile this with the known splittability [55] of this theory on Rd?

One useful observation is that, although Q(R) is not gauge invariant, its gauge

non-invariance is restricted to an operator supported only at ∂R. Our definition of

splittability left it ambiguous how Q(R) should act on operators right at ∂R, so we

might hope that we can modify Q(R) by a gauge non-invariant boundary operator in

just such a way that we cancel the gauge non-invariance in equation (2.28). We now

argue that indeed this can be done provided that the boundary is connected, and more

generally that it can be done provided that each connected component of the boundary

is itself a boundary. Let us first consider the case where ∂R is connected. We may then

define the non-local operator

Ia(x) ≡
∫

γx,x0

Aa, (2.29)

where for each x ∈ ∂R we have arbitrarily chosen a curve γx,x0 in ∂R which connects

that point to a fixed reference point x0. This operator has gauge transformation

I ′a = Ia + λa(x)− λa(x0). (2.30)
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We may then easily see that the “doubly-nonlocal” boundary operator

C[∂R] ≡ ǫab
∫

∂R

Ia ⋆ Fb (2.31)

has gauge transformation

C ′[∂R] = C[∂R] + ǫab
∫

∂R

λa ⋆ Fb, (2.32)

where we’ve used that

ǫab
∫

∂R

λa(x0) ⋆ Fb = λa(x0)ǫ
ab

∫

R

d ⋆ Fb = 0. (2.33)

But (2.32) is precisely what we need to cancel the gauge transformation in (2.28), so

apparently the quantity

Q̃(R) ≡ Q(R)− C[∂R] (2.34)

is gauge invariant! We may then define

U(θ, R) ≡ eiθQ̃(R), (2.35)

which give a set of local symmetry generators which split the symmetry. More generally,

if each connected component of the boundary is itself a boundary, we can pick an x0 for

each component and (2.33) will hold component by component. In particular if M has

the property that every closed d− 2 manifold is the boundary of some d− 1 manifold,

or in other words the homology group Hd−2(M) is trivial, then this symmetry will be

splittable for any choice of R. This is indeed the case for Rd, so there is no tension

with the proof of the split property there.17 Note also that for M = R× Sd−1, which is

our case of primary interest, we have Hd−2(M) = 0 for d > 2.

The reader may wonder why we did not first attempt to “improve” the current

(2.22), by adding to ⋆J a local gauge non-invariant total derivative whose gauge trans-

formation would cancel the non-invariance of ⋆J . It is easy to see however that there

is no candidate which will succeed: such a term would need to have a gauge trans-

formation involving λa without any derivatives, but no local polynomial function of A

and F , or their derivatives, will have this property. This indeed happens for a good

reason: on more complicated manifolds this theory does not obey the split property,

and the symmetry we have been considering is not splittable! For concreteness consider

quantizing this theory on spatial manifold Σ = S1 × Sd−2, parametrized by (θ,Ω), and

17This is a bit subtle for d = 2, since in order for a single point to be a boundary it needs to be

attached to a line which goes off to infinity.
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Figure 4. A counterexample to the split property: electrodynamics on a spatial torus. The

flux operator through S is equal to the flux operator through S′, but they live in spacelike-

separated regions R and R̂.

consider the region R given by 0 < θ < π/2. See figure 4 for the setup for d = 3. The

algebra of this region includes the electric flux operator

Φa(S) =

∫

S

⋆Fa, (2.36)

where S is the spatial Sd−2 at θ = π/4. Φa(S) is a nontrivial operator since it does not

commute with a Wilson loop that wraps the S1. But in fact by Gauss’s law, d⋆Fa = 0,

Φa(S) depends only on the homology class of S: in particular since S is homologous

to the spatial Sd−2 at θ = 3π/4, which we’ll call S ′, Φa(S) is also in the algebra of

a region R̂ which is spacelike-separated from R (see figure 4). Therefore Φa(S) must

commute with all elements of A[R], and thus must be in the center of A[R]. Now say

that the split property held: for any region R′ whose interior contains the closure of R,

we should be able to have the algebraic inclusion

A[R] ⊂ N ⊂ A[R′] (2.37)

with N some type I factor. In particular consider R′ to be defined by −ǫ < θ < π/2+ ǫ

with say ǫ = .01. Φa(S) is an element ofA[R], and thus an element ofN . But since R′ is

spacelike-separated from R̂, Φa(S) is also in the center of A[R′], and therefore by (2.37)

must commute with everything in N . But since Φa(S) is nontrivial, this contradicts

the notion that N is a type I factor: any factor has trivial center by definition. Thus

we cannot have (2.37), so the split property fails.

A few comments are in order here. First of all this argument for non-splittability

holds also for pure U(1) gauge theory, which thus also does not obey the split property
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on general manifolds. Second, the trouble we found is consistent with our inability to

define U(g,R) for regions where ∂R has connected components which are not themselves

boundaries: indeed it is precisely such components which allow Φa(S) to be nontrivial.

Third, we note that not only does the split property (2.37) fail, it is clear that for

the R× R gauge theory the U(1) symmetry rotating the gauge fields really cannot be

splittable on this geometry in the sense of definition 2.3. For if it were, then U(g, R)

would have to act nontrivially on the a index of Φa(S), but this is impossible since

Φa(S) ∈ A[R̂]. Therefore it indeed must be the case that no gauge-invariant current

exists. Finally we note that, although we had to go to nontrivial spatial topology to

see a break down of splittability, this breakdown actually has an avatar even in the

theory on spatial Rd−1. Consider a circular Wilson loop in Rd, which is surrounded by

a surface with topology S1 × Sd−2 on which we put a symmetry insertion, constructed

as in figure 2. For d = 3, this would amount to routing a Wilson loop through the

“bagel” which is bounded by the torus in figure 2. This surface insertion is splittable

into the two pieces shown in figure 2, but it is not splittable into two “handles” such

as the shaded red region in figure 4 and its complement. This non-splittability has

no interpretation as an operator statement in the Hilbert space on Rd−1, but it is a

nontrivial statement about the insertion.

The reader may worry that this example of a non-splittable global symmetry is

pathological since it has a noncompact gauge group. But we note that all the same

arguments apply to the Z2 global symmetry of a pure gauge theory with gauge group

U(1)× U(1).18 We no longer expect a current, but we still have a symmetry operator

U(−1,Σ) ≡ eiπǫ
ab

∫
Σ Aa∧⋆Fb (2.38)

under which the exponentiated U(1) electric flux

La(θ, S) ≡ eiθΦa(S) (2.39)

transforms via L1(θ, S) ↔ L2(θ, S). U(−1,Σ) can still be split when M has vanishing

Hd−2(M), but on Σ = S1 × Sd−2 it cannot be split for the same reason as in the non-

compact case: any U(−1, R) on a spatial S1×Sd−2 would have to act both trivially and

nontrivially on La(θ, S) = La(θ, S
′). Unfortunately this is no longer a counterexample

to the naive Noether conjecture (4), since the global symmetry is now discrete. It also

still involves two decoupled free theories: we can remove one of them if we instead

18The reason that this theory no longer has a continuous global symmetry mixing the two gauge

fields is that such a symmetry would not act locally on the Wilson loops, since it wouldn’t respect

charge quantization. It therefore would violate part (b) of definition 2.1, since it would map the Wilson

loop out of A[R], where R is a thin tube containing the Wilson loop.
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Figure 5. Re-routing unbreakable lines. Here we have a symmetry exchanging blue and red

lines, and we can arrange for it to act locally in the shaded region by rerouting the blue line

around the boundary of the region. This is not possible however when the region has multiple

boundary components which are not contractible, for example as in figure 4.

consider the discrete symmetry A′ = −A, also called charge conjugation, of one U(1)

gauge field, which is also not splittable for the same reasons. We give an example which

is not free in subsection 2.5.

The source of trouble in all these examples (and those of section 2.5) is that there

are “unbreakable lines”: line operators, here Wilson lines, which cannot have endpoints

on local operators carrying gauge charge since none exist. In more modern language,

there is an exact one-form symmetry under which these lines are charged (we will

discuss p-form symmetries in more detail in section 8). This notion of unbreakable

lines gives us a new geometric interpretation of what our boundary modification (2.34)

of the charge in the R × R gauge theory (or the corresponding modification in the

U(1)×U(1) gauge theory) is doing: it enables us to “re-route” Wilson lines around the

boundary in a manner consistent with the unbreakable nature of the lines. We illustrate

this in figure 5. The breakdown of splittability on manifolds with nontrivial Hd−2(M)

can then be understood as arising from an inability to perform this re-routing.

It is interesting to consider to what extent the validity of the split property is a

“UV-sensitive” property of a quantum field theory. As a concrete example, we point

out that our U(1) × U(1) gauge theory in d spacetime dimensions can be obtained as

the IR limit of two copies of a lattice version of the CP
N−1 nonlinear σ-model [17].

This lattice theory has precisely the tensor product Hilbert structure shown in figure

3, so we might expect that it should obey the split property. So how did we get a

theory in the IR that does not? In fact what happened is that this lattice theory

also has massive charged particles, whose masses can be small compared to the lattice

energy but large compared to any other IR scale. Once these massive charged particles

are included, the Wilson lines are no longer unbreakable and a new possibility for
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Figure 6. Exchanging breakable line segments using charges.

constructing localized symmetry operators arises where we snip the ends of the Wilson

lines using the charges. We illustrate this in figure 6. This is possible no matter how

heavy the charges are, and we only need a finite number of them. So apparently our

U(1)×U(1) counterexample to splittability can be fixed with a simple UV modification:

we just add some heavy charges. This modification necessarily destroys the one-form

symmetry which prevented the Wilson lines from being broken. A similar fix does

not seem to be possible for the R × R theory, which we after all expect to be more

pathological. Essentially the problem there is that the unbreakable lines are “infinitely

generated”: since the Wilson line can carry any real charge, cutting all these lines with

a finite number of heavy fields is too much to ask for. In one-form symmetry language,

the one-form symmetry is noncompact. More generally, we conjecture that in theories

where the only topological surface operators are compact p-form symmetries, a finite

UV modification which restores the split property on any manifold should be always

be possible.

Finally we return to the question of when the naive Noether conjecture holds. It

is interesting to consider what happens if we try to extract a gauge-invariant current

from the gauge-invariant U(g, R) constructed in (2.35) in the R × R gauge theory on

Rd. The obvious way to do this is to take g → 1 and R to be perturbatively small, and

then attempt to extract J0 from the part of logU(g, R) that scales with the volume

of R (see [61, 62] for rigorous attempts to do this in a few simpler theories). But

this procedure actually fails in our example due to a non-decoupling of the boundary

modification in this limit: this is why the algebraic quantum field theory literature was

never able to actually extract a current from their U(g, R), even though they assumed

the split property on Rd [49]. This failure arises in the following way: taking the

exterior derivative of Ia(x) with respect to xµ, we have

dIa = Aa + Pa, (2.40)
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with

Pa,µ ≡
∫

γx,x0

ds
dγα

ds
Fa,αβv

β
µ(s), (2.41)

where vβµ(s) is a somewhat unsual object with a tensor index β at point γx,x0(s) and a

tensor index µ at point x, which keeps track of how the curve γx,x0 varies with x. We

therefore have

Q̃(R) =ǫab
∫

R

(Aa ∧ ⋆Fb − d(Ia ∧ ⋆Fb))

=ǫab
∫

R

(Aa ∧ ⋆Fb − dIa ∧ ⋆Fb)

=− ǫab
∫

R

Pa ∧ ⋆Fb, (2.42)

which scales to zero faster than the volume as we shrink R.

We are thus led to the following suggestion: perhaps if we restrict to quantum

field theories which obey the split property on any manifold, it is actually possible to

construct a Noether current for any continuous global symmetry. The boundary action

in figure 6 seems less severe to us than the boundary action in figure 5, so we are

optimistic that one might be able to show the necessarily decoupling. More generally

we expect that what is really needed is just that some UV modification of the theory is

possible which restores the split property on all manifolds: the existence of the current

cannot depend on such modifications since it is an object in the IR theory. We therefore

expect that the naive Noether conjecture should hold provided that all topological

surface operators are associated to compact p-form global symmetries. This then would

explain why we have only been able to find counterexamples with noncompact gauge

groups: it is only these which can lead to noncompact higher-form symmetries. We

view this line of thought as a promising avenue for at long last giving an abstract

formulation of Noether’s theorem, but we will not attempt this here.

2.3 Background gauge fields

Given a quantum field theory with a global symmetry, a natural operation to consider

is turning on a background gauge field for that global symmetry. One example of this

which we have already discussed is studying the theory on a nontrivial spacetime geom-

etry R×Σ, which can be interpreted as turning on a background gauge field for Poincare

symmetry, a spacetime global symmetry. We now discuss background gauge fields for

internal global symmetries.19 We will see immediately that turning on a background

19This section, and the following two, can be viewed as a further side discussion. Holography-minded

readers who are simply willing to accept that all CFT global symmetries are preserved on R×Sd−1, and
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gauge field for a continuous symmetry requires us to assume that a Noether current

exists, which then implies that the symmetry must be splittable. A condition slightly

weaker than splittability might be sufficient for turning on a background gauge field

for a discrete symmetry, but for simplicity we will just assume splittability regardless;

after all we have just argued that in reasonable quantum field theories we can always

achieve it by a short-distance modification of the theory.

For a continuous global symmetry group G with a set of Noether currents Jµ
a , one

way to turn on a background gauge field is to add to the action a term of the form

δS =

∫

M

ddx
√−gAa

µ(x) (J
µ
a (x) + . . .) =

∫

M

Aa ∧ (⋆Ja + . . .) , (2.43)

where the background gauge field Aa
µ(x) is an arbitrary real one-form with an index

a, whose range equals the dimensionality of the Lie algebra g of G. “. . .” denotes

local terms that are higher order in Aa
µ. As in our discussion of extending flat-space

operators to curved space, there is in general some ambiguity in how we choose these

higher order terms. Given such a choice however, we may then define an extension of

the Noether current in the presence of a background gauge field:

J̃µ
a (x) ≡

δ (δS)

δAa
µ(x)

= Jµ
a (x) + . . . . (2.44)

We can restate this procedure in a non-Lagrangian way as a definition of a new set of

“unnormalized expectation values in the presence of Aa
µ”, given by20

〈TO1 . . .On〉A ≡ 〈TO1 . . .One
iδS〉. (2.45)

We will be especially interested in the unnormalized expectation value of the unit

operator, usually called the partition function in the presence of the background gauge

field A:

Z[A] ≡ 〈1〉A = 〈Tei
∫
M

ddx
√−gAa

µ(x)(Jµ
a (x)+...)〉. (2.46)

It should be understood here that if we view Z as a map to the complex numbers,

its domain allows background gauge fields for all (internal) global symmetries of the

theory. We note also that it is often convenient to consider the formal Euclidean path

integral version of this quantity,

Z[A] ≡ 〈e−
∫
M

ddx
√−gAa

µ(x)(Jµ
a (x)+...)〉, (2.47)

that it is possible to turn on topologically-nontrivial background gauge fields for global symmetries,

may wish to skip ahead to section 3.
20Here T denotes time-ordering and 〈·〉 denotes the expectation value in the vacuum state of the

undeformed theory on M = R × Σ. In general an iǫ prescription is necessary to get a well-defined

expectation value.

– 32 –



where now M is any Riemannian manifold, perhaps requiring a spin (or pin) structure

if the theory has fermionic operators.

Background gauge fields of the form (2.43) are not the most general kind of back-

ground gauge fields. In particular if G is discrete, then (2.43) is nonsensical. The

modern notion of a gauge field configuration is formalized as a connection on a princi-

pal bundle. The basic idea is that we cover the spacetime manifold M with a collection

of open patches Ui, on each of which we define a “local gauge potential”, Ai,µ, which

is a one-form taking values in the Lie algebra g of G. If there is a single U covering all

of M , then we revert to (2.43), where Aµ = Aa
µTa with Ta some basis for g. We then

demand that for all intersections Ui ∩ Uj, there exist “transition functions”

gij : Ui ∩ Uj → G, (2.48)

obeying

gji = g−1
ij

gijgjk|Ui∩Uj∩Uk
= gik|Ui∩Uj∩Uk

, (2.49)

such that for any i, j we have21

Ai,µ = gijAj,µg
−1
ij − i∂µgijg

−1
ij (2.50)

in Ui ∩ Uj. For a discrete group we must have Ai,µ = 0 in all patches, so the data of

the background gauge field is just the transition functions gij.

Two such collections of patches and local gauge potentials,
(
U ′
i′ , A

′
i′,µ

)
and (Ui, Ai,µ),

are said to be gauge equivalent if their union is “compatible” in the sense that there

exist an additional set of transition functions gij′ such that together with the gij and

gi′j′ they obey (2.49), (2.50) for all ij, ij′, i′j′ pairs. An interesting special case of such

an equivalence arises when we take the Ui and Ui′ to coincide, in which case gauge

equivalence means the existence of a set of local gauge transformations

gi : Ui → G (2.51)

such that

A′
iµ = giAi,µg

−1
i − i∂µgig

−1
i

g′ij = gigijg
−1
j . (2.52)

21If G is a matrix group then this equation makes sense as written, otherwise we define gijAj,µ(x)g
−1
ij

to be the pushforward of Aj,µ(x), viewed as a vector field on G, by the adjoint map Adg : h 7→ ghg−1,

and we define −∂µgijg−1
ij to be the pullback by g−1

ij : Ui ∩ Uj 7→ G of the Maurer-Cartan form on G.
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Figure 7. Tiling the spacetime manifold with contractible patches, in order to turn on a

general background gauge field. The intersections C
{m}
ij described in the text are the line

segments between the dots, for example C
{1}
12 is shaded red and C

{1}
24 is shaded blue.

This special case is important because in fact any fixed set of contractible Ui which cover

M are sufficient to construct a representative of every equivalence class of background

gauge fields on M by choosing appropriate gij and Ai,µ.
22 In mathematical terms the

transition functions gij modulo gauge equivalence define a principal G bundle over M ,

while the local gauge potentials Ai,µ modulo gauge equivalence define a connection on

that bundle. A background gauge field which is gauge equivalent to one defined using

a single patch U =M is called topologically trivial.

Turning on a general background gauge field, possibly topologically nontrivial, for

an internal global symmetry is a delicate process. We are not aware of a standard

discussion of how to do this for general G in the literature, the closest we found is some

comments in [41]. Here we give a somewhat heuristic picture of how this can be done,

expanding on the comments in [41]. The basic idea is to cover M with contractible

patches, and then “shrink” the patches so that they give a tiling ofM via a set of closed

Ui which overlap only at their boundaries. This is illustrated in figure 7. We then define

the partition function in the presence of a background gauge field (for simplicity giving

the formula in Euclidean signature to avoid issues of time-ordering)

Z[A] ≡ 〈e−
∑

i

∫
Ui

ddx
√
gAa

iµ(J
µ
a+...)

∏

(ij)

Ũij〉, (2.53)

where A now stands in for the collection (Ui, Aiµ), (ij) counts each ij pair once, and

the “transition unitaries” Ũij are defined via the following procedure. First split each

intersection Ui∩Uj into its connected components C
{m}
ij , on each of which we can write

22This statement is not obvious, it follows from a nontrivial theorem that there can be no nontrivial

fiber bundle over a contractible base [63].
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gij as the product of a constant map g
{m}
ij and a map whose target space is the identity

component of G:

gij(x)|Cm
ij
= g

{m}
ij eiǫ

a(x)Ta . (2.54)

We then define

Ũij =
∏

m

U
(
g
{m}
ij , C

{m}
ij

)
exp

(
i

∫

C
{m}
ij

ǫa ⋆ Ja

)
, (2.55)

where U(g,R) is the codimension-one surface with boundary insertion guaranteed to

exist by splittability of the global symmetry (which we here assume), and the normal

vector used in defining the orientation of C
{m}
ij is chosen to point from i to j.23 The

ambiguity of U(g, R) at ∂R means that there may be some ambiguity at the dots in

figure 7. As a simple example of turning on a topologically nontrivial background gauge

field, consider a theory with a Z2 global symmetry on the Euclidean spacetime manifold

S1×Rd−1. We can define a partition function in a nontrivial background gauge field for

which there is a −1 holonomy around the S1 by evaluating the Euclidean path integral

Z[A] = 〈U (−1, Rθ)〉, (2.56)

where Rθ denotes the codimension-one submanifold at fixed angle θ on S1.

It is interesting to ask what happens to correlation functions of charged operators

in the background defined by eq. (2.53): instead of being continuous functions on M ,

as we move from Ui to Uj they encounter Ũij and thus jump via24

Oi = D (gij)Oj. (2.57)

Geometrically this is described by saying that the operators are sections of a vector

bundle associated to the principal bundle defined by the gij.

2.4 ’t Hooft anomalies

We have now defined the partition function Z[A] of a quantum field theory with a

global symmetry group in the presence of an arbitrary background gauge field. But

there were two potential sources of ambiguity in this definition: the choice of higher

order terms in equation (2.43), and the choice of how the intersections of boundaries in

23For continuous global symmetries, splittability is clearly necessary to turn on a background gauge

field since a current is. For discrete global symmetries it does not seem to be: a weaker sufficient

assumption is that the junctions in figure 7 exist. This follows from splittability, but is not obviously

equivalent to it: due to the triple overlap condition (2.49), we only need junctions where the product

of the gij around the junction is the identity.
24Note here that i and j label patches, the indices for the matrix multiplication in equation (2.5)

are here suppressed.
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(2.55), shown as dots in figure 7, are regulated. It would be nice to have some sort of

principle to restrict these choices, and in fact there is a very natural choice: we can try

to arrange so that the partition function Z[A] depends only on the gauge equivalence

class of the background gauge fields A, not on their patch-wise construction. It turns

out however that sometimes this is not possible [64–67]:25

Definition 2.5. A quantum field theory has an ’t Hooft anomaly if there is no choice

of higher order terms in equation (2.43) and regulation of boundary intersections in

equation (2.55) such that Z[A] is a gauge-invariant functional of the background gauge

fields for all global symmetries.

In this definition we also allow A to include background gauge fields for spacetime

symmetries, namely studying the theory on a nontrivial spacetime manifold M with a

nontrivial metric g. We can cast ’t Hooft anomalies in a more conventional light when

G is continuous by considering the effect of infinitesimal local gauge transformations

A′
iµ = Aiµ + Dµǫi(x) on the partition function (2.53). Choosing ǫi to vanish at the

boundary of Ui, we see that invariance of Z[A] requires

DµJ̃
µ
a ≡ ∂µJ̃

µ
a + Cb

acA
c
µJ̃

µ
b = 0, (2.58)

where J̃µ
a was defined in (2.44). Moreover if ǫi does not vanish at the boundary of

Ui then it will combine with the gauge transformation of Ũij such that Z[A] is still

gauge-invariant, at least up to possible issues at the edges. Thus (2.58) is a necessary

condition to avoid an ’t Hooft anomaly.26

We emphasize that the presence of an ’t Hooft anomaly is not an inconsistency of a

quantum field theory; there are many respectable quantum field theories with ’t Hooft

anomalies. For example consider the chiral anomaly of a free complex Dirac Fermion

in 1 + 1 dimensional Minkowski space:

S = −i
∫
d2xψ/∂ψ. (2.59)

25The term “’t Hooft anomaly” is a modern invention [68], to distinguish ’t Hooft anomalies from

related phenomena which arise when we attempt to make some of the background gauge fields dy-

namical in a theory with an ’t Hooft anomaly [69–71]. ’t Hooft has also done famous work with these

related phenomena [72], so the name is a bit unfortunate.
26That it is not sufficient can be seen by the existence of “non-infinitesimal” ’t Hooft anomalies

such as those in discrete symmetries or the Witten anomaly in the SU(2) global symmetry of an odd

number of Majorana doublets [73].
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This theory has two U(1) global symmetries, ψ′ = eiθψ and ψ′ = eiθγ
3
ψ, with conserved

currents27

Jµ
v = −ψγµψ (2.60)

Jµ
p = −ψγµγ3ψ, (2.61)

and we can easily turn on background gauge fields for both:

S = −i
∫
d2xψγµ

(
∂µ − iAv

µ − iAp
µγ

3
)
ψ. (2.62)

A simple Feynman diagram calculation shows that, using dimensional regularization,

these currents obey

∂µJ
µ
v = ∂µJ̃

µ
v = 0

∂µJ
µ
p = ∂µJ̃

µ
p = − 1

2π
ǫµνF v

µν , (2.63)

where ǫµν is antisymmetric with ǫ01 = −1 (since we are in Lorentzian signature),

F v
µν = ∂µA

v
ν − ∂νA

v
µ, and we have used that there is no distinction between tilded and

untilded currents since the action is linear in Av and Ap. This nonconversation of J̃µ
p

could be removed by modifying the action to include a term

δS = − 1

π

∫
d2xǫµνAv

µA
p
ν , (2.64)

which is an example of changing the . . . terms in (2.43), but now the current conserva-

tion equations become

∂µJ̃
µ
v = ∂µ

(
Jµ
v − 1

π
ǫµνAp

ν

)
= − 1

2π
ǫµνF p

µν

∂µJ̃
µ
p = ∂µ

(
Jµ
p +

1

π
ǫµνAv

ν

)
= 0, (2.65)

so we have saved Jp only at the expense of Jv. Thus this theory has an ’t Hooft anomaly:

in the presence of background gauge fields we cannot maintain the gauge invariance of

the partition function. Note that when Av = Ap = 0, our modification (2.64) does not

affect correlation functions at finite separation but it does change the contact terms in

the two-point functions of the currents; this is one manifestation of the “short-distance”

nature of ’t Hooft anomalies. Different choices of regulator lead to different results for

these contact terms, and indeed the contact terms for two different regulators will differ

27Note that v and p here are labels, not indices. They stand for “vector” and “pseudovector”.
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only by what is obtained by adding some local term such as (2.64) to the action [74]. If

we stick to our original choice of dimensional regularization, which led to (2.63), then

from (2.46) we see that the partition function transforms in the following manner:

Z[Av + dΛv, Ap + dΛp] = e
i
2π

∫
d2xΛpǫµνF v

µνZ[Av, Ap]. (2.66)

’t Hooft anomalies have many important implications. Perhaps the most obvious is

that in a theory with an ’t Hooft anomaly, it is not possible to consistently make all of

the background gauge fields dynamical [71]. This would be accomplished by integrating

Z[A] over gauge field configurations, perhaps weighted by additional gauge-invariant

local terms, but if Z[A] is not gauge-invariant then this leads to real inconsistencies

such as violations of unitarity. For example in the standard model of particle physics,

since we want to introduce dynamical gauge fields for the (SU(3)× SU(2)× U(1)) /Z6

global symmetry of the “un-gauged” theory of quarks and leptons, it is essential that

there is no ’t Hooft anomaly in this symmetry [75].28

A less severe consequence of ’t Hooft anomalies is that in the presence of background

gauge fields, a global symmetry may be broken even if the currents for those background

gauge fields are neutral under the symmetry [72]. For example Jv and Jp are both

neutral under both of the global symmetries they generate, but nonetheless (2.63) tells

us that Jp is not conserved in the presence of a background gauge field for Jv. We can

rewrite (2.63) using differential forms as

d ⋆ Jp =
1

π
F v, (2.67)

which seems to immediately imply that the vector U(1) charge

Qp ≡
∫

Σ

⋆Jp (2.68)

is not conserved in the presence of this background field. The truth however is more

complicated: locally we have F v = dAv, so the quantity

Q̂p ≡
∫

Σ

(
⋆Jp −

1

π
Av

)
(2.69)

28The gauge group of the standard model is most conservatively taken to be

(SU(3)× SU(2)× U(1)) /Z6, since this is the group which acts faithfully on the known quarks

and leptons. This is not widely appreciated, but the logic is similar to that by which we assume that

the gauge group of electromagnetism is U(1) instead of R: otherwise the observed quantization of

charge would look like a conspiracy. Future discoveries of more charged particles in new representa-

tions could change this situation however, so one can also say that we do not yet really know the

gauge group of the standard model (see [76] for a recent discussion that takes this point of view). We

discuss this more in section 3.4 below.
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acts in the same way on all operators but appears to be conserved. Indeed ⋆Jp − 1
π
Av

is precisely the alternative current J̃p which appeared in (2.65), and which was indeed

covariantly conserved. It is not mutually local with Jv unless we similarly modify Jv as

in (2.65), which would lead to a nonconservation of Jv, but it might not seem like there

is any problem with the charge Q̂p defined by equation (2.69). In fact there is a problem

with Q̂p, but it does not appear until we allow Av to be topologically nontrivial [72, 77].

First recall that boundary conditions which require all gauge-invariant operators to go

to zero at infinity in R2 allow us to interpret the spacetime as being topologically S2,

which can support topologically nontrivial U(1) gauge field configurations [78]. One

family of such configurations is the Wu-Yang monopoles [79]

AN =
n

2
(1− cos θ)dφ 0 ≤ θ ≤ π/2

AS = −n
2
(1 + cos θ)dφ π/2 ≤ θ ≤ π, (2.70)

where the “northern” and “southern” patches are related at the equator by the transi-

tion function

gNS = einφ (2.71)

as in equation (2.50). n is required to be an integer in order for gNS : S1 → U(1) to

be a smooth map: it counts the number of magnetic flux units through S2. The key

point is then that if we turn on a Wu-Yang monopole background for Av, the charge

Q̂p really needs to be defined separately in the northern and southern patches. The

transformation (2.71) then leads to a nonconservation

Q̂p,N = Q̂p,S − 2n (2.72)

as we move the charge operator from the southern to the northern hemisphere. The

symmetry operator

U
(
eiθ, S2

)
≡ eiθQ̂p (2.73)

is therefore not conserved, violating condition (d) of our definition 2.1, so the U(1)

pseudovector symmetry has indeed been explicitly broken by the background gauge field

for the U(1) vector symmetry.29 Moreover note that if we make the vector gauge field

Av dynamical, these configurations will be unavoidable and the pseudovector symmetry

will be broken altogether: this is a two-dimensional analogue of ’t Hooft’s famous

29This c-number nonconservation of Q̂p may seem innocuous, but it has real consequences for the

selection rules obeyed by correlation functions. Indeed a vacuum expectation value in this background

of a product of operators charged under the pseudovector U(1) symmetry will vanish unless the sum

of their charges is equal to 2n, while this sum would have needed to be zero to get a nonvanishing

expectation value if the symmetry had been preserved.
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discovery that instantons destroy the apparent axial isospin symmetry u′ = eiθγ5u,

d′ = eiθγ5d of massless quantum chromodynamics, as well as the independent baryon

and lepton number symmetries of the standard model of particle physics [72, 77] (B−L
is still a symmetry).

In this paper our primary concern with ’t Hooft anomalies is that we need to make

sure that our discussion of CFT global symmetries is not corrupted by the fact that we

mostly work on the spacetime R× Sd−1, with a round metric on the spatial Sd−1. We

can view this metric as a background gauge field for the CFT stress tensor, so we are

asking if there can be ’t Hooft anomalies where this background gauge field spoils the

CFT global symmetries we consider. It is certainly possible for a background metric to

spoil a global symmetry, for example a single Dirac fermion in (3 + 1) dimensions has

a U(1) global symmetry with current

Jµ
p = −ψγµγ5ψ, (2.74)

which obeys (assuming we regulate to preserve conservation of the stress tensor) [80]

∇µJ
µ
p ∝ ǫµναβRµνσρR

σρ
αβ . (2.75)

It is easy to see however that this particular anomaly vanishes on R × Sd−1, or more

generally on R×Σ for any Σ provided that the spatial metric on Σ is time-independent

and there are no cross terms. In fact at least for R × Sd−1, this observation holds for

any global symmetry in any conformal field theory. This follows because Euclidean

R× Sd−1 is Weyl equivalent to Euclidean Rd, via

dτ 2 + dΩ2
d−1 =

1

r2
(
dr2 + r2dΩ2

d−1

)
(2.76)

with r = eτ . We can then simply define the CFT on R × Sd−1 via the Weyl transfor-

mation30

〈O1(x1) . . .On(xn)〉e2ωgµν = e−∆1ω(x1)−...−∆nω(xn)+A[g,ω]〈O1(x1) . . .On(xn)〉gµν . (2.77)

Here the Oi are primary operators at distinct points xi; this equation reflects that we

have renormalized them to be Weyl tensors. 〈·〉gµν denotes the Euclidean path integral

with background metric gµν , and the factor A[g, ω] represents the standard ’t Hooft

anomaly in Weyl symmetry. For example in a 1 + 1 dimensional CFT with Virasoro

central charge c, we have [46]

A[g, ω] =
c

24π

∫
d2x

√
g (ωR + gµν∂µω∂νω) . (2.78)

30We thank Z. Komargodski for a useful discussion of this definition, see some relevant comments

in [81]. In particular note that we may not be able to arrange for this equation to hold at coincident

points, but our argument does not require it to.
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The correlation functions on R × Sd−1 thus obey all the same selection rules from

global symmetries that they do in flat space, with the symmetry operators U(g, Sd−1)

defined to act on local operators using the same matrix (2.5) as in flat space (the Weyl

anomaly does not spoil this since it is a c-number). These statements are preserved

under analytic continuation to Lorentzian signature, so therefore no global symmetry

in a CFT can be violated purely by putting the theory onto Lorentzian R× Sd−1.

2.5 ABJ anomalies and splittability

’t Hooft anomalies can be used to generate additional examples of unsplittable sym-

metries in quantum field theory. In particular we can generate counterexamples to the

naive Noether conjecture which do not rely on free or decoupled theories, and which are

thus perhaps of more physical interest.31 The two examples of unsplittable symmetries

that we will discuss here arise from the 3+1 dimensional version of the chiral anomaly

we discussed in the previous section [69, 70]. We will also use this anomaly in the next

subsection, so we first briefly recall how it works in some generality.32

Consider the theory of N free left-handed Weyl fermions ψi, with Lagrangian

L = −i
N∑

i=1

ψi
/∂PLψi, (2.79)

where

PL ≡ 1 + γ5

2
. (2.80)

There is a U(N) global symmetry rotating the ψi amongst each other which has an ’t

Hooft anomaly. The currents for this symmetry are

Jµ
a = −

∑

ij

ψi (γ
µPL ⊗ (Ta)ij)ψj, (2.81)

where (Ta)ij are the Lie algebra matrices of U(N), and if we regulate this theory in

a way that treats all these currents equally then in the presence of background gauge

31To avoid confusion we emphasize here that the presence of an ’t Hooft anomaly in a symmetry does

not imply that that symmetry is unsplittable. For example the U(N) global symmetry we describe

momentarily has an ’t Hooft anomaly, but it has a perfectly good set of Noether currents (2.81) and is

therefore splittable on any manifold we like. In condensed matter language, splittability of a symmetry

is a different question from whether or not the symmetry is “on-site”. Our unsplittable symmetries

do not arise until we make some subset of the background gauge fields dynamical.
32This is of course textbook material, we apologize for presenting it in some detail nonetheless. We

have found the textbook treatments of this subject to be unclear at best, and our perspective has

some novelty. Readers who make it to the end of this subsection will be rewarded with an improved

interpretation of the venerable process π0 → γ γ in the standard model of particle physics.
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fields Aa
µ we have the anomalous current conservation equation [75]33

DµJ
µ
a = −Dabc

24π2
ǫλρσν∂λA

b
ρ∂σA

c
ν + . . . , (2.82)

where

Dabc ≡
1

2
Tr ({Ta, Tb}Tc) , (2.83)

and “. . .” denotes higher order terms in A which can be determined by symmetry and

the Wess-Zumino consistency conditions [75]. We can then play the game of adding

local terms to the action, analogous to eq. (2.64) above, to see how much of the U(N)

symmetry we can restore. The Dabc are in general not zero, and it is not hard to see

that we will not be able to restore the full U(N) symmetry in the presence of arbitrary

background gauge fields, hence the ’t Hooft anomaly. It does turn out however that for

any triple of distinct currents with Dabc 6= 0, we can arrange so that only one of them

has an anomalous contribution to its conservation equation from background gauge

fields for other two. For triples where two of the currents are identical and Daab 6= 0,

we can pick whether Jµ
a gets an anomalous contribution to its conservation equation

from Aa
µ and Ab

µ or Jµ
b gets an anomalous contribution to its conservation equation

from Aa
µ and Aa

µ. For triples where all three currents are identical and Daaa 6= 0, there

is no hope and Jµ
a cannot be conserved in the presence of a background gauge field for

itself. These choices can be made independently for each triple, since they correspond

to adding different local terms to the action.

The original example of the four-dimensional chiral anomaly is in the theory of a

free massless Dirac fermion, with Lagrangian (2.8). As in two dimensions, in R4 with

no background fields this theory has two conserved currents:

Jµ
v ≡ −ψγµψ
Jµ
p ≡ −ψγµγ5ψ. (2.84)

We can view this Dirac fermion as two left-handed Weyl fermions, in which case the

anomaly coefficients (2.83) are given by Dvvv = Dvpp = 0, Dvvp = Dppp = 2. We will

consider only background gauge fields for Jµ
v , so the only relevant anomaly coefficient

is Dvvp. Since we will want to make these gauge fields dynamical, for consistency we

must add local terms to the action to modify (2.82) so that Jµ
v is conserved. After

doing so, we arrive at the standard ABJ anomaly [69, 70]

∂µJ
µ
p = − 1

16π2
ǫµναβF v

µνF
v
αβ, (2.85)

33There are sign errors in the derivation of (2.82) in [75], but since there are an even number the

final result is correct. Our final sign is the same as that in [75] even though our currents (2.81) differ

from his by a sign, because we have taken ǫ0123 = −1.
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or in differential form notation

d ⋆ Jp =
1

4π2
F v ∧ F v. (2.86)

So far this is all similar to what happened with the chiral anomaly in 1 + 1 di-

mensions, but now an interesting difference arises: in 3 + 1 dimensions we claim that,

despite the ’t Hooft anomaly (2.86), chiral symmetry is preserved in the presence of

any background Av gauge field on R4! The reason is simple: there are no topologically

non-trivial U(1) gauge field configurations on S4 (and thus R4), unlike S2 (and R2)

where there are, so the “improved” current

⋆ Ĵp ≡ ⋆Jp −
1

4π2
Av ∧ F v (2.87)

integrates to an “improved” charge

Q̂p ≡
∫

R3

⋆Ĵp, (2.88)

which acts in the same way as
∫
Σ
⋆Jp on all local operators, but is conserved on R4 for

any background gauge field Av.

At first we might therefore think that this chiral symmetry will persist even if we

now make Av dynamical. We will now see however that the truth is more subtle. Once

Av is dynamical, the charge (2.88) will indeed continue to exist as a gauge-invariant

operator (this is because there are no topologically non-trivial gauge transformations

on S3 since π3(U(1)) = 0), and it will commute with the stress tensor. Moreover it

manifestly seems to act locally on local operators, so it seems we have satisfied all of

the criteria of definition 2.1 for a global symmetry. In fact however the charge (2.88)

fails condition (2) of definition 2.1: it does not preserve the local algebra A[R] for all

regions R ⊂ R3. The problem is the following: now that the gauge field is dynamical,

we need to check if the charge (2.88) acts locally on the new operators we can construct

from it.34 This will obviously be the case for operators which are locally constructed

out of Av, such as the field strength F v and the Wilson loops ein
∫
C
Av

, but since the

gauge group is U(1) we also need to check if it acts locally on ’t Hooft loops. We will

now show that it doesn’t.

’t Hooft loops are an additional set of line operators in U(1) gauge theory in four

spacetime dimensions, defined by removing a narrow tube out of the path integral

34We thank Edward Witten for pointing out that the electromagnetic part of this charge has a

simple interpretation: in free Maxwell theory it is proportional to the helicity. Thus conservation of

Q̂p says that although chiral symmetry is explicitly broken, the chiral charge plus a multiple of the

helicity is conserved.
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around the closed line C where the operator will be defined and imposing certain

boundary conditions. This tube has boundary S2×S1, and the ’t Hooft loop is defined

by requiring that at this boundary the gauge field on S2 is given by the Wu-Yang

monopole (2.70) [82]. Since this may seem a bit abstract, we note that in free U(1)

gauge theory an ’t Hooft loop on a contractible curve C = ∂D can also be represented

as

Tn(C) ≡ e
2πin

q2

∫
D

⋆F
. (2.89)

This may not look like a loop operator, but we note the obvious analogy to the Wilson

loop:

Wm(C) ≡ eim
∫
∂D

A = eim
∫
D

F . (2.90)

Indeed n and m must be integers precisely so that these two lines are mutually local,

meaning that they commute at spacelike separation even if they are linked in space

(this is one way of understanding Dirac quantization).

The action of the charge (2.88) on an ’t Hooft line can be computed in several

ways. In free U(1) Maxwell theory we may simply study the commutator of (2.88) and

(2.89), which shows without too much difficulty that the would-be symmetry generated

by (2.88) mixes the ’t Hooft line with an improperly quantized Wilson loop, which

then must be understood as a surface operator on a disc D, as in the second equality

in (2.90), rather than a line operator on ∂D. We will instead obtain this result using

the boundary-condition definition of Tn(C), since this argument will be correct also in

interacting theories such as the one we are studying. If we view the ’t Hooft line as an

insertion into the Euclidean path integral on S4, we can compute the action of chiral

symmetry on it by surrounding it with a symmetry insertion on S2 × S1, constructed

as in figure 2 by approaching the line from above and below by symmetry operators on

S3. If we remove the small tube B3 × S1 surrounding the line from S4, the remaining

space has topology S2 × B2 (these are glued at their mutual boundary S2 × S1). This

space allows nontrivial U(1) bundles, since we can put a Wu-Yang monopole on the S2,

and indeed the boundary condition from the ’t Hooft line tells us that we must do so.

We therefore need to split the remaining space into “northern” and “southern” regions

with topology B2 × B2. The are glued together on a spatial region S1 × B2, which is

the 3 + 1 dimensional version of the shaded blue regions in figure 2. The gauge fields

in the two regions differ by

Av
N = Av

S + ndφ, (2.91)

where φ is the angular coordinate on the S1 and n is the strength of the ’t Hooft line,
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so the difference in the charge approached from above or below contains a term

Q̂p,N − Q̂p,S ⊃ −nNf

4π2

∫

S1×B2

dφ ∧ F v

= −nNf

2π

∫

B2

F v. (2.92)

Here for later convenience we have generalized to Nf Dirac fermions instead of just

one, so now Dpvv = 2Nf , and in evaluating the integral we have used that
∫
B2 F

v is

independent of φ. The other terms in Q̂p,N−Q̂p,S are integrals over the upper and lower

pieces of the S2 × S1 surrounding the loop, and are those localized near it. Therefore

we see that the symmetry transformed operator

T ′
n(C) = e−iθQ̂Tn(C)e

iθQ̂ (2.93)

includes a potentially nonlocal factor

e
i
nNf
2π

θ
∫
B2

F v

, (2.94)

where B2 is any disc whose boundary is C. If
nNf θ

2π
is an integer then this will be a

Wilson loop on C written as in (2.90), but otherwise this will be a disc operator with

nontrivial support throughout B2. Therefore we see that only the ZNf
subgroup of the

U(1) chiral symmetry generated by Q̂p actually gives a good global symmetry which

acts locally on ’t Hooft lines.

What then does this have to do with splittability? We will now argue that this

remaining ZNf
symmetry is not splittable on Σ = S2×S1, giving us another example of

an unsplittable symmetry. The analysis is quite similar to our discussion of the R×R

gauge theory in section 2.2, so we will be brief. The basic point is that our “improved”

charge Q̂p is not gauge invariant if we restrict it to a spatial subregion R. Indeed if we

define

Q̂p(R) ≡
∫

R

(
⋆Jp −

Nf

4π2
Av ∧ F v

)
(2.95)

we have the gauge transformation

Q̂′
p(R) = Q̂p(R)−

Nf

4π2

∫

∂R

λvF v. (2.96)

We encourage the reader to compare this equation to equation (2.28): they are almost

identical except that we have gotten rid of some indices and exchanged F and ⋆F .

Therefore on Rd, or more generally on any spacetime manifold M with Hd−2(M) = 0,

we can define an “further improved” localized charge

˜̂
Qp(R) ≡ Q̂p(R) +

Nf

4π2

∫

∂R

IF, (2.97)
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which is gauge-invariant and which will act in the same way on operators in R and

its complement once we exponentiate to get an element of ZNf
. Here I is a Wilson

line integrated from a reference point x0 on each connected component of ∂R to the

integration point x, as in equation (2.29). As before, this gauge invariance requires

each connected component of the boundary to be contractible, since otherwise there

could be components where
∫
F 6= 0. Inspired by our discussion of the R × R theory,

we may then study this theory on Σ = S2 × S1. We may then run the same argument

before, with
∫
S2 F replacing

∫
S2 ⋆F , to conclude that the split property does not hold

and the ZNf
global symmetry is not splittable. The unbreakable line operators which

are to blame are now the ’t Hooft lines.

Finally we observe that we can use a similar mechanism to generate another exam-

ple of a quantum field theory with a continuous global symmetry that has no Noether

current; this time the theory will not be free. The idea is simple: we consider exactly

the same theory we have been discussing so far, but now we take the gauge group to

be R instead of U(1). There are no longer ’t Hooft lines, so the full U(1) chiral sym-

metry is now preserved. Moreover since we now have
∫
S
F = 0 for any submanifold S

whatsoever, this symmetry is splittable on any manifold. But it nonetheless doesn’t

have a Noether current!35 Why not? Because if it did, then we could use this Noether

current in the case with gauge group U(1) as well, since the set of local operators for

the U(1) gauge theory and the R gauge theory are exactly the same (more on this in

section 3.4 below), and this would contradict the fact that the ZNF
subgroup of chiral

symmetry which is preserved in the U(1) case is not splittable on S2×S1. We find this

to be quite remarkable: the existence of a Noether current is obstructed by features

of a different quantum field theory! Moreover in that theory, with gauge group U(1),

we have another remarkable feature: all correlation functions not involving ’t Hooft

lines, and all scattering matrix elements not involving magnetic monopoles (if there are

any) obey with complete precision the selection rules of a U(1) global symmetry, even

though no such symmetry exists.

This analysis has interesting implications for the interpretation of the decay π0 →
γ γ in the standard model of particle physics. The traditional explanation of this decay

is that the symmetry u′ = eiθγ
5
u, d′ = e−iθγ5

d of QCD with massless up and down

quarks is explicitly broken by electromagnetism due to the anomaly (2.86), see eg [75],

but we at least were never satisfied with this explanation for the following reason: if

the symmetry is explicitly broken by the anomaly, why does it have a Goldstone boson

35Although chiral symmetry is now splittable on any manifold, the theory with gauge group R still

does not obey the split property on S2×S1; the unbreakable lines are now the Wilson lines of fractional

charge. It thus is not a counterexample to our conjecture that theories which obey the split property

on all manifolds should obey the Noether conjecture.
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(the π0) in the first place? Shouldn’t explicit breaking of the symmetry give a mass to

the π0 even when the up and down quarks are massless? The resolution of this puzzle

is the following: we can choose to interpret the gauge group of electromagnetism as

R, and if we do then we indeed have a genuine U(1) global symmetry generated by a

charge Q̂p =
∫
R3 ⋆Ĵp, with Ĵp now defined by36

Jµ
p ≡ −uγµγ5u+ dγµγ5d

⋆Ĵp ≡ ⋆Jp −
1

4π2
Av ∧ F v. (2.98)

This symmetry is spontaneously broken by the dynamics of QCD, and so it has a

Goldstone boson, the π0. This is clear in the effective action for the pion,

S = −
∫

R4

(
1

2
dπ0 ∧ ⋆dπ0 +

1

4π2

π0

fπ
F ∧ F

)
, (2.99)

which has a global symmetry π0 ′ = π0 + fπǫ. The Noether current for this symmetry

that we can derive from this low-energy action, as in (2.14), is

⋆ Ĵp = fπ ⋆ dπ
0 − 1

4π2
Av ∧ F v, (2.100)

which indeed is not gauge-invariant, and in precisely the same way as the “UV” descrip-

tion (2.98) of this current. Thus the π0 is indeed the Goldstone boson of a perfectly

good global symmetry, it just isn’t quite the putative global symmetry we started

with. The explanation of its “surprisingly large” decay rate is not that the symmetry

for which it is the Goldstone boson is explicitly broken by the anomaly, instead it is

that this symmetry does not have (or need) a gauge-invariant Noether current: it is a

counterexample to the naive Noether conjecture 4, and this is what allows the second

term in the action (2.99).37 We may then observe that if we revert to viewing the gauge

group of electromagnetism as U(1), none of the above conclusions can change so they

must be true there as well even though our improved chiral symmetry charge Q̂p now

acts badly on ’t Hooft lines. It is instructive to compare this to another possible global

symmetry of QCD with two massless quarks, u′ = eiθγ
5
u, d′ = eiθγ

5
d. Prior to gauging

SU(3), this is indeed a global symmetry, with an ’t Hooft anomaly d ⋆ J ∝ G ∧ G

where G is the background gluon field. Once the gluons are dynamical, this anomaly

causes instantons to break this symmetry explicitly, just as monopoles did for 1 + 1

36The anomaly coefficient is Dpvv is still two, since 3
(
2
(
2
3

)2 − 2
(
1
3

)2)
= 2.

37We remind the reader that this second term is what leads to the decay π0 → γγ once quark masses

are added, when mu = md = 0 this decay is not allowed kinematically but we can use the coefficient

of π0F ∧ F as a stand-in.
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dimensional chiral symmetry in the previous subsection, and the “would-be Goldstone

boson”, the η′, is indeed massive [72]. The distinction between the two cases arises

because π3(U(1)) = 0 while π3(SU(3)) = Z.

2.6 Towards a classification of ’t Hooft anomalies

We have discussed background gauge fields and ’t Hooft anomalies at some length

now, and we already have everything we need for our AdS/CFT arguments in the

following sections. ’t Hooft anomalies are such a hot topic these days however that

we feel it appropriate to make a few more comments which may be of more general

interest. These comments are motivated by occasional statements we have heard that

the classification of SPT phases in [83] based on the machinery of [84], together with

some mathematical results from [85–87] (see also [88]), result in a classification of ’t

Hooft anomalies for internal symmetries. We argue here that the truth is more subtle,

pointing out several gaps in this would-be argument. Two of these gaps lead to explicit

counterexamples to the putative classification, and thus require additional assumptions

to exclude them. A third gap we suspect can be filled, and we suggest a strategy for

doing so. The gaps are the following:

• Not all ’t Hooft anomalies act by multiplying the partition function by a c-number.

• Not all ’t Hooft anomalies which act by a c-number have that c-number be a

phase.

• Even when the ’t Hooft anomaly is phase-valued, it has not been shown that this

phase can always be canceled by the gauge transformation of the classical action

of a topological gauge theory in d+ 1 dimensions.

What is really attempted in [83–87] is a classification of such (d+1)-dimensional classical

topological gauge actions, so until these gaps are better understood it is not correct to

say that ’t Hooft anomalies have been classified. In the rest of this section we discuss

these questions in more detail; along the way we will also point out an obstruction to

generalizing the topological analysis of chiral ’t Hooft anomalies in [89] to more general

’t Hooft anomalies. As this work was being completed, [90, 91] appeared, which study

the first of the phenomena we mention here, operator-valued ’t Hooft anomalies, in

much more detail; we direct the reader there for more on this phenomenon.38

38In those papers the authors introduce new background gauge fields, which are in general higher-

form fields, and then modify the definition of “gauge transformation” to include transformations of

these new background gauge fields which are designed to cancel the operator-valued anomalies of the

type we point out here. They then prefer to use the terminology “n-group global symmetry” instead
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We begin by noting that all examples of ’t Hooft anomalies that we discussed in

the previous section have the special property that, although the partition function is

not gauge invariant, this non-invariance is realized as a multiplication by a c-number

functional of the background gauge fields and the gauge transformation (see equations

(2.66) and (2.77)). It is not hard see however that more general ’t Hooft anomalies

are possible; we will call them operator-valued ’t Hooft anomalies. They have appeared

in some form already in [88], but the example we give here should be more accessible

to most physicists. It is a chiral fermion theory in 3 + 1 dimensions, with an SU(2)

global symmetry and a U(1) gauge symmetry. The matter fields consist of eight left-

handed fermions, grouped into two SU(2) doublets with U(1) charge +1, and four

SU(2) singlets with U(1) charge −1.39 We can view both of these symmetries as

subgroups of the U(8) symmetry generated by the currents (2.81), but the rest of this

U(8) may or may not be broken by other interactions we won’t discuss explicitly. Since

the U(1) symmetry is gauged, its current must be conserved to avoid inconsistencies.

And indeed,

DU(1)U(1)U(1) = 4(+1)3 + 4(−1)3 = 0. (2.101)

This U(1) conservation is also not broken by the gravitational anomaly (2.75), since

4(+1) + 4(−1) = 0. If we use indices a, b, etc to denote SU(2) generators, with Ta
taken to be the Pauli matrices divided by 2, then we see that

Dabc = 0

DabU(1) = 2Tr(TaTb) = δab. (2.102)

Thus in the presence of a background SU(2) gauge field, since we must preserve the

conservation of the U(1) current, we have no choice but to allow the SU(2) global

currents not to be conserved. After adding an appropriate local term to the action to

ensure conservation of the U(1) current, we find that the SU(2) currents obey

DµJ
µ
a = − 1

32π2
δabǫ

λρσν∂λA
b
ρF

U(1)
σν + . . . (2.103)

The key point here is that if the background SU(2) gauge field Aa
µ is zero, the SU(2)

current is conserved. So this theory indeed has SU(2) global symmetry. But once we

turn on this background gauge field, the right hand side of the current conservation

of “operator-valued ’t Hooft anomaly”. In this language, c-number ’t Hooft anomalies in d spacetime

dimensions are “d-group global symmetries”. We’ll stick with “’t Hooft anomaly” here since we’ve

been using it so far, but in the long run getting rid of the word “anomaly” in this context is probably

a good idea.
39We have doubled the matter content of what might seem like the simplest example, to avoid an

additional Witten anomaly in the SU(2) symmetry [73] which may distract some readers.
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involves a dynamical operator, F
U(1)
σν . Thus, unlike in the ’t Hooft anomalies we have

considered so far, the partition function does not transform by a c-number rescaling

under a background SU(2) gauge transformation. In such a situation we cannot cancel

the anomaly by the gauge transformation of the classical action of a topological gauge

theory in d+1 dimensions, essentially because that action would already need to contain

a dynamical U(1) gauge field.

Of course nothing stops us from simply restricting discussion to c-number ’t Hooft

anomalies. In fact in the classification program based on [83–87], it is further assumed

that the c-number involved is always a phase. This is certainly true for the 1 + 1 and

3 + 1 dimensional chiral anomalies (2.66), (2.82), and more generally it is a rather

standard property of chiral anomalies [67]. But again it is not always true, and in

fact we have already met a counterexample: in Euclidean signature the Weyl anomaly

(2.77) is real. And indeed there has so far been no success in trying to cancel the

Weyl anomaly with the gauge transformation of a topological action living in d + 1

dimensions.40

Nevertheless we can still proceed by further restricting to ’t Hooft anomalies where

under background gauge transformations the partition function is only multiplied by

a phase. We now give a general formulation of this problem. As above will use the

symbol A to jointly denote a collection of Ai and the gij which glue them together, we

will use the symbol g to denote the collection of gi under which the Ai and gij transform

via (2.52), and we will write the action of g on A as gA. This A will include background

gauge fields for all global symmetries, both continuous and discrete. A phase-valued ’t

Hooft anomaly then says that the partition function of the theory as a functional of

these background gauge fields obeys

Z[gA] = eiα(A,g)Z[A]. (2.104)

Moreover it says that this phase cannot be removed by redefining Z[A] by a local

functional β(A), via

Z ′[A] ≡ eiβ(A)Z[A]. (2.105)

Such a redefinition induces a transformation

α′(A, g) = α(A, g) + β(gA)− β(A) mod 2π, (2.106)

so we will have an anomaly if and only if there is no β(A) such that

α(A, g) = β(A)− β(gA) mod 2π. (2.107)

40The Weyl anomaly can be cancelled by a non-unitary gravitational action, one way to see this is

that we know the “right sign” Einstein-Hilbert action can reproduce the Weyl anomaly in AdS/CFT

[92], so the “wrong sign” Einstein-Hilbert action can cancel it. It is not clear however whether such

actions can be classified by some generalization of the machinery of [83–87].
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The task of classifying possible phase-valued ’t Hooft anomalies is thus the task of

classifying phases α(A, g) modulo local functionals β(A), which is a kind of exotic group

cohomology. We emphasize however that this is not the group cohomology studied in

[83]; we will comment on the relationship below.

This group cohomology problem has an interesting relationship to the topology of

fiber bundles [89]. This relationship works as follows. Consider the space G of gauge

transformations g and the space A of gauge field configurations A. We can view the

partition function as a map

Z : A → C, (2.108)

or equivalently as a section of the trivial complex line bundle

E ≡ A× C. (2.109)

We can then define an equivalence relation on E via

(A, z) ∼ (gA, eiα(A,g)z), (2.110)

and then construct a new bundle

Ẽ ≡ E/ ∼, (2.111)

which is a possibly nontrivial complex line bundle over A/G, the set of gauge-equivalent
classes of gauge field configurations. In fact the transformation (2.104) tells us that we

can also view the partition function Z as a section of Ẽ. The interesting statement is

then the following: if Ẽ is a nontrivial bundle, then Z has a genuine ’t Hooft anomaly.

The proof is simple: say that Z did not have an ’t Hooft anomaly. Then there must

exist a local functional β(A) obeying (2.107). We may then consider a coordinate

transformation on the bundle E given by

A′ = A

z′ = eiβ(A)z, (2.112)

under which the equivalence relation (2.110) becomes

(A, z′) ∼ (gA, z′). (2.113)

But this immediately tells us that

Ẽ = A/G × C, (2.114)

so Ẽ is trivial. This argument shows that nontrivial line bundles over A/G are related

to potential ’t Hooft anomalies. And in fact in [89] it was shown that indeed the
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partition function relevant for the 3+1 dimensional chiral anomaly (2.82) is a section

of a nontrivial line bundle overA/G. Fiber bundle topology is an extremely well-studied

subject, so this result seems to suggest that the relevant technology could be used to

study general phase-valued ’t Hooft anomalies.

Unfortunately however there is a major problem in attempting to use the argument

of the previous paragraph to classify ’t Hooft anomalies. This is that the result is not

an if and only if result. We showed that a nontrivial bundle implies an anomaly, but

we did not show that a trivial bundle implies no anomaly! The problem lies with

the coordinate transformation (2.112). In doing this transformation, we used a β(A)

which was a local functional of A. But in trying to decide whether or not Ẽ is trivial,

there is no such restriction on what coordinate transformations we may do: if we can

achieve (2.113) with a nonlocal β, then the bundle is trivial even though there might

still be an ’t Hooft anomaly. This observation leads immediately to a puzzle: if we

allow β to be nonlocal, then doesn’t the logarithm of (2.104) immediately tell us that

β(A) ≡ i logZ(A) gives a nonlocal coordinate transformation which trivializes Ẽ? And

if so then how were the authors of [89] able to get a nontrivial bundle Ẽ? The resolution

of this puzzle is that the problem with this β is not that it is nonlocal, it is that Z[A],

which for them was the square root of the determinant of a Dirac operator, has zeros

at certain special values of A. So then i logZ is not well-defined at those values, which

prevents it from defining a good coordinate transformation on E.

How then might we proceed in our goal to classify possible phase-valued ’t Hooft

anomalies? In fact we have already stated the mathematical problem: we need to clas-

sify phases α modulo local functionals β. The natural idea suggested by the topological

arguments of the previous two paragraphs is to recast this as a generalization of the

notion of a complex line bundle over A, where only local functionals of A are allowed

in coordinate transformations. We will not attempt this here, but we have already

mentioned several times the standard conjecture for what the answer is: any solution

of this problem is always obtainable from the classical action of some topological gauge

theory in d + 1 dimensions [93–96]. Indeed the validity of this conjecture is taken as

the starting point of the work of [85–87]. Let’s review how this works for the 1 + 1

dimensional chiral anomaly (2.66), which we can now describe as

α(Av, Ap; Λv,Λp) = − 1

π

∫

∂N

ΛpF v. (2.115)

Here we have switched to differential form notation and assumed for simplicity that our

spacetime manifold M is the boundary of some three-dimensional manifold N . The
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key observation is that the three-dimensional Chern-Simons-like action,

S3[A
v, Ap] ≡ 4

4π

∫

N

Ap ∧ F v, (2.116)

has gauge transformation

S3[A
v + dΛv, Ap + dΛp] = S3[A

v, Ap] +
1

π

∫

N

d(ΛpF v) (2.117)

= S3[A
v, Ap] +

1

π

∫

∂N

ΛpF v, (2.118)

so if we take the three-dimensional gauge fields to be extensions of the two-dimensional

ones then the functional

Ẑ[A] ≡ Z[A]eiS3(A) (2.119)

is gauge-invariant. So although the anomaly cannot be canceled by a local term in

(1 + 1) dimensions, it can be canceled by a local term in (2 + 1) dimensions! A similar

construction is possible for the (3 + 1) dimensional chiral anomaly, based on a five

dimensional Chern-Simons-like action [93–96]. But now we come to the key question:

is this relationship with d + 1 dimensional topological actions a coincidence, or is it

intrinsic to the nature of ’t Hooft anomalies? The conjecture just mentioned says that

it is intrinsic, and certainly the fact that so far every phase-valued ’t Hooft anomaly to

be discovered fits into this framework speaks powerfully in favor of this conjecture. But

can it be proven? We believe that the answer is yes. One reason is that for infinitesimal

anomalies it has indeed already been proven, by a careful study of the cohomology of

the BRST operator [95, 97–100]. But more generally the reason we believe so is that

both sides of the conjecture can be precisely formulated as statements about group

cohomology: the general classification of ’t Hooft anomalies outlined below equation

(2.104) casts the question directly as a group cohomology problem, and the classifica-

tion of topological actions studied in [83–87] essentially proceeds by reformulating the

question again as a group cohomology problem. In both cases the objects which appear

or more or less the same: we need to define local functionals of background gauge fields

and then study how they transform under gauge transformations, with appropriate

identifications. Given the strong experimental evidence for the conjecture, together

with this plausible mathematical formulation, we expect that a proof is possible. We

will not however attempt it here.

3 Gauge symmetry

We now turn to the topic of gauge symmetry. Gauge symmetry is ubiquitous in physics.

Our understanding of particle physics, general relativity, string theory, the fractional
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quantum hall effect, superconductivity, and more all rely on it. And yet, paradoxically,

we also say that “gauge symmetry is merely a redundancy of description.” How can a

redundancy of description be so powerful? In AdS/CFT this paradoxical situation is

acutely instantiated by the well-known adage “a gauge symmetry in the bulk is dual

to a global symmetry in the boundary.” In the words of the master [20], “suppose the

AdS theory has a gauge group G, . . . Then in the scenario of (Maldacena), the group G

is a global symmetry of the conformal field theory on the boundary.” How can a mere

redundancy of description be dual to something as substantial as a global symmetry?

In this section we develop machinery to address this question, introducing a notion

of “long-range gauge symmetry” that we will eventually argue is really what should

be understood as the gravity dual of a global symmetry. To aid with intuition, we

illustrate our definition using a general formulation of Hamiltonian lattice gauge theory

for arbitrary compact gauge group G. We then make some comments on the meaning of

the topology of the gauge group and briefly discuss the possibility of nontrivial mixing

between gauge and global symmetries.

3.1 Definitions

Roughly speaking, the traditional definition of a gauge symmetry in quantum field

theory is that it is obtained by “gauging” a global symmetry, meaning that we begin

with a quantum field theory with a global symmetry, introduce background gauge

fields for that symmetry as in section 2.3, and then make them dynamical by summing

over them in the path integral (this procedure makes sense even if the theory to be

gauged does not have a Lagrangian). This definition is not quite consistent with our

definition 2.1 of global symmetry however: there we required that global symmetries

act faithfully on the set of local operators, while for gauge symmetries there should be

no such requirement (otherwise we would exclude e.g. free Maxwell theory).41 So in

our language, the way to phrase this definition is to interpret the full (internal) global

symmetry group G, which does act faithfully on the local operators, as the quotient of

a possibly-larger “extended” symmetry group Ĝ, which acts on the local operators in

a not-necessarily faithful representation, by the kernel of that representation. Ĝ is far

from unique, but whichever choice we make we then choose a normal subgroup H ⊂ Ĝ,

and introduce background gauge fields for it. We then check whether or not any ’t

Hooft anomalies prevent us from arranging for the partition function to depend only

on the gauge equivalence classes of these background gauge fields: if not, then we may

41This statement applies in quantum field theory. One of our main goals in this paper is to establish

conjecture 2, which says that in quantum gravity there is such a requirement!
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at last make them dynamical.42

Although this definition is completely standard, it has the very serious problem that

the same abstract quantum field theory can be obtained in this manner by gauging in-

equivalent extended global symmetry subgroups H of inequivalent abstract quantum

field theories. For example the U(1) Maxwell theory in 2+1 dimensions has an equiv-

alent formulation as a free compact scalar with no gauge fields at all. Much more

nontrivially, the N = 4 super Yang-Mills theory with gauge group SU(N) and gauge

coupling g is equivalent as an abstract quantum field theory to the N = 4 super Yang-

Mills theory with coupling 4π
g
and gauge group SU(N)/ZN by S-duality [82, 102–104].

Given examples like these, it seems clear that there is no unique answer to the question

“what is the gauge group of abstract quantum field theory X?” This is to be distin-

guished from the case of global symmetry, where the analogous question indeed has a

unique answer given by definition 2.1.

That said, there are certainly unambiguous physical phenomena which we typically

associate with gauge symmetry, such as massless gauge bosons, loop operators whose

vacuum expectation values obey an area law scaling, asymptotic symmetry groups, and

certain topological field theories such as the Z2 gauge theory that describes supercon-

ductivity. The second of these has recently been formalized into the abstract notion of

an unbroken one-form global symmetry [41], which we will discuss more in section 8

below: it gives one way of defining confinement abstractly. The others are all associated

to gauge theories in what [105] called a “free charge phase”: this means a phase which

allows charged states of finite energy in infinite volume (see also [106, 107] for related

discussion). For continuous gauge groups this is usually called a Coulomb phase, while

for discrete gauge groups (or continuous gauge groups in 2+ 1 dimensions with Chern-

Simons terms) it is sometimes called a topological phase. In [105] the notion of a free

charge phase was introduced in the context of lattice gauge theory, which is a specific

presentation of a quantum field theory. As we just discussed, different lattice gauge

theories might flow to the same abstract quantum field theory in the infrared. But in

fact the notion of a free charge phase can be rephrased using only abstract notions,

which thus frees it of such ambiguities. We now formalize this as a new definition:43

42The question of what the global symmetry group is after doing this procedure is a very delicate

one, involving not only the group-theoretic structure of how H and G fit into Ĝ, but also the effects

of any ’t Hooft anomalies in Ĝ which might be activated (see [101] for one recent discussion). We will

not explore this question further except for a brief discussion in section 3.5 below, but we view it as

ripe for additional work.
43In this paper we are primarily interested in spacetimes which are asymptotically-flat or

asymptotically-AdS. This definition may need further refinement for more complicated spatial mani-

folds Σ, but for our purposes it is good enough.
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Definition 3.1. A quantum field theory on an infinite-volume spatial manifold Σ, with

asymptotic boundary ∂Σ and boundary conditions such that in any state the energy

density vanishes as we approach ∂Σ, has a long-range gauge symmetry with gauge group

G (here G is assumed compact) if the following are true:

(1) For each closed spatial curve C in the interior of Σ, there exist a set of directed line

operators Wα(C), the Wilson loops, which are labeled by the finite-dimensional

irreducible representations α of G. Moreover for any curve C which starts and

ends at ∂Σ there are a set of Wilson lines Wα,ij(C), where i and j run over a

range given by the representation dimension dα. The orientations of Wilson loops

and lines can be flipped via

Wα(−C) = W †
α(C)

Wα,ij(−C) = W †
α,ij(C), (3.1)

where in the second of these “†” denotes the adjoint operation on Hilbert space

together with an exchange of the ij indices, and the Wilson lines obey
∑

k

Wα,ik(−C)Wα,kj(C) = δij. (3.2)

A Wilson line can be turned into a Wilson loop by bringing the endpoints of C

together, tracing over ij, and then deforming C into a closed loop in the interior

of Σ.

(2) For every subregion R of ∂Σ, and every g ∈ G, there is a unitary operator U(g, R)

on the Hilbert space which commutes with all operators supported only in the

interior of Σ, and also with their boundary limits provided they have no support

in ∂R, but which acts on any Wilson lineWα starting at point x ∈ ∂Σ and ending

at point y ∈ ∂Σ as

U †(g,R)WαU(g,R) =





Dα(g)WαDα(g
−1) x, y ∈ R

WαDα(g
−1) x ∈ R, y /∈ R

Dα(g)Wα x /∈ R, y ∈ R

Wα x, y /∈ R

, (3.3)

where we have suppressed the ij representation indices using matrix notation.

When R is a connected component of ∂Σ, we will refer to the U(g,R) as asymp-

totic symmetry operators. This name is justified by the observation that we have

[H,U(g,R)] = 0, since H =
∫
Σ
dd−1x

√
g T00 and T00 is always either an opera-

tor in the interior of Σ or the boundary limit of one. In correlation functions
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the asymptotic symmetry operators will be topological except when they meet

the endpoint of a Wilson line. For arbitrary R we will call the U(g,R) the local-

ized asymptotic symmetry operators : these will be topological under deformations

which in addition to not crossing Wilson line endpoints also fix ∂R.44

(3) The ground state is invariant under U(g, ∂Σ), and moreover the theory allows

finite-energy charged states in the sense that if we deform the Hamiltonian and

the Hilbert space to include a background charge in representation α sitting at

some definite point in space, there are states of finite energy which transform

in that representation under U(g, ∂Σ). This Hilbert space and Hamiltonian are

defined by the insertion of a temporal Wilson line in representation α into the

path integral, we explain how to do this in detail for lattice gauge theory in the

following subsection. In AdS (our primary interest) there is a very concrete test:

in the Euclidean thermal AdS space with metric

ds2 = (1 + r2)dτ 2 +
dr2

1 + r2
+ r2dΩ2

d−2, (3.4)

with τ periodicity β, we study the quantity

Zα(g, β) ≡ 〈Wα(S
1)U(g, Sd−2)〉, (3.5)

where the Wilson line is at r = 0 and wraps the temporal circle, while the Sd−2 is

at spatial infinity. This quantity has the interpretation of inserting the asymptotic

symmetry operator U(g, Sd−2) into the thermal trace over the modified Hilbert

space with a background charge at r = 0 in representation α. We then require

that ∫
dgχ∗

α(g)Zα(g, β) > 0 (3.6)

for any α and large but finite β, where dg is the Haar measure on G and

χα(g) ≡ Tr (Dα(g)) is the character function on G for representation α. By

Schur orthogonality (see theorem A.6) this integral (or sum if G is discrete) in-

serts a projection onto states in representation α in the thermal trace, so (3.6) is

precisely requiring that there are such states with finite energy.45

44Note that we are including the gauge-symmetry version of splittability in this definition. A weaker

definition would ask for the U(g,R) only when R is a connected component of Σ, but we find our

definition more convenient since it ensures that theWα are nontrivial even if ∂Σ has only one connected

component, which otherwise we would need to implement with additional axioms. We don’t know of

any examples of “unsplittable long-range gauge symmetries” which we would exclude this way.
45This test is more delicate in Minkowski space, since the thermal partition function is infrared

divergent. One way to deal with this is to use AdS as a regulator, and then say that a Minkowski

space theory obeys condition (3) if it does in AdS for any sufficiently large AdS radius.
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This definition may seem like a lot to unpack, and indeed we will spend the rest of

the section doing so. We will motivate it in detail from a lattice point of view starting

in the next subsection, but a few examples are in order now.

The most obvious example is free Maxwell theory in Minkowski space with d ≥ 4

spacetime dimensions, with action

S = − 1

2q2

∫
F ∧ ⋆F. (3.7)

If we regulate space at some large radius, the variation of this action has a boundary

term

− q−2

∫

∂M

δA ∧ ⋆F, (3.8)

which we can satisfy by choosing boundary conditions where the pullback of A to

∂M vanishes. These boundary conditions are preserved only by gauge transformations

which approach a constant on ∂M , and to obtain a theory where non-vanishing electric

charge is possible we will quotient only by gauge transformations where this constant

also vanishes: the transformations where it does not are the asymptotic symmetries.46

The representations of U(1) are labeled by integer charges, and the Wilson loops and

lines have the form

Wn(C) = ein
∫
C
A+.... (3.9)

Here “. . .” represents a term proportional to the length of C in cutoff units, with a

coefficient which is chosen so that the expectation value of Wn(C) is finite when C has

finite size in the continuum. The localized asymptotic symmetry operators U(g, R) are

given by

U(eiθ, R) = exp

[
iθ

q2

∫

R

⋆F

]
, (3.10)

which is just the exponentiated electric flux through R at spatial infinity. With our

choice of boundary conditions the Wilson lines are allowed to end at spatial infinity,

and it is easy to see that together with the localized asymptotic symmetry operators

they obey (1-2) from definition 3.1. Moreover since for d ≥ 4 the electrostatic energy

of a smeared point charge is finite they will also obey condition (3). By contrast for

46These boundary conditions are the natural ones for a gauge field in AdS. In 3 + 1 dimensional

Minkowski space they are less natural because they set the magnetic flux density to zero at spatial

infinity, and thus violate cluster decomposition if there are magnetic monopoles. We can restore cluster

decomposition by a Hilbert space direct sum over magnetic flux configurations, after which the long

range gauge symmetry will actually be U(1)× U(1) since both Wilson and ’t Hooft lines will be able

to end at infinity. Since our primary interest is AdS, we stick to the sector of vanishing magnetic flux,

in which case only Wilson lines can end at infinity and the long-range gauge group is U(1).
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d = 2, 3 the electrostatic energy of a (smeared) point charge is infinite, linearly for

d = 2 and logarithmically for d = 3, so condition (3) will not be satisfied.47 Thus for

d = 2, 3, Maxwell theory does not have a long-range U(1) gauge symmetry, while for

d ≥ 4 it does.

The statement that there is no long-range gauge symmetry in Maxwell theory for

d = 3 may sound surprising from a holographic point of view, since we certainly know

examples of holographic CFTs in 1+1 dimensions with U(1) global symmetries. In fact

what happens in all such examples is that in the bulk we have not the pure Maxwell

theory (3.7), but instead the Maxwell/Chern-Simons theory with action48

S = −
∫

M

(
1

2q2
F ∧ ⋆F +

k

4π
A ∧ F

)
. (3.11)

This theory does have a long-range gauge symmetry: the logarithmic infrared diver-

gence in the energy of a localized charge in Maxwell theory is regulated by the Chern-

Simons term, allowing finite-energy states of nonzero asymptotic charge k
2π

∫
∂Σ
A. This

example shows that at least in d = 3, one can have a long-range U(1) gauge symmetry

without a massless photon.

Our definition 3.1 applies whether or not the gauge theory has “dynamical charges”,

which we define as follows:

Definition 3.2. In a quantum field theory with a long-range gauge symmetry, we say

the that there are dynamical charges in representation α if, in addition to the Wilson

loops Wα and the boundary-attached Wilson lines Wα,ij, there are also Wilson lines

labelled by α which have one or both endpoints on points in the interior of Σ; we

47In d = 3 this logarithmic divergence is sometimes confused by Polyakov’s old observation that

in U(1) lattice gauge theory in 2 + 1 dimensions there are no photons and external charges feel a

linear potential [108]. This however is an artifact of the lattice, the continuum U(1) Maxwell theory

has free photons and a logarithmic potential between external charges. Condensed matter physicists

sometimes give this continuum theory the rather silly name “noncompact U(1) Maxwell theory”, but

U(1) is (of course) still compact. We could study Maxwell theory with gauge group R, but that is

something different (see subsection 3.4 below for more on the meaning of the topology of the gauge

group).
48Any solution of Maxwell-Chern Simons theory can be locally decomposed into A = Aflat + Â,

with Aflat a flat connection and Â obeying 2π ⋆ F̂ + kq2Â = 0, which is the equation for a vector

boson with mass |k|q2

2π . In AdS the natural boundary conditions for Maxwell-Chern Simons theory are

to set either the left-moving or right-moving part of the pullback of A to the AdS boundary to zero,

and also to require the vanishing of the pullback of ⋆F there [109, 110]. The latter condition keeps

only the normalizable piece of Â, while the former chooses whether the current in the boundary CFT

will be right-moving or left-moving. To have a boundary current with both left- and right- moving

parts, we need two gauge fields in the bulk [111, 112].
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Figure 8. Merging Wilson lines with interior endpoints to make boundary attached Wilson

lines and Wilson loops. See section three of [17] for a quantitative illustration of how this

merging works. These gluing rules ensure that the “meat” of the lines and loops are all the

same.

call these interior endpoints “charged operators in representation α ”. These interior

endpoints do not carry G representation indices, but they do carry Lorentz indices

which depend on the type of endpoint.49 For Wilson lines with one endpoint in ∂Σ, we

require that merging the interior endpoints of one such line and its conjugate gives a

boundary-attached Wilson line Wα,ij, while for Wilson lines with two endpoints in the

interior of Σ we require that merging the conjugate endpoints of two such lines gives a

Wilson loop in the same representation. In both cases this merging requires a rescaling

to get an operator with finite expectation value, see figure 8 for an illustration and [17]

for more details on how the merging works.

The most obvious example of a theory with a long-range gauge symmetry with

dynamical charges is obtained by adding some charged matter to the d = 4 Maxwell

theory (3.7) in Minkowski space.50 A more interesting example is quantum chromody-

namics, which here we will define as an SU(3) gauge theory with two massless Dirac

fermions transforming in the fundamental representation of SU(3), quantized in AdS4

[113]. This theory has a dimensionless parameter, given by the strong coupling scale

ΛQCD measured in units of the radius of curvature of AdS4. When this parameter is

large the theory behaves as in Minkowski space: the quarks and gluons are confined into

49In Lagrangian gauge theories we can express these operators as the product with indices contracted

of a gauge non-invariant Wilson line with an interior endpoint carrying an α represention index and a

gauge non-invariant charged local operator at that endpoint carrying the conjugate index, hence our

name for the interior endpoints, but we emphasize that it is only their combination which makes sense

abstractly so that is what we define here.
50Strictly speaking this theory probably does not exist because of the Landau pole, but we can

obtain it at low energies from some UV completion.
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hadrons, and there are no finite energy states with nonzero color.51 There is therefore

no long-range gauge symmetry. As the parameter decreases however, eventually the

quarks and gluons are liberated and the theory becomes perturbative [113]. Beyond

this point the theory exhibits a long-range SU(3) gauge symmetry with dynamical

charges in the fundamental representation.

This second example shows that a theory can have a long-range gauge symmetry in

a background other than Rd even if it doesn’t have it in Rd. This may seem surprising,

since we defined the existence of a global symmetry as a property of the theory on

Rd which may or may not be preserved in other backgrounds. The difference is that

global symmetries have well-defined local consequences: the local operators transform

nontrivially and the stress tensor is invariant. So ultimately we can study these on the

simplest background, Rd, and they are there or they aren’t. There is never a situation

where a global symmetry is not present on Rd but is present somewhere else. Long-

range gauge symmetries, by contrast, are properties of the phase that the theory is

in, via condition (3) in definition 3.1. For example an observer of size 10−18 meters

would look at QCD on R4 and see weakly coupled gluons, even though the theory

is eventually confining and thus has no long-range gauge symmetry. Conversely an

observer a theory with emergent gauge fields would look at short distances and see

nothing resembling definition 3.1, even though at long distances there might be Wilson

lines and massless gauge bosons. That these two rather distinct notions are related via

holographic duality, as we will see in more detail soon, is yet another manifestation of

remarkable “UV/IR connection” [114] of AdS/CFT .

The reader may wonder why in condition (3) we have demanded that the ground

state is invariant under the asymptotic symmetry, while in our definition 2.1 we took

pains to include spontaneously broken global symmetries. The reason is that unlike

theories with spontaneously-broken global symmetries, gauge theories which in the

Higgs phase do not really have any special properties which distinguish them abstractly

from other quantum field theories. For example we will review in section 3.3 that in

some cases there is not even a good distinction between a Higgs phase and a confining

phase; they both are just some gapped system with no long-range gauge symmetry

[105, 106]. In AdS/CFT a bulk gauge theory in the Higgs phase is not dual to a

boundary theory with a spontaneously broken global symmetry: indeed the CFT is

studied on spatial Sd−1, so typically no spontaneous breaking of global symmetry is

possible (there are certain topological exceptions, see footnote 70).

We will momentarily turn to the lattice to give a more systematic picture of def-

51This still haven’t been proven of course, but the conceptual, numerical, and experimental evidence

is so overwhelming that we are happy to accept it as fact.
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inition 3.1, but first a technical aside. We have found that our use in condition (3)

of a temporal Wilson line to characterize the phase of QCD with fundamental quarks

sometimes leads to confusion, since the more standard way of using a Wilson line to

diagnose confinement, looking for an area-law scaling of the expectation value of the

fundamental-representation Wilson loop, does not work when there are fundamental

quarks [115, 116]. The problem is that as we separate a pair of fundamental/anti-

fundamental background color charges, the energy density in the color string between

them will eventually pull a quark-antiquark pair out of the vacuum, which screens the

charges and thus avoids the linear potential which would lead to an area law. This

problem also interferes with the recent “unbroken one-form symmetry” definition of

confinement [41], for basically the same reason. It does not however affect our condi-

tion (3), since by definition we are studying only states which transform nontrivially

under U(g, ∂Σ). It is true that our temporal Wilson line might be screened by a dynam-

ical charge nearby, but then there would need to be an unscreened dynamical charge

elsewhere to ensure the state transforms correctly under U(g, ∂Σ). In a confining phase,

the only way to avoid an infinite energy cost would be for this extra dynamical charge

to be “right at infinity”. In Minkowski space we have excluded this by demanding that

the energy density fall off at infinity in all states, while in AdS it is excluded automati-

cally by the AdS potential, which assigns more and more energy to particles which are

closer and closer to the boundary. We illustrate this point in an exactly-soluble setting

in subsection 3.3 below.

In the remainder of this section we will use lattice gauge theory to further motivate

and analyze definition 3.1. We will also make a few comments on the thorny question

of the meaning of the topology of the gauge group, and briefly discuss a more general

structure where global symmetries mix with long-range gauge symmetries. Readers

who are already satisfied with definition 3.1, and who feel no confusion about the

difference between U(1) gauge theory and R gauge theory, or SO(3) gauge theory and

SU(2) gauge theory, may wish to skip ahead to section 4.

3.2 Hamiltonian lattice gauge theory for general compact groups

The details of definition 3.1 may seem a bit arbitrary, so we now explain how they

naturally arise in the framework of Hamiltonian lattice gauge theory [116]. Although

this may seem like a detour, this framework has several very convenient features:

• Lattice gauge theory may be defined for any compact Lie group G, discrete or

continuous. By contrast, many discrete gauge theories do not yet have simple

continuum Lagrangian formulations. Often the best one can do is start with
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a continuous gauge theory and then Higgs it to a discrete subgroup, but this

includes a lot of extra machinery which is irrelevant for the discrete gauge theory.

• On the lattice, the topology of the gauge group is manifest from the beginning.

There can be no confusion between SO(3) and SU(2), or U(1) and R.

• The Hamiltonian formulation in particular is useful because it allows an explicit

discussion of the Hilbert space and the structure of the operators which does not

rely on knowing the Hamiltonian. Thus the operators we discuss should arise in

any gauge theory, even if the Lagrangian has other terms (eg Chern-Simons or θ

terms) beyond or instead of the standard Yang-Mills Lagrangian.

• The phase structure of gauge theory is more clear on the lattice than in the

continuum, and in particular in some limits it is exactly soluble. This will enable

us to illustrate the various possibilities in detail for the special case of gauge

group Z2, where we will see explicitly that the phase boundary between allowing

finite energy charges and not allowing them persists in the presence of dynamical

charges.

We must however also acknowledge several shortcomings of the lattice approach:

• It is not the continuum. Although the structure we will see is consistent with

our continuum expectations, and in particular with definition 3.1, in the end the

lattice theory has a lot of extra “short distance” information which should all go

off to infinite energy in the continuum limit. We do not expect this to affect the

phase structure, which is what we really care about, but “expect” and “know”

are not the same thing.

• Our lattice presentation is still ultimately “Lagrangian”: it makes reference to

unphysical states, and uses a specific set of “fundamental” fields. As we empha-

sized at the beginning of this section, different such presentations may flow to

the same theory at long distances, and if we are not careful we might mislead

ourselves about what to expect. We will try to be careful.

With these comments out of the way, we now begin with the structure of Hamiltonian

lattice gauge theory for arbitrary compact gauge group G.

In mathematics the term “lattice” refers to a regular set of points in Rn, but in

lattice gauge theory it also includes a graph connecting those points. The vertices

of this graph are called “sites”, and each edge together with a choice of orientation

is called a “link”. Links can be identified by a pair (~x, ~δ), where ~x is the starting

point of the link and ~δ is the displacement vector to its endpoint. The links (~x, ~δ)
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and (~x + ~δ,−~δ) describe the same edge with opposite orientations. The basic idea of

Hamiltonian lattice gauge theory is that each edge comes with a gauge field and each

site comes with a gauge transformation which we quotient by, with any matter fields

living on the sites. The Hilbert space prior to imposing constraints is a tensor product

H =
⊗

e∈E
He

⊗

~x∈X
H~x, (3.12)

where X is the set of sites, E is the set of edges, each H~x is the Hilbert space of the

matter fields at site ~x, and each He is a copy of the Hilbert space HG of a quantum-

mechanical particle moving on the group manifold G. HG is spanned by a set of states

|g〉, which are mutually orthogonal and normalized so that for any g′ we have

∫
dg〈g′|g〉 = 1, (3.13)

where dg is the invariant Haar measure on G, normalized so that the volume of G

is one. In particular if G is discrete, then
∫
dg is just a uniform average over group

elements. There are three natural families of operators on HG:

Wα,ij|g〉 = Dα,ij(g)|g〉
Lh|g〉 = |hg〉
Rh|g〉 = |gh〉. (3.14)

Here α denotes an irreducible representation of G, Dα,ij(g) are the representation ma-

trices of that representation, and Wα,ij is called the Wilson link in representation α.

Lh and Rh are called left and right multiplication operators, if we view Uα
ij as analo-

gous to the position operator in ordinary single-particle quantum mechanics then Lh

and Rh are analogous to the momentum operator. The hermiticity properties of these

operators are

W †
α,ij = Wα∗,ji

R†
h = Rh−1

L†
h = Lh−1 , (3.15)

where as in definition 3.1 we have taken † acting on Wα,ij to exchange ij indices in

addition to performing the Hilbert space adjoint. α∗ is the conjugate representation of
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α. The algebra of these operators is determined by the following relations:

LhLh′ = Lhh′

RhRh′ = Rh′h

LhRh′ = Rh′Lh

R†
hWαRh = WαDα(h)

L†
hWαLh = Dα(h)Wα, (3.16)

where in the last two equations we have suppressed representation indices using matrix

multiplication. This algebra is invariant under the exchange

Lh ↔ Rh−1

Wα ↔ W †
α, (3.17)

and choosing a frame under (3.17) amounts to choosing an orientation for the edge. To

avoid confusion we will therefore always label Wilson links and left/right multiplication

operators by links (~x, ~δ) instead of edges, even though the operators for the two links

corresponding to the same edge act on the same Hilbert space.

Gauge transformations are then defined to act at sites of the lattice, the action of

a gauge transformation by a group element g at site ~x on the Hilbert space (3.12) is

given by

Ug(~x) ≡
∏

~δ

R†
g(~x,

~δ)Vg(~x) =
∏

~δ

Lg(~x+ ~δ,−~δ)Vg(~x), (3.18)

where the product is over all δ such that the link exists and Vg(x) is an additional unitary

operator which implements the gauge transformation on any charged matter fields at

site ~x. Physical states are then required to be invariant under these transformations for

arbitrary g and ~x, with the possible exception of gauge transformations at boundary

points as we discuss momentarily. Under a general gauge transformation
∏

~x Ug(~x)(~x)

the operators transform as

W ′
α(~x, δ) = Dα(g(~x+ ~δ))WαDα(g

−1(~x))

R′
h(~x,

~δ) = Rg−1(~x)hg(~x)(~x, ~δ)

L′
h(~x,

~δ) = Lg−1(~x+~δ)hg(~x+~δ)(~x,
~δ)

φ′(~x) = Dα(g(~x))φ(~x), (3.19)

where φ are matter fields transforming in representation α of G. One obvious set of

gauge-invariant operators are the Wilson loops

Wα(C) ≡ Tr (Wα(ℓN) . . .Wα(ℓ1)) , (3.20)
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Figure 9. Lattice points in the vicinity of a boundary: the blue dots are sites which are

external to the green spatial region R, but which are endpoints of links which puncture its

boundary ∂R.

where C is a closed curve consisting of the links ℓ1, ℓ2, . . . ℓN in order. If there are matter

fields transforming in representation α, then we also have gauge-invariant “string”

operators

φC(~y, ~x) ≡ φ†(~y)Wα(ℓN) . . .Wα(ℓ1)φ(~x), (3.21)

where now C ≡ {ℓ1, . . . , ℓN} is a curve from point ~x to point ~y.

We can also consider boundary conditions, in figure 9 we illustrate a two-dimensional

spatial lattice in the vicinity of a spatial boundary. In constructing the Hilbert space,

we need to decide whether or not we quotient by gauge transformations associated to

the blue sites which are outside of the boundary but attached to links which pierce

it. If we do, then we are simply removing the degrees of freedom on these boundary-

piercing links, so we are left with only the “purely interior” degrees of freedom. In

Maxwell theory this corresponds to setting ⋆F to zero at the boundary, which is one

way to satisfy the boundary term (3.8) in the variation of the Maxwell action (3.7).

Alternatively if we do not quotient by the gauge transformations on the blue sites, in

Maxwell theory this corresponds to setting the pullback of A to the boundary to zero

(note that there are no links connecting blue sites). The latter boundary conditions are

the natural ones in AdS/CFT, so we will adopt them here. We then have three more

interesting classes of gauge-invariant operators illustrated in figure 10:

• Wilson lines, defined by

Wα(C) ≡ Wα(ℓN) . . .Wα(ℓ1), (3.22)
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R

Figure 10. Gauge invariant operators in the presence of a boundary.

where C is a curve beginning with a link ℓ1 that pierces the boundary from the

outside and ending with a link ℓN which pierces the boundary from the inside.

• Wilson lines ending on charges, which are defined similarly except that only one

end pierces boundary; the other is instead at a matter operator charged in either

the same representation as the line or its conjugate representation, depending on

the orientation. For example if φ(~x) is a scalar field in representation α at spatial

point ~x, and C ≡ {ℓ1, . . . ℓN} is a sequence of links connecting ~x to the boundary,

then

φC(~x) ≡ Wα(ℓN) . . .Wα(ℓ1)φ(~x) (3.23)

is a gauge-invariant operator.

• Localized asymptotic symmetries, defined by

U(g,R) ≡
∏

ℓ∈R
Lg(ℓ), (3.24)

with R a subset of the outward-pointing boundary-piercing links.

The reader can check using (3.16) that these operators have the properties described

in conditions (1) and (2) of definition 3.1, and are also consistent with definition 3.2 if

there is charged matter.

To discuss condition (3) from definition 3.1, we need to introduce a Hamiltonian.

There is no unique choice of Hamiltonian, just as there is no unique choice of action, but

one nice option is to take the Hamiltonian which is obtained from the standard Wilson

action [115] in the limit of continuous time [117, 118]. In writing this Hamiltonian it

will be convenient to allow Wilson lines in representations which are not irreducible:
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these are defined in the obvious way by direct sums of the Wilson lines in irreducible

representations. For convenience we will restrict to a cubic lattice, in which case there

is a natural set of “smallest loops” called plaquettes, and we will set the lattice spacing

to unity.52 The form of the Hamiltonian is different depending on whether the gauge

group G is discrete or continuous, for the continuous case we have the Kogut-Susskind

Hamiltonian [116]

H =
g2

4

∑

ℓ∈L

∑

b

Pb(ℓ)Pb(ℓ)−
1

g2

∑

γ∈Γ
Wα(γ). (3.25)

Here L is the set of (oriented) links, Γ is the set of (oriented) plaquettes, Pb is minus

the Yang-Mills electric flux, defined by

L
eiǫ

bTb
≡ e−iǫbPb , (3.26)

and α is a faithful but not necessarily irreducible representation of G.53 The sum

over plaquettes includes plaquettes which contain boundary-piercing links, in these

plaquettes the Wilson line is defined to be the identity on links which are not part of

the lattice. We are here normalizing the Lie algebra generators in the representation α

such that

Tr
(
T {α}
a T

{α}
b

)
=

1

2
δab, (3.27)

so in the continuum limit this Hamiltonian matches onto the standard Yang-Mills

Hamiltonian

H =

∫
dd−1x

(
g2

2
P i
bP

i
b +

1

4g2
F b
ijF

b,ij

)
, (3.28)

with P i
b ≡ 1

g2
F b,i0. We note in passing that the Kogut-Susskind kinetic operator∑

a PaPa has a beautiful group-theoretic interpretation: for any compact Lie group,

by Schur orthogonality and the Peter-Weyl theorem (see theorems A.6 and A.7) the

states

|α, ij〉 ≡ 1√
dα

∫
dgDα,ij(g)|g〉, (3.29)

where α is any irreducible representation and dα is its dimension, are an orthornomal

basis for the Hilbert space HG at each edge [119]. When G is continuous,
∑

a PaPa is

then just the quadratic casimir of the Lie algebra representation associated to α:
∑

a

PaPa|α, ij〉 =
∑

a

T {α}
a T {α}

a |α, ij〉. (3.30)

52More generally we can consider any lattice with the structure of a CW complex, see appendix G.
53We need to allow reducible representations because some compact groups do not have any faithful

irreducible representations, two examples of such groups are Z2 × Z2 and U(1) × U(1). By theorem

A.8, a finite-dimensional faithful representation always exists for any compact Lie group.
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For discrete gauge groups, the continuous-time Wilson action instead leads to a

Hamiltonian

H = −g
2

2

∑

ℓ∈L

∑

h∈S
Lh(ℓ)−

1

g2

∑

γ∈Γ
Wα(γ), (3.31)

where α is again a faithful representation of G and S is the set of elements of G which

maximize the quantity Tr (Dα(h) +Dα(h
−1)) as we vary over the set of group elements

which are not the identity. We describe how to obtain this somewhat unusual kinetic

term in appendix F, we were unable to find it in the literature except in the special

case G = Zn [118, 120, 121].

In either the discrete or continuous case, if we have scalar matter fields transforming

in a representation β of the gauge group then we should also add to the Hamiltonian

a matter kinetic term

Hmatter =
∑

~x

(
π(~x)π†(~x) +m2φ†(~x)φ(~x)

)

−1

2

∑

(~x,~δ)∈L

(
φ†(~x+ ~δ)Wβ(~x, ~δ)φ(~x) + φ†(~x)W †

β(~x,
~δ)φ(~x+ ~δ)

− φ†(~x+ ~δ)φ(~x+ ~δ)− φ†(~x)φ(~x)
)
. (3.32)

Here the β representation indices have been contracted in the obvious way. If the

matter fields themselves are also discrete, then a set of manipulations analogous to

those for a discrete gauge field in appendix F will tell us what should replace ππ† in

this Hamiltonian. In fact the only example we will study in detail is an example of this

type.

Finally we note that in this formalism we can introduce a temporal Wilson line in

representation α which punctures our timeslice at site ~x, as required by condition (3)

in definition 3.1, in the following manner. We first extend the pre-constraint Hilbert

space (3.12) by including a new tensor factor Hα with Hilbert space dimensionality dα:

H̃ = H⊗Hα. (3.33)

We then modify the gauge transformation (3.18) at site ~x to be

Ũg(~x) ≡ Ug(~x)Dα(g), (3.34)

where Dα(g) acts on our new tensor factor, and then instead of demanding physical

states are invariant under Ug(~x) we instead demand that they are invariant under Ũg(~x).

The form of the Hamiltonian and the constraints away from ~x are unmodified. This

illustrates clearly that temporal Wilson lines should not be thought of as operators:

they are modifications of the theory, and in particular introducing one changes the

spectrum of Hamiltonian since different states become physical.
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3.3 Phases of gauge theory

We now illustrate the notion of a long-range gauge symmetry in the simplest lattice

gauge theory with charged matter: the Z2 gauge theory with a single discrete matter

field Z̃ = ±1 transforming in the sign representation of Z2. Since every element of

Z2 is its own inverse, there is no meaning to the orientation of links. It is therefore

convenient to relabel the gauge field operators

Z(e) ≡ Wsign(ℓ) = Wsign(−ℓ)
X(e) ≡ L−1(ℓ) = L−1(−ℓ), (3.35)

so that we have the Pauli algebra Z2 = X2 = 1, ZX = −XZ. The matter fields are

Z̃ and its conjugate X̃, which again obey the Pauli algebra. Since we want the ground

state to be invariant under gauge transformations, the natural boundary condition for

the matter fields (analogous to φ = 0 in scalar electrodynamics) is to not include matter

fields on the blue sites in figure 9. The Hamiltonian is

H =− g2
∑

e∈E
X(e)− 1

g2

∑

γ∈Γ
Z(γ)

− λ
∑

~x

X̃(~x)− 1

λ

∑

e∈E
Z̃(e+)Z(e)Z̃(e−), (3.36)

where e+ and e− denote the two sites at the ends of e and Z(γ) = Wsign(γ), the sum

over ~x in the term proportional to λ does not include the blue sites in figure 9, and

the sum over e in the term proportional to 1/λ does not include boundary-piercing

links. The phase diagram of this model as a function of λ and g was studied in detail

in [105] (see [106] for a similar analysis of the U(1) case). We here just review a few

limits to illustrate the power of condition (3) in definition 3.1 for characterizing this

phase diagram. In discussing the phase diagram it will sometimes be convenient go to

the “unitarity gauge” Z̃ = 1, after which the Hamiltonian can be expressed entirely in

terms of the gauge degrees of freedom:

H = −g2
∑

e∈E
X(e)− 1

g2

∑

γ∈Γ
Z(γ)− λ

∑

~x

∏

δ

X(~x, δ)− 1

λ

∑

e∈E
Z(e). (3.37)

We show the phase diagram for this model from [105] in figure 11. We can motivate

it by considering a few limits:

• Large g, finite λ: In this limit the Hamiltonian is dominated by −g2∑e∈E X(e).

The ground state therefore has X = 1 on all links, which by the gauge constraint
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Figure 11. The Fradkin-Shenker phase diagram of Z2 lattice gauge theory with a charged

matter field for d ≥ 3. The presence of a long-range gauge symmetry is what distinguishes

the “topological” or “free-charge” phase from the “Higgs-confining” phase, which has only

short-range entanglement. This phase boundary exists even though there is a matter field

which is charged in the fundamental representation of the gauge group.

means that X̃ = 1 on all sites. As this is a product state, there is no long-range

correlation. In unitarity gauge we can reach all other eigenstates by acting with

subsets of the Z(e) on this state: each Z(e) we act with creates a string with

two charges at the endpoints, as in equation (3.21), and the energy of any such

eigenstate is just proportional to the length of all strings. In this limit the theory

is therefore in what we might call a “confining phase”: a string which connects

any finite point to infinity necessarily involves a linearly divergent energy, and

without such a string we cannot have a state which is charged under U(g, ∂Σ)

unless we put a charge “right next to the boundary”, but this is precisely what

our insistence on restricting to states where T00 decays at infinity (or just being

in AdS) prevents. In this limit we therefore have no long-range gauge symmetry,

since we fail condition (3) of definition 3.1.

• Small λ, finite g: In this limit the unitarity-gauge Hamiltonian (3.37) is dom-

inated by − 1
λ

∑
e∈E Z(e), so the ground state in unitarity gauge has Z = 1 on

all links except for the boundary-piercing ones. This is again a product state, so

there is no long-range correlation. Excited states are produced by acting with

X(e), and the energy again scales with the number of X(e) we act with. Since

the behavior of the boundary-piercing links differs from the rest of the space, the

stress tensor does not go to zero at infinity and condition (3) of definition 3.1 is
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violated.54 This phase might be called the “Higgs phase”, since λ behaves like

the inverse of the radius of the Higgs field in the Abelian Higgs model, but in fact

one of the main points of [105] is that this phase is continuously connected to the

previous one, after all the excitations are string-like in both cases, so calling one

“confining” and the other “Higgs” is not really sensible: it is better to just say

that both have short-range entanglement and no long-range gauge symmetry.

• Large λ, finite g: In this limit the term−λ∑~x X̃(~x) just sets X̃ = 1 everywhere,

so the matter field drops out of the Gauss constraint and we are just left with pure

Z2 lattice gauge theory. At large g this is in the “confining phase” we discussed

above, with X = 1 on every link in the ground state. We discuss the small g limit

momentarily, but, for spacetime dimension d ≥ 3, as we decrease g one expects a

phase transition at some finite value of the coupling [120].

• Small g, finite λ: In the strict g = 0 limit, for d ≥ 3 the plaquette term sets

all Z = 1 so the Hamiltonian (3.36) just becomes that of the quantum transverse

field Ising model. This again has a phase transition at some finite value of λ.

There is no gauge field left, so there is no long-range gauge symmetry. This

transition persists when g is small but nonzero, at small λ we should still be in

the “Higgs” regime, but as λ increases the Ising transition moves us to a different

phase, which we now study.

• Small g, large λ: This is the fun regime. In unitarity gauge, the Hamiltonian

becomes

H = − 1

g2

∑

γ∈Γ
Z(γ)− λ

∑

~x

∏

~δ

X(~x, ~δ), (3.38)

which is sometimes called the “toric code” Hamiltonian [122]. These terms couple

different links together, so the ground state will not be a product state and there

is the possibility of some kind of interesting long-range correlation. In [122] it

was pointed out that one way to characterize this long-range correlation is to

study the theory on closed spatial manifolds with nontrivial topology. On such

manifolds, the hamiltonian (3.38) has a nontrivial ground state degeneracy, which

depends in an interesting way on the choice of manifold. This certainly is not

true for the trivial product ground states we found in the previous limits, which

54This may seem artificial, what is really going on here is that in this limit it is more natural to

instead choose boundary conditions where we have Z̃ = 1 on the blue sites in figure 9, and where we

then include the boundary-piercing links in the 1/λ term; we then just have Z = 1 on all links in the

ground state. This state however is not invariant under the asymptotic symmetry, as we expect for

the Higgs vacuum, so it still violates condition (3).
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give a unique ground state on any manifold. Indeed in this limit the space of

zero energy states is precisely that of a nontrivial topological field theory, the

pure Z2 gauge theory. For our purposes however we are instead interested in

the excited states of this theory in infinite volume, which are nontrivial even

when the spatial topology is trivial. To understand these excitations, we need to

first understand the ground state. As explained in [122], the Hamiltonian (3.38)

is nicely understood using the machinery of stabilizer codes [123]. We review

this machinery briefly in appendix G, where we use it to show that on a spatial

cubic lattice with our choice of boundary conditions, the Hamiltonian (3.38) has

a unique ground state, on which
∏

δX(~x, δ) and Z(γ) both act as the identity

for all γ and ~x (we also compute the ground state degeneracy for any lattice

which discretizes a spatial d − 1-manifold, with or without boundary, in terms

of topological invariants of that manifold). We may then ask how creating a

charged excitation changes the energy. For example we can act on this ground

state with a line of Z operators which extends from a boundary-piercing link to

some finite point ~x0 in the center of the lattice. This operator clearly commutes

with all Z(γ), and in fact it commutes with almost all
∏

~δX(~x, δ) as well. The

only term in the Hamiltonian (3.38) it does not commute with is
∏

~δX(~x0, δ),

which it anticommutes with instead. Therefore acting with this operator on the

ground state increases the energy by 2λ, which obviously is finite even in infinite

volume. Thus this phase allows finite-energy charged excitations: in [105] it was

called the “free charge” phase for this reason, we instead say that there is a Z2

long-range gauge symmetry.

Thus we see that condition (3) in definition 3.1 is indeed sufficient to distinguish the

two phases in diagram 11, even though the Wilson loop has a perimeter scaling in both

phases.55 On one side of the phase boundary there is a long-range gauge symmetry,

while on the other side there isn’t.

3.4 Comments on the topology of the gauge group

In lattice gauge theory with no charged matter, the topology of the gauge group is

explicitly included in the formulation of the theory. This may at first seem to be in

some tension with the fact that if G and G′ are connected Lie groups with isomorphic

55Note that we did not need to use a temporal Wilson line to check condition (3), since we could just

directly use the dynamical charge Z̃. The analysis would have been identical using a temporal Wilson

line: given the modified constraint (3.34), we have a new set of gauge-invariant operators which are

simply Wilson lines which connect the boundary to the location of the temporal Wilson line. Their

energetics work in the same way as Wilson lines which end on dynamical charges.
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Lie algebras, then for d > 2 they have identical continuum Yang-Mills path integrals on

Rd. In more detail, we can define the boundary conditions on the Yang-Mills field in Rd

by conformally compactifying to Sd. G and G′ have the same set of principal bundles

over Sd, as well as the same set of connections on those bundles, and therefore the sum

over bundles and connections on those bundles is the same for G and G′.56 The global

information about the gauge group in the lattice theory is lost in the continuum limit

because integrals over group variables on the edges of the lattice are dominated by

group elements which are close to the identity. But does this then mean that if G and

G′ have the same Lie Algebra, then pure Yang-Mills theory on Rd with gauge group

G is identical to pure Yang-Mills theory on Rd with gauge group G′? This question

was studied in detail in [125], where it was argued that in fact they are different. We

basically agree with their reasoning and their conclusion, but as our perspective is

different in emphasis we now briefly present it.57

The main point of [125] was that, although the Yang-Mills path integral is identical

on Rd for gauge group G and gauge group G′, the set of line and surface operators is

actually different. What we want to emphasize here is that this statement is true

despite the fact that the Hilbert space and Hamiltonian of these theories on spatial

Rd−1 are identical. This may seem paradoxical: operators are just maps from Hilbert

space to itself, so how can two theories with the same Hilbert space have different

operators? The resolution of this puzzle is that the operators exist either way, it is

only their interpretation which is different. This is possible because, as we reviewed in

section 1.1, there is additional algebraic structure in quantum field theory beyond just

the set of all operators on Hilbert space. Namely, for each spatial subregion R we must

have an associated subalgebra A[R] of the full set of operators. Until we have decided

which subalgebras are associated with which spatial regions, we have not fully specified

a quantum field theory. We now illustrate this for the simplest example: G = R and

G′ = U(1).

In fact we already discussed the difference between R and U(1) gauge theory for

56To see that the bundles are the same, note that Sd is constructed from the union of two balls, each

of which is contractible and has boundary Sd−1. Principal G bundles over Sd are therefore classified

by πd−1(G). Since G and G′ are connected and share a Lie algebra, they are each a quotient of the

same connected simply-connected covering group G̃ by some discrete central subgroup (see theorem

A.2). Using basic properties of covering spaces we then have πd−1(G) = πd−1(G
′) = πd−1(G̃) for d > 2

[124]. Since connections on these bundles are Lie-algebra-valued one-forms, they will then clearly also

coincide for G and G′.
57If there are charged matter fields then the meaning of the topology of the gauge group is sometimes

more obvious: for example an SU(2) gauge theory with matter in the fundamental representation of

SU(2) cannot be viewed as an SO(3) gauge theory, since the SU(2) fundamental is not a representation

of SO(3).
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d = 4 in section 2.5: the R theory has more Wilson lines, since the representations of R

are continuous, but the U(1) theory has ’t Hooft lines which the R theory lacks. We now

expand a bit more on this point. On Rd, neither U(1) nor R have nontrivial bundles,

so we may simply define the Hilbert space to be null space of the Gauss constraint in a

Hilbert space spanned by a set of states labeled by spatial configurations of a one-form

Aµ. Acting on this Hilbert space we may consider the set of two-dimensional operators

Wα(D) = eiα
∫
D

F , (3.39)

with D a spatial disk, and the set of codimension-two operators

Tβ(B) = e
2πi

q2
β
∫
B
⋆F
, (3.40)

where B is a d−1 dimensional spatial ball. These operators are clearly gauge-invariant

for any real α and β, and it would be silly to say that one or the other doesn’t exist. The

nontrivial point however is that there are certain collections of special values of α and β

for which we can interpret theWα as one-dimensional loop operators on ∂D and the Tβ
as d − 3 dimensional closed surface operators on ∂B without violating commutativity

at spacelike separation: for α and β in such a set, Wα and Tβ commute even if ∂D and

∂B are linked in space (see [58–60] for related discussion). The former are then referred

to as Wilson lines and the latter as ’t Hooft surfaces. These sets are not all mutually

compatible, so we need to make a definite choice which one to adopt. The simplest

such collection allows α to be an arbitrary number but requires β to vanish: making

this choice is equivalent to choosing the gauge group to be R. Another good choice is

to take α and β to both be integers: this is equivalent to choosing the gauge group

to be U(1) with coupling q. More generally what we need is the Dirac quantization

condition

αβ ∈ Z (3.41)

for all allowed α and β: up to a rescaling of q all other choices for the allowed set are

equivalent to either β = 0, α arbitrary or α, β ∈ Z.

This discussion hopefully makes it clear that on Rd the distinction between R and

U(1), or more generally between G and G′, is “semantic”. The reader may object that

we should therefore instead just view the G and G′ theories on Rd as being identical.

We disagree: as emphasized in [125], once we study these theories on other spacetime

topologies they have different principal bundles and they really are different. For exam-

ple the spectrum of the Hamiltonian in the R gauge theory is continuous on a spatial

torus, while in the U(1) gauge theory it is discrete. These distinctions arise because on

more complicated topologies we can have loops and codimension-three closed surfaces

which are not boundaries, so there can be Wilson loops and ’t Hooft surfaces which
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cannot be realized as integrals of the field strength. We view it is a major advantage

of demanding the additional structure of a local net of operator algebras on Rd that it

forces us to acknowledge the distinction between U(1) and R without needing to go to

other topologies.

For some readers this may still feel a bit abstract however: wouldn’t it be better if

we could just do an experiment? For example in real quantum electrodynamics is the

gauge group U(1) or R? One possibility would be to argue that this question is semantic

and therefore meaningless, but this is clearly false. For example we might tomorrow

observe a magnetic monopole, in which case we would immediately know the gauge

group is U(1). Moreover if we are lucky, that monopole might have the minimal charge

allowed by Dirac quantization (meaning β = 1), in which case the set of allowed α and

β would be determined once and for all, as would the gauge group of electrodynamics.

Alternatively if we could convince ourselves we’d discovered a particle of charge
√
2,

we would immediately know the gauge group is R.58 Absent such discoveries, we are in

a situation where indeed one might say that we do not know whether the gauge group

of electrodynamics is U(1) or R. As Bayesians however, it would be crazy to ignore the

observational fact that the charges of the electron and proton are exact opposites to

within one part in 1021 [126]. By far the most plausible explanation of this remarkable

agreement is that the gauge group of electrodynamics is indeed U(1), which presumably

is why this is the terminology most people use.

In fact one of the main goals of this paper is to argue that in quantum gravity

dynamical objects exist carrying all charges allowed by the topology of the gauge group

(conjecture 2), which is precisely saying that in quantum gravity on Rd (or AdSd) we will

never be in the situation where the gauge group is ambiguous. This is quite plausible

also from the point of view that quantum gravity should include a sum over topologies,

since on general topologies the gauge group is unambiguous. Indeed our argument for

conjecture 2 in AdS/CFT will be based on a refined version of this observation.

3.5 Mixing of gauge and global symmetries

There are interesting situations where global symmetries can combine with long-range

gauge symmetries to make a more general kind of structure.59 Rather then attempting

a general discussion of this phenomenon, we will just give a simple example. Namely,

58Convincing ourselves of this would probably be impossible, since we always measure charge with

finite precision. A version of this which is more practical would be discovering a heavy particle in the

fundamental representation of SU(3) color which was neutral under the electroweak SU(2) × U(1),

which would immediately tell us that the gauge group of the standard model is SU(3)×SU(2)×U(1)

instead of (SU(3)× SU(2)× U(1))/Z6.
59This section was inspired by a discussion with Thomas Dumitrescu.
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consider two free complex scalar fields in d = 4 dimensions. This theory has a U(2)

global symmetry. We may then turn on a dynamical gauge field for the diagonal U(1)

subgroup. What is global symmetry group of the resulting theory? A first guess might

be SU(2), but this wrong because the central element

gc ≡
(−1 0

0 −1

)
(3.42)

is actually a long-range gauge transformation; it acts trivially on all local operators,

violating condition (c) of definition 2.1. We might then guess SU(2)/Z2, but this group

is not represented accurately on the full Hilbert space. For example the group element(
i 0

0 −i

)
squares to gc, which is represented nontrivially on the Hilbert space as an

element of the long-range gauge symmetry group, instead of squaring to the identity

like it would in SU(2)/Z2. One way of describing this situation is to say that the global

symmetry group is indeed SU(2)/Z2, but that it is realized on the Hilbert space in the

generalized kind of projective representation discussed in appendix B, which allows the

phase α from equation (B.1) to depend on the total electric charge. This is one way to

think about it, but we think a better description is to say that, rather than having a

separate global symmetry and long-range gauge symmetry, the two are mixed together

into a new kind of symmetry with symmetry group U(2). Clearly more could be said

about this, but we leave it for future work. We note now however that our argument

against global symmetries in quantum gravity will rule out this possibility as well.

4 Symmetries in holography

Having at last established our notions of global symmetry (definition 2.1) and long-

range gauge symmetry (definition 3.1) in quantum field theory, we are in a position to

move on to quantum gravity and begin establishing conjectures 1-3 in AdS/CFT. Along

the way we will also clarify the duality between global symmetries in the boundary

theory and long-range gauge symmetries in the bulk.

4.1 Global symmetries in perturbative quantum gravity

To argue that there are no global symmetries in quantum gravity, we need to first

acknowledge that our definition 2.1 of global symmetry, which is for quantum field

theories, needs to be modified to deal with the following two issues:

• General relativity has a long-range spacetime gauge symmetry, diffeomorphism

invariance, which precludes the existence of any strictly local gauge-invariant
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operators. Since condition (c) in definition 2.1 required global symmetries to act

faithfully on the local operators, that definition becomes trivial.

• We do not yet have a complete bulk theory of quantum gravity, and our un-

derstanding based on effective field theory applies only in restricted situations.

Since we are trying to rule out exact global symmetries, we need to say something

about how they are defined in regimes which go beyond the validity of effective

field theory.

We postpone the second point to the next subsection, here we first address the question

of how to define global symmetries in gravitational theories within the framework of

effective field theory coupled perturbatively to gravity.

We begin by recalling a few basic facts about the long-range diffeomorphism sym-

metry of gravity in asymptotically-AdS spacetime. In any asymptotically-AdS space-

time, the geometry is required to approach the AdS metric60

ds2 = −(r2 + 1)dt2 +
dr2

r2 + 1
+ r2dΩ2

d−1 (4.1)

at large r. As in our discussion of U(1) gauge theory below equation (3.8), we should

only consider diffeomorphisms which preserve these boundary conditions, and more-

over we should quotient only by those diffeomorphisms which become trivial at large

r [127]. The diffeomorphisms which are nontrivial at large r but nonetheless preserve

the boundary conditions are precisely those which approach isometries of AdSd+1, so

the quotient of the set of diffeomorphisms which approach isometries by the set of

diffeomorphims which become trivial is isomorphic to the group of AdSd+1 isometries,

SO(d, 2).61 Physical states and operators must both be invariant under diffeomor-

phisms which become trivial at infinity, but they will mostly transform in nontrivial

representations of the quotient group SO(d, 2), which we will refer to as the asymptotic

conformal symmetry : it is a spacetime version of a long-range gauge symmetry.

It is clear that any strictly-local bulk operator will not be invariant under the

set of diffeomorphisms which become trivial at infinity (unless it is topological, which

is a situation we don’t consider here). To define a physical observable, we therefore

need to introduce some gravitational analogue of the Wilson lines extending from the

boundary to an interior point which we used to define operators carrying gauge charge

60So far we have used d to denote the spacetime dimension of whatever quantum field theory we are

considering. Since we now will be considering both the bulk gravity theory and its dual conformal field

theory, we now adopt the standard convention that the boundary CFT has d spacetime dimensions.
61If there are fermions then this group is instead Spin(d, 2). When d = 2 the symmetry is enhanced

to Virasoro symmetry, but we will not make use of this.
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in definition 3.2. In bulk effective field theory coupled perturbatively to gravity, we

can construct such operators as “gravitationally dressed” versions of ordinary local

operators. The idea is to introduce a “cutoff surface” at some large but finite r = rc,

choose a point x ≡ (rc, t,Ω) on this surface, fire a spatial geodesic into the bulk from

x of proper length

ℓ ≡ ℓ̂+ log rc, (4.2)

and with tangent vector at x of the form

ξ = −(rc + ξ̂r/rc)∂r + (ξ̂i/r2c )∂i, (4.3)

where the i index runs over t and Ω, and then insert a local operator at the bulk

endpoint x̊ of this geodesic. In the limit rc → ∞ the quantities ℓ̂ and ξ̂µ are finite,

and the choice of cutoff surface induces a residual conformal frame on the boundary. If

the operator we insert at the bulk endpoint is a scalar, then this construction defines

a nonlocal operator which is invariant under diffeomorphisms which become trivial

at infinity. It is labelled by a boundary point (t,Ω), a renormalized tangent vector

ξ̂µ, and a renormalized geodesic distance ℓ̂. We will refer to such an operator as

a gravitationally-dressed scalar, and we illustrate one in the left diagram of figure

12. If the local operator we insert in the bulk has tensor and/or spinor indices, then

further dressing is necessary: the natural dressing, which we will adopt, is to pick the

components of any such an operator in a frame which we parallel transport in from x

along the dressing geodesic. For example if V µ is a vector field at the bulk endpoint

x̊(x, ℓ̂, n̂) of a dressing geodesic, and P ν
µ (̊x, x) is the matrix which parallel transports

a one-form along this geodesic from x to x̊, then the operator

Ṽ µ(x, ℓ̂, n̂) ≡ P µ
ν (̊x, x)V ν (̊x) (4.4)

is invariant under diffeomorphisms which become trivial at the cutoff surface. Explicitly

P µ
ν (̊x, x) =

(
P exp

[∫ ℓ̂+log rc

0

ds
dξλ

ds
ΓT
λ

]) µ

ν

, (4.5)

where Γλ is the matrix with components (Γλ)
µ
ν ≡ Γµ

λν , and ξµ is the tangent vector

to our dressing geodesic, parameterized by proper length s, so the resemblance to an

ordinary Wilson line is quite clear. In particular under diffeomorphisms we have

P ′ ν
µ (̊x′, x′) =

∂x̊α

∂x̊′µ
∂x′ν

∂xβ
P β
α (̊x, x), (4.6)

so in defining Ṽ we have indeed traded in a “bulk” tensor index for a “boundary” one.

To all orders in perturbation theory around a fixed background, two operators con-
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Figure 12. The action of asymptotic conformal symmetry on a gravitationally-dressed local

operator. The transformation will in general change the cutoff surface to a new one, shown

with red dots in the right diagram, so to define the transformed operator with respect to the

old cutoff surface, shown with the black dashes, we need to change ℓ̂ and ξ̂. At finite rc there

is also a change of (t′,Ω′) as we follow the geodesic in the right diagram from the new cutoff

surface back to the old one, but this vanishes as rc → ∞.

structed in this manner will commute if their dressing geodesics are spacelike-separated

by a finite amount in that background.62

It is instructive to consider the transformation properties of gravitationally-dressed

local operators under the asymptotic conformal symmetry. At first one might expect

that this symmetry acts trivially on ℓ̂ and ξ̂, since they are defined geometrically, but

in fact it does not. The reason is shown in figure 12: asymptotic conformal symmetries

act nontrivially on the cutoff surface r = rc, so acting on a dressed local operator with

an asymptotic conformal symmetry sends it to an operator whose dressing geodesic is

attached to a new cutoff surface. We therefore need to change ℓ̂ and ξ̂ to give the new

location of the operator in terms of the old cutoff surface, since otherwise we would not

be defining an action within a set of operators which are all defined in the same way.

We therefore have a transformation law

φ̃′
a′(t

′,Ω′, ℓ̂′, ξ̂′) = D a
a′ φ̃a(t,Ω, ℓ̂, ξ̂), (4.7)

where a denotes a collection of Lorentz indices located at x, a′ denotes the same col-

lection at x′, and the matrix D
a

a′ is determined from the transformation (4.6) together

with an additional parallel transport from the “new” cutoff surface back to the “old”

62The reader may consult [25, 128–133] for more details on the algebra of these kinds of operators.
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one.63 Note that the transformation (4.7) depends only on the geometry in the asymp-

totic region: as in electromagnetism, the identity component of the conformal group is

generated by a set of local boundary integrals constructed by contracting the asymp-

totic Killing vectors with the boundary stress tensor Tµν . In AdS/CFT we can define

Tµν as simply being the CFT stress tensor, but it also has a bulk definition [134] as the

derivative of the bulk path integral with respect to the “boundary” metric

γ{boundary}µν ≡ r−2
c γµν , (4.8)

where γµν is the induced metric on the cutoff surface.

With these preliminaries out of the way, we can now give a definition of (inter-

nal) global symmetry with symmetry group G in gravitational effective field theory in

asymptotically-AdS space. The basic idea is to define such a symmetry as a homomor-

phism from G into the unitary operators on the Hilbert space which faithfully acts by

conjugation on the set of gravitationally-dressed local operators, preserving the bound-

ary point x, renormalized distance ℓ̂, and renormalized tangent vector ξ̂. We moreover

require that the symmetry operators commute with the boundary stress tensor Tµν ,

and therefore with the asymptotic conformal symmetry. This definition however is not

quite satisfactory, for two reasons. First of all, in definition 2.1 we required global

symmetries not just to act locally on local operators, but indeed to preserve the al-

gebra A[R] of all operators in any spatial region R. In quantum field theories where

all operators in A[R] are generated from local operators in R this is automatic, but

this not true in all quantum field theories; in fact we met several examples where it

isn’t in section 2. We can address this by requiring that global symmetries also act

locally on “gravitationally-dressed surface operators”, meaning operators where we in-

sert a surface operator of arbitrary codimension onto a surface which is geometrically

constructed starting from the end of a boundary-attached dressing geodesic. “Acting

locally” means that the operator is supported on the same surface before and after we

act with the symmetry. In particular this tells us that global symmetries must also act

locally on operators which carry gauge charge, and are thus attached to the boundary

by a dressing Wilson line.

The other issue with the definition of the previous paragraph is that since we are

now defining bulk global symmetries to act on gravitationally-dressed local operators,

which are the same kind of objects which the asymptotic conformal symmetry acts on,

we need to make sure that we have not accidentally included any of that symmetry

63This business of rewriting things using the old cutoff surface is the holographic dual of the standard

fact that in conformal field theory, each conformal transformation is a combination of a diffeomorphism

with a Weyl transformation to return the metric to its original form (this is why for example a scalar

can transform with a nontrivial conformal weight even though it is in a trivial Lorentz representation).
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as part of our definition of the global symmetry group. Our requirements that global

symmetries fix the boundary point x to which any dressing geodesic is attached and

commute with the boundary stress tensor dispense with most of the asymptotic confor-

mal symmetry group. But in fact there is a residual piece: in a theory with fermions,

the Z2 fermion parity symmetry which acts as +1 on bosons and −1 on fermions is

correctly understood as part of the asymptotic conformal symmetry group: it is a rota-

tion by 2π. We therefore will include the following requirement for global symmetries

in bulk effective field theory: given a global symmetry group G, for any nontrivial nor-

mal subgroup H ⊂ G there must be two gravitationally dressed local operators which

transform in the same representation of the asymptotic conformal group, but which

transform in different representations of H. For example in the φ4 theory (2.6), φ is

a Lorentz scalar which is charged under the Z2 global symmetry while φ2 is a Lorentz

scalar which is neutral. This requirement rules out the general possibility of a global

symmetry for which the representation of any operator is determined by its Lorentz

representation. Fermion parity is the only example of this that we know of, and any

other would be very strongly constrained by locality. But in any case it would not be

independent of the asymptotic conformal symmetry, and so should be excluded.

4.2 Global symmetries in non-perturbative quantum gravity

We now turn to the question of how to define global symmetry in non-perturbative

quantum gravity. This is more difficult than for the perturbative quantum gravity of

the last section, since we need to come up with a precise property of a theory that we

do not know how to describe in detail. Once we move beyond bulk effective field theory,

we are in the realm of operators which create black holes, modifications of the spatial

topology, etc. Clearly the less we need to assume about such operators the better. On

the other hand, in ruling out bulk global symmetries, which is our ultimate goal, we

do not only want to discuss situations where the charged objects necessarily include

low-energy effective field theory excitations of the vacuum. For example what about

a global symmetry under which the lightest charged states are black holes? To rule

out such a symmetry, we need to extend our notion of bulk local operator to include

operators which create such states from the vacuum.

Let’s first recall how ordinary gravitationally-dressed local operators in bulk effec-

tive field theory are embedded into the dual conformal field theory in AdS/CFT. This

subject has a long history [135–138], the modern understanding [25], recently reviewed

in [139], is that bulk effective field theory operators should be viewed as logical oper-

ators on a protected subspace of the full CFT Hilbert space. The details of this will

not be important for us here, but the key point is that every bulk effective field theory

operator has a limited domain of validity in the CFT, essentially consisting of those
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states where its dressing does not place it far behind the horizon of a black hole. It

is only in the limit where we pull such an operator all the way back to the boundary

that this regime of validity extends to the full CFT Hilbert space. We now generalize

this idea to operators which create more complicated bulk objects via the following

definition:64

Definition 4.1. A quasilocal bulk operator in asymptotically-AdS quantum gravity, φ,

is an operator on the physical Hilbert space which has the property that there exists

a maximal distance L and a subspace Hcode of the full non-perturbative Hilbert space

such that:65

• Hcode contains the ground state.

• The correlation functions of an O(G0) number of dressed low-energy bulk opera-

tors with renormalized distance ℓ̂ < L from the boundary and O(G0) time sepa-

ration are well-described by low-energy bulk effective field theory for all states in

Hcode and to all orders in G.

• Acting on the vacuum with φ an O(G0) number of times keeps us within Hcode,

and there is a timeslice of the region attainable by operators with renormalized

distance ℓ̂ < L on which the support of φ consists entirely of a gravitational

Wilson line of the type defined in the previous subsection and a (possibly trivial)

gauge Wilson line, lying on the same boundary-attached geodesic. We sometimes

say that φ is semiclassical with respect to the operators in this region.

This definition extends the idea of a dressed bulk local operator to an operator

that affects a region of finite size in the bulk, up to the gravitational dressing which

tells us where that region is and how the object created transforms under the asymp-

totic conformal symmetry, as well as now allowing a nontrivial gauge dressing. The

restriction to Hcode ensures that we do not consider states where a huge central black

hole reaches into the region ℓ̂ < L.

64Readers who are only interested in ruling out global symmetries which act nontrivially on the fields

in the low-energy effective action can skip definition 4.1 and the ensuing subtleties. In definition 4.2

they can replace “quasilocal bulk operator” by “dressed local operator”, and the same contradiction

still arises.
65This definition involves approximations defined using the Newton constant G, which is measured

in AdS units. For any fixed example of AdS/CFT this is just a number, and we have to live with the

inherent imprecision of basing an approximation on the smallness of a finite number. After all if it

works for the fine structure constant, why shouldn’t it work here? Also, if there is a string scale which

is parametrically lower than the Planck scale, then strictly speaking we should either use that scale in

AdS units in our approximations or else upgrade effective field theory to effective string field theory.
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Figure 13. Using an asymptotic conformal transformation to turn a quasilocal bulk operator

into a boundary local operator. The quasilocal bulk operator acts in a potentially compli-

cated way in the bright green region in the center, and is connected to the boundary by the

dashed gravitational/gauge Wilson line. The appropriate one-parameter family of conformal

transformations “focuses” the operator towards the boundary endpoint of its dressing Wilson

lines, and as it does so the region it affects, shown in progressively darker shades of green,

gets smaller and smaller with respect to the boundary metric. States which are not in Hcode

for this operator get boosted off to infinite energy in the original conformal frame, so the final

limiting operator is well-defined and local on the full CFT Hilbert space.

So far this is just a bulk quantum gravity definition, but we now make two assump-

tions about how bulk quasilocal operators fit into AdS/CFT:

(1) By acting with the asymptotic conformal symmetry on any bulk quasilocal oper-

ator φ, and rescaling by a factor r∆c for some ∆, we can move all of its support to

a point on the AdS boundary, in such a way that Hcode can then be taken to be

the full CFT Hilbert space and φ becomes a CFT local operator with conformal

dimension ∆.

(2) Every CFT local operator of definite conformal dimension can be obtained from

the limit of a bulk quasilocal operator in this way.

These are not assumptions which we can “prove” without a non-perturbative bulk

description of quantum gravity, but they are quite plausible given the structure of
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Figure 14. The CFT dual of the conformal transformation in figure 13. By the state-operator

correspondence, any finite-energy state on the sphere is created by the insertion of a local

operator at the bottom of the Euclidean path integral, and the conformal transformation in

question just moves this operator up to the equator.

AdS/CFT.66 The motivation for assumption (1) is shown in figure 13. Assumption (2)

is a kind of converse to assumption (1), roughly speaking it says that acting with any

CFT local operator at boundary point x creates a highly boosted bulk object which is

localized near point x, even if that operator has very high conformal dimension. We

can justify this more carefully using the state-operator correspondence. Indeed note

that given any CFT local operator O of definite scaling dimension, we can define a

state of finite energy by inserting that operator at the south pole of the Euclidean path

integral. In the bulk this state describes an object of finite size, generically a black hole,

sitting in the center of the spacetime.67 If we now act on this state with the conformal

transformation shown in figure 13, the operator “slides up” the Euclidean sphere, as

shown in figure 14, leading to a state which is produced by acting on the vacuum with

the local operator O at the equator. We may then obtain the action of an associated

quasilocal bulk operator on states other than the vacuum by defining it as the image of

that local operator under the inverse of this conformal transformation, restricted to an

appropriate Hcode (strictly speaking we will also need to “comb” its gravitational and

gauge dressing to all end at a single boundary point, but this can be done using only

bulk low-energy effective field theory operators).

It is now at last time to give a definition of global symmetry in non-perturbative

asymptotically-AdS quantum gravity. Since we are ultimately trying to rule out the

66They can be proven within non-perturbative models of the correspondence constructed using

tensor networks, such as those of [140, 141].
67There is an exception to this statement if the operator obeys some sort of differential equation

in the boundary which causes the perturbation from the south pole to propagate up the side of the

sphere instead of up into the center of the bulk.
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existence of such symmetries, our definition does not need to capture all features we

might ideally like them to have: it is enough that those features it does capture already

lead to a contradiction! We therefore do not need to completely characterize the action

of the global symmetry on all possible bulk operators, quasilocal bulk operators will

basically be enough. Here is our definition:

Definition 4.2. A quantum gravity theory in asymptotically-AdS space has a global

symmetry with symmetry group G if the following are true:

(a) There is a homomorphism U(g, ∂Σ), not necessarily continuous, from G into

the set of unitary operators on the full diffeomorphism-invariant Hilbert space

associated to any boundary time-slice ∂Σ.68

(b) U(g, ∂Σ) acts locally on the set of quasilocal bulk operators, meaning that if

φ is a quasilocal bulk operator, then in the asymptotic region ℓ̂ < L, φ and

U †(g, ∂Σ)φU(g, ∂Σ) both are dressed by the same gravitational Wilson line, and

moreover if one is semiclassical with respect to all operators with ℓ̂ < L, then so

is the other with the same L.

(b’) U(g, ∂Σ) acts within the algebra A[R] of operators in a boundary subregion R ⊂
∂Σ, meaning that conjugating an element of A[R] by U(g, ∂Σ) gives us another

element of A[R]. Moreover it is continuous in the same sense as in condition (b)

from definition 2.1.

(c) U(g, ∂Σ) acts faithfully on the set of quasilocal bulk operators which are gauge

singlets, meaning that for all g ∈ G there is a quasilocal bulk operator with no

gauge Wilson line in the asymptotic region ℓ̂ < L which transforms nontrivially

under U(g, ∂Σ).

(d) For any normal subgroup H ⊂ G containing at least two elements, there exist

two gauge-singlet quasilocal bulk operators which transform in the same repre-

sentation of the asymptotic conformal symmetry but different representations of

H.

(e) U(g, ∂Σ) commutes with the boundary stress tensor Tµν .

Note that conditions (a), (b’), and (e) apply throughout the CFT Hilbert space,

while conditions (b), (c), (d) involve quasilocal bulk operators and thus only hold on the

appropriate subspaces for those operators. Conditions (a), (b’), and (e) are basically

68In asymptotically-AdS quantum gravity, to get a Hilbert space we need to pick a boundary time

slice. A priori we are not assuming that U(g, ∂Σ) has support only at the boundary of the spacetime.
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the AdS analogues of saying that the global symmetry preserves the (IR-safe version

of the) S-matrix of quantum gravity in asymptotically-flat space, while (b), (c), and

(d) say that the objects which carry the charge can live in the center of the bulk, not

just at the boundary. This definition essentially just upgrades that of the previous

subsection, which applied to gravitationally-dressed local bulk operators in effective

field theory, to one that applies to quasilocal bulk operators. There are two notable

points of departure however:

• We have allowed quasilocal bulk operators to have nontrivial gauge dressing, since

otherwise there would be local CFT operators which are not obtained as limits

of quasilocal bulk operators. In conditions (c) and (d) we then need to restrict

to gauge-singlet quasilocal bulk operators, since these are the ones which become

operators with compact support in the limit of vanishing gravitational coupling,

and we want to recover definition 2.1 in that limit.

• Condition (b’) may seem at first to follow from condition (b), and indeed for

local operators in R it does follow from the boundary limit of condition (b), to-

gether with an appropriate continuity assumption and also assumption (2) about

quasilocal bulk operators. In general quantum field theories however there can

be surface operators in the region R which are not generated by the local op-

erators in R, and we have not defined the “quasilocal bulk surface operators”

of which these would be limits. For example the closed Wilson loops in N = 4

Super Yang-Mills theory are limits of bulk operators which create closed strings.

To avoid the complexity of defining such operators, we have instead settled for

condition (b’), which will already be enough to achieve a contradiction.

We then have an immediate result:

Theorem 4.1. A global symmetry with symmetry group G of a holographic asymptotically-

AdS quantum gravity theory is also a global symmetry with symmetry group G of the

dual conformal field theory.

Proof. We need to show that definition 4.2 implies definition 2.1 in the boundary CFT.

Conditions (a), (b’), and (e) from definition 4.2 imply conditions (a), (b), and (d) from

definition 2.1, while condition (c) of (4.2), together with assumption (1) about bulk

quasilocal operators, implies condition (c) of (2.1)

This already suggests that something is wrong with the notion of a bulk global

symmetry, since in AdS/CFT we usually think that a boundary global symmetry should

be dual to a (long-range) gauge symmetry in the bulk. In fact this tension can be

sharpened into a real contradiction, leading to a proof of conjecture 1, as we now

explain.
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Figure 15. The Hubeny-Rangamani-Takayanagi surface γR is a bulk codimension-two surface

of extremal area, obeying ∂γR = ∂R, and homologous to R via a spatial surface HR. If there

is more than one such surface, we pick the one of smallest area. The entanglement wedge

W [R] is the bulk domain of dependence of HR, here it is the spacetime region between the

two codimension-one blue surfaces. According to the leading-order Ryu-Takayangi formula,

the von Neumann entropy of a CFT state on the subregion R is equal to the area of γR
divided by 4G.

4.3 No global symmetries in quantum gravity

We will now argue that the existence of any global symmetry on the bulk side of

AdS/CFT would be inconsistent with the local structure of the boundary conformal

field theory. The basic tool we will use is entanglement wedge reconstruction, which is

a recently-established property of the correspondence which says that there is a kind

of “sub-duality” between any spatial subregion R of the boundary CFT and a certain

subregion of the bulk, the entanglement wedge of R [21–24, 26]. Giving a detailed

explanation of this idea would take us too far afield, we refer the reader to [139] for

a recent overview, but the geometric definition of the entanglement wedge is given

in figure 15 (borrowed from [139]). What entanglement wedge reconstruction says is

that on an appropriate code subspace, any bulk operator in W [R] can be represented

in the CFT by an operator with support only in R. Therefore a boundary observer

with access only to R has complete information about what is going on in W [R], but

no information about what is going on in W [Rc]. Just how small the code subspace

needs to be for this statement to hold is a topic which is still being explored, see [26]

for an optimistic outlook on this question, but at a minimum entanglement wedge

reconstruction is expected to hold for any particular region R in a code subspace where

any black holes which are present are far outside of W [R].

We give two versions of our argument that there are no global symmetries. The
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first assumes that global symmetries in conformal field theory on a spatial sphere are

always splittable in the sense of definition 2.3, while the second does not but instead

requires us to consider more nontrivial bulk geometries which are under less control

from the boundary point of view. As explained in section 2.1, splittability of global

symmetries in conformal field theory on a spatial sphere follows from quite plausible

axioms for quantum field theory, and intuitively is an expression of the local structure

of the Hilbert space of quantum field theory on Rd.

Theorem 4.2. No quantum gravity theory in asymptotically AdS space which has a

global symmetry in the sense of definition 4.2 can be dual to a boundary conformal field

theory.

Proof. Say that we had a bulk theory with a global symmetry group G. By condition

(d) in definition 4.2, there are two quasilocal bulk operators which transform identically

under asymptotic conformal symmetry, but which transform in different representations

of G. We will show that this is inconsistent with entanglement wedge reconstruction.

Indeed note that by theorem 4.1, the symmetry operators U(g, ∂Σ) also give a

global symmetry of the boundary CFT provided that one exists. Say that we decompose

the boundary Cauchy slice ∂Σ as the closure of a union of n disjoint open regions Ri.

By splittability, we have that

U(g, ∂Σ) = U(g,R1) . . . U(g, Rn)Uedge, (4.9)

where Uedge is a unitary operator which “fixes up” the arbitrary choices which are made

in defining the U(g, Ri); it has support only in a small neighborhood of the union of the

boundaries of the Ri. Now consider the action of these U(g,Ri): by definition each one

implements the symmetry on all operators in the domain of dependence of Ri, while

it does nothing in the domain of dependence of its complement Rc
i . By entanglement

wedge reconstruction, in the bulk U(g,Ri) implements the global symmetry on all

operators which are supported only in the interior of W [Ri], does nothing to operators

which are supported only in the interior ofW [Rc
i ], and acts in a potentially complicated

manner in a neighborhood of the HRT surface γRi
.

The key point is that we can easily arrange for the two charged quasilocal bulk

operators we are promised by condition (d) of definition 4.2 to be located such that

their only support in the W [Ri] is their gravitational Wilson lines. The basic idea was

already described in the introduction around figure 1, the precise version for quasilocal

bulk operators is shown in figure 16. But since via (4.9) the charge is expressed entirely

in terms of CFT operators with spatial support in regions whose entanglement wedges

can access only the gravitational Wilson line parts of our quasilocal bulk operators, and
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Figure 16. For any quasilocal bulk operator, we can always choose a large enough collection

of small enough boundary regions that their entanglement wedges all lie in the “semiclassical

region” of the code subspace for that operator. Here we illustrate this for a bulk timeslice

on which the gravitational dressing of the operator consists of a single gravitational Wilson

line, indicated with the dotted line, and the entanglement wedges of the regions are shaded

in grey.

since our two operators have identical gravitational Wilson lines since they transform

in the same representation of the asymptotic conformal symmetry, there is no way for

them to transform in different representations of our global symmetry.

We emphasize that this contradiction arises already “within the code subspace”,

since to get into trouble we need only study quantities like

〈0|φ†U †(g, ∂Σ)φU(g, ∂Σ)|0〉, (4.10)

which involve only states obtained by acting in the vacuum with φ, U(g, ∂Σ), the

U(g,Ri), and Uedge. U(g, ∂Σ) should clearly preserve any reasonable code subspace,

and since Uedge has support only in a small neighborhood of ∪i∂Ri we can take it to

do so as well, at least in the vicinity of the time slice we consider in figure 16. Arguing

that the U(g, Ri) individually can be taken to preserve the code subspace is a bit more

subtle, but the idea, as already mentioned in the proof just given, is that since each

one preserves all expectation values of operators supported in the interior of D[Rc
i ], and

merely acts with the global symmetry on all expectation values of operators supported

in the interior of D[Ri], then it should preserve the semiclassical structure of the bulk

everywhere away from a neighborhood of the HRT surface γRi
. By smearing out the

region of overlap near Ri, we can arrange for the energy created at the boundaries

of the entanglement wedge to be finite: essentially we are just using entanglement
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wedge reconstruction to show that if they existed then bulk global symmetries would

be splittable, at least if we take our bulk region to be an entanglement wedge.69

We note in passing that our proof of theorem 4.2 applies equally well to spontaneously-

broken global symmetries in the bulk, since we did not assume anywhere that the

vacuum was invariant. It is amusing however to think about what such a global sym-

metry would have meant in the boundary CFT. For simplicity consider the case of a

spontaneously-broken U(1) global symmetry in the bulk: there would be a massless

Goldstone boson, which would be dual to a primary scalar operator of dimension d

in the boundary CFT. The coefficient of this operator in the CFT action would set

the symmetry-breaking expectation value for the Goldstone boson in the bulk, so the

set of degenerate vacua would correspond to a continuous family of CFTs obtained by

sourcing this operator with a finite coefficient: the operator would therefore need to

be “exactly marginal”. Moreover the symmetry would ensure that in fact these CFTs

were all isomorphic! In more modern parlance, we would have a nontrivial conformal

manifold on which all the CFTs were dual to each other.70 We do not know of any

examples of this, and find it rather implausible from the point of view of conformal

perturbation theory, which is consistent with theorem 4.2.

Our second proof of theorem 4.2 proceeds on similar lines, except that instead

of taking the Ri to be n disjoint subregions of a connected boundary as in figure

16, we instead take them to be connected components of a disconnected boundary.

69When the symmetry group G is continuous, it is not necessary to argue that Uedge and U(g,Ri)

preserve the code subspace. The reason is that we may then take the logarithm of (4.9) to get an

expression involving sums of charges, and then when we compute the commutator of the total charge

with a quasilocal bulk operator φ we simply have a sum of commutators with boundary operators

supported in regions whose entanglement wedges cannot reach the bulk endpoint of φ, and which

therefore must commute with it. In quantum information theory this argument is called the “Eastin-

Knill theorem” [142]. Without further assumptions it does not apply to discrete symmetry groups,

which is why we have instead chosen to use special properties of holographic codes to argue that Uedge

and U(g,Ri) can in fact be taken to preserve the code subspace without disrupting the semiclassical

picture of the bulk away from the γRi
.

70This situation can also be described as spontaneous symmetry breaking in finite volume in the

CFT. This is often said to be impossible, but in fact there are quantum field theories which exhibit

spontaneous symmetry breaking in finite volume, at least in the sense of having exactly degenerate

vacua related by the symmetry. For example in 1 + 1 electrodynamics with a θ term,

S = − 1

2q2

∫
F ∧ ⋆F − θ

2π

∫
F, (4.11)

at θ = π on a spatial circle the charge conjugation symmetry F ′ = −F acts nontrivially on a pair

of degenerate vacua [143]. We do not know of any examples in theories with non-topological local

operators.
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Figure 17. A spatial slice of a three-exit wormhole for d = 2. The central region is not in

the entanglement wedge of any one of the boundary components, but is in the entanglement

wedge of any two.

Splittability of symmetries on these components is then automatic, since the Hilbert

space of any quantum field theory on a disconnected space is always the tensor product

of the Hilbert spaces of the connected components, so along the lines of theorem 2.1

any global symmetry in the boundary CFT can be decomposed as

U(g, ∂Σ) = U(g,R1) . . . U(g, Rn), (4.12)

without any need for a Uedge. The idea is then to consider the action of this symmetry on

states where the n asymptotic regions are all connected in the bulk via a wormhole. The

AdS-Schwarzschild geometry is one such spacetime, which is dual to the thermofield

double state

|ψtfd(β)〉 ≡
1

Z[β]1/2

∑

i

e−Eiβ/2|i⋆〉|i〉 (4.13)

of the CFT on the disjoint union of two spheres for sufficiently small β [144], but for our

purposes we need to consider geometries with n ≥ 3. There will then be an “interior”

region which is not contained in the entanglement wedge of any one of the Ri, as shown

for n = 3 in figure 17, so we may again reach the same contradiction shown in figure

16. This version of the argument has two appealing features: it dispenses with any

assumption about splittability in the boundary CFT, and it makes the importance of

black holes more apparent (black holes are implicitly present in any argument based on

entanglement wedge reconstruction [25]). The main disadvantage however is that it is

not immediately obvious that such configurations indeed exist as states in the Hilbert
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space of n copies of the CFT on a spatial sphere, and it is also not immediately obvious

that by taking n to be large we can arrange for the interior region to be large enough to

contain the object created by any particular quasilocal bulk operator. Indeed no such

construction has been worked out in complete detail, but in d = 2 quite a lot is known

and there is no sign of any obstruction. Moreover there is no indication that any new

obstruction will arise in higher dimensions. We review the current status for d = 2 in

appendix H, and we suggest a region of moduli space which seems likely to satisfy all

the necessary constraints.

4.4 Duality of gauge and global symmetries

Having now established that global symmetries cannot exist in the bulk of AdS/CFT,

one might then ask what a global symmetry of the boundary CFT is dual to in the

bulk. The traditional answer is a gauge symmetry [20], but as we discussed in section

3, gauge symmetry in the conventional sense is too ambiguous of a notion to be dual to

something as precise as a global symmetry. We now argue that the correct statement is

that a splittable global symmetry of the boundary CFT is dual to a long-range gauge

symmetry in the bulk. This proposal is clearly not subject to the contradiction of

theorem 4.2, since an operator which creates an object carrying gauge charge in the

center of the bulk must have a Wilson line attaching it to the boundary, and this Wilson

line will always enter the entanglement wedge of at least one of the Ri in figure 16 or

figure 17.

We defined long-range gauge symmetries in quantum field theory via definition

3.1, to extend them to quantum gravity we just need to include gravitational dressing

for the Wilson lines and loops and restrict them to appropriate code subspaces where

that dressing does not place them far behind black hole horizons. Since the localized

asymptotic symmetry operators U(g,R) are supported only at the boundary, they will

make sense on the full Hilbert space. Moreover, as in assumption (b’) from definition

4.2, we will require the bulk long-range gauge symmetry U(g, ∂Σ) to act within the local

algebra A[R] for any boundary spatial region R; the motivation is again the idea that

A[R] is generated by operators which are limits of quasilocal bulk operators, possibly

also of the surface variety which we have not carefully defined, with any dressing Wilson

lines ending in R.

We first argue that a long-range gauge symmetry in the bulk implies a splittable

global symmetry in the boundary with the same symmetry group. The obvious idea is

to take the U(g,R) of the bulk long-range gauge symmetry to be the U(g,R) of a split-

table boundary global symmetry. We then need to establish that they obey conditions

(b-d) of definition 2.1, and also (2.16). Condition (b) follows by the discussion at the

end of the previous paragraph, and (2.16) follows from the algebra (3.3) of the Wilson
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lines with the U(g,R). Condition (d) follows because the boundary stress tensor Tµν
is the limit of the bulk metric, which is neutral under any (internal) long-range gauge

symmetry (the metric would have to transform in a one-dimensional real unitary rep-

resentation that preserves its signature, but there are no such representations). The

nontrivial step is to argue for condition (c), the faithfulness of the CFT global symme-

try on the set of local operators. Condition (3) in our definition 3.1 of long-range global

symmetry is clearly necessary for this to be possible, since a CFT operator transforming

nontrivially under the global symmetry would be dual to a state of finite energy which

is charged under the long-range gauge symmetry. But just because charged states are

allowed, this does not mean they exist. In fact saying they do is basically the content of

conjecture 2! Since establishing conjecture 2 is the main goal of the following section,

we will here simply assume it, in which case by assumption there are charged states

in all representations of the bulk gauge group, and therefore that group is represented

faithfully on the set of local operators in the boundary CFT.

Conversely we now would also like to argue that a splittable global symmetry in the

boundary CFT implies the existence of a long-range gauge symmetry in the bulk with

the same symmetry group. This argument is more difficult to make precise, since as

part of it one would need to use special properties of the CFT which arise from it having

a semiclassical holographic dual in the first place. We have not had to deal with this so

far because in proving theorem 4.2, and also in the argument of the previous paragraph,

we started in the bulk and went to the boundary. What exactly the assumptions are

on the CFT which lead to a semiclassical dual is not really a settled question, see

[145–149] for a sampling of recent work and [139] for a review of some aspects of the

problem. Here we will settle for arguing that if a CFT has a semiclassical dual, then

the U(g, R) from a splittable global symmetry and the operators charged under that

symmetry naturally give boundary conditions for reconstructing a bulk gauge field and

bulk operators charged under it by solving the equations of motion derived from the

assumed low-energy bulk Lagrangian radially inwards [128, 150].

Indeed by the argument of theorem 4.2 the U(g, R) operators must be localized

on the boundary from the bulk point of view, and it is natural to identify them with

the localized asymptotic global symmetry operators U(g,R) from definition 3.1. Their

algebra with the charged boundary local operators whose existence is required by defi-

nition 2.1 is consistent with interpreting them as the boundary limits of quasilocal bulk

operators carrying gauge charge in the form of a boundary-attached Wilson line. The

existence of these charged boundary local operators also implies, via the state-operator

correspondence, that in the bulk description there are states of finite energy which are

charged under the long-range gauge symmetry, so condition (3) in definition 3.1 is satis-

fied. It is more nontrivial to evolve these boundary operators inwards to construct that

– 94 –



the Wilson lines and Wilson loops with support in the bulk, how we do this depends on

the low-energy bulk Lagrangian, and also on the topology of spacetime. For example

if the boundary global symmetry group is connected, we work near the vacuum, and

the bulk effective action is dominated by the Yang-Mills term

S = − 1

4q2

∫
dd+1x

√−gF a
µνF

µν
a , (4.14)

then at leading order in q, one can use the AdS/CFT dictionary to derive an expression

of the form

Aa
µ(x) =

∫
dXKab

µν(x,X)Jν
b (X), (4.15)

where X is a boundary point, x is a bulk point, Jν
a is the Noether current of the

boundary global symmetry, and Kab
µν is a c-number function. This expression may

then be systematically corrected to higher order in the interactions, producing a CFT

representation of Aa
µ (in some gauge) which obeys the bulk equations of motion derived

from the bulk effective Lagrangian to all orders in perturbation theory [138, 139, 151,

152]. A similar analysis should work in the presence of Chern-Simons terms, θ terms,

etc. Once we have Aa
µ, we may then construct the desired Wilson lines and loops.

The case where the gauge group is discrete is both simpler and more nontrivial:

the equations of motion become easier to solve since at leading order the relevant line

and surface operators are topological, but since we no longer have a Noether current

there is no formula along the lines of (4.15). What we need to do instead is reconstruct

the charged matter fields, which do have representations similar to (4.15), and then use

the fusing operation shown in figure 8 to extract the Wilson lines and Wilson loops. It

may seem surprising that the charged matter fields are necessary in the discrete case

when they weren’t in the continuous case, but we will momentarily see that, as first

pointed out in [17], the charges are also necessary for reconstructing the bulk gauge

field in the continuous case if the spacetime topology is nontrivial.71

We close this section by noting that an alternative perspective on the relationship

between the boundary global symmetries and bulk gauge symmetries is provided by

the observation that by using the U(g,R), together with the Noether current for the

global symmetry in the continuous case, we can turn on a background gauge field in the

CFT for the global symmetry as in section 2.3. This background gauge field is quite

71In situations where the charged operators in the boundary theory all have high scaling dimension,

in the bulk we will need a version of the fusing of figure 8 which makes sense for quasilocal bulk

operators. We will not attempt to say more about this, fortunately our arguments for conjectures

2-3 do not rely on this since we will only need the converse statement that a bulk long-range gauge

symmetry implies a boundary global symmetry.
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naturally interpreted as the fixed boundary value of a bulk gauge field [153], although

to really see that this is correct we need to reconstruct the dynamical part of that gauge

field, as just discussed.

5 Completeness of gauge representations

We now turn to establishing conjecture 2, which in AdS/CFT we can now state more

precisely as claiming that whenever there is a long-range gauge symmetry in the bulk

gravity theory, in the boundary CFT there are states in the Hilbert space on a spatial

Sd−1 which transform in all finite-dimensional irreducible representations of the global

symmetry dual to that long-range gauge symmetry. Before doing so, we need to first

complete our argument from subsection 4.4 that a long-range gauge symmetry in the

bulk indeed implies a global symmetry in the boundary with the same symmetry group:

in that argument we assumed that the asymptotic symmetry operators U(g, ∂Σ) act

faithfully on the set of boundary local operators rather than showing this. We will

show this in a moment, but first we point out that in fact establishing it is actually

also sufficient to establish that there are states of the CFT on Sd−1 transforming in

all irreducible representations of the bulk gauge group. This follows from two conve-

nient facts about compact Lie groups (recall that we have defined long-range gauge

symmetries to require the gauge group to be compact). The first is theorem A.10,

which says that any faithful unitary representation of a compact Lie group has a faith-

ful subrepresentation which is finite-dimensional. The second is theorem A.11, which

says that if ρ is a finite-dimensional faithful representation of a compact Lie group G,

then any finite-dimensional irreducible representation of G appears in the direct sum

decomposition of ρ⊗n ⊗ ρ∗m for some finite n and m. The idea is to apply these results

to the action D of G on the set of local operators defined by equation (2.5).72 Indeed

condition (c) of definition 2.1 and theorem A.10 tell us that there is a finite subset

of the local operators which transform in a faithful representation of G, and theorem

A.11 then tells us that by acting with products of these operators and their hermitian

conjugates on the vacuum, we can prepare states which transform in any irreducible

representation of G. Thus to establish conjecture 2 in AdS/CFT, again invoking the

state-operator correspondence, we need only show that the long-range gauge symmetry

acts faithfully on the Hilbert space of the CFT on Sd−1.

The basic idea for establishing this faithful action appeared already in [17] for

the special case G = U(1), we here extend it to arbitrary compact G. We begin by

72In applying them we need to know that D actually gives a good continuous representation of G.

Theorem C.4 tells us that this will be the case if the ground state on Sd−1 is invariant, and the state

operator correspondence tells us that it will be (the identity operator is always neutral).
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Figure 18. A wormhole-threading Wilson line.

noting that if we study a theory with a long-range gauge symmetry in the maximally

extended Ads-Schwarzschild background, there are Wilson line operators which begin

on one connected component of the spatial boundary and end on the other, threading

the wormhole in between. We illustrate such a Wilson line in figure 18. In any partic-

ular irreducible representation α, the algebra of this Wilson line with the asymptotic

symmetry operator on the “right” component of the spatial boundary, denoted ΣR, is

given by equation (3.3) to be

U †(g,ΣR)WαU(g,ΣR) = Dα(g)Wα, (5.1)

where we have suppressed representation indices. Using the conjugation properties of

Wα given in definition 3.1, we then have

U †(g,ΣR)WαU(g,ΣR)W
†
α = Dα(g). (5.2)

Finally we note that in the dual CFT, U(g,ΣR) are nothing but the global symmetry

operators U(g, Sd−1) of the “right” CFT on Sd−1, so we need only argue that U(g,ΣR)

is nontrivial for all g ∈ G. Indeed note that for any g there is some irreducible repre-

sentation αg for which Dαg
(g) is nontrivial (see eg the proof of theorem A.8). But then

equation (5.2) with α = αg tells us that U(g,ΣR) must be nontrivial, since otherwise

the Wilson lines on the left hand side would cancel each other and we would find Dαg
(g)

to be the identity. Therefore U(g, Sd−1) faithfully represents the bulk gauge group, also

establishing conjecture 2 by way of the argument in the previous paragraph.

Both this argument and our second argument for theorem 4.2 ultimately rest on the

basic fact that the Hilbert space of any quantum field theory on a disconnected space

tensor factorizes into a product over copies of the theory on each connected component:
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this is the “UV information” which AdS/CFT provides to us that goes beyond bulk

effective field theory, as emphasized in [17]. Our first argument for theorem 4.2 also

uses more or less the same idea, now couched in the notion that global symmetries

should be always be splittable on a topologically trivial space.

We now close this section by giving an alternative argument for conjecture 2 in the

special case where the bulk gauge group G is connected. In this case the Lie algebra of

G is uniquely determined by the set of Noether currents Jµ
a in the boundary CFT, so

the question is whether or not the boundary global symmetry group G′ differs from G in

its global topology (as discussed in section 3.4 this difference is physically meaningful).

More precisely, theorem A.2 tells us that G and G′ are both quotients of the same

connected simply-connected covering group G̃ by discrete central subgroups Γ and Γ′,

and we would like to argue that Γ = Γ′. We should first recall what are the principles

which define Γ and Γ′: Γ is identified by what set of topologically nontrivial gauge field

configurations are summed over in the bulk, while Γ′ is identified by our requirement

that boundary global symmetries act faithfully on the set of local operators. The idea

is then to note that Γ also controls what kind of topologically nontrivial boundary

conditions can be turned on for the bulk gauge field. In the boundary theory these

boundary conditions are just background gauge fields for G′, and which of these can be

turned on is controlled by Γ′. Therefore since these sets must coincide, we must have

Γ = Γ′.

To see this more concretely, we can study the boundary theory on spatial S2 ×X,

where X is arbitrary. We then consider possibly-nontrivial G bundles on this space

which are described by splitting S2 into hemispheres and gluing with a map g : S1 → G

at the equator, for example as in the Dirac/Wu-Yang monopole (2.70) for G = U(1).

Such bundles are classified by π1(G), and studying the CFT in such a background is

dual to studying the bulk in a sector of fixed nonzero magnetic charge. Since G̃ is

simply-connected, all nontrivial elements of π1(G) lift to paths in G̃ from the identity

to a nontrivial element of Γ. So clearly the larger Γ is as a subgroup of G̃, the more

bundles are possible. In the boundary CFT however there is a limit on how large Γ

can be: if we move a charged CFT operator around the equator of the S2, we want it

to be single-valued in both its northern and southern representations (geometrically we

want it to be a good section). This means that Γ must lie in the kernel of D̃, where

D̃ is the natural lift of the representation D of G′ on the CFT local operators to a

representation of G̃ (any representation of G′ can be lifted in this manner). Therefore

we can get the largest set of background gauge fields by taking Γ = Ker(D̃), so we

should identify G̃/Ker(D̃) as the bulk gauge group. But G̃/Ker(D̃) is also precisely the

quotient we would perform to obtain the group G′ which is represented faithfully on

the set of CFT local operators, so we therefore have Γ = Γ′. This argument is basically
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the CFT dual of Dirac quantization: the set of charged representations which exist in

the boundary theory controls the set of which magnetic boundary conditions can be

turned on.

6 Compactness

We now turn to conjecture 3, which we can now interpret more precisely as saying that

all long-range gauge symmetries in quantum gravity are compact. We are immediately

confronted however with the inconvenient fact that in definition 3.1 we defined long-

range gauge symmetries to be compact. We did this for two reasons:

• Finite-dimensional representations of compact Lie groups are always unitary (see

theorem A.4), so the Wilson lines and loops have nice conjugation properties.

• Our discussion of lattice gauge theory in section 3 makes it clear that long-range

gauge symmetry is possible with any compact gauge group, but for noncompact

gauge groups this is far from clear. For example the ordinary Yang-Mills kinetic

term has negative modes if the Lie Algebra of the gauge group is not compact.

Rather then try to develop a general theory of what kinds of noncompact gauge groups

are possible, we will instead proceed directly to the dual CFT. Indeed we will argue

any CFT which obeys a certain condition we introduce in a moment has the property

that any noncompact global symmetry group must be a subgroup of a larger global

symmetry group which is compact. The condition we will impose on CFTs is the

following:

Definition 6.1. Let S0 ≡ {O1,O2, . . .On} be a finite subset of the primary operators in

some conformal field theory, let S1 denote the (usually infinite) set of primary operators

such that for any element O of S1 there is a pair Oi,Oj ∈ S0 such that O appears

with nonzero coefficient in their operator product expansion, let S2 denote the set of

operators which appear in the operator product expansion of some pair of operators in

S1, and so on. We say that a conformal field theory is finitely generated if

• For any ∆ > 0 there is a finite number of primary operators with conformal

dimension less than ∆.

• There exists a finite set S0 of primary operators such that each primary operator

of the theory appears in SN for some N <∞.

Roughly speaking this condition formalizes the idea that there should be a finite

number of fields in the path integral. For example free massless scalar field theory for
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d > 2 is finitely generated since all of the primary operators are polynomials of φ and

its derivatives. From the bulk point of view, finite generation says that all objects can

ultimately be built out of a finite number ingredients, which is quite plausible from

the point of view that black hole entropy should be finite. More carefully, say that

we postulate that in a semiclassical bulk theory the types of bulk excitations should

consist only of particle excitations, extended objects such as strings and D-branes, and

black holes. The spectrum of particle masses must be discrete with no accumulation

points and bounded from above by the Planck mass, since if it were continuous or

had accumulation points then renormalization would drive the strong coupling scale of

gravity down to the AdS scale. The finiteness of the Bekenstein-Hawking entropy tells

us that black holes must also have a discrete spectrum with no accumulation points.

The extended objects are a little more subtle, but for d > 2 the dynamics of AdS ensure

that they also should have a discrete spectrum [154].73 Therefore we expect that any

holographic CFT with d > 2 should be finitely generated. In fact we can make the

following conjecture, to which we are not aware of any counterexample:

Conjecture 5. Any conformal field theory in d ≥ 2 with a discrete spectrum and a

unique stress tensor is finitely generated, and any conformal field theory in d > 2 with

a unique stress tensor is finitely generated.

In any event we can now give our argument for conjecture 3, which we phrase as a

theorem:

Theorem 6.1. Let G be a noncompact global symmetry of a finitely-generated con-

formal field theory. Then there exists also a compact global symmetry G′ such that

G ⊂ G′

Proof. Let S0 = {O1, . . . ,On} be the finite set of primary operators which generate all

of the others. There will always be some ∆ such ∆i < ∆ for all i = 1, . . . , n, and since

the symmetry operators U(g, Sd−1) commute with the stress tensor theOi must together

be part of a finite-dimensional representation ρ of G (otherwise there would be infinitely

many operators of dimension less than ∆). By theorem C.4 (generalized to unbounded

operators as explained below the proof), the representation ρ will be unitary. Since all

local operators are generated by those in S0, ρ must also be faithful (by definition 2.1

the representation D of G on all local operators from equation (2.5) is always faithful).

In particular G is isomorphic to its image ρ(G), which is a subgroup of U(M) for some

finite M . The idea is then to notice that the closure of ρ(G) in U(M), G′ ≡ ρ(G), is

also a subgroup of U(M). In fact it is a closed subgroup, so since it is a closed subset

73We discuss the d = 2 at the end of this section.
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of a compact space it is compact. Moreover by theorem A.1, G′ is a Lie subgroup. Now

by finite generation any primary operator transforms in a representation of G which

appears in a finite tensor product of some copies of ρ and its conjugate.74 Therefore by

continuity it will also transform in a representation of G′, and the correlation functions

of all local operators will obey the selection rules of G′ symmetry, not just those of G

symmetry. Finally we note that G′ is by definition represented faithfully on the local

operators, since distinct elements of G′ are automatically distinct in U(M).

Since this argument is somewhat abstract, it is worthwhile discussing two simple

examples. The first example is a free scalar field with a noncompact target space in

d = 2: this has a noncompact global symmetry group, R, but it is not finitely generated,

both because eiαφ is a good primary operator with conformal dimension α2

4π
for any real

α, and because the three point function of such operators includes a delta function

δ(α1 + α2 + α3). The second example is two compact free scalars of equal radius,

again in d = 2. This theory is finitely generated, and the global symmetry group is

U(1) × U(1), which is indeed compact. We note however that it has an interesting

noncompact subgroup consisting of the points θ1 = λ, θ2 =
√
2λ in U(1) × U(1) for

all real λ. This subgroup is realized faithfully on the two-dimensional set of operators

(eiφ1 , eiφ2), and its closure in U(2) is indeed U(1)× U(1), consistent with theorem 6.1.

It is worth emphasizing that this second example illustrates the incompleteness

of a certain argument that global symmetries must be compact which one sometimes

hears. This argument begins by requiring only the first point in definition 6.1, and then

claiming that since there are no faithful finite-dimensional unitary representations of

noncompact groups, there cannot be a noncompact global symmetry. This argument is

correct for connected semisimple Lie groups, but it is wrong for general noncompact Lie

groups. For example we just met a faithful finite-dimensional unitary representation of

R, given by (eix, ei
√
2x). Other noncompact groups also have faithful finite-dimensional

unitary representations, for example there is a two-dimensional faithful unitary repre-

sentation of SL(2,Z).75 The correct general statements along these lines are theorems

74Note that if O3 appears in the OPE of O1 with O2, then the three point function 〈O1O2O†
3〉 is

nonzero. This is only allowed by the global symmetry if the representation of O3 appears in the direct

sum decomposition of the tensor product of the representations of O1 and O2.
75This representation is generated by the diagonal matrix (i,−i) and a matrix obtained by con-

jugating the diagonal matrix (eiπ/3, e−iπ/3) by a generic element of SU(2). This is a representation

of SL(2,Z) because SL(2,Z) is isomorphic to the free group on a generator S of order four and a

generator ST of order six, with the identification S2 = (ST )3, and the generic conjugation ensures

there are no further relations. We thank Yves de Cornulier for explaining this representation to us

[155].
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A.4 and A.8, which say that all finite-dimensional representations of compact groups

are unitary and that at least one of those is faithful.

Returning now to the d = 2 case, there (and only there) it is possible for “long

strings” near the boundary to lead to a bulk theory with a continuous spectrum [154,

156–158]. The CFT dual of such a bulk theory therefore will not obey definition 6.1,

since it will have a continuous spectrum of conformal dimensions, so theorem 6.1 does

not apply. In all known examples this happens because the boundary CFT includes

massless scalar fields with a noncompact target space: in higher dimensions this does

not lead to a continuous operator spectrum because the conformal curvature coupling

Rφ2 always lifts the flat direction due to the positive curvature of Sd−1 for d > 2. We

point out however that the first condition in definition 6.1 was only used once in the

proof of theorem 6.1: to argue that the operators S0 are part of a finite-dimensional

representation of G. If we replace this condition by simply requiring that the operators

in S0 transform in a finite-dimensional representation of any global symmetry, then the

proof of theorem 6.1 goes through as before and we get a version of theorem 6.1 which

does not require a discrete spectrum of conformal dimensions with no accumulation

points. For example in the boundary CFT dual to string theory on AdS3 × S3 × T 4

with NS-NS flux, long strings lead to a continuous spectrum but we expect that

there is still a finite set of operators whose OPE recursively generates all of the other

primaries.76 And indeed this theory has no noncompact global symmetries, and all bulk

gauge fields are compact. From this point of view, the culprit which allows the d = 2

free noncompact scalar to have a noncompact global symmetry is not the continuous

nature of the spectrum: it is the selection rule in the OPE which prevents us from

obtaining all primaries starting from a finite set.

7 Spacetime symmetries

So far we have been primarily discussing internal global symmetries, which send the

algebra of operators A[R] in any spacetime region R into itself. There are of course

also spacetime global symmetries such as boosts and translations, which map A[R] to

76It was shown in [158] that the OPE of two short string operators generates long strings with

winding number w = 1. For larger winding numbers, the selection rules proven in that paper show

that the OPE of one short string operator and one long string operator with winding number w can

generate long strings with winding number at most w+1. Moreover, evidence has been given [159, 160]

that such long strings with winding number are indeed generated. Therefore it seems reasonable to

expect that all operators in the boundary CFT are generated iteratively from a finite set of the discrete

short string operators.
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A[R′] for some other region R′. These are examples of the following general definition

of global symmetry in quantum field theory:

Definition 7.1. A quantum field theory on a spacetime M with topology R× Σ and

metric gµν has a global symmetry with symmetry group G if the following are true:

(a) There is a homomorphism U(g,Σ) from G into the set of unitary and antiunitary

operators on the Hilbert space.

(b) There is a smooth homomorphism fg from G to the group of conformal isometries

of M , meaning diffeomorphisms which preserve the metric gµν up to an overall

position-dependent scalar factor (the group operation is composition, so we have

fg1 ◦ fg2 = fg1g2), such that

U †(g,Σ)A[R]U(g,Σ) = A[fg−1(R)]. (7.1)

As before, if R is spatially bounded then this map is required to be continuous

in the strong operator topology on any uniformly-bounded subset of A[R].

(c) For all g other than the identity, there exists a local operator O such that

U †(g,Σ)O(x)U(g,Σ) 6= O(x). (7.2)

(d) The stress tensor transforms as a conformal tensor, meaning that77

U(h,Σ)Tµν(x)U
†(h,Σ) =

(
det ∂fh

√
det g(fh(x))

det g(x)

) d−2
d

∂fα
h

∂xµ
∂fβ

h

∂xν
Tαβ(fh(x)),

(7.3)

where we have used h instead of g for the element of G to avoid confusion with

the metric gµν .

These general global symmetry transformations act on local operators as

U †(g,Σ)Oi(x)U(g,Σ) =
∑

j

Dij(g, x)Oj(fg−1(x)), (7.4)

77The extra non-tensor factor in front here arises from the fact that the conformal transformations

which are global symmetries are combinations of diffeomorphisms with Weyl transformations. This

is because we need to cancel the transformation of the metric; it is a background field and cannot

transform under a global symmetry. This factor is the identity for transformations which are genuine

isometries, but for conformal transformations it is essential, for example to get the right scaling

dimension for Tµν .
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where D obeys ∑

k

Dij(g1, x)Djk(g2, fg−1
1
(x)) = Dik(g1g2, x), (7.5)

which can be thought of as an infinite-dimensional representation of G with x being

another “index”.

Definition 7.1 reduces to our previous definition 2.1 of global symmetry if we take

M = Rd with the usual flat metric and assume that all fg are the identity. More

generally we can always extract an “internal subgroup” from G as follows:

Definition 7.2. Given a global symmetry with symmetry group G, its internal part

is the global symmetry with symmetry group GI obtained by restricting to only those

g ∈ G such that fg is the identity.

Since GI is the kernel of a homomorphism, it is always a closed normal subgroup of

G. Moreover if M = Rd then the internal part of any global symmetry will be a global

symmetry of the theory in the sense of definition 2.1. When definition 7.1 applies on

a more general M we can say that the symmetry is preserved on M in the sense of

definition 2.2.

At first it may seem that condition (d) in definition 7.1 is too strong, for example

it implies that when M = Rd with flat metric, all elements of GI must commute with

all translations, rotations, and boosts, as well as with dilations and special conformal

transformations if the theory is conformally invariant. In fact for elements of GI which

are in the identity component of G, this follows from the Coleman-Mandula theorem

and its various cousins, which basically say that if G contains the Poincare group as a

subgroup, then the Lie algebra of G must be the direct sum of either the Poincare alge-

bra or the conformal algebra with a finite-dimensional compact “internal” Lie algebra

whose elements all commute with the Poincare/conformal generators [161–163].78 Our

next order of business in this section will be to extend this result from Lie algebras to

Lie groups, establishing a kind of Coleman-Mandula theorem for disconnected groups,

which we view as motivating (d) as the most general possibility.79

78We can also consider supersymmetries, which we have not included in definition 7.1, which are

constrained by an analogous theorem [164]. Since supersymmetries are defined only at the level of the

Lie algebra (we don’t exponentiate them to get a group), the issues we discuss in this section do not

arise. Indeed the presence of the bulk gravitino ensures that any supersymmetry is always gauged in

the bulk, so we will not discuss them further.
79In our argument we will assume that the internal symmetry group GI is compact, which in

particular implies that the full symmetry group G is finite-dimensional. This excludes the Virasoro

algebra and Kac-Moody current algebra in d = 2. These are natural to exclude, since in holography

they work somewhat differently than the symmetries we study here. For example the higher Virasoro

and Kac-Moody currents do not give rise to new fields in the bulk, so the noncompact GI which arises

– 104 –



We first review a few basic properties of the Poincare and conformal groups for

Rd, which we define to be isomorphic to Rd ⋊ OSpin(d − 1, 1) and OSpin(d, 2) re-

spectively. The former indicates a semidirect product of translations with the Lorentz

group. In both cases the “O” indicates that we have included both spatial and temporal

reflections, and “Spin” indicates that fermion parity, defined as rotation by 2π about

any axis, is represented nontrivially. We can obtain the identity components by drop-

ping the O’s, and if we quotient by fermion parity then “Spin” becomes “SO”. The

Coleman-Mandula theorem and theorem A.2 then tell us that the identity component

G0 of G must be a quotient of either (Rd⋊Spin(d−1, 1))× (̃GI)0 or Spin(d, 2)× (̃GI)0
by a discrete central subgroup. The only candidates for this subgroup are combinations

of fermion parity with a discrete central subgroup of (̃GI)0. This combination does not

need to be a product group, for example the theory of two free Dirac fermions with equal

nonzero mass in 3+1 dimensions has a U(2) global symmetry mixing the fermions, but

the product of fermion parity and the central element

(−1 0

0 −1

)
of U(2) acts trivially

on all states and thus should be quotiented by if we want a faithful representation.

We can also consider elements of GI which are not in G0. We then have the

following theorem:

Theorem 7.1 (Discrete Coleman-Mandula theorem). Say that in a quantum field the-

ory on Rd we have a global symmetry with a symmetry group G, which contains the

identity component of the Poincare or conformal group, or one of their Z2 quotients

by fermion parity, and say also that the internal subgroup GI of G is compact and the

Coleman-Mandula theorem applies.80 Then any element of GI must commute with all

elements of this identity component. More prosaically, it must commute with transla-

tions, boosts, and rotations, as well as dilations and special conformal transformations

if there are any.

Proof. Consider h ∈ GI which is also in Gn, the nth connected compoment of G, and

let g be an element of the identity component of the Poincare/conformal group or its

Z2 quotient by fermion parity, which for brevity we will call Ĝ0. Since by definition

g ∈ G0, by continuity we must have g−1hg ∈ Gn. Therefore we must have

g−1hg = g̃h(g)h, (7.6)

with g̃h(g) ∈ G0. We will argue that g̃h(g) is the identity. We first note that since

GI is a normal subgroup, we must have g̃h(g) ∈ GI ∩ G0. As we just discussed, the

is not dual to a long-range gauge symmetry with noncompact gauge group so there is no violation of

conjecture 3.
80In this theorem we do not impose condition (d) from definition 7.1, since otherwise the result

would be trivial. The compactness of GI is motivated in the previous footnote.
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Coleman-Mandula theorem therefore says that g̃h(g) commutes with any element of

Ĝ0. We therefore have

g̃h(g1)g̃h(g2) = g−1
1 hg1h

−1g−1
2 hg2h

−1

= (g1g2)
−1h(g1g2)h

−1

= g̃h(g1g2), (7.7)

so g̃ defines a homomorphism from Ĝ0 to GI . Finally we note that since GI is compact,

by theorem A.8 it has a faithful finite-dimensional representation ρ. Therefore the

composition ρ ◦ g̃ gives a finite-dimensional unitary representation of Ĝ0. Any such

representation must be trivial however, in the Poincare case because Spin(d − 1, 1) is

noncompact and simple and translations do not commute with it, while in the conformal

case just because Spin(d, 2) is noncompact and simple. Finally since ρ is faithful, it

must be that g̃h(g) is the identity for all g, h.

We view this theorem as motivating condition (d) in definition 7.1. It is worth em-

phasizing that it does not say that elements of GI must commute with spatial and tem-

poral reflections, since these are not in the identity component of the Poincare/conformal

groups. In general the best we can say is that every element g of G can be written as

g = ĝ0h, (7.8)

where ĝ0 is in the identity component of the Poincare/conformal group (or its Z2

quotient by fermion parity), and h has the property that fh is either the identity, a

reflection of a particular spatial direction, a time reversal, or a product of the two.81

Acting on elements of GI by conjugation, h can induce a nontrivial outer automorphism

of GI even if it includes a spatial or temporal reflection. One simple example of this

arises in the theory of a single free Dirac fermion in 3+ 1 dimensions, with Lagrangian

L = −iψγµ∂µψ. (7.9)

The internal symmetry group GI for this theory is the U(2) that rotates the two

independent left-handed Weyl spinors contained in Ψ into each other. In particular

this U(2) includes the chiral rotation

ψ′ = eiθγ
5

ψ (7.10)

81In even dimensions we can replace the spatial reflection by a simultaneous reflection of all spatial

directions, usually called parity, but in odd dimensions this is just a rotation. Therefore when working

in arbitrary dimensions it is safer to talk about reflections in a single spatial direction, for example

the natural generalization of the CPT theorem to arbitrary dimensions is the CRT theorem.
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as the diagonal subgroup generated by the identity, fermion number as the subgroup

generated by σz, and charge conjugation as the Z2 that exchanges the two left-handed

fermions. This theory is also invariant under the parity transformation

(t′, ~x′) = (t,−~x)
ψ′(t, ~x) = iγ0ψ(t,−~x). (7.11)

The point is that this parity transformation does not commute with the chiral symmetry

transformation (7.10): if R(θ) and P are the unitary operators implementing chiral

symmetry and parity on the Hilbert space, then we have

P−1R(θ)P = R(−θ), (7.12)

which is the algebra of the nonabelian group O(2).82 More complicated examples of

this phenomenon have been studied in the particle physics literature [165, 166], and it

is also discussed using somewhat different terminology in section 2.C of [44].

It is also worth emphasizing that neither definition 7.1 nor theorem 7.1 require

the existence of elements g of G whose associated fg involves any particular spatial or

temporal reflection. For example in the standard model of particle physics there are

no global symmetries which reflect only time or only space (the CPT theorem ensures

that there will always be a symmetry which reflects both). And moreover even if such

elements exist, they may act on the operators in a nonstandard way. For example if

we look at only the first two generations of leptons and quarks in the standard model,

parity and charge conjugation as conventionally defined are not symmetries but their

product is.

Having introduced our general definition 7.1 of global symmetries, we may now ask

if our theorem 4.2, which rules out internal global symmetries in the bulk of AdS/CFT,

applies also to global symmetries for which fg can be nontrivial. At first this seems

like a rather silly question: general relativity is a diffeomorphism-invariant theory, so

shouldn’t any spacetime symmetries obviously need to be gauged? In fact the truth

is a bit more subtle. The right statement is that to remove negative-norm modes of

the graviton, it is only necessary that the identity component of the diffeomorphism

group be gauged [44]. After all the other connected components might not even be

symmetries, as happens in the standard model, and then we surely had better not

gauge them! But then this leads to an interesting question: say that our bulk theory

is indeed invariant under diffeomorphisms which change the orientation of time and/or

82One might try to modify our definition (7.11) of parity by including an element of the U(2) internal

symmetry in hopes of obtaining something that commutes with chiral symmetry. This however is

impossible: chiral symmetry is in the center of U(2).
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space: could these be global symmetries rather than gauge symmetries? From the bulk

point of view it is fairly subtle to decide this: ultimately it comes down to whether

or not the gravitational path integral includes temporally and/or spatially unoriented

manifolds (it includes them if these symmetries are gauged, but it doesn’t if they aren’t).

From the point of view of conjecture 1 however, it would be rather surprising if there

were such global symmetries in quantum gravity. In fact there are not, and a slight

generalization of theorem 4.2 suffices to establish it.

Indeed note that if we study the boundary CFT on R×Sd−1 (which is conformally

flat so the results of this section apply), any global spacetime symmetry in the bulk

would imply the existence of a global spacetime symmetry of the boundary CFT by

the same argument as for theorem 4.1. From equation (7.8) we see that every element

of that boundary global symmetry group is the product of a conformal transformation

which is continuously connected to the identity and a group element h such that fh is

either the identity, a time reversal, an antipodal mapping of Sd−1, or a time reversal

and an antipodal mapping. We want to show that these global symmetries cannot arise

from global symmetries in the bulk. Decoupling of negative-norm graviton modes tells

us that the identity component conformal transformation must be gauged, so we are

then just left with h. If fh is the identity then theorem 4.2 already gives us the desired

contradiction. Moreover if fh is a time-reversal, the argument for theorem 4.2 still works

provided that we take the boundary time slice in figure 16 to be at t = 0. Finally if fh
involves an antipodal mapping of the sphere, we can still basically use the argument of

theorem 4.2, the only difference is that in figure 16 we should combine pairs of regions

which are on opposite sides of the sphere. As long as the regions are small enough, the

entanglement wedge of their union will just be the union of their entanglement wedges,

so the contradiction still follows. In both cases where fh is nontrivial there is no need

for a discussion of quasilocal bulk operators: the metric itself is already not invariant

so we can just use it.

Conjectures 2 and 3 do not at first seem to have meaningful analogues for space-

time symmetries, since spacetime symmetry groups are noncompact, but actually there

is a fairly trivial generalization based on restricting to just the rotation subgroup

SO(d) ⊂ SO(d, 2). This group is of course compact, and the obvious extension of

conjecture 2 says that there should be states in the bulk transforming in all irreducible

representations of SO(d) (or Spin(d) if there are fermions). In other words, there

should be objects of all possible spins. In fact this conjecture does indeed follow from

a simple generalization of the argument of section 5. Namely we consider gravitational

Wilson lines of spin j threading the throat of the AdS-Schwarzschild geometry from one

side to the other, localized at some point x ∈ Sd−2. Under one-sided rotations which

preserve x, this Wilson line will transform in the spin-j representation of SO(d − 1)
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(or Spin(d − 1)). Since for any element of SO(d) (or Spin(d − 1)) we can pick an x

and j such that that element is represented nontrivially on this Wilson line, we see

that SO(d) (or Spin(d)) must be represented faithfully on the one-boundary Hilbert

space. From here we then would like to use theorems A.10 and A.11 to conclude that

there must be states of all spin, but we need to be a little careful since now rotations

can move the operators around. This problem however is easily solved: we can simply

act with all (smeared) operators at the north pole of Sd−1, and then classify their rep-

resentations with respect to the SO(d − 1) (or Spin(d − 1)) subgroup which fixes the

north pole. Since we can obtain all tensor products of the faithful representation in

this way, and since this subgroup is sufficient to diagnose the representation of SO(d)

(or Spin(d)), we may indeed use theorems A.10 and A.11 to conclude that there are

states of all spin (all integers for SO(d) and all half-integers for Spin(d)).

8 p-form symmetries

In the last few years it has been understood that there is a powerful generalization

of the global symmetries we have been discussing so far. These new symmetries are

variously called higher symmetries, gauge-like symmetries, p-form symmetries, or gen-

eralized global symmetries [167–169], [41]. We will call them p-form global symmetries,

since this name gives the most information about the symmetry being discussed. Un-

derstanding p-form global symmetries begins with the observation that the ordinary

global symmetries we have been discussing so far can be thought of as global symme-

tries which act on local operators: indeed condition (c) in definition 2.1 tells us that we

can diagnose the full symmetry group just by looking at how local operators transform.

p-form global symmetries are defined as global symmetries which act nontrivially only

on surface operators of dimension at least p, and which act faithfully on surface op-

erators of dimension exactly p. In this language, the global symmetries we have been

discussing so far become zero-form symmetries. It is natural to ask to what extent

conjectures 1-3 have generalizations to p > 0, and to what extent we can use AdS/CFT

to give arguments for those generalizations. Answering these questions is the goal of

this section. We begin by discussing p-form global symmetries in more detail.

8.1 p-form global symmetries

It is perhaps easiest to introduce p-form global symmetries by generalizing the “path

integral insertion” perspective on ordinary global symmetries described in and around

figure 2 [41]. Recall that in that language, a global symmetry corresponds to a family

of codimension-one insertions U(g,Σ), where g is any element of G and Σ is any closed

oriented codimension-one surface in spacetime. One then requires that these surface
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Figure 19. A one-form global symmetry in d = 3: linking a symmetry insertion U(g,Σ′
1)

with a line insertion Oi(C1) acts on that line insertion with a representation of the (abelian)

symmetry group G.

insertions obey the group algebra U(g1,Σ)U(g2,Σ) = U(g1g2,Σ), and also that they

are topological in the sense that away from other path integral insertions, Σ can be

freely deformed without changing the result of the path integral. Finally one requires

Σ can also be continuously deformed past a local insertion O(x), but perhaps at the

price of a representation of G acting on that local insertion. For example if Σ′ contains

x in its interior while Σ does not,83 then in the path integral we have

〈. . .Oi(x)U(g,Σ
′)〉 =

∑

j

Dij(g)〈. . .Oj(x)U(g,Σ)〉, (8.1)

where here “. . .” denotes other insertions which do not interfere with the deformation

between Σ to Σ′. This is a path integral representation of equation (2.5), and the

matrix D is the same matrix appearing there; in particular it is required to be faithful

in the sense of being nontrivial for all g other than the identity.

p-form global symmetries are then defined analogously by requiring that there be a

family of (d− p− 1)-dimensional insertions U(g,Σd−p−1), where again g is any element

of G but now Σd−p−1 is any closed oriented (d−p−1)-dimensional surface in spacetime.

As before we demand the group algebra U(g1,Σd−p−1)U(g2,Σd−p−1) = U(g1g2,Σd−p−1)

is satisfied, and also that Σd−p−1 can be freely deformed away from other path integral

insertions. When p > 0, Σd−p−1 can always be deformed “around” any local operator

without picking up a representation of G. Moreover it can similarly be deformed around

any surface operator of dimension less than p. This is not true however for a surface

Cp of dimension p, since it is possible for Cp and Σd−p−1 to be linked nontrivially in

spacetime. One finally then requires that if Cp and Σ′
d−p−1 are linked once (this counting

includes the orientations of Cp and Σd−p−1, and inverting g is equivalent to flipping the

83Here which side of a surface we call its interior is determined by its orientation, and flipping this

orientation is equivalent to inverting g.
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orientation of Σ′
d−p−1), while Σd−p−1 and Cp are not linked, then in the path integral

we have

〈. . .Oi(Cp)U(g,Σ
′
d−p−1)〉 =

∑

j

Dij(g)〈. . .Oj(x)U(g,Σd−p−1)〉, (8.2)

where Oi(Cp) is any surface operator on Cp and Dij(g) is a representation of G. We

show an example for p = 1 and d = 3 in figure 19. As for zero-form symmetries, one

requires that Dij(g) is nontrivial for all g other than the identity.

One of the most fundamental distinctions between zero-form global symmetries

and p-form global symmetries with p > 0 is that in the latter case the symmetry group

G must be abelian. The reason is that if Σd−p−1 and Σ′
d−p−1 are two nearby surfaces of

codimension p + 1, they have no natural ordering. Indeed in Lorentzian signature we

can continuously deform them without intersection to exchange their time ordering. In

the limit where we bring the two surfaces together we must therefore have

U(g1,Σd−p−1)U(g2,Σd−p−1) = U(g2,Σd−p−1)U(g1,Σd−p−1). (8.3)

Another important distinction is that in order for a p-form global symmetry to exist,

there must be p-dimensional surface insertions which cannot be generated by insertions

of lower dimensionality, since otherwise they would have to be neutral.

Perhaps the most basic example of a theory with a p-form global symmetry with

p > 0 is free Maxwell theory, with gauge group U(1). This theory has a two-form

conserved current

Je ≡
1

q2
F, (8.4)

which we can use to introduce the codimension-two symmetry insertions

U(eiθ,Σd−2) ≡ e
iθ

∫
Σd−2

⋆Je
. (8.5)

These are nothing but the exponential of the integrated electric flux through Σd−2. In

section 3 we studied these insertions at spatial infinity, where we used them to define

long-range gauge symmetry, but the idea is now to consider them for arbitrary closed

oriented Σd−2, and in particular to interpret them as the symmetry insertions for a

one-form global symmetry with symmetry group U(1). They will be topological by the

source-free Maxwell equation d⋆F = 0, but in order to make good on this interpretation

we also need to say what are the line insertions which are charged under this one-form

global symmetry. Indeed the answer is obvious: they are the Wilson loops Wn(C1).

Since a Wilson line of charge n represents the worldline of a background heavy particle

of charge n, when C1 is linked with Σd−2 the symmetry insertion U(eiθ,Σd−2) will detect

this charge and pick up a factor of einθ compared to when they are not linked.
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In fact free Maxwell theory with gauge group U(1) also has another conserved

current, the (d− 2)-form current

Jm ≡ ⋆F. (8.6)

This leads to a second p-form global symmetry, this one with p = d− 3 and symmetry

insertions

U(eiθ,Σ2) ≡ e
iθ

∫
Σ2

F
. (8.7)

The (d−3)-dimensional surface insertions charged under this symmetry are the ’t Hooft

surfaces defined by equation (2.89).

Another example of a one-form symmetry arises in SU(N) Yang-Mills theory with

no matter fields. This is the ZN “center symmetry” of Polyakov and ’t Hooft [42, 43],

whose symmetry insertion U(e2πin/N ,Σd−2) is defined to act as e2πin/N on the Wilson

loop in the fundamental representation of SU(N).84 We can describe the symmetry

insertions in this example more concretely using the Hamiltonian lattice presentation

of gauge theory we reviewed in section 3.2. The basic idea for any gauge group G is to

consider operators of the form

U(g,Σd−2) ≡
∏

ℓ∈Σd−2

Lg, (8.8)

where the product is over the links which puncture any spatial (d − 2)-dimensional

surface Σd−2. These operators will not however be invariant under the gauge transfor-

mations (3.19) unless g is in the center ZG of G, so to get a good operator we need to

restrict to g ∈ ZG. This is why the one-form global symmetry group of pure SU(N)

gauge theory is ZN , even though depending on the background there may be a full

SU(N) long-range gauge symmetry. The latter is possible because we do not quotient

by gauge transformations at spatial infinity, so the asymptotic symmetry operators do

not need to be restricted to the center.

In our discussion of zero-form global symmetries in section 2, we began with an

algebraic definition, definition 2.1, and from this we derived the path integral insertion

point of view. The reader may wonder why we have begun with the latter point of

view here. The reason is that if the spatial topology Σ is simple, meaning that the

homology group Hp(Σ) is trivial, there can never be operators on the Hilbert space

84This is not how center symmetry was originally described. Instead one considered the set of gauge

configurations of the theory in Euclidean signature with a temporal circle, and then considered the

action on Wilson loops wrapping this circle of “illegal gauge transformations” which are not periodic

around the loop. This idea always seemed somewhat mysterious: why should we be allowed to consider

gauge transformations which are not periodic? And moreover, in defining a global symmetry why

should we need to talk about gauge transformations at all? Perhaps the main insight of [41] is that

with the right definition, we don’t!
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which are charged under a p-form global symmetry. This is because on such a time-

slice, any closed oriented p-dimensional surface Cp will intersect any closed oriented

(d−p−1)-dimensional surface Σd−p−1 an equal number of times in opposite directions.

Nonetheless it will still be useful for us to give an algebraic definition of p-form global

symmetries which generalizes definition 2.1 to p > 0:

Definition 8.1. Let Σ be a (d − 1)-dimensional spatial manifold in which there is at

least one closed oriented p-dimensional surface and one closed oriented (d − p − 1)-

dimensional surface which intersect each other exactly once. We say that a quantum

field theory onM = R×Σ has a p-form global symmetry with (abelian) symmetry group

G if the following are true:

(a) For any closed oriented (d− p− 1) surface Σd−p−1 ⊂ Σ, there is a homomorphism

U(g,Σd−p−1) from G into the set of unitary operators on the Hilbert space of

the theory quantized on Σ. Moreover for any spatial region R ⊂ Σ such that

Σd−p−1 ⊂ R, we have U(g,Σd−p−1) ⊂ A[R].

(b) For any such Σd−p−1, any g ∈ G, and any spatial region R, we have

U †(g,Σd−p−1)A[R]U(g,Σd−p−1) = A[R]. (8.9)

Moreover ifR is spatially bounded then the restriction of this map to any uniformly-

bounded subset of A[R] is continuous in the strong operator topology.

(c) For any element g of G other than the identity, there is a p-dimensional surface

operator O, a p-dimensional surface Cp ⊂ Σ, and a (d−p−1)-dimensional surface

Σd−p−1 ⊂ Σ such that

U †(g,Σd−p−1)O(Cp)U(g,Σd−p−1) 6= O(Cp). (8.10)

(d) For all x ∈ R× Σ, g ∈ G, and Σd−p−1, we have

U †(g,Σd−p−1)Tµν(x)U(g,Σd−p−1) = Tµν(x). (8.11)

Condition (d) implies that the symmetry operators U(g,Σd−p−1) are topologi-

cal surface operators, and in fact it further implies that they commute with any p′-

dimensional surface operator O(Cp′) with p′ < p, since they can be continuously de-

formed around each other to change their time ordering. Condition (d) also implies

that the action of G on the set of surface operators at Cp defined by conjugation by

U(g,Σd−p−1) is independent of small deformations of Cp and Σd−p−1. Indeed more is
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true: since their algebra is controlled entirely by the pieces of U(g,Σd−p−1) and O(Cp)

which are at the intersections of Σd−p−1 and Cp (all other parts are spacelike separated),

and since the symmetry group is abelian, we can pick a basis Oi of surface operators

such that their algebra with the p-form symmetry operators is given by

U †(g,Σd−p−1)Oi(Cp)U(g,Σd−p−1) = Di(g)
n(Cp,Σd−p−1)Oi(Cp), (8.12)

where n(Cp,Σd−p−1) is the intersection number of Cp and Σd−p−1 and Di(g) is a homo-

morphism from G into U(1).

p-form global symmetries have many very interesting physical applications. The

basic idea is to use their existence, and whether or not they are spontaneously broken,

in an extension of the Landau paradigm of characterizing the phases of many-body

quantum systems by their symmetry structure [41],[170],[143, 171]. One can also work

out a transport theory of higher-form charges, for example leading to a new and much

more satisfactory conceptual understanding of magnetohydrodynamics [172]. Unfortu-

nately describing these developments further here would take us too far afield.

8.2 p-form gauge symmetries

Although p-form global symmetries were defined only recently, in an amusing twist

of fate the p-form gauge symmetries which appear once we “gauge” them have been

studied for decades [173]. The situation is especially simple when we gauge a p-form

global symmetry which has symmetry group R. We then expect a (p+1)-form current

Jp+1, for which we can first turn on a background (p + 1)-form gauge field Ap+1 via a

term

δS =

∫

M

Ap+1 ∧ ⋆Jp+1 (8.13)

in the action. We may then check if the partition function, possibly after some renor-

malization, is invariant under background gauge transformations

A′
p+1 = Ap+1 + dΛp, (8.14)

where Λp is an arbitrary p-form. If it is not invariant then we can say that the p-form

global symmetry we started with has an ’t Hooft anomaly, and we can proceed no

further. If it is invariant, then we are free to introduce a kinetic term and make Ap+1

a dynamical field, leading to a dynamical (p + 1)-form gauge field. A typical kinetic

term one adds is

S = − 1

2q2

∫

M

Fp+2 ∧ ⋆Fp+2, (8.15)

where Fp+2 = dAp+1, and one may also add various Chern-Simons and θ-type terms.

We can also introduce a “Wilson surface” functional

Wα[Σp+1] = e
iα

∫
Σp

Ap+1 , (8.16)
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which is gauge-invariant if ∂Σp+1 = 0 and otherwise transforms as

W ′
α[Σp+1] = e

i
∫
∂Σp+1

Λp
Wα[Σp+1]. (8.17)

There is also a gauge-invariant “electric flux” functional

Φ(Σd−p−1) ≡
1

q2

∫

Σd−p−2

⋆Fp+2, (8.18)

where in preparation for holograpy we have taken the spacetime dimension to be d+1.

The situation is not so simple for symmetry groups other than R. The reason is

that it is then sometimes possible to turn on topologically-nontrivial background gauge

field configurations which require more than one patch to describe. In section 2.3 we

reviewed how to do this for zero-form global symmetries using the idea of a connection

on a principal bundle. The generalization of this idea to p-form global symmetries

is not straightforward: one immediately encounters the problem that the transition

functions gij : Ui ∩ Uj → G of an abelian principal bundle can be used to define a

closed one-form −i∂µgijg−1
ij for use in the transformation of the gauge field, but there is

no obvious way to use them to make a closed (p+1)-form for use in the transformation

of Ap+1. If one asks a mathematician how to solve this problem (we’ve asked several),

one is usually told that the answer involves various types of abstract nonsense such as

n-categories, stacks, and gerbes (see eg [174] for a relatively gentle introduction to this

point of view, and also [175]). Although these ideas are indeed sometimes useful, a

more plebeian approach is possible and we now say a little about how it works.

For simplicity we will first describe the case where the p-form symmetry group is

U(1). The basic idea is that to describe a background gauge field for a p-form global

symmetry, in addition to p+1-form gauge fields in each patch Ui and p-form transition

functions in each double overlap Ui ∩ Uj, we need additional transition functions in

higher multiple intersections which are differential forms of lower degree [176]. More

concretely, in each k-tuple intersection Ui1 ∩ . . . ∩ Uik we require the existence of a

(p + 2− k)-form Ai1...ik such that all such forms are related by the following recursive

formula:85

dAi1...ik+1
=

1

k!

∑

π∈Sk+1

sπAiπ(1)...iπ(k)
. (8.19)

85Up to notational differences, this formula generalizes equations 4.3-4.5 of [176] to arbitrary k (and

fixes some wrong signs in 4.5). It is instructive to check the self-consistency of this formula under

taking the the exterior derivative of both sides, in the cohomological language of [176] this amounts

to showing that the “co-boundary operator” δ is nilpotent. We emphasize that the i indices label

patches, they are not tensor indices.
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Here Sk+1 denotes the permutation group on k + 1 elements, and sπ is one if π is even

and minus one if π is odd. This formula is valid for k = 1, 2, . . . , p + 1, with Ai being

the p + 1-form gauge field in each patch and all the others being transition functions.

Ai1...ip+2 is a scalar, and thus can’t be related to the exterior derivative of something,

but we instead require that

1

(p+ 2)!

∑

π∈Sk+2

sπAiπ(1)...iπ(p+2)
= 2πn (n ∈ Z). (8.20)

It is instructive to consider the case p = 0, in which case this sequence of forms truncates

at k = 2 (double overlaps), and (8.19) and (8.20) just give

Ai − Aj = dAij

Aij + Ajk + Aki = 2πn. (8.21)

If we define gij ≡ eiAij , then these are precisely the transformation rules (2.50), (2.49)

for a connection on a U(1) principal bundle. We can consider also the p = 1 case,

where (8.19) and (8.20) now give

Ai − Aj = dAij

Aij + Ajk + Aki = dAijk

Aijk − Aijl − Ajkl − Akil = 2πn. (8.22)

We may again interpret the Aijk as arising from U(1) group elements gijk = eiAijk

obeying a quadruple intersection rule, and indeed we can give a similar interpretation

to equation (8.20) for any p.

These additional transition functions are needed to generalize the Wilson surface

functional (8.16) to multiple patches. We first remind the reader that some use of the

transition functions is necessary even to define ordinary Wilson lines when the curve

on which they are supported intersects multiple patches, for example the Wilson loop

Wα[C] of a closed curve C which passes through patches U1, U2, . . . , Un, U1, in this order

and possibly with repetitions, is given by

Wα(C) = Tr
(
Dα(g1n(x1))Pe

i
∫ x1
xn

Aα
n . . . Dα(g32(x3))Pe

i
∫ x3
x2

Aα
2Dα(g21(x2))Pe

i
∫ x2
x1

Aα
1

)
,

(8.23)

where C has been broken up into a line segment from a point x1 in Un ∩ U1 to a

point x2 in U1 ∩ U2, a line segment from x2 to a point x3 in U2 ∩ U3, and so on. The

insertions of Dα(gi+1,i(xi+1)) are essential to get an answer which is invariant under

gauge transformations and does not depend on the choice of patches. For a U(1) p = 1
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gauge field the formula analogous to this one is

Wn[Σ] = exp

(
in
∑

i

∫

Σi

Ai − in
∑

<ij>

∫

Σij

Aij − in
∑

<ijk>

∫

Σijk

Aijk

)
, (8.24)

where we choose a triangulation Σi of Σ such that each Σi is contained in Ui. Σij is

the shared boundary between Σi and Σj, with the orientation chosen to point from i

to j, and Σijk is a shared point between Σi, Σj, and Σk whose orientation is chosen so

that ijk go clockwise around. It is straightforward, although a bit tedious, to see that

the terms involving Aijk, and also the condition (8.20), are necessary for this object to

be independent of the choice of patches [176].

Generalizing these results to Abelian groups other than U(1) is simplified by the

fact that every compact Abelian Lie group is just a product of U(1) and Zn factors.

To describe the Zn case, we may begin with the U(1) construction and then restrict

the Ai1...ik such that the parallel transport of any closed surface operator, implemented

by a Wilson surface with two identical boundaries of opposite orientation, always just

results in a multiplication of the surface operator by an element in the image of the

Zn-representation of that operator. For example this requires dAi = 0, and also that

eiAi1...ip+2 ∈ Zn.

This discussion has been somewhat sketchy, so we note in passing that on the lattice

there is a natural generalization of the Wilson formulation of ordinary gauge theory

which defines dynamical p+1-form gauge fields with any abelian gauge group in a very

elegant manner [177–181]. For simplicity we will describe the Euclidean version, the

Hamiltonian version is constructed on similar lines. The basic idea for a cubic lattice

in Euclidean spacetime of arbitrary dimension86 is to assign to each “minimal” face

fp+1 of dimension p+1 a group element g(fp+1). Gauge transformations are defined as

assignments of group elements to each “minimal” face fp of dimension p, and they act

on g(fp+1) as

g′(fp+1) = g(fp+1)
∏

fp∈∂fp+1

g(fp), (8.25)

with the orientations of the fp taken to be outward. The Wilson surface functional in

any irreducible representation α on any (p+ 1)-dimensional surface Σ is defined as

Wn[Σ] ≡
∏

fp+1∈Σ
Dα(g(fp+1)), (8.26)

86This definition generalizes immediately to an arbitrary CW-complex, where fp, fp+1, and fp+2

below are p, p+ 1, and p+ 2 -cells respectively.
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which is gauge-invariant if Σ is closed. Given a (p+ 2)-dimensional minimal face fp+2

and a representation α of G, we can also define a gauge-invariant “plaquette” functional

Wα[fp+2] =
∏

fp+1∈∂fp+2

Dα(g(fp+1)), (8.27)

in terms of which we can write the Euclidean action

S = − 1

2q2

∑

fp+2

Wα(fp+2). (8.28)

Here both orientations of fp+2 are included in the sum, and α is a faithful representation

of G (if α is not irreducible then we have to sum over its irreducible components). When

G = U(1) this reproduces equation (8.15) in the continuum limit. Note in particular

that in the continuum limit we have

Wn(fp+2) = e
i
∫
fp+2

Fp+2
, (8.29)

so the action is unchanged if we locally take Fp+2 → Fp+2 + 2πn. This means that

configurations with
∫
Fp+2 = 2πn will survive in the continuum limit, and thus that

topologically nontrivial (p + 1)-form gauge field configurations of the type we just

discussed will be included, with nary a gerbe in sight!

We can define a notion of “long-range p-form gauge symmetry” in a manner anal-

ogous to ordinary the ordinary long-range gauge symmetry of section 3. In a d + 1-

dimensional spacetime with time slice Σ and asymptotic spatial boundary ∂Σ, we can

assign asymptotic symmetry operators U(g,Σd−p−1) to any closed (d − p − 1)-surface

in ∂Σ, which in the U(1) case are defined by

U(eiθ,Σd−p−1) = e
iθ

q2

∫
Σd−p−1

⋆Fp+2
. (8.30)

More generally in the Hamiltonian lattice they are defined as

U(g,Σd−p−1) ≡
∏

fp+1⊥Σd−p−1

Lg(fp+1), (8.31)

where the product is over spatial (p+1)-dimensional lattice faces which puncture Σd−p−1

at the spatial boundary. In the natural the boundary conditions analogous to those

of figure 9, which require gauge transformations to vanish at the spatial boundary,

spatial Wilson surfaces may end at this boundary and their end-surfaces (which are

p-dimensional surfaces) will transform under the asymptotic symmetry transformations

just as in (8.12). The objects which are charged under this long-range symmetry are

p-branes, meaning objects with a (p+1)-dimensional world volume, and to have a long-

range p-form gauge symmetry we further require that the theory allows such objects

to exist with finite energy, provided that the have finite spatial volume. We illustrate

these ideas more concretely in the following subsection.
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8.3 p-form symmetries and holography

We now discuss the analogues of conjectures 1-3 for p-form symmetries. The obvious

generalizations turn out to be the correct ones: there are no p-form global symmetries

in the bulk, for any long-range p-form gauge symmetry with gauge group G there are

objects (p-branes) which transform in all irreducible representations of G, and under

plausible assumptions G must be compact. The basic idea of this section is to consider

holographic CFTs on the spatial manifold Tp×Sd−p−1, wrap objects which carry p-form

symmetry charge on Tp, and then dimensionally reduce on this Tp. We will then be

able to apply the same arguments as before in the remaining dimensions, establishing

the p-form generalizations of conjectures 1-3. Our arguments will be less detailed than

they were for zero-form symmetries, for example we will not explicitly discuss the issue

of gravitational dressing.

The basic problem we need to solve is that ordinary asymptotically-AdS geometries

have boundary R×Sd−1, not R×Tp×Sd−p−1, so we need to come up with new solutions

of the Einstein equation with negative cosmological constant that do have boundary

R× Tp × Sd−p−1. We can consider an ansatz of the form

ds2 = −α(r)dt2 + dr2

α(r)β(r)
+ eγ(r)dx2p + r2dΩ2

d−p−1, (8.32)

where dx2p is the flat metric on a square spatial torus and the asymptotic boundary

is at r → ∞. There are two interesting classes of solutions of this type. In the first

class, the functions α, β, and eγ are strictly positive for all r ≥ 0, and the Sd−p−1

contracts at r = 0. For sufficiently large Tp, the ground state of a holographic CFT on

spatial Tp × Sd−p−1 should be dual to such a geometry. In fact a unique such solution

does exist, as we explain in appendix I, and we will refer to it as the vacuum solution.

The spatial topology of the vacuum solution is Tp × Bd−p, where Bd−p is the solid

ball in d − p dimensions. In the second class of solutions we have α(rs) = 0 for some

rs > 0, with α, β and eγ strictly positive for r > rs. These types of solutions give a

generalization of the AdS-Schwarzshild solution to a wormhole whose bifurcate horizon

has topology Tp × Sd−p−1, so we will refer to them as wormhole solutions. Wormhole

solutions do indeed exist, with one for each value of rs, and we describe them in more

detail in appendix I. Their spatial topology is Tp×R×Sd−p−1, and they should be dual

to the thermofield double state of two copies of the CFT on Tp × Sd−p−1 at sufficiently

high temperature. As we lower the temperature, there should be a Hawking-Page-like

transition to two copies of the vacuum solution, with thermofield-double entanglement

between the particles on the two copies. Both the vacuum and the wormhole solutions

were constructed in [182] for the special case d = 4, p = 1, so our analysis in appendix

I can be viewed as generalizing those results to arbitrary d and p.

– 119 –



Let’s first argue that there are no p-form global symmetries in the bulk. We will

take the boundary theory to be on spatial Tp × Sd−p−1, with large enough Tp that

the ground state is described in the bulk by the vacuum solution. Now say that there

were a p-form global symmetry in the bulk. This would mean that for any (d − p)-

dimensional surface Σd−p in the bulk, we could define symmetry operators U(g,Σd−p)

under which surface operators O(Cp), with Cp a p-dimensional surface which intersects

Σd−p nontrivially, would transform.87 Our goal is to reproduce the situation of figure

16, with an extra Tp coming along for the ride. For the same reasons as discussed

around definition 4.2, in the boundary CFT we expect conjugation by U(g,Σd−p) to

preserve A[R] for any boundary spatial region R. The idea is then that we can therefore

use splittability to write U(g,Σd−p) in the CFT as a product of an appropriate Uedge

with a set of operators U(g,Tp ×Ri), where the Ri are a tiling of the boundary Sd−p−1

and each U(g,Tp × Ri) is a unitary element of A[Tp × Ri] whose action on elements

of A[Tp × Ri] by conjugation is identical to that of U(g,Σd−p), just as in equation

(4.9).88 We can choose Σd−p so that its intersection with the boundary is Sd−p−1, in

which case in the bulk U(g,Σd−p) acts on operators which create p-branes wrapping

Tp. For example in the vacuum solution, we can take Σd−p to be the set of points

t = xp = 0, which is spanned by the radial direction and the coordinates on Sd−p−1 and

thus has topology Bd−p. We therefore have all the ingredients of the setup of figure

16: if there were a p-form global symmetry, then there would be an operator which

creates a charged p-brane wrapping Tp at a point in the center of the spatial Bd−p in

the vacuum solution, but the algebra of this operator with the U(g,Tp × Ri) would

have to be trivial by entanglement wedge reconstruction. This contradicts the operator

being charged under the p-form global symmetry in the first place, so there couldn’t

have been such a symmetry.

The natural interpretation of this contradiction is that we should instead consider

87One might worry that U(g,Σd−p) should only be well-defined on states where the bulk geometry

has surfaces Cp which are not contractible and surfaces Σd−p which intersect them nontrivially. Note

however that in states where this is not the case, we may simply define U(g,Σd−p) to act as the

identity. These words may not seem like they should be precise nonperturbatively, where topology-

changing amplitudes are possible, but if there were indeed an exact p-form global symmetry then it

would have to set to zero any amplitudes which would change the topology in a way which violated

the symmetry.
88The reader may worry about our application of splittability here, since the boundary now contains

a Tp on which unbreakable surface operators can wrap. And even worse, our p-form global symmetry

ensures there will be such surfaces. But in fact we are not doing any split on Tp, we are splitting only

on Sd−p−1, which we should be able to split as long as p < d− 2. And even when p = d− 2, we expect

splittability can be restored by adding some heavy degrees of freedom to the boundary theory (at the

cost of breaking the p-form symmetry in the UV).

– 120 –



long-range p-form gauge symmetries in the bulk, since then an operator O(Cp) which

creates a charged brane wrapping Tp must be dressed by a Wilson surface Wα(Cp+1)

whose surface Cp+1 wraps Tp and also sweeps out a radial curve in Bd−p from the

location of the brane to the boundary Sd−p−1. The asymptotic p-form symmetry oper-

ators U(g,Σp−d−1) should then be interpreted as the symmetry operators of a boundary

p-form global symmetry a la definition (8.1). For the convenience of the reader we

indicate the support of these various objects in the following table:

r Tp Sd−p−1

O(Cp) x

Wα(Cp+1) x x

U(g,Σd−p−1) x

We can use the same idea of dimensional reduction on Tp to also rerun the argument

of section 5 for the presence of states in all irreducible representations of a long-range p-

form gauge symmetry with (compact) gauge group G in the bulk. Namely we may look

at Wilson surfaces in the wormhole solution which wrap Tp and also sweep out a radial

curve from one asymptotic boundary to the other, just as in figure 18. These Wilson

surfaces are charged under the p-form asymptotic symmetry operators U(g, Sd−p−1
R ),

where Sd−p−1
R is the spatial sphere in the “right” asymptotic boundary, and by varying

the representation of the Wilson surface we can again conclude that U(g, Sd−p−1
R ) is

nontrivial for all g other than the identity. We would now like to use theorems A.10

and A.11 to show that this implies that there must be states transforming in all ir-

reducible representations of G, but in order to be able to use the tensor product in

the construction of theorem A.11 we need to make use of a generalization of the state-

operator correspondence to surface operators (we can multiply two operators to get

another operator transforming in the product of the representations of the first two,

but we can’t multiply two states and stay in the same Hilbert space!) The idea is to

use the Euclidean CFT path integral on Tp × Bd−p, with metric

ds2 = dx2p + dr2 + r2dΩ2
d−p−1 (8.33)

and r ∈ [0, R], to generate states of the CFT on Tp × Sd−p−1. If we do this with

no insertions, we get a state which is neutral under conjugation by any p-form global

symmetry operator U(g, Sd−p−1). If we insert a p-dimensional surface operator wrapping

Tp at a definite point in Bd−p, then we get a state which transforms under U(g, Sd−p−1)

in the same representation as that surface operator does, while if we insert two of them

at different points on Bd−p, then we get a state which transforms in the tensor product

representation. Conversely if we are given a state on Tp × Sd−p−1, then by evolving it

to small r we can construct a p-dimensional surface insertion which gives that state
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when evolved back to r = R.89 Therefore the faithful action of U(g, Sd−p−1) on the

Hilbert space of the CFT on Tp × Sd−p−1 does indeed imply a faithful action on the

p-dimensional surface operators, which we may then multiply (at different points) to

construct states in arbitrary finite-dimensional irreducible representations of the p-form

global symmetry group G using theorem A.11. These are also dual to p-dimensional

surface operators, which can then be interpreted as creating the bulk p-branes which

carry whichever finite-dimensional irreducible representation of G we like.

Finally we note that this state-operator correspondence for surface operators can

also be used to establish a version of theorem 6.1 for p-form global symmetries: if we

assume that the set of p-dimensional surface operators is finitely generated, meaning

that the spectrum of the CFT on Tp × Sd−p−1 is discrete and there is a finite set of

surface operators at r = 0 in the geometry (8.33) whose operator product expansion

recursively generates all the other ones, then any noncompact p-form global symmetry

must be a subgroup of a compact one. As before there is a subtlety for d = p+2, since

there can be “long branes” near infinity which cause the spectrum on Tp × Sd−p−1 to

be continuous, in which case we need to additionally assume that the set of surface

operators which generate the rest transform in a finite-dimensional representation of

any p-form global symmetry. This subtlety is not merely academic, in fact it potentially

arises in all simple models of holography which are constructed from the near-horizon

limit of a stack of BPS (d− 1)-branes. For example N = 4 super Yang-Mills theory in

d = 4 on spatial T2×S1 has a continuous spectrum due to D3 branes near the boundary

which wrap T2 × S1 [158]. In this example there are no two-form global symmetries to

discuss, but in other examples there might be.

8.4 Relationships between the conjectures?

So far we have given independent arguments for conjectures 1-3 (and their p-form

generalizations), but in principle they might not be logically independent. In fact

in some cases there are simple relationships between them [3], we here discuss these

relationships and point out their limitations.

The first potential relationship arises from the observation that for some gauge

groups there is a close connection between the existence of a one-form global symmetry

and the absence of matter fields charged under those gauge groups. For example in U(1)

Maxwell theory with no dynamical electric charges, we have a U(1) one-form global

89Note that unlike in the ordinary state-operator correspondence, evolution in r is not part of the

conformal symmetry group. This means that the conformal transformation properties of the states

and operators considered here will not be related in a nice way, which is why such a correspondence is

usually not considered. See [183] for more discussion on this. For our purposes this does not matter,

since we only care about transformations under p-form global symmetries and these will be the same.
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symmetry with symmetry operators (8.5). Similarly in SU(N) gauge theory with no

fundamental quarks, ZN center symmetry is a one-form global symmetry. One might

hope to use these examples as motivation to give a general argument that a violation of

conjecture 2 necessarily leads to the existence of a one-form global symmetry, and thus

a violation of the one-form version of conjecture 1. In other words one might argue

that the one-form version of conjecture 1 implies the zero-form version of conjecture

2. Unfortunately this idea does not work in general, these examples rely on special

properties of the groups and representations involved. Indeed consider an arbitrary

gauge group G, under which matter fields transform in a representation Φ. We might

like to use the kernel of Φ as a candidate for a one-form global symmetry, as we did in

the above examples. But in general this kernel will not lie in the center of G, and when

it does not then we cannot use it to define a one-form symmetry (the candidate one-form

symmetry operators (8.8) would not be gauge-invariant). We can realize a nontrivial

one-form global symmetry only if the intersection of the kernel of Φ with the center of

G is nontrivial, but this will not always be the case. One simple counterexample is a

discrete gauge theory with gauge group S4 (the permutation group on four elements),

with a single matter field which transforms in the sign representation of S4. The kernel

of this representation is the set of even permutations, but the center of S4 is trivial so

none of them can be used to create a one-form global symmetry.

There is also an argument that in some cases conjectures 1 and 2 together imply

conjecture 3 [3]. The idea is that if we had a noncompact gauge symmetry for which

there were matter fields transforming in all irreducible representations, then there would

also need to be a global symmetry. For example say that there were a global symmetry

with symmetry group R. By conjecture 2 there would need to be a particle a of

charge one and a particle b of charge
√
2. But then any Lagrangian built out of

polynomials of the fields for these charges would also have to be invariant under a

global symmetry for which a was neutral and b had charge
√
2. This argument is

reminiscent of our proof of theorem 6.1, for which it gave some inspiration, but it has

several problems as stated. The first is the explicit reference to a Lagrangian built

out of polynomials of fundamental fields: it is far from clear that all quantum field

theories can be constructed this way. Secondly, our arguments for conjecture 2 assume

the gauge group to be compact, without this there is no particular reason to expect

all finite-dimensional irreducible representations to be realized. Thirdly, it is not clear

that this argument generalizes to noncompact groups other than R. And finally, even

if we do consider R, do accept the existence of the particles a and b, and do accept

the Lagrangian argument, it could be that the symmetry where a is neutral and b has

charge
√
2 is also gauged. This is exactly what happened in our U(1)× U(1) example

discussed below theorem 6.1. Our argument for theorem 6.1 avoids the first problem by
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using the operator product expansion instead of a Lagrangian, the second problem by

using finite-generatedness instead of conjecture 2, the third problem by working with

arbitrary groups, and the fourth by showing not that a noncompact gauge symmetry

in the bulk would lead to a bulk global symmetry, but instead that it must fit into a

larger bulk gauge symmetry which is compact.

9 Weak gravity from emergent gauge fields

There is a set of proposals, called weak gravity conjectures, which attempt to generalize

conjectures 1-2, the absence of global symmetries in quantum gravity and the presence

of objects carrying all allowed long-range gauge charges, to some kind of lower bound

on how weak (long-range) U(1) gauge couplings can be [5, 29–31, 184, 185]. These

proposals typically involve asserting the existence of some object or objects whose

U(1) gauge charge Q and mass M obey (in d ≥ 4 spacetime dimensions)

Q2 ≥ 8π(d− 3)

d− 2
GM2, (9.1)

where G is Newton’s constant and the O(1) constant comes from the charge-to-mass

ratio of an extremal Reissner-Nordstrom black hole. Often there are additional re-

strictions on the properties of the object(s), and rules about when saturation of the

inequality counts as success.

In [29] a nontrivial proposal was given by Cheung and Remmen for a generalization

of the inequality (9.1) to the case of multiple U(1) gauge groups. First define

Cd ≡
√

d− 2

8π(d− 3)
. (9.2)

If there is a U(1)k long-range gauge symmetry, and if we label types of object by i,

then for each i we can define a vector in Rk by

~zi ≡ Cd

~Qi

Mi

√
G
, (9.3)

where ~Qi is the vector which gives the charges of the ith type of object under U(1)k.

The idea of [29] is then that the right generalization of (9.1) is a requirement that the

convex hull of all physically realized zi in Rk must contain the unit ball, again perhaps

with further restrictions on which objects count and when saturation is acceptable.

The reason why even for k = 1 there are many weak gravity conjectures is that

there is no single nontrivial version of the conjecture for which there is a convincing

– 124 –



general argument. The closest one gets to a starting point for such an argument is

a proposal for a principle that non-supersymmetric extremal black holes of any mass

should not be stable [5, 184] (see [185–187] for some other recent efforts). Unlike in our

discussion of black holes and continuous global symmetries in the introduction however,

here there is no known reason why such stability would be problematic. Moreover it

is not clear exactly what form of the conjecture should follow from this principle, for

example are the objects obeying (9.1) or its convex hull generalization allowed to be

black holes? Here we also will not give a precise formulation (or proof) of a weak

gravity conjecture. We will instead just observe that one recent attempt [17] to give a

real quantum-gravity motivation for equation (9.1) also reproduces in a nice way the

convex hull condition of [29].

The proposal of [17] is to take seriously the factorization of the two-boundary

gravitational system in AdS/CFT, specifically along the lines of arguing that any gauge

constraints in the bulk must be emergent, and see what this emergence says about

equation (9.1). This idea has not yet led to a general explanation of a weak gravity

conjecture, but it does turn out that in simple models of an emergent U(1) gauge field,

a version of equation (9.1) is always satisfied [17]. In particular in the lattice version of

the CPN−1 nonlinear-σ model with lattice spacing 1/Λ, at large N and for appropriate

values of the coupling, there is an emergent U(1) gauge field in the infrared, together

with N scalars of charge one and mass m, and for d > 4 the low-energy gauge coupling

is given by
1

q2
= NΛd−4. (9.4)

Here the overall constant is non-universal, so we have just chosen it to be one. For

d = 4, we instead have
1

q2
=

N

12π2
log (Λ/m) , (9.5)

where the mass of the charged scalars cuts off an infrared divergence and the coefficient

of the logarithm is universal. The point is then that if we perturbatively couple this

model to gravity, the charged scalars also generate an effective Newton constant

1

G
= NΛd−2, (9.6)

which we can use to test equation (9.1).90 The idea is that in order for this analysis

(presented in more detail in [17]) to make sense, we need the mass of the scalars to be

90There could also be a bare Newton’s constant, but as long as it is positive then this only drives

the overall Newton’s constant to be smaller, making (9.1) easier to satisfy. The primary consequence

of the gauge field being emergent is that there is not a large bare Maxwell term in the effective action

at the cutoff scale.
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small in cutoff units:

m2 ≪ Λ2, (9.7)

so in particular we should have m2 < C2
dΛ

2. But we may then use our UV expressions

for 1/q2 and 1/G to obtain (for simplicity working in d > 4)

m2 < C2
dΛ

2 = C2
d

q2

G
, (9.8)

which is precisely (9.1).

We will now extend this analysis to k copies of the CP
N−1 model, each with its

own value Ni of N and each with its own mass mi for the charged scalars. There is

an emergent U(1)k gauge symmetry in the infrared, and the gauge couplings are given

(working in d > 4 for simplicity) by

1

q2i
= NiΛ

d−4. (9.9)

Once we couple to gravity there is also an effective Newton constant

1

G
=
∑

i

NiΛ
d−2, (9.10)

with the sum appearing in (9.10) but not in (9.9) because each set of Ni scalars couples

only to its own U(1) gauge field but they all couple to gravity. These equations can be

combined to give

Λ−2 = G
∑

j

1

q2j
, (9.11)

and we now require that

m2
i < C2

dΛ
2 =

C2
d

G
∑

j
1
q2j

. (9.12)

In this theory the Cheung-Remmen convex hull condition tells us that we need

∑

i

(
λi

Cdqi√
Gmi

)2

≥ 1 (9.13)

for all 0 ≤ λi ≤ 1 obeying
∑k

i=1 λi = 1. We can use (9.12) term by term in this sum,

leading to
∑

i,j

(
λi
qi
qj

)2

≥ 1, (9.14)
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which we claim is indeed true for all λi for any collection of qi. The argument begins

by defining

xi ≡
q−2
i∑
j q

−2
j

(9.15)

and

f(λ) =
∑

i

λ2i
xi
, (9.16)

in terms of which (9.14) becomes f(λ) ≥ 1. We may then observe that f is a strictly

convex function of the λi, since for all λi 6= λ′i and s ∈ (0, 1) we have

f(sλ+ (1− s)λ′) =sf(λ) + (1− s)f(λ′)− s(1− s)
∑

i

(λi − λ′i)
2/xi

< sf(λ) + (1− s)f(λ′). (9.17)

The set of allowed λi is convex, so any critical point of f in this set will be a unique

global minimum. By taking the derivative with respect to λi, constrained by
∑

i λi = 1,

one easily sees that in fact there is a (unique) critical point at λi = xi, where indeed

we have f = 1. Thus the Cheung-Remmen convex hull condition holds in this many-

parameter example of a set of emergent gauge fields coupled to gravity; we view this

as evidence supporting the idea that the right motivation for whatever is the correct

version of the weak gravity conjecture involves viewing the bulk gauge field as emergent.
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A Group theory

In this appendix we briefly review some standard aspects of Lie group theory which

are necessary for our work, but which may not be common knowledge for all physicists.

For many more details see eg [119, 188], our discussion of representation theory largely

follows [119].

A.1 General structure of Lie groups

A Lie group is a group G which is also a smooth manifold, and for which multiplication

and inversion are smooth maps in that smooth structure. A vector field X on G is

called left-invariant if for any h in G it is preserved by the pushforward of the map

Lh : g 7→ hg. The set of left-invariant vector fields forms a real vector space g, called

the Lie algebra of G, whose dimensionality equals that of the manifold, and which is

closed under taking vector field commutators (abstractly a Lie algebra is a vector space

with a bracket operation which is antisymmetric and obeys the Jacobi identity). If G

has dimension zero as a manifold, then g is empty. There are then two classic results:

Theorem A.1 (Closed subgroup theorem). Let G be a Lie group, and H ⊂ G a

subgroup of G which is topologically closed. Then H is an embedded submanifold, and

thus is itself a Lie group.

Theorem A.2 (Lie group-Lie algebra correspondence). Let g be an abstract real Lie

algebra. There exists a unique (up to isomorphism) connected simply-connected Lie

group G̃ whose Lie algebra is isomorphic to g. Moreover any other connected Lie group

G whose Lie algebra is isomorphic to g is itself isomorphic to a quotient of G̃ by a

discrete central subgroup Γ ⊂ G̃. More generally, any Lie group G with a given Lie

algebra is an extension of one of the connected ones by a discrete “component” group

C, meaning that there is a surjective homomorphism from G to C which sends each

connected component of G to a distinct element of C,91 and that therefore G0
∼= G/C,

where G0 is the identity component of G.

91Mathematicians like to describe this situation by saying that there is a short exact sequence 1 →
G0 → G→ C → 1, where each arrow denotes a homomorphism and the kernel of each homomorphism

is the image of the previous one. In this sequence the other three homomorphisms are trivial inclusions

and projections.
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The proofs of these theorems use standard geometric techniques (vector flows,

Frobenius’s theorem, etc), they are nicely explained in [188] (Ado’s theorem is also

needed, which is proven in [119]). We will give the proof of one further result which we

will need below:

Theorem A.3. Let G be a connected Lie group, and H ⊂ G be a subgroup which

contains an open neighborhood U of the identity in G. Then H = G.

Proof. We will show that H is both open and closed: since G is connected, this implies

H = G. H is open because for any h ∈ H, the set hU is open in G, it contains h, and

it is contained in H. Therefore H =
⋃

h∈H(hU). H is closed because if g /∈ H, then we

also have gU ∩H = ∅. Indeed if we had gu = h for some u ∈ U and h ∈ H, then we

would have g = hu−1, and thus g ∈ H. Therefore we have G−H =
⋃

g/∈H gU .

A.2 Representation theory of compact Lie groups

A representation of a Lie group G on a complex vector space V is a homomorphism

ρ from G into the set of linear operators on V , for which the map Φρ : G × V → V

defined by Φρ(g, v) = ρ(g)v is jointly continuous.92 If ρ is injective then it is said to

be faithful. ρ is said to be unitary if V admits an inner product with respect to which

ρ(g) is unitary for any g, and is said to be finite-dimensional if V is finite-dimensional.

The kernel of ρ, denoted Ker(ρ), is the set of elements of G which are mapped to the

identity operator on V . Ker(ρ) is always a closed normal subgoup of G, and ρ is faithful

if and only if Ker(ρ) = {e}. A subspace S ⊂ V is called invariant if ρ(G)S = S, and

ρ is said to be irreducible if the only closed invariant subspaces are V itself and 0. By

the closed subgroup theorem any finite-dimensional representation of a Lie group G is

automatically smooth, which is why we only required ρ to be continuous, and actually

by theorem A.9 below the same is true for infinite-dimensional unitary representations

if G is compact.

The representations of a general Lie group G can be quite sophisticated, but if G

is compact and ρ is either unitary or finite-dimensional then there is a simple theory

of all representations which can be derived from the existence of the invariant Haar

measure dg on G. Indeed there is a simple theorem relating these two conditions:

Theorem A.4. Let G be a compact Lie group, and ρ be a finite-dimensional represen-

tation of G. Then ρ is unitary.

92In the main text we used “physics” notation where the components of the representation matrices

for a representation ρ in some specific basis for V are denoted Dρ,ij(g). In this appendix we simplify

things by just using ρ(g) to refer to the abstract operators.
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Proof. Let (v, v′)0 be any inner product on V .93 We may then define a new inner

product

(v, v′) ≡
∫
dg(ρ(g)v, ρ(g)v′)0, (A.1)

which is easily shown to be an inner product with respect to which ρ(g) is unitary for

any g.

For a unitary representation, the orthogonal complement of an invariant subspace

is also invariant. Therefore theorem A.4 shows that any finite-dimensional represen-

tation of a compact Lie group can be decomposed into a direct sum of irreducible

representations. We next establish a famous technical lemma, which we then use to

prove perhaps the most remarkable feature of the representation theory of compact

groups: the Schur orthogonality relations.

Theorem A.5 (Schur’s lemma). Let α and α′ be finite-dimensional irreducible repre-

sentations of a group G on V and V ′ respectively (here G can be an arbitrary group

and we assume no continuity properties of α and α′). If L : V → V ′ is a linear map

obeying α′(g)L = Lα(g) for all g ∈ G, then either L is a bijection or L = 0. Moreover

if α = α′ and V = V ′, then L is a multiple of the identity.

Proof. It is easy to see that the kernel and image of L are invariant subspaces of V and

V ′ respectively. Irreducibility of α implies that the kernel of L is either 0 or V : if it is

V then L = 0, while if it is 0 then L is injective. If L is injective, then irreducibility of

α′ implies that its image must V ′, so L is surjective. In the case α = α′ and V = V ′,

since L is finite-dimensional if it is not equal to zero then it has a nonzero eigenvalue

λ. We may then consider the operator L̂ ≡ L− λI, which again is a linear map which

commutes with α. But it is not injective so it must be zero.

Theorem A.6 (Schur orthogonality relations). Let α and α′ be irreducible finite-

dimensional representations of a compact Lie group G on the vector spaces V and V ′,

which are inequivalent in the sense that there is no invertible linear map L : V → V ′

such that Lα(g) = α′(g)L for any g ∈ G. Then in the inner products for which α and

93Recall that an inner product on a complex vector space V is a map ( , ) : V × V → C which is

linear in the second argument, obeys (v, v′)∗ = (v′, v) for any v, v′, and for which (v, v) ≥ 0 for any

v, with equality only if v = 0. These conditions imply that an inner product is antilinear in the first

argument. Mathematicians usually instead take the first argument to be linear and the second to be

antilinear, but our choice is closer to bra-ket notation.
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α′ are unitary we have
∫
dg(u′, α′(g)v′)∗(u, α(g)v) = 0 ∀u, v ∈ V, u′, v′ ∈ V ′ (A.2)

∫
dg(u′, α(g)v′)∗(u, α(g)v) =

(u, u′)(v, v′)∗

dim(V )
∀u, v, u′, v′ ∈ V. (A.3)

Choosing orthonormal bases for V and V ′ and reverting to physics notation, we have
∫
dgD∗

α′i′j′(g)Dα,ij(g) = 0 (A.4)
∫
dgD∗

α,i′j′(g)Dα,ij(g) = d−1
α δii′δjj′ . (A.5)

Proof. Given any u ∈ V , u′ ∈ V ′, we can define a map Lu,u′ : V → V ′ via

(v′, Lu,u′v) ≡
∫
dg(u′, α′(g)v′)∗(u, α(g)v). (A.6)

It is straightforward to verify that α′Lu,u′ = Lu,u′α using the invariance of the Haar

measure, so by theorem A.5 Lu,u′ must either be a bijection or be zero. Moreover it

cannot be a bijection since α and α′ are inequivalent, so it must be zero, establishing

equation (A.2). To establish equation (A.3), we can similarly define maps Lu,u′ : V → V

and Lv,v′ : V → V ′ via

(v′, Lu,u′v) ≡ (u, Lv,v′u
′) ≡

∫
dg(u′, α(g)v′)∗(u, α(g)v). (A.7)

By the invariance of the Haar measure these maps both commute with α(g) for any g,

so by theorem A.5 they both must be multiples of the identity on V . This establishes

equation (A.3) up to an overall constant, which we may then fix by taking u = u′ and

summing u over an orthonormal basis for V using the unitarity of α.

The Schur orthogonality relations immediately imply the orthogonality of the char-

acters χα(g) ≡ Trα(g) of inequivalent finite-dimensional irreducible representations, as

well as the fact that
∫
dgχ∗

α(g)χρ(g) counts the number of times a finite-dimensional

irreducible representation α appears in the direct-sum decomposition of an arbitrary

finite-dimensional representation ρ. They can be interpreted as saying that the rescaled

set of matrix coefficients
√
dαDα,ij(g) give a set of orthonormal states in the Hilbert

space L2(G) of square-normalizable complex-valued functions on G. In fact they are

an orthonormal basis:

Theorem A.7 (Peter-Weyl theorem). Let G be a compact Lie group. Then the rescaled

matrix coefficients
√
dαDα,ij(g) for all finite-dimensional irreducible representations

give an orthonormal basis for L2(G).
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The proof of this theorem is an exercise in functional analysis and can be found in

[119], presenting it here would be too much of a digression.

We emphasize that so far in this subsection all results have been essentially topo-

logical, and have not actually used the smoothness in the definition of the Lie group

G. Indeed theorems A.4-A.7 are also true if multiplication and inversion are only taken

to be continuous and the topology of G is only required to be compact and Hausdorff,

since these are sufficient for the existence of the Haar measure. When we do assume

that G is a Lie group however we then have the following remarkable result:

Theorem A.8. Any compact Lie group G has a faithful finite-dimensional unitary

representation, and thus is isomorphic to a closed subgroup of U(n) for some n.

Proof. The proof begins with the observation that by the Peter-Weyl theorem A.7,

for any g ∈ G we can find a finite-dimensional irreducible representation αg for which

αg(g) is not the identity (otherwise we could never approximate a function on G which

takes different values at e and g). We may first consider the case where G is discrete,

so its identity component G0 consists of only the identity. G is therefore finite, and

we can construct a faithful representation via ⊕g∈G αg. Alternatively say that there

exists a g1 6= e in G0: then G1 ≡ ker(αg1) is a closed subgroup of G, so by the closed

subgroup theorem A.1 it is a Lie subgroup whose dimensionality is at most that of

G. In fact its dimensionality must be strictly less than that of G, since if they were

equal then by theorem A.3 we would have (G1)0 = G0, which contradicts the fact that

αg1(g1) is not the identity. Now say that G1 is zero-dimensional: then as before we

see that αg1 ⊕g∈G1 αg is a faithful finite-dimensional representation of G. Alternatively

if G1 has positive dimension then we have g2 ∈ (G1)0 such that g2 6= e, so we can

take G2 ≡ ker(αg1 ⊕ αg2), which again will be a closed subgroup of G1 of dimension

strictly less than that of G1. Continuing in this way we eventually reach a Gn which

is zero-dimensional, and we may then take α ≡ αg1 ⊕ . . .⊕ αgn ⊕g∈Gn
αg, which will be

faithful. It is unitary by theorem A.4.

Thus we see that the structure theory of compact Lie groups and their finite-

dimensional representations is quite well understood. In fact their unitary infinite-

dimensional representations are also understandable along similar lines, we now note

two results in this direction.

Theorem A.9. Let ρ be a unitary representation of a compact Lie group G on a

Hilbert space V . Then ρ is the direct sum of a set of finite-dimensional irreducible

representations.
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The proof of this theorem uses the Peter-Weyl theorem to show that there cannot

be any elements of V which are orthogonal to the direct sum of all finite-dimensional

invariant subspaces, see [119] for the proof. We then also have

Theorem A.10. Let ρ be a faithful unitary representation of a compact Lie group G

on a Hilbert space V . Then there is a finite-dimensional invariant subspace of V on

which ρ also acts faithfully, so ρ has a finite-dimensional subrepresentation which is

also faithful.

Proof. The faithfulness of ρ ensures that for any element g ∈ G there is a finite-

dimensional irreducible representation αg appearing in the direct sum decomposition

promised by theorem A.9 for which αg(g) is not the identity. The remainder of the

proof is identical to that of theorem A.8.

The last result we will need relates arbitrary irreducible representations of a com-

pact group to any particular faithful finite-dimensional one [189]:

Theorem A.11. Let G be a compact Lie group, ρ be a faithful finite-dimensional repre-

sentation of G, and ρ∗ be its conjugate representation. Then for any finite-dimensional

irreducible representation α of G there exist nonnegative integers n and m such that α

appears in the direct sum decomposition of the tensor-product ρ⊗n ⊗ ρ∗⊗m.

Proof. Consider the representation

ρn ≡ (1⊕ ρ⊕ ρ∗ ⊕ ρ⊗ ρ∗)⊗n . (A.8)

It has character

χn(g) ≡ Trρn(g) = |1 + χρ(g)|2n, (A.9)

where χρ(g) ≡ Trρ(g) is the character of ρ. By Schur orthogonality we can count the

number of times any irreducible representation α appears in the direct sum decompo-

sition of ρn by ∫

G

dgχα(g)|1 + χρ(g)|2n. (A.10)

The quantity |1 + χρ(g)| obeys

0 ≤ |1 + χρ(g)| ≤ 1 + dρ, (A.11)

with the maximum attained only when g = e since ρ is faithful. But then we have

lim
n→∞

∫
G
dgχα|1 + χρ(g)|2n∫
G
dg|1 + χρ(g)|2n

= dα, (A.12)
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so at some sufficiently large n we must have

∫

G

dgχα(g)|1 + χρ(g)|2n > 0. (A.13)

If G is connected, much more is known about its representation theory, and indeed

both the connected compact Lie groups and their finite-dimensional irreducible repre-

sentations have been classified long ago using semisimple theory. In this paper however

we have striven to treat discrete and continuous groups on equal footing, so we will

stop our review here.

B Projective representations

In this appendix we discuss the possibility of extending our definition of global sym-

metry to include projective representations of the symmetry on Hilbert space, where

the multiplication rule (2.1) would be generalized to include a phase

U(g,Σ)U(g′,Σ) = eiα(g,g
′)U(gg′,Σ). (B.1)

We now argue that in quantum field theory on Rd, any such phase can be removed

by a redefinition of the U(g,Σ). We first consider the situation where the symmetry

is unbroken: then there is an invariant vacuum state, on which the symmetry can at

most act with a phase

U(g,Σ)|0〉 = eif(g)|0〉. (B.2)

But if we act on this state with U(g,Σ)U(g′,Σ), we immediately discover that we must

have

α(g, g′) = f(g) + f(g′)− f(gg′) mod 2π. (B.3)

We may then define “improved” symmetry operators

Ũ(g,Σ) ≡ e−if(g)U(g,Σ), (B.4)

which act in the same way on the local operators but now obey (B.1) with α = 0. Thus

in any quantum mechanical system, nontrivial projective representations are only pos-

sible if there is no invariant state: in other words the symmetry must be spontaneously

broken. There are indeed quantum mechanical systems where a spontaneously broken

global symmetry is represented projectively in a nontrivial way, see appendix D of [143]

for an example, but we now argue that in quantum field theory this is impossible.
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The reason is that in quantum field theory on Rd, spontaneously broken global

symmetries (as we have defined them) always lead to the superselection structure de-

scribed around equation (2.10). Since the operators always transform in non-projective

representations of the symmetry (the phase α cancels when act on operators by conju-

gation), and since we can get to all states by acting with operators that do not change

the superselection sector on the degenerate vacua, any projectiveness on the states can

arise only from phases in the action of the symmetry on the degenerate vacuum states:

U(g)|b〉 = eif(g,b)|gb〉. (B.5)

Strictly speaking to have a genuine projective representation we should not allow f to

depend on b, but we have allowed this since in any case it will not help: such phases

can again be removed by the redefinition

Ũ(g) ≡ U(g)e−if(g,Bi), (B.6)

where Bi are the operators which diagnose which superselection sector a state is in.

Since the Bi commute with all local operators, this modification has no effect on the

action of the symmetry on local operators. Thus the Ũ(g) give a non-projective repre-

sentation of the symmetry on the Hilbert space.94

In equation (B.5) we considered a kind of generalized projective representation,

where instead of respecting the group multiplication law up to a c-number phase we

respect it up to a nontrivial unitary operator which commutes with all of the local

operators. One might ask if there are other examples of this kind of thing, where

the unitary operator depends on something other than degenerate vacuum data. In a

quantum field theory where all states can be obtained by acting on a single ground state

with local operators, there can be no nontrivial unitary operator which commutes with

all of the local operators. There are two ways we could try to relax this assumption in

the hopes of getting something interesting. The first is to have multiple ground states,

each of which has on top of it a superselection sector built by acting with local operators.

This is the case we just considered, and we saw that allowing the unitary operators

to depend on the superselection sector data did not lead to anything worthwhile. The

second possibility is to consider theories where not all states can be obtained by acting

on the ground state(s) with local operators. The only possibility we are aware of

is to have a theory with a “long range gauge symmetry with dynamical charges”, a

notion we define in section 3. It basically means that there is a weakly-interacting

gauge field and operators charged under the associated gauge symmetry, which must

94More precisely since we have defined representations to be continuous, it gives a homomorphism

from G to the unitary operators on the Hilbert space which may or may not be continuous.
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be attached to infinity by Wilson lines to be gauge-invariant. The gauge symmetry

is then represented nontrivially on the Hilbert space, in what is sometimes called an

asymptotic symmetry group, and since this can be understood as being realized by a

surface operator at infinity it will give a set of nontrivial unitary operators that commute

with all local operators but act nontrivially on the endpoints of Wilson lines. We could

therefore imagine trying to use these long-range gauge symmetries as generalizations

of the phases eiα(g,g
′) in a projective representation of the global symmetry. Indeed in

section 3.5 we give a concrete example of a theory that realizes this phenomenon, and

in a way in which the unitary cannot be removed by redefining the symmetry operators.

One might then wish to say that this is a genuine projective representation of the global

symmetry, but as we explain in section (3.5) we find it more natural to instead say that

it is a mixing of the global symmetry with a long-range gauge symmetry. Therefore

we are not aware of any situation in quantum field theory where the most natural

description of the symmetry structure is to say that a global symmetry is represented

projectively on the Hilbert space.

C Continuity of symmetry operators

In this appendix we discuss the continuity of the action of global symmetries in quantum

field theory, both on the Hilbert space and on the algebra A[R] of bounded operators

in a bounded spatial region R.

First some definitions. Let V be a Hilbert space, which we will always endow with

the standard topology induced by the Hilbert space norm

||v|| ≡
√

(v, v). (C.1)

One says that a linear operator O on V is bounded if there exists a real constant C

such that ||Ov|| < C||v|| for all v ∈ V , and we will denote by B(V ) the set of bounded

operators on V . We will say that a subset M ⊂ B(V ) is uniformly bounded if there

exists a single real constant C such that ||Ov|| < C||v|| for all v ∈ V and O ∈M . The

operator norm ||O|| of any bounded operator O is the smallest real constant C such

that ||Ov|| ≤ C||v|| for all v ∈ V .

To discuss the continuity of maps to and from B(V ), we need to give it a topology.

There are several possibilities. One obvious one is the norm topology, which has as a

basis the set of balls

Bǫ(O0) ≡ {O ∈ B(V )
∣∣∣ ||O − O0|| < ǫ}, (C.2)

with O0 ∈ B(V ) and ǫ > 0. This topology however is much too strong for our purposes.

For example in the norm topology the U(1) global symmetry φ′ = eiθφ of a free complex
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scalar field has symmetry operators U(g,Σ) which are not continuous, since there are

states of arbitrarily large charge in the Hilbert space. A topology which is better suited

is the strong operator topology, which has as a basis the set of finite intersections of

balls of the form

Bǫ(O0, v0) ≡ {O ∈ B(V )
∣∣∣ ||(O −O0)v0|| < ǫ}, (C.3)

with O0 ∈ B(V ), v0 ∈ V , and ǫ > 0. This topology is sometimes also called the

topology of pointwise convergence, since a sequence On of operators converges to an

operator O in the strong operator topology if and only if Onv → Ov for any v ∈ V .

Similarly, if X is a topological space then a map f : X → B(V ) is continuous in the

strong operator topology if and only if the map fv : X → V defined by fv(x) = f(x)v

is continuous for any fixed v ∈ V .

In discussing the continuity of symmetries, there are two maps whose continuity

properties we are interested in. The symmetry operators U(g,Σ) directly define a map

U : G→ B(V ), (C.4)

and also induce an associated map

fU : G×A[R] → A[R] (C.5)

for R any spatial region, defined by fU(g,O) = U †(g)OU(g). As a warmup, we first

establish the following theorem

Theorem C.1. Let V be a Hilbert space, G a Lie group, and U a map from G to

B(V ) for which U(g) is unitary for all g ∈ G. Then the map ΦU : G× V → V defined

by ΦU(g, v) = U(g)v is jointly continuous if and only if U is continuous in the strong

operator topology. In particular, if U is a homomorphism which is strongly continuous

then it is a representation of G on V in the sense of subsection A.2.

Proof. If ΦU is jointly continuous, then strong continuity of U follows immediately from

fixing the second argument. To establish the converse, we need to show that for any

ball

Bǫ(v0) ≡ {v ∈ V
∣∣∣ ||v − v0|| < ǫ} (C.6)

in V , Φ−1
U (Bǫ(v0)) is open in G × V . We can do this by showing that any point (g, v)

in Φ−1
U (Bǫ(v0)) is contained in an open set S ×Bδ(v), with S open in G, which is itself

contained in Φ−1
U (Bǫ(v0)). We therefore want to show that

||U(g′)v′ − v0|| < ǫ ∀g′ ∈ S, v′ ∈ Bδ(v). (C.7)

– 137 –



This follows because by the triangle inequality and the unitary invariance of the Hilbert

space norm we have

||U(g′)v′ − v0|| ≤ ||U(g′)(v′ − v)||+ ||(U(g′)− U(g))v||+ ||U(g)v − v0||
= ||(v′ − v)||+ ||(U(g′)− U(g))v||+ ||U(g)v − v0||. (C.8)

The third term on the second line is less than ǫ since (g, v) is in Φ−1
U (Bǫ(v0)), and using

our freedom to choose δ and S and the strong continuity of U we can make the first

and second terms as small we like. Therefore we can arrange for the sum of all three

to be less than ǫ.

This theorem tells us that in quantum field theory U(g,Σ) will be strongly con-

tinuous if and only if its action on the Hilbert space gives a continuous representation

of G. We saw in the beginning of section 2 that if G is continuous as a Lie group,

meaning its dimension as a manifold is greater than zero, then if it is spontaneously

broken the U(g,Σ) defined by equation (2.11) may not be strongly continuous, since

elements of g which are arbitrarily close to the identity still send one ground state to

another which is orthogonal. If the symmetry is unbroken however, then we take it as

a natural postulate that U will indeed be strongly continuous. For example in the free

complex scalar example, any particular normalizable state will be acted on continu-

ously even though there are states with arbitrary large charge. More generally the idea

is that if the vacuum is invariant, then any particular excited state should only differ

from the vacuum in a finite region and by a finite amount of excitation so it should

only transform in a representation of limited complexity. We now use the idea that

U should be strongly continuous for unbroken symmetries to motivate the continuity

clause in condition (b) of our definition 2.1 of global symmetry.

Theorem C.2. Let V be a Hilbert space, G a Lie group, and U a strongly continuous

map from G to the unitary operators on V . Then the restriction to any uniformly

bounded subset M of B(V ) of the map fU : G × B(V ) → B(V ) defined by fU(g,O) =

U †(g)OU(g) is strongly continuous.

Proof. We will show that for any ball Bǫ(O0, v0) in B(V ), f−1
U (Bǫ(O0, v0)) ∩ (G ×M)

is open in G×M . We can do this by showing that for any (g,O) ∈ f−1
U (Bǫ(O0, v0)) ∩

(G × M), there is an open set S ⊂ G containing g and a ball Bδ(O, v̂) such that

S × (Bδ(O, v̂) ∩M) ⊂ f−1
U (Bǫ(O0, v0)) ∩ (G ×M). In other words for any ǫ, O0, and

v0, we want to pick S, δ, and v̂ such that

||
(
U †(g′)O′U(g′)−O0

)
v0|| < ǫ ∀g′ ∈ S,O′ ∈ Bδ(O, v̂) ∩M. (C.9)
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By the triangle inequality and the unitary invariance of the Hilbert space norm we have

||
(
U †(g′)O′U(g′)−O0

)
v0|| ≤||U †(g′)O′(U(g′)− U(g))v0||+ ||U †(g′)(O′ −O)U(g)v0||

+ ||(U †(g′)− U †(g))OU(g)v0||+ ||(U †(g)OU(g)−O0)v0||
=||O′(U(g′)− U(g))v0||+ ||(O′ −O)U(g)v0||
+ ||(U †(g′)− U †(g))OU(g)v0||+ ||(U †(g)OU(g)−O0)v0||.

(C.10)

The fourth term on the right hand side is less than ǫ since (g,O) is in f−1
U (Bǫ(O0, v0)),

the third term can be made as small as we like using the strong continuity of U and

the boundedness of O, the second term can be made as small as we like by choosing

v̂ = U(g)v0 and taking δ to be small, and the first term can be taken to be arbitrarily

small by using the strong continuity of U together with the uniform boundedness of

M . Therefore for small enough S and δ we can arrange for the whole right hand side

to be less than ǫ.

Thus we see that strong continuity on any uniformly bounded subset of A[R] is

the right continuity requirement on fU for an unbroken global symmetry. In fact

we claim that if the region R is bounded in size, then this should also be the right

requirement even if the symmetry is spontaneously broken, since this should not affect

the transformation of operators in a finite region, hence our inclusion of it in condition

(b) of definition 2.1. It is worth emphasizing that without the restriction to uniformly

bounded subsets the theorem would not apply, since the first term in the right hand

side of equation (C.10) would not be bounded since there are elements O′ of any open

ball Bδ(O, v̂) with arbitrarily large norm.

We can also consider what strong continuity of fU on uniformly bounded subsets

implies in the converse direction about the continuity of U . In general it does not imply

anything, which is good since for spontaneously broken symmetries we sometimes do

not want U to be continuous. But if we assume that the symmetry is unbroken, by

which we mean that there is an invariant ground state Ω ∈ V , then we have the

following theorem:

Theorem C.3. Let V be a Hilbert space, G a Lie group, A[R] a subalgebra of B(V ),

and U a map from G to the unitary operators on V such that the restriction to any

uniformly bounded subset M of A[R] of the map fU : G × B(V ) → B(V ) defined by

fU(g,O) = U †(g)OU(g) is strongly continuous. Moreover let there exist a state Ω ∈ V
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which is cyclic with respect to A[R],95 and which is also invariant in the sense that

U(g)Ω = Ω for all g ∈ G. Then U is strongly continuous.

Proof. We want to show that for any ǫ > 0, v0 ∈ V , O0 ∈ B(V ), we have that

U−1(Bǫ(O0, v0)) is open in G. We do this by showing that for any g such that U(g) ∈
Bǫ(O0, v0), there is a neighborhood S of g in G such that U(S) is also contained in

Bǫ(O0, v0). In other words we want

||(U(g′)−O0)v0|| < ǫ ∀g′ ∈ S. (C.11)

We first note that by the cyclicity of Ω, we have

v0 = ÕΩ + ṽ (C.12)

for some Õ ∈ A[R], with the norm of ṽ being as small as we like. From the triangle

inequality and the invariance of Ω we then have

||(U(g′)−O0)v0|| ≤||
(
U †(g′−1)ÕU(g′−1)− U †(g−1)ÕU(g−1)

)
Ω||+ ||U(g′)ṽ||

+ ||U(g)ṽ||+ ||(U(g)−O0)v0||. (C.13)

The fourth term will be less than ǫ since U(g) is in Bǫ(O0, v0), by cyclicity we can take

||U(g)ṽ|| = ||U(g′)ṽ|| = ||ṽ|| as small we like, and since Õ will always be part of some

uniformly-bounded subset of A[R] the first term can be made arbitrarily small using

the joint strong continuity of fU on uniformly-bounded subsets. Therefore the sum of

all three terms can be taken to be less than ǫ.

Thus we can be reassured that our continuity requirement in condition (b) of

definition 2.1 is not too weak.

Finally we point out that if we do have an invariant ground state which is both

cyclic and separating with respect to A[R], then actually there is a different topology

in which the situation is even nicer. This topology is defined by noting that we can

actually use the state Ω to define an inner product on A[R] via

(O1,O2)Ω ≡ (O1Ω,O2Ω), (C.14)

which gives A[R] the structure of a Hilbert space. Here (·, ·) is the usual Hilbert space
inner product on V , and (·, ·)Ω is a good inner product on A[R] because (O,O)Ω ≥ 0,

95A state Ω ∈ V is cyclic with respect to a subalgebra A[R] ⊂ B(V ) if the set of states OΩ, with

O ∈ A[R], are dense in V . It is separating if there is no O ∈ A[R] such that OΩ = 0. In quantum

field theory the Reeh-Schlieder theorem tells us that both of these properties hold for the ground state

when A[R] is the algebra of operators in a bounded region (see eg [190]).

– 140 –



with equality only when O = 0 due to the fact that Ω is separating with respect to

A[R]. We may then use this inner product to define an alternative topology on A[R],

which we call the vacuum topology, using as a basis the balls Bǫ(O0,Ω). Since these

are a subset of the balls used in defining the strong operator topology, this topology is

weaker than the strong operator topology. We then have the following theorem:

Theorem C.4. Let V be a Hilbert space, G a Lie group, A[R] a subalgebra of B(V ),

and U a map from G to the unitary operators on V such that the restriction to any

uniformly bounded subset M of A[R] of the map fU : G × B(V ) → B(V ) defined by

fU(g,O) = U †(g)OU(g) is strongly continuous. Moreover let there exist a state Ω ∈ V

which is cyclic and separating with respect to A[R], and which is also invariant in

the sense that U(g)Ω = Ω for all g ∈ G. Then the restriction to A[R] of fU is jointly

continuous in vacuum topology on A[R], without any uniform-boundedness requirement,

and in particular if U is a homomorphism then fU gives a representation of G on the

Hilbert space A[R] with inner product (·, ·)Ω. Moreover this representation is unitary.

Proof. We can first invoke theorem C.3 to learn that U is strongly continuous. We

may then imitate the proof of theorem C.2, noting however that now we only need

the inequality (C.10) to hold when v0 = Ω. But then the first term on the righthand

side is automatically zero since (U(g′)− U(g))Ω = 0, so we have no need of a uniform

boundedness requirement. Finally to see that the representation of G on A[R] furnished

by fU is unitary, we simply note that

(U †(g)O1U(g), U
†(g)O2U(g))Ω = (U †(g)O1Ω, U

†(g)O2Ω) = (O1Ω,O2Ω)

= (O1,O2)Ω. (C.15)

In particular this theorem tells us that if a global symmetry is unbroken, then

the map D defined by equation (2.5) gives a unitary representation of G. And in

particular if G is compact, then by theorem A.9 D should decompose into a direct

sum of finite-dimensional unitary representations. Moreover not only did we not need

a uniform-boundedness requirement in the proof of theorem C.4, in fact we did not

even need to assume that the elements of A[R] are bounded! As long as we restrict

to operators whose domain includes the invariant state Ω, we still may use Ω to define

an inner product on these operators in terms of which the action of fU is unitary and

continuous, and thus gives a unitary representation.

It is interesting to note that if we drop the assumption that the symmetry is

unbroken, there are easy examples where the action fU of G on local operators is not
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Σ𝑡− 𝜀  Σ𝑡+ 𝜀  
Figure 20. Illustrations of Σt = f−1((−∞, t]) = {x ∈ Σ : f(x) ≤ t} at two different values

of t when Σ is a torus.

unitary. For example in a free scalar field theory in d > 2, there is a spontaneously-

broken global symmetry which acts on the scalar φ and the identity 1 as
(
φ′

1′

)
=

(
1 a

0 1

)(
φ

1

)
, (C.16)

which is a non-unitary representation of the symmetry group R. In this kind of situation

it is sometimes said that the symmetry “acts non-linearly” on φ, but in fact fU always

gives a linear action of G on the set of local operators, and this is manifest in (C.16).

D Building symmetry insertions on general closed submani-

folds

Consider a (d − 1)-dimensional compact connected oriented manifold Σ embedded in

Rd. Since Hd−1(R
d) is trivial, there is a d-dimensional compact connected oriented

submanifoldM in Rd such that Σ = ∂M . In this appendix we show that the insertion of

a symmetry operator on Σ into the path integral can always be understood in operator

language as conjugating all operators in M by U(g,Rd−1), as shown in figure 2 for the

special case of d = 3 and Σ = T2.

Indeed by generically choosing a “time” direction in Rd, with a linear coordinate t,

we can define a Morse function f on Σ such that f(p) = t at p ∈ Σ (a Morse function

is a smooth map from a manifold Σ to R which has no degenerate critical points; such

functions are dense in the set of smooth maps from Σ to R, so a generic orientation of

the time direction will give us one). For each t, define,

Σt = f−1((−∞, t]) = {p ∈ Σ : f(p) ≤ t}. (D.1)
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Σ𝑡− 𝜀  Σ𝑡+ 𝜀  
with 1-cell attached 

Figure 21. When p is a critial point of f with index n, Σf(p)+ǫ is homotopic to Σf(p)−ǫ with

an n-cell attached, provided we choose ǫ > 0 to be sufficiently small.

See figure 20 for its illustration. We also define,

M t = Rd−1
t \Mt, (D.2)

where Rd−1
t and Mt are sections of Rd and M at t. Let us glue Σt with M t at their

common boundaries f−1(t), to get a surface we call Ct. In the following, we will use

Morse theory to study how U(g, Ct) behaves as we increase t from −∞ to +∞.

The Morse function f has isolated non-degenerate critical points on Σ. The fun-

damental theorems (Theorems 3.1 and 3.2 in [191]) of the Morse theory say:

Theorem D.1. Suppose t1 < t2 and f−1([t1, t2]) is compact and contains no critical

points of f . Then Σt1 is diffeomorphic to Σt2 and the inclusion map Σt1 → Σt2 is a

homotopy equivalence.

The second fundamental theorem tells us what happens at critical points. Before

stating the theorem, let us note that according to Morse’s lemma, each critical point

p of f is characterized by its index n, which means that we can choose coordinates

(x1, · · · , xd−1) around p such that p is at x = 0 and,

f(x) = f(p)− x21 − · · · − x2n + x2n+1 + · · ·+ x2d−1, (D.3)

holds throughout the coordinate patch (these coordinates are obtained by diagonalizing

the Hessian matrix at p). We can choose ǫ > 0 sufficiently small so that f has no other

critical point in [t− ǫ, t+ ǫ], where t = f(p).

Theorem D.2. If p is a critical point of f with f(p) = t and index n, and if there is

no other critical point in f−1([t − ǫ, t + ǫ]) for some ǫ > 0, Σt+ǫ is homotopic to Σt−ǫ

with an n-cell attached.96 See figure 21 for illustration.

96See appendix G for a brief discussion of CW complexes and the definition of an n-cell.
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Figure 22. Since symmetry insertions on the same cell with opposite orientations (in red

and blue in the figure) cancel, U(g, Ct−ǫ) can be continuously deformed to U(g, Ct+ǫ).

Since Σ is compact, there is t0 such that Σt is empty for t < t0. For such t,

Ct = Rd−1
t and U(g, Ct) is the symmetry generator. Let us choose t0 to be the largest

such t0. Increasing t continuously, we reach t = t0 where Rd−1
t0 touches Σ. Clearly,

Σt0+ǫ is homotopic to Σt0−ǫ (which is empty) with a 0-cell (the point of the first contact)

attached, as expected from Theorem D.2. We can then continously deform Ct0−ǫ = Rd−1
t−ǫ

to Ct0+ǫ and U(g, Ct0+ǫ) is still a symmetry generator.

As we increase t further, we will inevitably encounter a critical point with non-zero

index n at some t. According to Theorem D.2, we can homotopically deform Σt−ǫ

to Σt+ǫ by attaching an n-cell. We can also deform M t−ǫ to M t+ǫ by attaching the

same n-cell with opposite orientation. Since symmetry insertions on the pair of n-cells

with opposite orientations has no effect, U(g, Ct−ǫ) can be continuously deformed to

U(g, Ct+ǫ). See figure 22 for illustration.

Since Σ is compact, there is t1 suth that Σt = Σ for t > t1. Choosing t1 to be the

smallest such t1, Ct1 = Σ ∪ Rd−1
t1 .

We conclude that the symmetry generator U(g, Ct) = U(g,Rd−1
t ) for t < t0 can

be deformed to U(g, Ct1) = U(g,Σ ∪ Rd−1
t1 ) at t = t1. Since U(g,Σ) = U(g,Σ ∪

Rd−1
t1 )U(g,Rd−1

t1 )†, this is what we wanted to show.

E Lattice splittability theorem

In this appendix we give a proof of theorem 2.1, which says that a unitary which acts

locally on each tensor factor of a tensor product Hilbert space must itself be a tensor
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product of local unitaries. 97

Proof. We first note that it is enough to establish the theorem for the case of two tensor

factors, H = HA ⊗HB, with a unitary UAB which send operators on A to operators on

A, and operators on B to operators on B, since we can then iterate the argument to

obtain the desired result for any finite number of tensor factors. We thus just need to

show that UAB = (UA ⊗ IB)(IA ⊗ UB).

The basic idea is to double the size of the system, introducing copies HÂ and HB̂

of HA and HB, and then consider the state

|φ〉 ≡ 1√
|A||B|

∑

ab

|a〉Â|b〉B̂UAB|ab〉AB. (E.1)

Here |a〉A, |a〉Â are orthonormal bases for HA and HÂ, and similarly for |b〉B, |b〉B̂.
Noting that U †

AB(IA ⊗ OB)UAB = (IA ⊗ O′
B) for any OB, and that any operator OBB̂

can be expanded as a sum of tensor products of operators on HB and HB̂, a simple

calculation shows that for any operators OÂ and OBB̂ on HÂ and HB⊗HB̂ respectively,

we must have

〈φ|OÂOBB̂|φ〉 = 〈φ|UABO′
AO′

BB̂
U †
AB|φ〉

= 〈φ|UABOÂU
†
AB|φ〉〈φ|UABO′

BB̂
U †
AB|φ〉

= 〈φ|OÂ|φ〉〈φ|OBB̂|φ〉. (E.2)

In other words there is no correlation between Â and BB̂, so the partial trace of |φ〉〈φ|
over A factorizes:

ρÂBB̂(φ) ≡ TrA|φ〉〈φ| = ρÂ(φ)⊗ ρBB̂(φ). (E.3)

Moreover from (E.1) we have

ρÂ(φ) =
IÂ
|A| , (E.4)

where |A| denotes the dimensionality of HA.

Now the key point is that the state ρÂBB̂(φ) must be purified into |φ〉 by adding

back the A system, which means that its rank can be at most |A|. But since the rank

of ρÂ(φ) is already |A|, this means that ρBB̂(φ) must have unit rank, or in other words

must be a pure state |χ〉〈χ|BB̂. We may then observe that since any two purifications

97This proof uses a few basic facts about purifications. These follow easily from the Schmidt de-

composition of any pure state in a bipartite system, which says that for any state |ψ〉AB , there are

orthonormal states |a〉A and |a〉B such that |ψ〉 =∑a

√
pa|a〉A|a〉B , with 0 ≤ pa ≤ 1 and

∑
a pa = 1.

For a brief overview of the Schmidt decomposition see, eg, appendix C of [192].
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of a mixed state onto a given system differ at most by a unitary transformation on that

system, and since the state

|ψ〉 = 1√
|A|
∑

a

|a〉Â|a〉A|χ〉BB̂ (E.5)

is a purification of ÂBB̂ onto A, it must be that |φ〉, which is another such purification,

is given by

|φ〉 = UA|ψ〉 =
1√
|A|
∑

a

|a〉ÂUA|a〉A|χ〉BB̂ (E.6)

for some UA. Moreover since again from (E.1) we have ρB̂(φ) =
I
B̂

|B| , by the same

argument we must have

|χ〉BB̂ =
1√
|B|

∑

b

|b〉B̂UB|b〉B (E.7)

for some UB. We then finally have that

|φ〉 = 1√
|A||B|

∑

ab

|a〉Â|b〉B̂UA|a〉AUB|b〉B, (E.8)

which is compatible with (E.1) if only if UAB = UA ⊗ UB.

F Hamiltonian for lattice gauge theory with discrete gauge

group

In this appendix we sketch how to derive the lattice gauge theory Hamiltonians (3.25),

(3.31) from the continuous-time limit of the Wilson action. The Euclidean Wilson

action on a spacetime cubic lattice with lattice spacing a is [115]

SE = −a
d−4

g2

∑

γ∈Γ̂

Wα(γ), (F.1)

where Γ̂ is the set of (oriented) plaquettes in Euclidean spacetime and α is a faith-

ful representation of G. This action makes sense for any gauge group G, discrete or

continuous. To extract a Hamiltonian, we need to take the lattice spacing in the time

direction, which we’ll denote as a0, to be much smaller than the lattice spacing in the

space directions, which we’ll continue to call a. In this case the Wilson action becomes

SE = −a
d−4

g2


 a

a0

∑

γ∈Γ̂0

Wα(γ) +
a0
a

∑

γ∈Γ̂s

Wα(γ)




≡ −A
∑

γ∈Γ̂0

Wα(γ)− B
∑

γ∈Γ̂s

Wα(γ), (F.2)
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where Γ̂0 denotes the set of plaquettes which have a time component and Γ̂s denotes

the set of plaquettes with no time component.

We now study the thermal partition function

Z(β) ≡
∫

Dge−SE , (F.3)

where we are integrating over an element of g assigned to each edge of a cubic Euclidean

spacetime lattice with periodic time. We can use gauge transformations to set the

temporal edges all to the identity except for at one time, and the integral over the

temporal edges at that time simply imposes a projection onto gauge-invariant states.

The thermal partition function then has the form [117]

Z(β) = Tr(TN), (F.4)

where the trace is over only gauge-invariant states and T is called the transfer matrix;

it is given by

〈g′|T |g〉 = exp

(
A
∑

e∈E
Tr
(
Dα(geg

′−1
e ) +Dα(g

′
eg

−1
e )
)
+B

∑

γ∈Γ
Wα(γ)

)
. (F.5)

Here |g〉 and |g′〉 are elements of gauge-field part of the Hilbert space (3.12). As in the

main text, E denotes the set of edges in a time slice and Γ denotes the set of plaquettes

in a timeslice. Note that Γ is not equal to Γ̂s, which is the set of spatial plaquettes at

all times. We may re-express T using our lattice gauge theory operators:

T =
∏

e∈E

(∫
dheATr(Dα(h)+Dα(h−1))Lh(e)

)
eB

∑
γ∈Γ Wα(γ), (F.6)

where we have written Lh(e) instead of Lh(ℓ) since this expression does not care which

way we orient the link ℓ on edge e. Finally to extract the Hamiltonian we take the

limit a0 → 0, identifying the Hamiltonian via

T = e−a0H . (F.7)

To proceed, we now need to decide if G is continuous or discrete. If it is continuous,

in the limit a0 the integral over h will be dominated by the region near the identity.

We may then use a Gaussian approximation to evaluate it, which directly leads to the

Kogut-Susskind Hamiltonian (3.25) up to an additive c-number renormalization [117].

When G is discrete things are a little more subtle, to obtain an interesting theory we

need to forget the expressions for A and B in terms of a, a0, and g, which after all
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came from trying to reproduce the Yang-Mills action in the continuum, and instead

simply view A and B as parameters to vary as we like. For G continuous we took A to

infinity and B to zero such that their product was finite, but for G discrete the right

limit is instead to take A to infinity and B to zero such that BeA is finite: it is only

in this limit that (after another c-number renormalization) we have that T ≈ 1 − ǫH

with ǫ small and H a Hamiltonian with both “electric” and “magnetic” terms [118].

In this limit the identity contribution to the sum over h is set to one by the c-number

renormalization, which replaces Tr (Dα(h) +Dα(h
−1)) by Tr (Dα(h) +Dα(h

−1))− 2dα
for each edge, and the other terms in the sum over h which survive in the continuous-

time limit are those which maximize Tr (Dα(h) +Dα(h
−1)). This finally leads to the

Hamiltonian (3.31), with the normalization of the new gauge coupling g being chosen

in a somewhat arbitrary manner.

G Stabilizer formalism for the Z2 gauge theory

The stabilizer formalism is a useful technique for defining nontrivial subspaces of the

Hilbert space of n qubits [123]. In this appendix we explain how it may be used to

compute the ground state degeneracy of the Z2 lattice gauge theory with charged matter

in the limit of small g and large λ, with Hamiltonian (3.38). In fact in these ground

states the charges are never excited, so our result also gives the ground state degeneracy

of the pure Z2 gauge theory, which is one of the simplest topological quantum field

theories. In the main text we are primarily interested in cubic lattices which discretize

the d − 1-dimensional ball Bd−1, but, mostly for fun, we will use a few tools from

algebraic topology to compute the ground state degeneracy for any spatial lattice with

the structure of a d − 1-dimensional CW complex.98 In the continuum limit, this

will give a formula for the Hilbert space dimension of the Z2 gauge theory on any

spatial d − 1-manifold, with or without boundary. In particular we will show that

the Hamiltonian (3.38) has a unique ground state on any lattice whose CW complex is

homeomorphic to Bd−1, on which the operators Z(γ) and
∏

~δX(~x, ~δ) act as the identity

for any plaquette γ and site ~x, while more generally the ground state degeneracies for

98CW complexes are discrete versions of manifolds, which are constructed recursively by starting

with a collection of points, called zero-cells, attaching a set of intervals, called one-cells, such that

the boundary of each one-cell consists of some subset of zero-cells, attaching a set of discs, called

two-cells, such that the boundary of each two-cell consists of the zero-cells and one-cells, and so on up

to (d − 1)-cells if the complex is (d − 1)-dimensional [124]. In our lattice gauge theory parlance, the

zero-cells are the sites, the one-cells which are not in the boundary are the edges, and the two-cells

are the plaquettes.

– 148 –



any connected CW complex (or connected manifold) are given by (G.5) if there is no

boundary and (G.11) if there is a boundary.

The basic idea of the stabilizer formalism is to consider the +1 eigenspace of an

abelian subgroup S of the n-qubit Pauli group Pn. Pn is the multiplicative group of

operators on the Hilbert space of n qubits which is generated by all single-qubit Pauli

operators together with iI, where I is the identity operator and i =
√
−1. The stabilizer

formalism then rests on the following theorem:

Theorem G.1. Let S be a abelian subgroup of Pn, not containing −I, which is gener-

ated by m independent generators {g1, . . . , gm}. Then the subspace of states on which

all elements of S act as the identity has dimension 2n−m.

We refer the reader to [193] for a proof, but the basic idea is that the projection onto

the +1 subspace of each generator decreases the dimensionality of the subspace by a

factor of two.

We can apply this theorem to the lattice Z2 gauge theory with charged matter by

noting that in unitarity gauge the Hilbert space is just the tensor product of a qubit on

each edge of the lattice. The set of plaquettes Z(γ) and “stars”
∏

~δX(~x, δ) generate an

abelian subgroup S of the Pauli group on this Hilbert space, and it is easy to see that

no product of plaquettes and stars can give −I. In fact, below we will classify all the

relations among plaquettes and stars. Hermitian elements of the Pauli group can only

have eigenvalues ±1, so states where all plaquettes and stars act as the identity will

necessarily be ground states of the Hamiltonian (3.38). We may thus apply theorem

G.1 to identify the dimensionality of the ground state subspace. To show that the

ground state is unique, we need to show that the number of independent generators of

S is equal to the number of edges in the lattice.

Counting the number of independent generators of S is nontrivial because there

are relations among stars and plaquettes. For example consider the situation in figure

23. Since stars and plaquettes commute with each other, and since the only relations

among Pauli generators that reduce their numbers are X2 = Z2 = 1, any relation

among stars and plaquettes can be expressed a product of a relation among stars only

and a relation among plaquettes only. Thus, it is sufficient to treat stars and plaquettes

separately when counting their relations. There are no relations among the four stars,

since it is not possible to cancel the X(e) on boundary-piercing edges, but the product

of the nine red plaquettes is equal to the identity. Therefore, the number of independent

generators (plaquettes and stars) is equal to twelve, which indeed equals the number

of edges. It is easy to see that this counting works out more generally for a two-

dimensional rectangular square lattice with some numbers of rows and columns. We

now explain how to generalize this counting to arbitrary dimension and topology.
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Figure 23. Stabilizer generators for a cubic lattice with two spatial dimensions. The nine

red circles indicate plaquettes, and the four star constraints live at the black dots. Since

the product of all the plaquettes is the identity, the number of independent generators is

8 + 4 = 12, which agrees with the number of edges. By Theorem G.1, the ground state is

unique.

For simplicity we first discuss the case where the lattice has no boundary, for

example it could be a discretization of a Riemann surface. We will refer to the CW

complex associated to the lattice as X, and we will denote by Nn(X) the number of

n-cells in X. We will take X to be connected, since in the disconnected case the ground

state subspace just tensor factorizes component by component. The number of stars is

N0(X), the number of edges is N1(X), and the number of plaquettes is N2(X). There

is however one relation between the stars: the product of all of them is the identity.

There can be no further relations, as can be seen by the following argument. Any

relation between the stars can be expressed by saying that the product of some subset

of them is equal to the identity. To get a nontrivial relation, at least one star must

be included. Consider any loop of edges which includes an edge attached to that star.

Each edge of the loop must appear in either zero or two stars in the relation in order for

it to be equal to the identity, and moreover they must all appear in zero or all appear

in two. Since one of them appears in two, they all must. But since this true for any

loop containing that edge, to get a nontrivial relation we need to include all the stars.
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Thus we have

#(independent stars) = N0(X)− 1. (G.1)

Counting the relations between the plaquettes is more nontrivial, we claim that

#(independent plaquettes) =N2(X)− (N3(X) + b2(X)) + (N4(X) + b3(X))− . . .

+ (−1)d−1(Nd−1(X) + bd−2(X))− (−1)d−1bd−1(X),

(G.2)

where bm(X) is the dimensionality of the homology group Hm(X,Z2). The idea of this

is as follows: the product of any set of plaquettes living on a two-cycle in Z2 homology is

the identity, and so gives a relation between the plaquettes. The set of two-cycles which

are boundaries of three-chains is generated by products of three-cells, of which there are

N3(X). We also need to include one representative of each nontrivial homology class of

two-cycles, hence our subtraction of (N3(X)+ b2(X)). But there aren’t actually N3(X)

independent homologically-trivial two-cycles, since those collections of three-cells which

form three-cycles have trivial boundary and thus do not generate two-cycles. So we

need to add back the number of three-cycles, which is given by (N4(X)+b3(X)), except

then some collections of the four cells are five cycles, which we need to resubtract, and

so on. In the last step we need to add or subtract the number of d − 1-cycles, which

are clearly never boundaries of d cycles, so we are left with only bd−1. In stabilizer

parlance, we have

n = #(edges) = N1(X) (G.3)

qubits and

m = #(independent stars) + #(independent plaquettes) (G.4)

generators of S, so the groundstate degeneracy is

2n−m = 2b1(X), (G.5)

where we have used the expressions

χ(X) ≡
d∑

n=0

(−1)nNn(X) =
d∑

n=0

(−1)nbn(X). (G.6)

for the Euler characteristic of X, and also that b0(X) = 1 since X is connected. The

expression (G.5) has a natural interpretation: the ground state subspace is labeled by

the eigenvalues of the Wilson lines on the topologically distinct one-cycles of X [122].

We now turn to lattices where ∂X is nontrivial. In order to allow a nontrivial long-

range gauge symmetry, we had to choose boundary conditions on our gauge theory with
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matter fields as in figures 9, 23, where boundary edges are not included since we do not

have degrees of freedom there and there are no star constraints on boundary sites. For

X to be a CW complex however, we need to include these boundary edges as one-cells

and boundary sites as zero-cells, since otherwise the boundaries of plaquettes which

are adjacent to the boundary will not be part of the set of zero-cells and one-cells.

Similarly X needs to include all higher cells in ∂X as well. The number of edges which

carry qubits is thus now given by

#(edges) = N1(X)−N1(∂X). (G.7)

There are no longer any relations between the star constraints, since given any edge in

a star involved in such a relation we can construct a path to the boundary on which all

edges would need to appear in two stars, but this is impossible for boundary-piercing

edges since there are no star constraints on boundary sites. Therefore we have

#(independent stars) = N0(X)−N0(∂X). (G.8)

Counting the number of independent plaquettes is again more difficult, we claim that

#(independent plaquettes) =N2(X)−N2(∂X)

−
(
(N3(X)−N3(∂X) + b2(X)− bNT

2 (∂X) + bT1 (∂X)
)

+
(
N4(X)−N4(∂X) + b3(X)− bNT

3 (∂X) + bT2 (∂X)
)

− . . .

+ (−1)d−1
(
Nd−1(X) + bd−2(X)− bNT

d−2(∂X) + bTd−3(∂X)
)

− (−1)d−1
(
bd−1(X) + bTd−2(∂X)

)
. (G.9)

In this formula we use a notation where we have split the n-cycles in ∂X which are

not boundaries in ∂X into a set which are boundaries in X, which have bTn (∂X) inde-

pendent representatives, and a set which aren’t boundaries in X, which have bNT
n (∂X)

independent representatives. By definition, we have

bn(∂X) = bTn (∂X) + bNT
n (∂X). (G.10)

To understand equation (G.9), we begin as before: there are N2(X)−N2(∂X) plaque-

ttes, but the product of plaquettes on any two-cycle in Z2 homology vanishes identically.

This again imposes relations on the plaquettes. The set of two-cycles which are bound-

aries is generated by the three-cells, of which there are N3(X), but the three cells which

lie in the boundary are automatically trivial, so we should subtract N3(∂X). In count-

ing two-cycles we should include a representative of each nontrivial class in H2(X,Z2),
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hence adding b2(X), but now we need to account for the fact that nontrivial two-cycles

in X which are homologous to nontrivial two-cycles in the boundary can still be gen-

erated by the three-cells, so we should subtract bNT
2 (∂X). Finally in addition to the

two-cycles, there are also relations from two-chains whose boundaries lie in ∂X, since

these again are the identity. When the boundary of such a two-chain is a boundary in

∂X, then the relation associated to it is equivalent to one from a two-cycle in X which

contains some boundary two-cells, so we only get new relations from those two-chains in

X whose boundary is in ∂X but is not a boundary there. These are counted precisely

by bT1 (∂X), hence we add this to our list of relations, finally subtracting the whole

set as the second line of (G.9). We then observe that collections of three-cells which

generate three-cycles or three-chains whose boundary is in ∂X do not actually define

two-cycles, and so we need to add back the third line of (G.9). And so on. Combining

(G.7), (G.8), and (G.9), and again using (G.6) and b0(X) = 1, we at last have a ground

state degeneracy

2n−m = 2b0(∂X)−1+b1(X)−bNT
1 (∂X). (G.11)

This formula again has an elegant interpretation in terms of Wilson lines:

b0(∂X)− 1 (G.12)

counts the number of independent Wilson lines stretching from one component of ∂X

to another, while

b1(X)− bNT
1 (∂X) (G.13)

counts the number of independent homologically-nontrivial Wilson loops which are

not homologous to boundary one-cycles, since those which are must be trivial by the

boundary conditions. In particular if X is homeomorphic to Bd−1, then (G.12) and

(G.13) both vanish (∂Bd−1 = Sd−2 is connected and there are no nontrivial one-cycles

in Bd−1), so the ground state is unique.

H Multiboundary wormholes in three spacetime dimensions

In this appendix we review some of what is known about multiboundary wormholes in

AdS3/CFT2, focusing on the feasibility of constructing geometries which can be used

in our second proof of theorem 4.2. The great advantage of d = 2 is that there are no

gravitational waves, so all solutions of the Einstein equation with negative cosmological

constant and no matter are locally isometric to AdS3. More precisely, they are quotients

of AdS3 by a discrete subgroup Γ of its isometry group SO(2, 2). In AdS3/CFT2 such

states can often be prepared by cutting the path integral of the CFT on a Riemann

surface [194–197], we now review this construction.
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Figure 24. A genus two Riemann surface constructed using four Schottky discs. On the

left the surface is the union of the green and blue regions, with the indicated identifications

and the marked points identified. Performing the CFT path integral over just the blue region

below the cut prepares a state in the Hilbert space of the CFT on three circles, labeled 1, 2, 3.

On the right we show a heuristic picture of the cut geometry embedded into R3.

We begin by recalling the Schottky construction of an arbitrary Riemann surface.

Viewing the complex plane as the Riemann sphere, we place an even number of non-

intersecting discs and then identify their boundaries in pairs with opposite orientation:

the Riemann surface is the region to the exterior of all the discs. Each identified pair

can be viewed as adding a handle to the Riemann sphere, so if we place 2g discs we

get a genus g Riemann surface. The moduli of the Riemann surface arise from the

locations and sizes of the discs, as well as a possible twist in each identification. By

an SL(2,C) transformation we can always choose one of the discs to be centered at

infinity, and if we restrict to geometries which are time-reversal invariant then we can

take all discs to be centered on the real axis with no twists. A g = 2 example is shown

in figure 24, where we cut to get a state of the CFT on three circles. More generally

by cutting a genus g surface we can produce a pure state in the Hilbert space of the

CFT on g + 1 spatial circles.

In order to find the bulk geometry of a state constructed in this manner, one needs

to minimize the Euclidean Einstein-Hilbert action with negative cosmological constant

over all solutions whose asymptotic boundary is the Riemann surface in question. As-

suming that this minimum has a time-symmetric slice whose boundary lies in the real

axis of the Schottky construction (if not then the bulk interpretation of the state is

unclear), one then takes that slice as initial data for the Lorentzian Einstein equation

to construct the real-time bulk geometry. The full set of these Euclidean solutions is

rather complex, but there is an especially simple subset referred to as the handlebodies,
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Figure 25. A time-symmetric genus two handlebody. In the left diagram, the handlebody lies

above the small hemispheres and below the large hemisphere, with the indicated identifications

of hemispheres. The dashed boundary-time slice is extended straight up to give a symmetric

timeslice of the bulk geometry. In the right diagram this bulk timeslice is shaded yellow as a

cut through the heuristic representation of the genus two handlebody embedded in R3. Note

that the three asymptotic boundaries are connected through a wormhole, as in figure 17.

which are obtained by “filling in” the Riemann surface embedded in R3. Given a Schot-

tky presentation of a Riemann surface, there is a natural way to do this by viewing the

complex plane in the Schottky construction as the boundary of the three-dimensional

upper half plane, with metric

ds2 =
dx2 + dy2 + dz2

z2
(H.1)

and z > 0, and then contracting the boundary of each disc using a hemisphere in the

bulk. We illustrate this for genus two in figure 25. It is important to emphasize however

that there can be different Schottky presentations of the same Riemann surface, which

differ by acting with an element of the mapping class group of “large” diffeomorphisms

that exchange the various cycles, eg PSL(2,Z) for genus one, and these different presen-

tations lead to different handlebodies in the bulk since different cycles are contracted.

Moreover in general the Schottky presentation in which the time-symmetric slice is the

real axis is not the Schottky presentation from which the handlebody is constructed,

unlike in figure 25 where it is. At genus one there are only two time-symmetric han-

dlebodies, the “Euclidean BTZ” and “thermal AdS” solutions, which differ by which

of the two cycles is contracted in the bulk, and it is the Euclidean BTZ solution which

is constructed as in figure 25.

In fact at any genus we are especially interested in the particular handlebody where

the Schottky presentation with time-symmetry about the real axis does coincide with

the Schottky presentation where the disc boundaries are contracted in the bulk, as

shown in figure 25. The reason is that this is the only handlebody for which the

time-symmetric bulk slice is connected, so in Lorentzian signature it is the one that
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Figure 26. The time-symmetric bulk slice of a three-boundary wormhole. On the left we give

the upper-half-plane presentation, while on the right we give the Poincare-disc presentation.

The “interior” region is shaded grey, while the three “exterior” regions are shaded green,

blue, and yellow. The dashed lines are the minimal length curves between the identification

semicircles, and in Lorentzian signature they are the bifurcate horizons.

describes a wormhole connecting all of the asymptotic boundaries. For example at

genus one the bulk timeslice of the “thermal AdS” handlebody is two disconnected

discs. We can understand better the structure of this wormhole by looking in more

detail at the geometry of the time-symmetric slice, obtained by cutting through the

geometry in the left diagram of figure 25 directly above the dashed boundary cut. This

slice has the geometry of a quotient of the upper-half plane by a discrete subgroup, and

in fact for this particular handlebody it is the Fuchsian presentation of the same cut

Riemann surface on which the CFT path integral was evaluated to prepare the state.

Moreover the intersection of the bifurcate horizons in the Lorentzian solution with this

timeslice are given precisely by the minimal length curves between the identification

semicircles [198], which gives an elegant way of splitting the time-symmetric slice into

“interior” and “exterior” regions. We illustrate this for genus two in figure 26. In general

whenever this spatial slice connects n asymptotic boundaries without any additional

interior handles we can compute its volume using the Gauss-Bonnet theorem: it is an

n-punctured sphere with a metric of constant negative curvature R = −2, and whose

punctures are bounded by geodesics with K = 0, so (in units where ℓads = 1) we just

have [199]

Interior spatial volume = 2π(n− 2), (H.2)

which is independent of the moduli. Notice that indeed for n > 2 (and therefore g > 1)

we have a nontrivial interior which grows in size as we increase n. Moreover it will not

be in the entanglement wedge of any one of the boundaries, which is the key property

for our wormhole-based proof of theorem 4.2.

In order for that proof to be valid however, we need to check that these connected-
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Figure 27. The time-symmetric bulk slice of a genus five wormhole with six exterior regions.

The interior is shaded grey, while the exteriors are shaded in various colors. The horizons are

the dashed lines, and on this line in moduli space the horizon lengths are equal for boundaries

2,3,4, and 5, each of which is twice the length of the horizons for boundaries 1 and 6. On

the left we show a geometry where these length are all finite, while on the right we show the

limiting configuration as the lengths go to infinity.

wormhole handlebodies do actually dominate the Euclidean path integral, at least

somewhere in moduli space. For genus one the handlebodies are all the solutions, and

we know that at high temperature the Euclidean BTZ geometry is dominant. For

g ≥ 2 they are not: the others are usually called non-handlebodies, and they are less

well-understood. Fortunately there is some evidence that non-handlebodies are always

subleading to at least one handlebody in the Euclidean path integral [197, 200], and

in what follows we will assume this to be the case. We are then left with the fol-

lowing question: at any particular point in moduli space, which choice of handlebody

minimizes the Euclidean action? Unfortunately even this question has not been sys-

tematically addressed, since evaluating the Euclidean action of a handlebody amounts

to computing the classical action of a solution of the Liouville equation on the bound-

ary Riemann surface [194], which so far is only possible analytically in very restricted

cases.99 Recently a numerical algorithm has been developed for computing the Liou-

ville action on arbitrary Riemann surfaces [197], specifically with the goal of clarifying

which handlebodies dominate the Euclidean gravitational path integral with a bound-

99In fact the connection to the Liouville equation holds if we work in a conformal frame where

the boundary metric has constant negative curvature for g ≥ 2. It might well be that it is easier to

compute the action in some other conformal frame, but we won’t pursue this here.
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ary Riemann surface in various regions of moduli space, but so far it has only been

applied in a few special cases. We also will not solve this problem, but will instead just

suggest a limit in moduli space where we find it plausible that the connected wormhole

should be the dominant handlebody.

Our proposal is most natural in the Poincare disk representation of the bulk time-

slice, shown for genus two as the right diagram in figure 26. The idea is to introduce

2g equally-spaced and equally-sized semicircles around the edge of the Poincare disk,

oriented such that there is a reflection symmetry across the real axis, and then identify

the semicircles which are related by this reflection. We leave the size of the semicircles

as a free parameter, which means we are looking at a one-dimensional slice through

the moduli space. We illustrate this construction for genus five in figure 27, notice in

particular the increased size of the interior region compared to figure 26, which is con-

sistent with (H.2). Our conjecture is then that as we take the radii of the identification

semicircles to zero, shown in the right diagram of figure 27, this handlebody will be

the dominant solution in the Euclidean gravity path integral. Our conjecture is based

on the observation that the Euclidean action is essentially the renormalized volume

of spacetime, indeed evaluated on any solution which is a quotient of the hyperbolic

three-plane we have we have

SE =
1

4πG

(∫

M

d3x
√
g − 1

2

∫

∂M

d2x
√
γ(K − 1)

)
. (H.3)

Given a choice of which boundary cycles to contract in the bulk, it is natural to expect

that this action will tend to want to contract the smallest cycles, since most likely this

can be done at the cost of the least volume in the bulk. For the family of handlebodies

we have constructed, in the limit of small identification semicircles, and therefore large

horizon length, the cycles in the boundary which correspond to spatial circles in the

time-symmetric slice become parametrically larger than their dual cycles, which are

the cycles which appear as the boundaries of the Schottky discs. At genus one and

genus two we can confirm that this is indeed the case: the transition from thermal AdS

to Euclidean BTZ indeed happens right when the thermal circle becomes smaller than

the spatial one, and the numerical results of [197] confirm that our limiting family of

Riemann surfaces, which corresponds to the line ℓ3 = 2ℓ12 in their figure 7, dominates

over the other possible handlebodies (and also one non-handlebody they were able to

check analytically) in the limit of large horizon length. Assuming this conjecture is also

correct at higher genus, the connected wormhole will always dominate at sufficiently

large horizon length, and any quasilocal bulk operator can fit into the interior region

for sufficiently high genus.100 We are then able to run our second proof of theorem 4.2.

100Henry Maxfield has suggested a related set of surfaces constructed by taking n copies of the
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I Sphere/torus solutions of Einstein’s equation

In this appendix we discuss in more detail the solutions of Einstein’s equation with

negative cosmological constant used in section 8.3, with metric of the form

ds2 = −α(r)dt2 + dr2

α(r)β(r)
+ eγ(r)dx2p + r2dΩ2

d−p−1. (I.1)

The time, planar, radial, and spherical components of Einstein’s equations with nega-

tive cosmological constant for metrics of the form (I.1) are given respectively by101

r(αβ′ + α′β) (2(d− p− 1) + prγ′) + 2(d− p− 1)αβ (d− p− 2 + prγ′)

+ pr2αβ

(
p+ 1

2
γ′2 + 2γ′′

)

= 2
(
(d− p− 2)(d− p− 1) + d(d− 1)r2

)
(I.2)

rβ′(rα′ + α(2(d− p− 1) + (p− 1)rγ′)) + 2β
(
(d− p− 2)(d− p− 1)α + 2(d− p− 1)rα′

+ r2α′′
)
+ 2(p− 1)β

(
rγ′
(
d− p− 1 + rα′ +

p

4
rγ′
)
+ rγ′′

)

= 2
(
(d− p− 2)(d− p− 1) + d(d− 1)r2

)
(I.3)

p(p− 1)r2αβγ′2 + 2prβ(2(d− p− 1) + rα′)γ′ + 4β(d− p− 1)((d− p− 2)α + rα′)

= 4
(
(d− p− 2)(d− p− 1) + d(d− 1)r2

)
(I.4)

r2α′β′ + r(2α′β + αβ′)(2(d− p− 2) + prγ′) + 2r2βα′′ + 2(d− p− 3)(d− p− 2)αβ

+ 2p(d− p− 2)rαβγ′ + pr2αβ

(
p+ 1

2
γ′2 + 2γ′′

)

= 2
(
(d− p− 3)(d− p− 2) + d(d− 1)r2

)
. (I.5)

We first consider the vacuum solution, where it is the sphere that contracts in the

bulk. We can then assume a further symmetry between the time and planar directions,

setting

γ = logα. (I.6)

complex plane and gluing them together using two pairs of branch points on each copy. In the dual

CFT this amounts to computing the four-point function of Zn twist operators in the symmetric orbifold

of n copies of the CFT. For this set of surfaces there is a natural guess for where the transition from

“totally connected” to “totally disconnected” takes place: at the crossing-symmetric configuration of

the four twist operators. The argument that there is a totally connected phase for sufficiently large

cross ratio is the same as for our surfaces: eventually the smallest cycles should all contract in the

bulk.
101The reader can compare these equations to those in [182] in the special case d = 4, p = 1.
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Figure 28. Numerical plots of the vacuum solution for p = 2 and d = 5.

The first two equations of motion become redundant, and the third simplifies so that

we can solve for β:

β =
4α ((d− p− 2)(d− p− 1) + d(d− 1)r2)

4(d− p− 2)(d− p− 1)α2 + 4(d− p− 1)(p+ 1)rαα′ + p(p+ 1)r2α′2 . (I.7)

After this substitution, the first, third, and fourth equations of motion each give the

same second order ordinary differential equation for α.

To find the right boundary conditions, we can expand α in a power series near

r = 0 and then substitute into this differential equation. The result is that if we want

α(0) > 0 then we must have

α(r) = α(0)

(
1 +

1

d− p
r2 +O(r3)

)
. (I.8)

This then tells us that we must impose α′(0) = 0, which from (I.7) then implies that

β(0)α(0) = 1, as needed to avoid a singularity at r = 0. The overall scale of α can

be absorbed into a rescaling of the time coordinate, so we thus have a unique vacuum

solution, as found by Horowitz and Copsey for d = 4 and p = 1.

The differential equation for α can only be solved numerically, which we’ve written

a mathematica file (included in the arxiv submission) to do. We’ve checked for a

variety of d and p that, with these boundary conditions, the solutions for α and β are

positive, and behave as αβ = r2 + o(r2) at large r, as required for the geometry to be

asymptotically AdS. We plot a typical example in figure 28.

We now consider the wormhole solutions, where α vanishes at some rs > 0. In

this case we cannot assume symmetry between t and x, so we must treat α, β, and γ

independently. We first observe that the third equation of motion is quadratic in γ′,
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and can be solved to give an expression for γ′ in terms of α, α′, and β:

γ′ =
1

p(p− 1)r2αβ

(
− prβ(rα′ + 2(d− p− 1)α)

+
[
p2r2β2(rα′ + 2(d− p− 1)α)2

+ 4p(p− 1)r2αβ
(
(d− p− 2)(d− p− 1) + d(d− 1)r2 − (d− p− 1)β(rα′ + (d− p− 2)α)

) ]1/2
)

(I.9)

This expression then may be substituted into the other equations, to produce a pair

of independent differential equations which are second order in α and first order in β.

One nice simplification occurs if we take the difference of the first and fourth equations,

which tells us that

−2r2βα′′ + 2rαβ − r2α′β′ + 2αβ(2(d− p− 2) + prγ′)− rα′β(2(d− p− 3) + prγ′) = 4(d− p− 2).

We can pair this equation with, say, the first equation, and then solve them numerically.

We now need three boundary conditions: one is provided by α(rs) = 0, and another

can be fixed by rescaling time so that α′(rs) takes any value we choose. Finally by

inspecting the form of the equations at a point where α = 0, we can see that we must

have

β(rs) =
d− p− 2 + dr2s

rsα′(rs)
. (I.10)

The parameter rs is physical, and sets the temperature parameter in the thermofield

double state.

We’ve again written mathematica code (included in the arxiv submission) to solve

these equations numerically, and again confirmed for a variety of d, p, and rs that α

and β are positive, and they have the right large-r asymptotics. We plot an example

in figure 29.
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