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SYMMETRIES IN THE FOURTH PAINLEVÉ

EQUATION

AND OKAMOTO POLYNOMIALS

MASATOSHI NOUMI and YASUHIKO YAMADA

Abstract. The fourth Painlevé equation PIV is known to have symmetry of the
affine Weyl group of type A

(1)
2 with respect to the Bäcklund transformations.

We introduce a new representation of PIV , called the symmetric form, by taking
the three fundamental invariant divisors as the dependent variables. A complete
description of the symmetry of PIV is given in terms of this representation.
Through the symmetric form, it turns out that PIV is obtained as a similarity
reduction of the 3-reduced modified KP hierarchy. It is proved in particular that

the special polynomials for rational solutions PIV , called Okamoto polynomials,
are expressible in terms of the 3-reduced Schur functions.

It is known by K. Okamoto [7] that the fourth Painlevé equation has

symmetries under the affine Weyl group of type A
(1)
2 . In this paper we

propose a new representation of the fourth Painlevé equation in which the

A
(1)
2 -symmetries become clearly visible. By means of this representation,

we clarify the internal relation between the fourth Painlevé equation and

the modified KP hierarchy. We obtain in particular a complete description

of the rational solutions of the fourth Painlevé equation in terms of Schur

functions. This implies that the so-called Okamoto polynomials, which arise

from the τ -functions for rational solutions, are in fact expressible by the 3-

reduced Schur functions. 1

§1. A symmetric form of the fourth Painlevé equation

The fourth Painlevé equation PIV is the following second order ordinary

Received November 4, 1996.
1After completing this paper, the authors were informed by K. Kajiwara and Y.Ohta

that they obtained independently the expression of Okamato polynomials in terms of
Schur functions.
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differential equation

y′′ =
1

2y
(y′)2 +

3

2
y3 + 4ty2 + 2(t2 − a)y +

b

y
(1.1)

for the unknown function y = y(t), where ′ = d/dt and a, b ∈ C are param-

eters. It is known by K. Okamoto [7] that equation 1.1 is represented as the

following system for the two unknown functions q = y and p:

q′ = q(2p − q − 2t) − 2(v1 − v2),

p′ = p(2q − p + 2t) + 2(v2 − v3).
(1.2)

This equation, called HIV, is in fact a Hamiltonian system

q′ =
∂H

∂p
, p′ = −∂H

∂q
(1.3)

with polynomial Hamiltonian

H = qp2 − q2p − 2tpq − 2(v1 − v2)p − 2(v2 − v3)q.(1.4)

The parameters v = (v1, v2, v3), (v1 + v2 + v3 = 0) in 1.2 and (a, b) in 1.1

are related through the formulas

a = 1 + 3v3, b = −2(v1 − v2)
2.(1.5)

The equivalence between 1.1 and 1.2 can be checked directly, but it requires

a tedious calculation. (This calculation is fairly simplified by the “symmet-

ric” representation which we will propose in this paper. See the proof of

Theorem 1.1 below.)

It is clearly seen from 1.2 that, if v1 − v2 = 0 or v2 − v3 = 0, the

Hamiltonian system HIV has classical solutions such that q = 0 or p = 0.

In these cases, equation 1.2 is reduced to the Riccati equations p′ = −p2 +

2tp + 2(v2 − v3) and q′ = −q2 − 2t − 2(v1 − v2) respectively, and they

are furthermore linearized to Hermite-Weber equations. In this sense, the

Hamiltonian system HIV, 1.2, has invariant divisors q = 0 and p = 0 along

the lines v1 − v2 = 0 and v2 − v3 = 0, respectively. It should be noted that

equation 1.2 has one more typical invariant divisor q− p + 2t = 0 along the

line v1 − v3 = 1. In fact equation 1.2 implies

(q − p + 2t)′ = −(q − p − 2t)(q + p) + 2(1 − v1 + v3).(1.6)
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It is known by [6] that these three polynomials q, p and q − p + 2t generate

essentially all the invariant divisors of the fourth Painlevé equation 1.2.

Note that the three simple affine roots 1 − v1 + v3, v1 − v2, v2 − v3 of type

A
(1)
2 are already involved in these equations. We denote by

V = {v = (v1, v2, v3) ∈ C
3 ; v1 + v2 + v3 = 0}(1.7)

the parameter space for the system 1.2.

We now propose to treat the three typical invariant divisors q, p and

q − p + 2t equally so as to obtain a “symmetric” representation of the

fourth Painlevé equation. We introduce the three dependent variables f =

(f0, f1, f2) as follows. Fixing a nonzero complex number c ∈ C
×, set

f0 = c(q − p + 2t), f1 = −cq, f2 = cp,(1.8)

and rescale the independent variable as x = −t/c. Then we have

f ′
0 = f0(f2 − f1) − 2c2(1 − v1 + v3),

f ′
1 = f1(f0 − f2) − 2c2(v1 − v2),

f ′
2 = f2(f1 − f0) − 2c2(v2 − v3),

(1.9)

where ′ = d/dx. With the normalization c =
√

−3/2, we set

α0 = 3(1 − v1 + v3), α1 = 3(v1 − v2), α2 = 3(v2 − v3).(1.10)

Then we have

Theorem 1.1. The fourth Painlevé equation 1.1 (or 1.2) can be writ-

ten in the following symmetric form:

f ′
0 + f0(f1 − f2) = α0,

f ′
1 + f1(f2 − f0) = α1,

f ′
2 + f2(f0 − f1) = α2,

(1.11)

with normalization

f0 + f1 + f2 = 3x,(1.12)

where ′ = d/dx and α0, α1, α2 ∈ C are parameters with α0 + α1 + α2 = 3.
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Proof. The equation 1.11 has been derived from the Hamiltonian sys-

tem 1.2; it is clear that these two are equivalent. We will show the equiva-

lence of 1.1 and 1.11 (with normalization 1.12). This gives in fact an easier

way to establish the equivalence between 1.1 and 1.2. Taking a derivative

of the second equation of 1.11, we have

f ′′
1 + f ′

1(f2 − f0) + f1(f
′
2 − f ′

0) = 0.

Substituting the first and the third equations of 1.11 to this, we obtain

f ′′
1 + f ′

1(f2 − f0) − 2f0f2f1 − (α0 − α2)f1 + (f2 + f0)f
2
1 = 0.

Then, by using the relations

f2 − f0 =
α1 − f ′

1

f1
, f2 + f0 = 3x − f1, 4f0f2 = (f2 + f0)

2 − (f2 − f0)
2,

we have

f ′′
1 − 1

2

f ′
1
2

f1
− 3

2
f3
1 + 6xf2

1 +

(
−9

2
x2 − (α0 − α2)

)
f1 +

α2
1

2

1

f1
= 0.

This is transformed into the equation 1.1 by the rescaling f1 = −cy, x =

−t/c, c =
√

−3/2 and the change of parameters 1.5, 1.10.

We remark that our equation 1.11 has the following rational solutions:

(A) (α0, α1, α2; f0, f1, f2) = (1, 1, 1; x, x, x),

(B) (α0, α1, α2; f0, f1, f2) = (3, 0, 0; 3x, 0, 0).
(1.13)

From the work of Y.Murata [4], it follows that all the rational solutions of

1.11 are obtained from these two particular solutions by Bäcklund trans-

formations. There are classical solutions obtained as Bäcklund transforma-

tions from the solutions of Riccati type along the three lines α0 = 0, α1 = 0,

α2 = 0. Any other solutions are non-classical in the sense of H. Umemura

[9] (see also [6], [7]). It should also be noted that our equation 1.9 reduces

to the Kac-Moerbeke integrable system [3] in the degenerate limit c → 0.
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§2. Bäcklund transformations and the affine Weyl group

We now discuss symmetries in the fourth Painlevé equation represented

by 1.11 with the normalization of 1.12. In what follows, we regard α0, α1,

α2 as coordinate functions (with α0 + α1 + α2 = 3 ) of the parameter space

V .

We consider the affine Weyl group W = 〈s0, s1, s2〉 of type A
(1)
2 with

fundamental relations

s2
i = 1, sisi+1si = si+1sisi+1 (i = 0, 1, 2).(2.1)

Here the subscripts are understood as elements of Z/3Z. This convention

for subscripts will be applied to other variables αi, fi, etc., as well. We

denote by W̃ = 〈s0, s1, s2, π〉 the extension of W obtained by adjoining the

following Dynkin diagram automorphism π:

π3 = 1, πsi = si+1π (i = 0, 1, 2).(2.2)

The affine Weyl group W̃ acts naturally on the coordinate ring C[α] of V

through the algebra automorphism s0, s1, s2 and π of C[α] determined by

si(αi) = −αi, si(αj) = αj + αi (i 6= j), π(αj) = αj+1(2.3)

for i, j = 0, 1, 2. When we consider the action of W̃ on the parameter space

V , we will use the action such that (w.ϕ)(v) = ϕ(w−1.v) for any v ∈ V

and ϕ ∈ C[α]. The action of W̃ on V is given as follows:

s0.v = (v3 + 1, v2, v1 − 1), s1.v = (v2, v1, v3),

s2.v = (v1, v3, v2), π.v = (v3 + 2
3 , v1 − 1

3 , v2 − 1
3).

(2.4)

for any v = (v1, v2, v3) ∈ V .

One advantage of our representation 1.11 is that the action of the affine

Weyl group W̃ on the fourth Painlevé equation can be described in a com-

pletely symmetric way on the dependent variables f0, f1 and f2. The action

of W̃ on C[α] extends in fact to the whole differential field K = C(α; f) as

follows.
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Theorem 2.1. The fourth Painlevé equation 1.11 is invariant under

the following transformations s0, s1, s2 and π:

s0(f0)=f0, s1(f1)=f1, s2(f2)=f2, π(f0)=f1,

s0(f1)=f1 −
α0

f0
, s1(f2)=f2 −

α1

f1
, s2(f0)=f0 −

α2

f2
, π(f1)=f2,

s0(f2)=f2 +
α0

f0
, s1(f0)=f0 +

α1

f1
, s2(f1)=f1 +

α2

f2
, π(f2)=f0,

s0(α0)= − α0, s1(α1)= − α1, s2(α2)= − α2, π(α0)=α1,

s0(α1)=α1 + α0, s1(α2)=α2 + α1, s2(α0)=α0 + α2, π(α1)=α2,

s0(α2)=α2 + α0, s1(α0)=α0 + α1, s2(α1)=α1 + α2, π(α2)=α0.

(2.5)

Furthermore, these transformations define a representation of the affine

Weyl group W̃ = 〈s0, s1, s2, π〉. Namely, W̃ acts on the differential field

K = C(α; f) as a group of differential automorphisms.

Theorem 2.1 is proved by straightforward computations. The transfor-

mations described above will be called the Bäcklund transformations of

the fourth Painlevé equation 1.11. Note that the independent variable

x = (f0 + f1 + f2)/3 is fixed under the action of W̃ .

Note that, for any w ∈ W , one obtains three linear functions β0 =

w(α0), β1 = w(α1), β2 = w(α2) in α0, α1, α2. Theorem 2.1 then implies

that, one can specify certain rational functions g0 = w(f0), g1 = w(f1), g2 =

w(f2) in f0, f1, f2, α0, α1, α2 such that

g′i + gi(gi+1 − gi+2) = βi (i = 0, 1, 2).(2.6)

Namely, if (f0, f1, f2) is a (generic) solution of 1.11 with parameters (α0, α1,

α2), then (g0, g1, g2) is again a solution of the same system with parameters

(β0, β1, β2). We give an example below to show how the dependent variables

f0, f1, f2 are transformed under the action of the affine Weyl group.

Example. For w = s1s0, the Bäcklund transformation w(f1) =

s1s0(f1) is computed as follows:

f1
s0−→ f0f1 − α0

f0

s1−→ f1(f0f1 − α0)

f0f1 + α1
.(2.7)
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Similarly we have

β0 = w(α0) = α2 − 3, β1 = w(α1) = α0, β2 = w(α2) = α1 + 3;

g0 = w(f0) =
f0f1 + α1

f1
, g1 = w(f1) =

f1(f0f1 − α0)

f0f1 + α1
,

g2 = w(f2) =
(f0f1 + α1)(f1f2 − α1) + (3 − α2)f

2
1

f1(f0f1 + α1)
.

(2.8)

If we specialize these formula to the particular solution

(α0, α1, α2 ; f0, f1, f2) = (1, 1, 1; x, x, x),(2.9)

we obtain another rational solution

(α0, α1, α2 ; f0, f1, f2)(2.10)

= (−2, 1, 4 ;
x2 + 1

x
,
x(x2 − 1)

(x2 + 1)
,
x4 + 2x2 − 1

x(x2 + 1)
).

A complete description of rational functions in x arising in this way will be

given later in this paper.

Remark. The Bäcklund transformation s0(f1) = f1 − α0
f0

, for example,

becomes singular when applied to a particular solution such that f0 =

0. This sort of problem, however, is only apparent since such a solution

arises only under the condition α0 = 0 as one sees immediately from 1.11.

When α0 = 0, it is natural to understand that the Bäcklund transformation

s0 becomes the identity transformation. In general, each gi = w(fi) is a

rational function in (α; f) and its denominator possibly becomes identically

zero when one specializes (α; f) to certain particular solutions. Such a

phenomenon occurs however only when some of the parameters α0, α1,

α2 are in 3Z. In such cases, critical factors in the denominator of gi =

w(fi) can actually be eliminated by specializing the parameters (α0, α1, α2)

in advance. With this regularization, our Bäcklund transformations w(fi)

make sense for any particular solution.

§3. τ-Functions

In this section, we show that our equation 1.11 for f = (f0, f1, f2) can

be bilinearized by introducing a triple of τ -functions τ = (τ0, τ1, τ2). We

also study the Bäcklund transformations on the level of τ -functions.
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We introduce the τ -functions τ0, τ1, τ2 to be the dependent variables

satisfying the following equations:

f0 = (log
τ1

τ2
)′ + x =

τ ′
1

τ1
− τ ′

2

τ2
+ x,

f1 = (log
τ2

τ0
)′ + x =

τ ′
2

τ2
− τ ′

0

τ0
+ x,

f2 = (log
τ0

τ1
)′ + x =

τ ′
0

τ0
− τ ′

1

τ1
+ x.

(3.1)

We fix the freedom of overall multiplication by a function in defining τ0, τ1,

τ2, by imposing the equation

2(log τ0τ1τ2)
′′ + (f0 − x)2 + (f1 − x)2 + (f2 − x)2 = 0.(3.2)

To be more precise, we first introduce a variable g (determined from f0, f1,

f2 up to an additive constant) as an integral of the equation

2g′ + (f0 − x)2 + (f1 − x)2 + (f2 − x)2 = 0.(3.3)

Then we require that the τ -functions τ0, τ1, τ2 should satisfy

g = (log τ0τ1τ2)
′ =

τ ′
0

τ0
+

τ ′
1

τ1
+

τ ′
1

τ1
.(3.4)

Note that, under the conditions 3.1 and 3.4, the τ -functions τ0,τ1,τ2 are

determined by the equations

(log τ0)
′ =

τ ′
0

τ0
=

1

3
(g − f1 + f2),

(log τ1)
′ =

τ ′
1

τ1
=

1

3
(g − f2 + f0),

(log τ2)
′ =

τ ′
2

τ2
=

1

3
(g − f0 + f1),

(3.5)

up to multiplicative constants, respectively. We remark that the integration

constant in g has the effect of multiplying each τi by the exponential of a

linear function in x.

In order to describe the differential equations to be satisfied by the τ -

functions, we recall the definition of Hirota’s bilinear equations. Let P (∂x)
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(∂x = d/dx) be a linear differential operator in the x-variable with constant

coefficients. Then Hirota’s bilinear operator P (Dx) is defined by

P (Dx) F (x) · G(x) = P (∂y)F (x + y)G(x − y)|y=0,(3.6)

for a given pair of functions F (x), G(x).

Theorem 3.1. The fourth Painlevé equation 1.11 for f0, f1, f2, to-

gether with the integral g of 3.3, is equivalent to the following system of

Hirota bilinear equations for the triple of τ -functions τ0,τ1,τ2:

(D2
x − xDx − α0 − α1

3
) τ0 · τ1 = 0,

(D2
x − xDx − α1 − α2

3
) τ1 · τ2 = 0,

(D2
x − xDx − α2 − α0

3
) τ2 · τ0 = 0.

(3.7)

Proof. Note first that, in terms of the logarithms Fi = log τi (i = 0, 1, 2)

of τ -functions, the dependent variables f0, f1, f2 are expressed as follows:

f0 = F ′
1 − F ′

2 + x, f1 = F ′
2 − F ′

0 + x, f2 = F ′
0 − F ′

1 + x,

g = F ′
0 + F ′

1 + F ′
2.

(3.8)

The three equations of Theorem are rewritten into the following equations

for F0, F1, F2:

F ′′
0 + F ′′

1 + (F ′
0 − F ′

1)
2 − x(F ′

0 − F ′
1) −

α0 − α1

3
= 0,

F ′′
1 + F ′′

2 + (F ′
1 − F ′

2)
2 − x(F ′

1 − F ′
2) −

α1 − α2

3
= 0,

F ′′
2 + F ′′

0 + (F ′
2 − F ′

0)
2 − x(F ′

2 − F ′
0) −

α2 − α0

3
= 0.

(3.9)

Taking the sum of these three equations, we have

2(F ′′
0 + F ′′

1 + F ′′
2 ) + (F ′

1 − F ′
2)

2 + (F ′
2 − F ′

0)
2 + (F ′

0 − F ′
1)

2 = 0,(3.10)

which corresponds to the equation 3.3 for g. By subtracting the third

equation of 3.9 from the first, we have

F ′′
1 − F ′′

2 − (F ′
1 − F ′

2 + x)(2F ′
0 − F ′

1 − F ′
2) − α0 + 1 = 0,(3.11)

which corresponds to the differential equation for f0. Similarly we have the

equations for f1 and f2 from 3.9. It is also clear that the equations 3.9 are

recovered from 3.10 and the three equations which correspond to 1.11.
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Remark. Consider the differential field K(g) = C(α; f)(g) obtained

from K = C(α; f) by adjoining a variable g on which the derivation ′

acts by the formula 3.3. Then Theorem 3.1 implies that this differential

field is isomorphic to the differential field C(α)(x,F ′
0, F

′
1, F

′
2) defined by

the relations 3.9. Note that, by 3.9 and 3.10, each second derivative F ′′
i

(i = 0, 1, 2) can be expressed in terms of x and F ′
0, F ′

1, F ′
2:

F ′′
i + x(F ′

i+1 − F ′
i+2) + (F ′

i − F ′
i+1)(F

′
i − F ′

i+2) +
αi+1 − αi+2

3
= 0(3.12)

for i = 0, 1, 2. This system is also equivalent to the equation 3.7 for the triple

τ0, τ1, τ2 of τ -functions. Note that the differential field of our τ -functions

is defined as C(α)(x, τ0, τ1, τ2, τ
′
0, τ

′
1, τ

′
2) by 3.12, regarded as equations for

τ -functions.

One important fact is that the action of the affine Weyl group on the

f -variables lifts to the level of τ -functions.

Theorem 3.2. The τ -functions (τ0, τ1, τ2) allow an action of the

affine Weyl group W̃ which is compatible with the action of W̃ on f0, f1, f2

of Theorem 2.1. Their Bäcklund transformations are again expressed by

Hirota’s bilinear operators as follows:

s0(τ0) =
1

τ0
(Dx + x) τ1 · τ2 =

1

τ0
(τ ′

1τ2 − τ1τ
′
2 + xτ1τ2),

s1(τ1) =
1

τ1
(Dx + x) τ2 · τ0 =

1

τ1
(τ ′

2τ0 − τ2τ
′
0 + xτ2τ0),

s2(τ2) =
1

τ2
(Dx + x) τ0 · τ1 =

1

τ2
(τ ′

0τ1 − τ0τ
′
1 + xτ0τ1),

si(τj) = τj (i 6= j), π(τj) = τj+1 (i, j = 0, 1, 2),

(3.13)

while s0, s1, s2 and π act on α0,α1,α2 in the same way as in Theorem 2.1.

Proof. We first extend the action of W̃ on C(α; f) to C(α; f)(g), or

equivalently to C(α)(x,F ′
0, F

′
1, F

′
2). From 3.3 we have

s0(g
′) = g′ + (f1 − f2)

α0

f0
− (

α0

f0
)2 = g′ − α0

f ′
0

f2
0

(3.14)

by 1.11. Hence we have

si(g
′) = g′ − αi

f ′
i

f2
i

(i = 0, 1, 2), π(g′) = g′.(3.15)
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In view of these, we define the action of W̃ on g by

si(g) = g +
αi

fi
(i = 0, 1, 2), π(g) = g.(3.16)

One can check that 3.16 gives rise in fact to a representation of W̃ on

C(α; f)(g). On the variables F ′
0, F

′
1, F

′
2, equation 3.5 together with 3.16

immediately implies

si(F
′
j) = F ′

j (i 6= j), π(F ′
j) = F ′

j+1 (i, j = 0, 1, 2).(3.17)

These formulas justify the definitions of 3.13 other than those for si(τi)

(i = 0, 1, 2). As to s0(τ0), we compute

s0(F
′
0) = F ′

0 +
α0

f0
= F ′

0 +
f ′
0

f0
+ f1 − f2 = −F ′

0 + F ′
1 + F ′

2 +
f ′
0

f0
.(3.18)

This leads to the definition

s0(τ0) =
τ1τ2

τ0
f0 =

τ1τ2

τ0
(
τ ′
1

τ1
− τ ′

2

τ2
+ x) =

1

τ0
(Dx + x) τ1 · τ2.(3.19)

One can check by straightforward computations that the definition 3.13 thus

obtained defines an action of W̃ on the differential field C(α)(x, τ0, τ1, τ2, τ
′
0,

τ ′
1, τ

′
2) as a group of differential automorphisms.

We remark that the Bäcklund transformations si(τi) of Theorem 3.2

possibly become zero for solutions reducible to Riccati equations, while

they can be applied repeatedly as long as the τ -functions remain nonzero.

If (τ0, τ1, τ2) is a generic solution, we obtain the Bäcklund transformations

(w(τ0), w(τ1), w(τ2)) for any w ∈ W̃ , by Theorem 3.2.

From the formula 3.19 in the proof of Theorem 3.2, we have

Corollary 3.3. In terms of the τ -functions τ0, τ1, τ2, the depen-

dent variables f0, f1,f2 of the fourth Painlevé equation 1.11 are expressed

multiplicatively as follows:

f0 =
τ0 s0(τ0)

τ1 τ2
, f1 =

τ1 s1(τ1)

τ2 τ0
, f2 =

τ2 s2(τ2)

τ0 τ1
.(3.20)

The relation between the f -variables and the six τ -functions in Corollary 3.3

can be represented graphically as in Figure 1. Note also that 3.20 implies

τ2
0 s0(τ0) + τ2

1 s1(τ1) + τ2
2 s2(τ2) = 3x τ0τ1τ2.(3.21)
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s2(τ2)

τ0 τ1

s1(τ1) τ2 s0(τ0)

f2

f1 f0

-
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Figure 1: Six τ -functions

Example. As to the rational solution 2.9 the corresponding τ -func-

tions and their adjacent Bäcklund transformations are given by

(τ0, τ1, τ2) = (1, 1, 1), (s0(τ0), s1(τ1), s2(τ2)) = (x, x, x).(3.22)

As to the rational solution 2.10, we have

(τ0, τ1, τ2) = (x2 + 1, x, 1),

(s0(τ0), s1(τ1), s2(τ2)) = (1, x2 − 1, x4 + 2x2 − 1).
(3.23)

These are examples of Okamoto polynomials which will be discussed in the

next section.

Another corollary of Theorem 3.2 is the Toda equations for our τ -

functions.

Corollary 3.4. The fourth Painlevé equation 3.7 for the triple of

τ -functions τ0, τ1, τ2 implies the following equation of Toda type:

(log τ0)
′′ + x2 +

α1 − α2

3
=

s1(τ1)s2(τ2)

τ2
0

,(3.24)

namely,

(
1

2
D2

x + x2 +
α1 − α2

3
) τ0 · τ0 = s1(τ1)s2(τ2).(3.25)

Proof. From Corollary 3.3, we have

f1f2 =
s1(τ1) s2(τ2)

τ2
0

.(3.26)
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On the other hand, substitution of the formulas

F ′
2 − F ′

0 = f1 − x, F ′
0 − F ′

1 = f2 − x, F ′
1 − F ′

2 = 2x − f1 − f2(3.27)

into 3.12 with i = 0 gives

F ′′
0 + x2 +

α1 − α2

3
= f1f2.(3.28)

Equating 3.26 and 3.28 we obtain the equation of Corollary as desired.

Our τ -functions are slightly different from those introduced by K.

Okamoto [7]. In our formulation, the τ -function in the spirit of Okamoto,

say τok, can be defined through the integral of a “Hamiltonian” as follows:

H =
1

3
(f0f1f2 + α1f2 − α2f1) = (log τok)′.(3.29)

Note that this implies (log τok)′′ = H ′ = f1f2. Let us introduce the triple

of τ -functions of Okamoto type by

(log τok
0 )′ = H0, (log τok

1 )′ = H1, (log τok
2 )′ = H2,(3.30)

where we define H0 = H, H1 = π(H), H2 = π2(H) by rotation. This

implies

f0 = (log
τok
1

τok
2

)′ + α0x, f1 = (log
τok
2

τok
0

)′ + α1x,

f2 = (log
τok
0

τok
1

)′ + α2x.

(3.31)

(Compare these formulas with our definition 3.1.) From 3.28 we also see

that

τok
0 = ex4/12+(α1−α2)x2/6 τ0(3.32)

up to the multiplication by the exponential of a linear function in x.

§4. Rational solutions

In this section, we give an explicit description of the rational solutions

of the fourth Painlevé equation 1.11 in terms of Schur functions.
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Before discussing the rational solutions, we introduce a family of τ -

functions (τm,n)m,n∈
� for the fourth Painlevé equation 3.7. A similar treat-

ment of the lattice of τ -functions has been given by K. Okamoto [8]. We

consider the elements

T1 = πs2s1, T2 = s1πs2(4.1)

of the (extended) affine Weyl group W̃ . Note that these T1 and T2 represent

the following parallel translations in the parameter space V respectively:

T1.v = v + (
2

3
,−1

3
,−1

3
), T2.v = v + (−1

3
,
2

3
,−1

3
),(4.2)

for v ∈ V . For the triple of τ -functions (τ0, τ1, τ2) of the fourth Painlevé

equation 3.7, we introduce an infinite family of dependent variables τm,n

(m,n ∈ Z) as the Bäcklund transformations

τm,n = Tm
1 T n

2 (τ0) (m,n ∈ Z).(4.3)

Note that

T1(τ0) = τ1, T2(τ0) = s1(τ1) and T2T1(τ0) = T2(τ1) = τ2.(4.4)

By these formulas, we have

τ0,0 = τ0, τ1,0 = τ1, τ1,1 = τ2, τ0,1 = s1(τ1).(4.5)

The triple of τ -functions (τ0, τ1, τ2) is transformed into (τm,n, τm+1,n,

τm+1,n+1) by Tm
1 T n

2 , and into (τm,n, τm,n+1, τm+1,n+1) by Tm
1 T n

2 s1, respec-

tively. The following propositions are obtained immediately from the results

of the previous section, by using the action of W̃ .

Proposition 4.1. (1) For any m,n ∈ Z, the triples

(τm,n, τm+1,n, τm+1,n+1) and (τm,n, τm,n+1, τm+1,n+1)(4.6)

represent the Bäcklund transformations of (τ0, τ1, τ2) for the parameters

(α0 + 3m,α1 + 3(n − m), α2 − 3n) and

(α0 + α1 + 3n,−α1 + 3(m − n), α1 + α2 − 3m),
(4.7)
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Figure 2: τ -Functions on the A2-lattice

respectively.

(2) The corresponding f -variables are given respectively by
(

τm,nτm+2,n+1

τm+1,nτm+1,n+1
,
τm+1,nτm,n+1

τm+1,n+1τm,n
,
τm+1,n+1τm,n−1

τm,nτm+1,n

)
and

(
τm,nτm+1,n+2

τm,n+1τm+1,n+1
,
τm,n+1τm+1,n

τm+1,n+1τm,n
,
τm+1,n+1τm−1,n

τm,nτm,n+1

)
.

(4.8)

Proposition 4.2. (1) The family of τ -functions τm,n (m,n ∈ Z) sat-

isfies the following three types of bilinear equations:

(Dx + x) τm,n · τm+1,n = τm,n−1τm+1,n+1,

(Dx + x) τm,n · τm,n+1 = τm+1,n+1τm−1,n,

(Dx + x) τm,n · τm−1,n−1 = τm−1,nτm,n−1.

(4.9)

(2) The family of τ -functions τm,n (m,n ∈ Z) satisfies the following three

types of Toda equations:

(
1

2
D2

x + x2 − 2α1 + α2

3
+ 2m − n) τm,n · τm,n = τm+1,nτm−1,n,

(
1

2
D2

x + x2 +
α1 − α2

3
− m + 2n) τm,n · τm,n = τm,n+1τm,n−1,

(
1

2
D2

x + x2 +
α1 + 2α2

3
− m − n) τm,n · τm,n = τm−1,n−1τm+1,n+1.

(4.10)
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Remark. As we already remarked in the previous section, Bäcklund

transformations for τ -functions possibly become singular, when applied to

particular solutions which are reducible to Riccati equations. In such cases,

we need to restrict the indices (m,n) for τm,n to a region of Z
2 bounded by

certain lines on which τm,n = 0.

All the rational solutions of 1.11 are obtained from

(A) (α0, α1, α2; f0, f1, f2) = (1, 1, 1; x, x, x), or

(B) (α0, α1, α2; f0, f1, f2) = (3, 0, 0; 3x, 0, 0).
(4.11)

by Bäcklund transformations. We will determine the τ -functions τm,n(m,n

∈ Z) for these rational solutions.

In the case of Bäcklund transformations of the rational solution (A) of

4.11, the τ -functions τm,n (m,n ∈ Z) turn out to be polynomials, which we

call the Okamoto polynomials. We recall that the τ -functions for (A) are

given by

(α0, α1, α2; τ0, τ1, τ2) = (1, 1, 1; 1, 1, 1).(4.12)

Theorem 4.3. The τ -functions τm,n(x) for the solution 4.12 are poly-

nomials in x. These polynomials τm,n(x) = Qm,n(x) (m,n ∈ Z) are char-

acterized by the Toda equations

(
1

2
D2

x + x2 − 1 + 2m − n) Qm,n · Qm,n = Qm+1,nQm−1,n,

(
1

2
D2

x + x2 − m + 2n)Qm,n · Qm,n = Qm,n+1Qm,n−1,

(
1

2
D2

x + x2 + 1 − m − n) Qm,n · Qm,n = Qm−1,n−1Qm+1,n+1

(4.13)

with initial condition

Q0,0 = Q1,0 = Q1,1 = 1, Q2,1 = x.(4.14)

We remark that Qm(x) = Qm,0(x) and Rm(x) = Qm+1,1(x) (m ∈ Z) are the

original Okamoto polynomials discussed in [1]. In fact, they are determined

by the recurrence relations

(
1

2
D2

x + x2 + 2m − 1)Qm · Qm = Qm+1Qm−1 (m ∈ Z)(4.15)
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with initial condition Q0 = Q1 = 1, and by

(
1

2
D2

x + x2 + 2m)Rm · Rm = Rm+1Rm−1 (m ∈ Z)(4.16)

with R0 = 1, R1 = x, respectively. The fact that τm,n(x) are polynomials

will be proved in Section 5 in the course of the proof of Theorem 4.5 below.

The other statements in Theorem 4.3 are consequences of Proposition 4.2.

The τ -functions for the rational solution (B) of 4.11 are given by

(α0, α1, α2; τ0, τ1, τ2) = (3, 0, 0; e−x4/12, e−x4/12+x2/2, e−x4/12−x2/2).(4.17)

Theorem 4.4. The τ -functions τm,n(x) for the solution 4.17 are de-

fined for (m,n) ∈ Z
2 with m ≥ n ≥ 0. They can be written in the form

τm,n(x) = exp

(
−x4

12
+

m − 2n

2
x2

)
Hm−n,n (m ≥ n ≥ 0),(4.18)

for some polynomials Hm,n(x). These polynomials Hm,n(x) (m,n ≥ 0) are

characterized by the Toda equations

(
1

2
D2

x + 3m)Hm,n · Hm,n = Hm+1,nHm−1,n,

(
1

2
D2

x − 3n)Hm,n · Hm,n = Hm,n+1Hm,n−1,

(4.19)

with initial condition

H0,0 = H1,0 = H0,1 = 1 and H1,1 = 3x.(4.20)

We remark that Hm,1(x) and H1,m (m = 0, 1, 2, . . .) coincide with the Her-

mite polynomials up to rescaling. We will call Hm,n(x) (m,n ≥ 0) the

generalized Hermite polynomials. The fact that τm,n(x) are expressed as in

4.18 will be proved in Section 5 in the course of the proof of Theorem 4.6

below.

The Okamoto polynomials Qm,n(x) (m,n ∈ Z) and the generalized

Hermite polynomials Hm,n(x) (m,n ≥ 0) are in fact expressible in terms

of Schur functions. We recall the definition of Schur functions in order to

make this statement precise.

A partition λ = (λ1, λ2, . . .) (or a Young diagram) is a sequence of non-

negative integers such that λ1 ≥ λ2 ≥ · · · ≥ 0 and that λi = 0 for i � 0.
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The number of nonzero parts λi is called the length of λ and denoted by l(λ).

For each partition λ, we define the Schur function Sλ(t) = Sλ(t1, t2, . . .) by

Sλ(t) = det (pλi−i+j(t))1≤i,j≤l(λ),(4.21)

where pn(t) are the polynomials in t determined by the generating function

exp

(
∞∑

k=1

tkz
k

)
=

∞∑

n=0

pn(t)zn.(4.22)

(We set pn(t) = 0 for n < 0.) Note that pn(t) can be defined equivalently

by

pn(t) =
∑

k1+2k2+···+nkn=n

tk1
1 tk2

2 · · · tkn

n

k1!k2! · · · kn!
.(4.23)

We say that a subset M ⊂ Z is a Maya diagram if

m ∈ M (m � 0) and m 6∈ M (m � 0).(4.24)

To each Maya diagram M = {. . . ,m3,m2,m1} (· · · < m3 < m2 < m1),

one can associate a unique partition λ = (λ1, λ2, . . .) such that mi−mi+1 =

λi − λi+1 + 1 for i = 1, 2, . . .. Note that all the Maya diagrams M + k =

{. . . ,m2 + k,m1 + k} (k ∈ Z) obtained from M = {. . . ,m3,m2,m1} by

shifting define the same partition by this correspondence. For each pair

(m,n) of integers, we define the Maya diagram M(m,n) as follows:

M(m,n) = 3Dm ∪ (3Dn + 1) ∪ (3D0 + 2),(4.25)

where

Dl = {n ∈ Z | n < l} (l ∈ Z).(4.26)

We denote by λ(m,n) the partition corresponding to M(m,n). Partitions of

the form λ(m,n) (m,n ∈ Z) are called the 3-reduced partitions. We remark

that a partition λ is 3-reduced if and only if λ has no hook with length of a

multiple of 3. Also, Schur functions Sλ(m,n)(t) for 3-reduced partitions are

called 3-reduced Schur functions. It is known that a Schur function Sλ(t)

is 3-reduced if and only if

∂t3n
Sλ(t) = 0 for all n = 1, 2, · · · .(4.27)
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Theorem 4.5. Each Okamoto polynomial Qm,n(x) (m,n ∈ Z) is a

monic polynomial of degree m2 + n2 − mn − m with integer coefficients. It

is expressed by the 3-reduced Schur function as

Qm,n(x) = Nm,nSλ(m,n)(x,
1

2
, 0, 0, . . .),(4.28)

where Nm,n is a positive integer determined by the hook-length formula.

Example. The Maya diagram M(3, 2) is obtained from D3,D2,D0 as

follows.

• • • • • • • •D3 • • • • • • •D2 • • • • •D0 · · ·
· · ·
· · ·

−1 0 1 2 · · ·· · ·

=⇒

M(3, 2)

· · · • • • • • • • • •
−4 −1 0 1 2 3 4 5 6 · · ·

Hence we have M(3, 2) = {. . . ,−2,−1, 0, 1, 3, 4, 6} and

λ(3, 2) = (2, 1, 1) = .(4.29)

In this case, the Schur function S(2,1,1)(t) and the Okamoto polynomials

Q3,2(x) are

S(2,1,1)(t) = 1
8t41 − 1

2t21t2 − 1
2t22 + t4,

Q3,2(x) = x4 − 2x2 − 1,
(4.30)

respectively. A typical sequence of 3-reduced partitions is given by

λ(m, 0) = (2m − 2, 2m − 4, . . . , 2) for m > 0,(4.31)

which corresponds to the Okamoto polynomials Qm(x) for m > 0. For

other examples, see Figure 3 in the next section.

The generalized Hermite polynomials Hm,n(x) are expressed by the

Schur functions for rectangular Young diagrams λ = (nm) = (n, n, . . . , n, 0,

0, . . .).
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Theorem 4.6. Each generalized Hermite polynomial Hm,n(x) (m,n≥
0) is a polynomial of degree mn with rational coefficients. It can be written

as

Hm,n(x) = Cm,nS(nm)(x,
1

6
, 0, 0, . . .),(4.32)

where the normalization constant is given by

Cm,n = (−1)n(n−1)/23(m+n)(m+n−1)/2(m + n − 1)!(4.33)

with n! = n!(n − 1)!(n − 2)! · · · 2!1!.

The relationship between the sequences H1,n(x), Hm,1(x) and the ordinary

Hermite polynomials Hn(x) is obvious since

∞∑

n=0

S(n)(x,
1

6
, 0, 0, . . .)zn = exp

(
xz +

1

6
z2

)
,

∞∑

m=0

S(1m)(x,
1

6
, 0, 0, . . .)zm = exp

(
xz − 1

6
z2

)
,

(4.34)

while the Hermite polynomials have the generating function

∞∑

n=0

1

n!
Hn(x)zn = exp

(
2xz − z2

)
.(4.35)

The proof of Theorems 4.5 and 4.6 will be given in the next section.

§5. Proof of Theorems 4.5 and 4.6

The Hirota bilinear equations for our τ -functions (Theorem 3.1) arise

naturally from the so-called modified KP hierarchy [2] by certain similarity

reduction (see also [5], [10]). This fact is the key to the proof of Theorems

4.5 and 4.6.

Consider two functions G0(t1, t2) and G1(t1, t2) in the two variables

(t1, t2), and suppose that they satisfy the following Hirota bilinear equation

(D2
t1 + Dt2)G0(t1, t2) · G1(t1, t2) = 0.(5.1)

Introducing the degrees of t1, t2 by deg t1 = 1 and deg t2 = 2, we assume

that each Gi is homogeneous of degree di ∈ C for i = 0, 1:

(t1∂t1 + 2t2∂t2)Gi(t1, t2) = diGi(t1, t2).(5.2)
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Fixing a constant k ∈ C
×, we define the functions τ0(x), τ1(x) in one variable

by

τi(x) = Gi(x, k) (k ∈ C
×; i = 0, 1).(5.3)

Formally, each Gi is recovered by the formula

Gi(t1, t2) =

(
t2
k

)di

2

τi

(
t1√
t2/k

)
.(5.4)

Then it is easy to check

Lemma 5.1. Under the similarity condition 5.2, the equation 5.1 for

the pair G0(t1, t2), G1(t1, t2) is equivalent to the Hirota bilinear equation

(
2kD2

x − xDx + d0 − d1

)
τ0(x) · τ1(x) = 0,(5.5)

for τ0(x), τ1(x).

From this lemma with k = 1/2, we immediately have

Proposition 5.2. The fourth Painlevé equation 3.7 for the triple of

τ -functions τ0(x), τ1(x), τ2(x) is equivalent to the similarity reduction of the

Hirota equations

(D2
t1 + Dt2) Gi(t1, t2) · Gi+1(t1, t2) = 0 (i = 0, 1, 2)(5.6)

for three functions Gi(t1, t2) (i = 0, 1, 2) in two variables. The similarity

condition is given by

Gi(t1, t2) = (2t2)
di/2 τi

(
t1√
2t2

)
(i = 0, 1, 2),(5.7)

and the parameters are related by

α0 = 1 − 2d0 + d1 + d2,

α1 = 1 + d0 − 2d1 + d2,

α2 = 1 + d0 + d1 − 2d2.

(5.8)

Recall that the (first) modified KP hierarchy [2] is the following system

of Hirota bilinear equations for a pair of τ -functions τ0(t) and τ1(t) in infinite

time variables t = (t1, t2, . . .):

∞∑

n=0

pn(−2s) pn+2(D̃t) exp

(
∞∑

m=1

smDtm

)
τ0(t) · τ1(t) = 0,(5.9)
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where s = (s1, s2, . . .) are parameters and D̃t = (Dt1/1,Dt2/2, . . .). The

constant term of 5.9 with respect to s implies the bilinear equation

(D2
t1 + Dt2) τ0(t) · τ1(t) = 0,(5.10)

which is nothing but the equation 5.1 discussed above. For the proof of

Theorems 4.5 and 4.6, we will recall the following fact about Schur functions

from the theory of KP hierarchy. Let Xm = Xm(t; ∂t) (m ∈ Z) be the vertex

operators of the KP hierarchy defined by the generating function

X(z) =
∑

m∈
�

Xmzm = exp

(
∞∑

k=1

tkz
k

)
exp

(
−

∞∑

k=1

z−k

k
∂tk

)
.(5.11)

Then we have

Lemma 5.3. For any partition λ and k ∈ Z, the pair τ0(t) = Sλ(t) and

τ1(t) = XkSλ(t) solves the first modified KP hierarchy 5.9. In particular we

have

(D2
t1 + Dt2) τ0(t) · τ1(t) = 0.(5.12)

We will give a proof of this lemma in Appendix for completeness.

All the Schur functions Sλ(t) are obtained from S∅(t) = 1 by applying

vertex operators repeatedly:

Sλ(t) = Xλ1 · · ·Xλn
.1,(5.13)

for any partition λ = (λ1, . . . , λn, 0, . . .). The action of vertex operators on

Schur functions can be computed by 5.13 together with the commutation

relations

XkXl = −Xl−1Xk+1, Xk.1 = 0 (k < 0), X0.1 = 1,(5.14)

where k, l ∈ Z. (See Appendix.) A more systematic way is to use Maya di-

agrams. For a given Maya diagram M , let λ be the corresponding partition

and suppose that l(λ) ≤ n. Then we have

Xk.Sλ(t) =

{
±Sµ(t) if k + n /∈ M,

0 if k + n ∈ M,
(5.15)

for each k ∈ Z. Here µ stands for the partition corresponding to the Maya

diagram M ∪ {k + n}. The sign in this formula is determined by the parity

of the number of integers m ∈ M such that m > k + n.
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Proof of Theorem 4.5 for Okamoto polynomials. By using the formula

5.15, one can compute how the 3-reduced Schur functions are transformed

by vertex operators.

Lemma 5.4. As to the action of the vertex operators, we have the

following two types of cyclic relations among 3-reduced Schur functions

X2m−n .Sλ(m,n)(t) = ±Sλ(m+1,n)(t),

X2n−m .Sλ(m+1,n)(t) = ±Sλ(m+1,n+1)(t),(5.16)

X−m−n .Sλ(m+1,n+1)(t) = ±Sλ(m,n)(t),

and

X2n−m+1 .Sλ(m,n)(t) = ±Sλ(m,n+1)(t),

X2m−n−1 .Sλ(m,n+1)(t) = ±Sλ(m+1,n+1)(t),(5.17)

X−m−n .Sλ(m+1,n+1)(t) = ±Sλ(m,n)(t),

for any m,n ∈ Z.

Example. Consider the 3-reduced partitions λ(3, 1) = (3, 1), λ(4, 1) =

(5, 3, 1) and λ(4, 2) = (4, 2, 1, 1). For this triple of partitions, we have a

‘cycle’ of 3-reduced Schur functions

X5

X−4 X−1

-





� J

JJ]

which is an example of 5.16 for (m,n) = (3, 1). Notice also that the index

of each vertex operator Xk represents the difference of degrees of Schur

functions.

From Lemma 5.4 together with Lemma 5.3, we obtain two types of

triples of 3-reduced Schur functions satisfying the bilinear equations of

Proposition 5.2. Note that the 3-reduced Schur function Sλ(m,n) is ho-

mogeneous of degree

dm,n = |λ(m,n)| = m2 + n2 − mn − m(5.18)
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with respect to the degree defined by deg ti = i (i = 1, 2, . . .). Set

sm,n(x) = Sλ(m,n)(x,
1

2
, 0, 0, . . .)(5.19)

for any m,n ∈ Z. Then, by combining Lemma 5.4 and Proposition 5.2, we

have

Proposition 5.5. (1) For any m,n ∈ Z, the triple

(sm,n(x), sm+1,n(x), sm+1,n+1(x))(5.20)

solves the fourth Painlevé equation 3.7 with the parameters

(α0, α1, α2) = (3m + 1, 3(n − m) + 1,−3n + 1).(5.21)

(2) For any m,n ∈ Z, the triple

(sm,n(x), sm,n+1(x), sm+1,n+1(x))(5.22)

solves the fourth Painlevé equation 3.7 with parameters

(α0, α1, α2) = (3n + 2, 3(m − n) − 1,−3m + 2).(5.23)

We remark that, in the coordinates (v1, v2, v3) of the parameter space V as

in 1.10, the triples of τ -functions in this proposition give rise to solutions

with parameters

(v1, v2, v3) = (
1

3
, 0,−1

3
) − m(

2

3
,−1

3
,−1

3
) − n(−1

3
,
2

3
,−1

3
)(5.24)

and

(v1, v2, v3) = (0,
1

3
,−1

3
) − m(−1

3
,
2

3
,−1

3
) − n(

2

3
,−1

3
,−1

3
),(5.25)

respectively.

It is clear that each triple of τ -functions of Proposition 5.5 defines a

rational solution of 1.11 in f -variables. For each (α0, α1, α2) of this propo-

sition, the fourth Painlevé equation 1.11 has a unique rational solution by

[4]. Hence we conclude that each sm,n(x) is a constant multiple of the

τ -function τm,n(x) for the solution (A) of 4.11. This shows that τm,n(x)

are in fact polynomials in x. The assertion that the Okamoto polynomials

τm,n(x) = Qm,n(x) are monic polynomials with integer coefficients follows

either from the Bäcklund transformations or from the Toda equations of

Proposition 4.2.
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Proof of Theorem 4.6 for generalized Hermite polynomials. By the for-

mula 5.15, we have

Lemma 5.6. Under the action of vertex operators, we have the follow-

ing relations among Schur functions for rectangular Young diagrams:

X−m.S((n+1)m)(t) = (−1)mS(nm)(t),

Xn−m.S((n+1)m)(t) = (−1)mS(n(m+1))(t),(5.26)

Xn.S(nm)(t) = S(n(m+1))(t),

for m,n ≥ 0.

For each m,n ≥ 0, let

hm,n(x) = S(nm)(x,
1

6
, 0, 0, . . .)(5.27)

be the specialization of the Schur function Sλ(t) = S(nm)(t) associated with

rectangular Young diagram λ = (nm). Then by Lemma 5.1 (with k = 1/6),

we have

Lemma 5.7.

(
D2

x − 3xDx + 3m
)
hm,n+1 · hm,n = 0,(

D2
x − 3xDx + 3(m − n)

)
hm,n+1 · hm+1,n = 0,(5.28) (

D2
x − 3xDx − 3n

)
hm,n · hm+1,n = 0.

These relations do not fit directly for the triple of τ -functions as in 3.7

since they do not make a ‘cycle’. This problem can be repaired however by

changing the normalization of hm,n as follows:

um,n(x) = exp

(
−x4

12
+

m − n

2
x2

)
hm,n(x).(5.29)

Then we have

Proposition 5.8.

(
D2

x − xDx + m + 2n + 1
)
um,n+1 · um,n = 0,(

D2
x − xDx + m − n

)
um+1,n · um,n+1 = 0,(5.30) (

D2
x − xDx − 2m − n − 1

)
um,n · um+1,n = 0.
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Namely, the triple

(τ0, τ1, τ2) = (um,n, um+1,n, um,n+1)(5.31)

solves the fourth Painlevé equation 3.7 with parameters

(α0, α1, α2) = (3(m + n + 1),−3m,−3n).(5.32)

Proof. Note that the Hirota bilinear equations have the following for-

mulas of Leibniz type:

Dx(g1u1 · g2u2) = Dx(g1 · g2)u1u2 + g1g2Dx(u1 · u2),

D2
x(g1u1 · g2u2) = D2

x(g1 · g2)u1u2 + 2Dx(g1 · g2)Dx(u1 · u2)

+g1g2D
2
x(u1 · u2).

Applying these to gi = exp(x4/12 + aix
2/2) (i = 1, 2), we have

(D2
x − 3xDx + β)(g1u1 · g2u2)

= g1g2{D2
x + (2a12 − 3)xDx + (2 − 3a12 + a2

12)x
2 + (a1 + a2) + β}u1 · u2,

where a12 = a1 − a2. The equations 5.30 can be checked easily by using

this formula.

We remark that, in the coordinates (v1, v2, v3) of V , the solutions of

Proposition 5.8 have the parameters

(v1, v2, v3) = −m(
2

3
,−1

3
,−1

3
) + n(−1

3
,−1

3
,
2

3
) (m,n = 0, 1, 2, . . .).(5.33)

As in the case of Okamoto polynomials, we see that each τm,n (m ≥
n ≥ 0) for the solution (B) of 4.11 is a constant multiple of um−n,n by

comparing the parameters. Hence we see that τm,n(x) has the expression

of 4.18. The only problem remaining is to fix the constant factors. The

leading coefficient of the polynomial Hm,n(x) is given by

(−1)n(n−1)/2(m − 1)!(n − 1)!3(m+n)(m+n−1)/2,(5.34)

which can be determined inductively by the Toda equations of Theorem

4.4. On the other hand, the leading coefficient of hm,n(x) is determined as

(m − 1)!(n − 1)!/(m + n − 1)!,(5.35)
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Figure 3: Okamoto polynomials on the A2-lattice

by the hook-length formula. Hence we have Theorem 4.6.

We show in Figures 3 and 4 below how the τ -functions for rational

solutions are arranged on the A2-lattice. Also, we include some examples

of Okamoto polynomials and generalized Hermite polynomials of small de-

grees.

Okamoto polynomials. In the following, we use the notation Qλ(x) =

Qm,n(x) for the Okamoto polynomial associated with the 3-reduced parti-

tion λ = λ(m,n). We give below some examples of Okamoto polynomials

Qλ(x).

Q(0) = Q1 = 1, Q(1) = R1 = x, Q(2) = Q2 = 1 + x2,

Q(1,1) = −1 + x2, Q(3,1) = R2 = −1 + 2x2 + x4,

Q(2,1,1) = −1 − 2x2 + x4, Q(3,1,1) = −5x + x5,

Q(4,2) = Q3 = 5 + 5x2 + 5x4 + x6, Q(2,2,1,1) = −5 + 5x2 − 5x4 + x6,
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Figure 4: Generalized Hermite polynomials on the A2-lattice

Q(4,2,1,1) = −7 − 14x4 + x8, Q(5,3,1) = R3 = −35x + 14x5 + 8x7 + x9,

Q(5,3,1,1) = 25 − 75x2 − 50x4 − 10x6 + 5x8 + x10,

Q(6,4,2) = Q4 = 175 + 350x2 + 175x4 + 140x6 + 65x8 + 14x10 + x12,

Q(7,5,3,1) = R4 = 1225 − 4900x2 − 4900x4 − 980x6

+350x8 + 420x10 + 140x12 + 20x14 + x16,

Q(8,6,4,2) = Q5 = 67375 + 134750x2 + 202125x4 + 107800x6

+42350x8 + 20020x10 + 8050x12 + 2200x14 + 355x16 + 30x18 + x20.

Note that the original Okamoto polynomials are given by

Qn = Q(2n−2,2n−4,...,4,2) (n > 0), Q−n = Q(n,n,...,2,2,1,1) (n ≥ 0),

Rn = Q(2n−1,2n−3,...,3,1) (n > 0), R−n = Q(n,n+1,n+1,...,1,1) (n ≥ 0).

Generalized Hermite polynomials. The polynomials Hn,1(x) and

H1,n(x) coincide with the ordinary Hermite polynomials up to rescaling.

H0,0 = 1, H1,0 = 1, H2,0 = 3, H3,0 = 2133, H4,0 = 2237,
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H0,1 = 1, H1,1 = 3x, H2,1 = 33(−1

3
+ x2),

H3,1 = 2136(−x + x3), H4,1 = 22311(
1

3
− 2x2 + x4),

H0,2 = −3, H1,2 = −33(
1

3
+ x2), H2,2 = −36(

1

3
+ x4),

H3,2 = −21310(
1

3
+ x2 − x4 + x6), H4,2 = −22316(

5

9
+

10

3
x4 − 8

3
x6 + x8),

H0,3 = −2133, H1,3 = −2136(x + x3),

H2,3 = −21310(−1

3
+ x2 + x4 + x6), H3,3 = −22315(

−5

3
x + 2x5 + x9),

H4,3 = −23322(
25

27
− 50

9
x2 − 25

9
x4 − 20

9
x6 + 5x8 − 2x10 + x12),

H0,4 = 2237, H1,4 = 22311(
1

3
+ 2x2 + x4),

H2,4 = 22316(
5

9
+

10

3
x4 +

8

3
x6 + x8),

H3,4 = 23322(
25

27
+

50

9
x2 − 25

9
x4 +

20

9
x6 + 5x8 + 2x10 + x12),

H4,4 = 24330(
875

243
+

3500

81
x4 − 50

9
x8 +

20

3
x12 + x16).

§A. Appendix

In this Appendix, we give a brief summary of relevant facts on Schur

functions and their relation to KP-hierarchy for the sake of reference.

A.1. Schur functions.

A partition λ = (λ1, λ2, . . .) is a sequence of non-negative integers

such that λ1 ≥ λ2 ≥ · · · ≥ 0 and that λi = 0 for i � 0. The number of

nonzero λi is called the length of λ and denoted by l(λ). For each partition

λ, the Schur function Sλ(t) = Sλ(t1, t2, . . .) is defined as follows:

Sλ(t) = det (pλi−i+j(t))1≤i,j≤l(λ),(A.1)

where pn(t) are the polynomials defined by the generating function

exp

(
∞∑

k=1

tkz
k

)
=

∞∑

n=0

pn(t)zn.(A.2)
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Usually, the Schur functions are defined as the following character polyno-

mials of the general linear group GL(N, C) (N ≥ l(λ)):

sλ(x1, . . . , xN ) =
det(xλi+δi

j )

det(xδi

j )
,(A.3)

where δi = N − i (i = 1, . . . , N). The polynomials Sλ(t) and sλ(x) are

related by Sλ(t) = sλ(x), where tk =
∑n

i=1(x
k
i )/k. In this context, the

formula A.1 above is the Jacobi-Trudi formula representing sλ(x) in terms

of complete homogeneous symmetric functions.

The coefficients of Sλ(t) with respect to the t-variables are related with

irreducible character πλ of the symmetric group Sn of degree n = |λ| =∑
i λi as follows:

Sλ(t) =
∑

m1,m2,...≥0

πλ(1m12m2 · · ·) tm1
1

m1!

tm2
2

m2!
· · · ,(A.4)

where πλ(1m12m2 · · ·) is the character value on the conjugate class of cycle

type (1m12m2 · · ·). In particular, the coefficient of tn1 is given by the hook-

length formula
πλ(1n)

n!
=
∏

s∈λ

1

h(s)
,(A.5)

where h(s) = λi + λ′
j − i − j + 1, λ′ being the conjugate partition, denotes

the hook-length of λ at s = (i, j).

A.2. (Modified) KP hierarchy

In the following, we use the notation

ξ(z, t) =

∞∑

n=1

tnzn, ξ(z−1, ∂̃t) =

∞∑

n=1

z−n

n
∂tn .(A.6)

Consider the operators Vk = Vk(z, t) (k ∈ Z) defined by

Vk = ekξ(z,t)e−kξ(z−1,∂̃t).(A.7)

For each m ∈ Z, we define the operators Xm and X∗
m as the coefficient of

zm in V1 and V−1, respectively:

V1(z, t) = X(z, t) =
∑

m∈
� Xmzm,

V−1(z, t) = X∗(z, t) =
∑

m∈
� X∗

mzm.
(A.8)
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By using the formula

Vk(z, t)Vl(w, t) =
(
1 − w

z

)kl
ekξ(z,t)+lξ(w,t)e−kξ(z−1,∂̃t)−lξ(w−1,∂̃t),(A.9)

we obtain

Lemma A.1. The vertex operators Xm and X∗
m (m ∈ Z) satisfy the

following anti-commutation relations:

XmXn + Xn−1Xm+1 = 0,

X∗
mX∗

n + X∗
n−1X

∗
m+1 = 0,(A.10)

XmX∗
n + X∗

n+1Xm−1 = δm+n,0.

Proposition A.2. For any partition λ = (λ1, λ2, . . .) of length l(λ) ≤
l, we have

Sλ(t) = Xλ1 · · ·Xλl
.1.(A.11)

Proof. By using A.9, we have

X(z1, t) · · ·X(zl, t).1 =
∏

1≤i<j≤l

(
1 − zj

zi

) l∏

i=1

exp

(
∞∑

n=1

tnzn
i

)
.(A.12)

By taking the coefficient of zλ = zλ1
1 · · · zλl

l of this expression, we obtain the

formula A.1.

The KP hierarchy is a system of nonlinear partial differential equations

for an unknown function τ(t) = τ(t1, t2, . . .) including the Hirota bilinear

equation

(D4
t1 − 4Dt1Dt3 + 3D2

t2)τ(t) · τ(t) = 0.(A.13)

The whole system of the KP hierarchy is represented by the following bi-

linear relation: ∮
dz

2πi
X∗(z, t′)τ(t′)X(z, t)τ(t) = 0.(A.14)

Proposition A.3. For any partition λ, the Schur function Sλ(t) is a

solution of the KP hierarchy.



84 M. NOUMI AND Y. YAMADA

Proof. Note first that the bilinear equation A.14 can be rewritten as

follows: (
∑

m+n=−1

X∗
m ⊗ Xn

)
τ ⊗ τ = 0.(A.15)

Here τ ⊗ τ = τ(t′)τ(t) is regarded as an element of C[[t′]] ⊗ C[[t]]. By the

anti-commutation relation A.1, one has

(
∑

m+n=−1

X∗
m ⊗ Xn

)
Xk ⊗ Xk(A.16)

= Xk+1 ⊗ Xk−1

(
∑

m+n=−1

X∗
m ⊗ Xn

)
− 1 ⊗ Xk−1Xk,

and the last term Xk−1Xk vanishes. Hence, by applying the operator

Xk+1 ⊗ Xk−1 to A.15, it follows that Xkτ(t) is also a solution of the KP

hierarchy. Starting from the solution τ(t) = 1, we see that all the Schur

functions are solutions of KP hierarchy by Proposition A.2

Proposition A.4. Let τ0(t) = τ(t) be any solution of the KP hierar-

chy, and put

τ1(t) = X(w, t)τ(t).(A.17)

Then, we have

∮
dz

2πi
z X∗(z, t′)τ0(t

′) X(z, t)τ1(t) = 0.(A.18)

Proof. Apply X(w, t) to the second factor X(z, t)τ(t) of the bilinear

relation A.14. Then one obtains A.18 by using the relation

X(w, t)X(z, t)τ(t) = − z

w
X(z, t)X(w, t)τ(t) = − z

w
X(z, t)τ1(t)(A.19)

as desired.

The formula A.18 is the bilinear relation of the first modified KP hier-

archy.

By the change of variables t → t − s and t′ → t + s, the relations A.14

and A.18 can be rewritten into the following systems of Hirota bilinear
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equations

∞∑

n=0

pn(−2s)pn+1(D̃t) exp

(
∞∑

m=1

smDtm

)
τ(t) · τ(t) = 0,(A.20)

∞∑

n=0

pn(−2s)pn+2(D̃t) exp

(
∞∑

m=1

smDtm

)
τ0(t) · τ1(t) = 0,(A.21)

where D̃tn = Dtn/n. These are the Hirota bilinear equations for the τ -

functions of the KP hierarchy and the first modified KP hierarchy, respec-

tively.
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