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Abstract

This paper identifies a family of linear transformations where conserva-
tion laws are invariant. In the case of a triangular fundamental diagram,
it is shown that for a subset of these transformations, flow, total distance
traveled and total delay are invariant. This means that for capacity or de-
lay computations one may choose the transformation –i.e., the shape of the
triangular diagram– that simplifies the problem the most, which does not
require knowing the actual fundamental diagram. This is appealing also for
delay-optimizing control problems since they may be solved using an isosceles
fundamental diagram, which provides the most efficient numerical methods.
Examples are given.

1. Introduction

The use of transformations to simplify computations within the kinematic
wave model of Lighthill and Whitham (1955) and Richards (1956) has not
been a standard tool so far, despite their potential usefulness. The only
exception seems to date back to the early 90s, when Gordon Newell (1993)
introduced a linear transformation of the time coordinate to simplify the
calculations of delays using cumulative count curves. His “moving coordi-
nates” procedure is now the standard method for delay calculations, known
as queuing diagrams, where time at each location is measured starting from
the passage of an observer moving at free-flow speed.

Recently, a linear transformation of flow and density with remarkable
properties was identified independently by Laval and Castrillon (2015) and
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Daganzo and Knoop (2015) in the context of the Macroscopic Fundamental
Diagram (MFD). Laval and Castrillon (2015) showed that this transforma-
tion (i) eliminates all parameters from the kinematic wave model, that (ii)
flow is invariant and therefore one may compute capacities in transformed
coordinates, and that (iii) the MFD of large networks is symmetric in dis-
tribution. In addition, Daganzo and Knoop (2015) used an almost identical
transformation to formulate upper and lower bounds for the MFD of pedes-
trianized streets.

It turns out that these three transformations are strikingly similar, yet
they were conceived with very different motivations. They are so useful
because by exploiting symmetries of the kinematic wave model. According
to Weyl (1952), “An object is symmetrical if one can subject it to a certain
operation and it appears exactly the same after the operation. The object
is then said to be invariant with respect to the given operation.” In the case
of the kinematic wave model, we say that it is invariant with respect to the
transformations analyzed here because the conservation law looks identical
after applying them.

The aim of this paper is to develop a general framework to identify all lin-
ear invariant transformations of the kinematic wave model and to analyze the
ones that show more promise. We show that the three transformations men-
tioned above are special cases of a family where flow, total distance traveled
and total delay are invariant. This means that one can obtain the solution of
a traffic problem using a particular fundamental diagram (FD) that turns the
solution simpler to obtain. We say that this turns the kinematic wave model
parameter-free because, in the case of triangular FDs, the solution to a wide
range of traffic problems can be obtained using any triangular shape for the
FD. For example, delay-optimizing control problems may be solved in trans-
formed coordinates without the need to go back to the original coordinates,
and therefore no parameters are needed.

The remainder of the paper is organized as follows. Section 2 develops
the general framework, which establishes the invariance condition for conser-
vation laws independently of the fundamental diagram. Section 3 analyzes
the special case of triangular FDs and shows four transformations that ex-
hibit appealing properties. Section 4 shows three examples that highlight the
benefits of these transformations. Finally, section 5 presents a discussion.
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2. General framework

In this section we present a general framework that will allow us to identify
all symmetry transformations where conservation laws are invariants.

Let the coordinate transformation (T̂ , X̂) map the original (primal) time
and space coordinates (t, x) into transformed (dual) coordinates (t̂, x̂), and
the state transformation (K̂, Q̂) map the primal density, k(t, x), and flow,
q(t, x), state variables (k, q) into dual state variables (k̂, q̂); i.e.:

(t̂, x̂) = (T̂ (t, x), X̂(t, x)) and (k̂, q̂) = (K̂(k, q), Q̂(k, q)). (1)

These transformations are assumed invertible, so that there are maps (T,X)
and (K,Q) that satisfy:

(t, x) = (T (t̂, x̂), X(t̂, x̂)) and (k, q) = (K(k̂, q̂), Q(k̂, q̂)). (2)

A conservation law is said to be invariant under transformation group (1)
if:

k̂t̂ + q̂x̂ = 0 when: (3a)

kt + qx = 0, (3b)

where subscripts represent partial derivatives. This means that a dual solu-
tion can be mapped into a primal solution using (2).

To obtain the family of transformations that satisfy the symmetry con-
dition (3), we note that k̂ can be expressed as a function of (t̂, x̂) since
k̂ = K̂(k(T (t̂, x̂), X(t̂, x̂)), q(T (t̂, x̂), X(t̂, x̂)); similarly for q̂. It can be shown
that, by repeated use of the chain rule, the conservation law in transformed
coordinates can be expressed as:

k̂t̂ + q̂x̂ = (Tt̂K̂k + Tx̂Q̂k)kt + (Xt̂K̂k +Xx̂Q̂k)kx +

(Tt̂K̂q + Tx̂Q̂q)qt + (Xt̂K̂q +Xx̂Q̂q)qx. (4a)

The key observation here is that if:

Tt̂K̂q + Tx̂Q̂q = 0, Xt̂K̂k +Xx̂Q̂k = 0, (5a)

Tt̂K̂k + Tx̂Q̂k = 1, Xt̂K̂q +Xx̂Q̂q = 1, (5b)
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then (3b) is satisfied.1 The system of equations (5) is underspecified and
therefore has infinite solutions. Fixing (K̂, Q̂) gives a unique solution for
(T,X), and vice versa; e.g.:

Tt̂ = Q̂q/J, Tx̂ = −K̂q/J, Xt̂ = −Q̂k/J, Xx̂ = K̂k/J, (6)

where J = K̂kQ̂q − K̂qQ̂k. For the problem to be meaningful we must have:

J ̸= 0. (7)

Transformation (T , X) can then be obtained by integrating (6). Notice that
first-order transformations are the only ones allowed by our formulation.
Otherwise, we would have e.g. coordinate transformations that depend on
the state variables, e.g. T̂ = T̂ (t, x, k, q), which are out of the scope of this
paper.

2.1. First-order transformations

First-order transformations are obtained by setting constant all state
transformation derivatives. Let a1, a2, b1, b2 be real numbers such that K̂k =
a1, K̂q = a2, Q̂k = b1, Q̂q = b2. Integration of these quantities and of (6)
becomes straightforward and gives:

K̂(k, q) = a1k + a2q ⇔ T (t̂, x̂) = b′2t̂− a′2x̂, (8a)

Q̂(k, q) = b1k + b2q ⇔ X(t̂, x̂) = −b′1t̂+ a′1x̂, (8b)

where a′i = ai/J , b′i = bi/J , J = a1b2 − a2b1 and where all constants of
integration have been set to zero for simplicity. The remaining transfor-
mations can be obtained by inversion; e.g., solving for (t̂, x̂) in the system
{t = T (t̂, x̂), x = X(t̂, x̂)} gives (T̂ , X̂); similarly for (K, Q). Interestingly,
this can be expressed as:

K(k̂, q̂) = T (k̂, q̂), T̂ (t, x) = K̂(t, x), (9a)

Q(k̂, q̂) = X(k̂, q̂), X̂(t, x) = Q̂(t, x). (9b)

This means that inversion, as defined above, and solving (5) are mathemat-
ically equivalent in the case of linear transformations.

1Condition (5b) could be generalized to Tt̂K̂k + Tx̂Q̂k = Xt̂K̂q +Xx̂Q̂q, in which case
all terms in (6) would have to be multiplied by an arbitrary nonzero constant.
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Note that the coefficients a1, a2, b1, b2 should not be interpreted as pa-
rameters but as arbitrary real numbers. This is true because all these trans-
formations have the invariance property, and therefore can be mapped back
to the same primal solution, which is independent of these coefficients. The
parameters in our formulation are those introduced by the FD.

2.2. Measures of performance

Let Ψ ≡
∫
A
k(t, x) dA and Φ ≡

∫
A
q(t, x) dA be the total time traveled and

total distance traveled, respectively, over a time-space region A; analogously
let Ψ̂ ≡

∫
k̂(t̂, x̂) dÂ and Φ̂ ≡

∫
q̂(t̂, x̂) dÂ, with the understanding that Â is

the image of A under the transformation group. We have:

Ψ =

∫
A

K[k̂(T̂ (t, x), X̂(t, x)), q̂(T̂ (t, x), X̂(t, x))] dA (10a)

=

∫
K[k̂(t̂, x̂), q̂(t̂, x̂)] dÂ/|J | (10b)

= K(Ψ̂, Φ̂)/|J |. (total time traveled) (10c)

Notice that the change of variables (1) used in (10b) implies that dA = dÂ/|J |,
and that the last equality holds due to the linearity of K. Similarly,

Φ = Q(Ψ̂, Φ̂)/|J |. (total distance traveled) (11)

This result establishes that the total time traveled and total distance
traveled follow the same transformation (8) up to the factor 1/|J |.

The total delay in area A,∆, can be computed as Ψ − Ψ0, where the
superscript “0” indicates free-flow conditions. We have:

∆|J | = (b′2Ψ̂− a′2Φ̂)− (b′2Ψ̂
0 − a′2Φ̂

0) (12a)

= b′2(Ψ̂− Ψ̂0)− a′2(Φ̂− Φ̂0) (12b)

= b′2∆̂− a′2(Φ̂− Φ̂0) (total delay in general) (12c)

= b′2∆̂. (total delay if system empties) (12d)

where the last equality follows since total distance traveled is a constant
provided one waits until the system empties, or equivalently, the area A
includes all congestion regions in the problem.
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By letting the symbol A also denote its area, Edie’s (Edie, 1965) average
density, flow and pace in A, kA, qA and vA, respectively, are given by:

kA ≡ Ψ

A
=

K(Ψ̂, Φ̂)

A|J |
= K(k̂Â, q̂Â), (13a)

qA ≡ Φ

A
=

Q(Ψ̂, Φ̂)

A|J |
= Q(k̂Â, q̂Â), (13b)

vA ≡ kA
qA

=
Ψ

Φ
=

K(Ψ̂, Φ̂)

Q(Ψ̂, Φ̂)
, (13c)

where we used A|J | = Â and the linearity of K and Q. This result is as
expected, and it means that average traffic flow variables are subject to the
same transformations.

3. Parameter-free transformations in the kinematic wave model

The kinematic wave model is the conservation equation (3b) supple-
mented with the FD:

q = F (k), (14)

which is assumed triangular. It may be defined with a single parameter, as
shown in Newell (1993), by measuring flow and density in units of capacity
and jam density, respectively. Let the single parameter be κ, the critical
density, and the free-flow pace, u, and wave pace, w, become u = κ and
w = 1− κ, respectively. The FD in dual coordinates, F̂ (k̂), can be obtained
by solving the implicit equation q̂ = Q̂(K(k̂, q̂), F (K(k̂, q̂))) for q̂, which
gives:

F̂ (k̂) =

{
(b1κ+ b2) k̂/(a1κ+ a2) if k̂ < κ̂(
((κ− 1)b′1 + b′2)k̂ − 1

)
/ (a′1(κ− 1) + a′2) if k̂ ≥ κ̂

(15a)

κ̂ = a2 + a1κ (15b)

where κ̂ is the dual critical density. It is clear that (15) depends on κ,
but this dependency can be eliminated by suitable choices of coefficients
a1, a2, b1, b2. So far, the only restriction for these coefficients is (7). Now,
we add two additional restrictions to ensure that the dual FD be triangular
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and parameter-free: (i) that the dual flow at jam density Q̂(1, 0) = b1 be
zero, in which case the dual capacity becomes ĉ ≡ Q̂(κ, 1) = b2; and (ii)
that the dual free-flow pace and wave pace in (15) be constants û ≥ 0 and
ŵ ≥ 0 independent of κ. Restriction (ii) can be accommodated by solving
the system {b2/(a2 + a1κ) = 1/û, b2/(a2 + a1(κ − 1)) = 1/ŵ}, obtaining
a1 = (û + ŵ)ĉ and a2 = (û − (û + ŵ)κ)ĉ. Finally, and without loss of
generality, we set ĉ ≡ 1, which implies û = κ̂ and ŵ = (1− κ̂). It follows that
the family of all parameter-free transformations can be obtained by setting:

a1 = 1, a2 = κ̂− κ, b1 = 0, b2 = 1. (16)

or, equivalently:

k = k̂ − (κ̂− κ)q̂, q = q̂, v = v̂ − (κ̂− κ) (17a)

t = t̂− (κ̂− κ)x̂, x = x̂, (17b)

where we have used (16), (8), (9) and the definition of pace v = k/q. It
can be seen that the flow and the position remain invariant, but time and
density are not. Time becomes asynchronous, i.e. clocks at each location are
set to zero upon the passage of a moving observer traveling at pace (κ̂− κ),
and the density is measured relative to a line of slope 1/(κ̂− κ), rather than
relative to a vertical line as customary. It is worth recalling that κ̂ should
not be interpreted as parameters but as arbitrary positive real numbers, for
the same reasons elaborated for a1, a2, b1, b2 at the end of section 2.1.

Notice that J = 1 and thus the area of A and Â are identical. According
to (10c), (11) and (12d) assuming the system empties, the total time traveled,
total distance traveled and total delay are given by:

Ψ = Ψ̂− (κ̂− κ)Φ̂, Φ = Φ̂, ∆ = ∆̂ (18)

It follows from (17a) and (18) that flows, total distance traveled and total
delay are all invariant. The equation for the total travel time in (18) can be
divided by Φ, combined with (13c) and rearranged to obtain:

vA − κ = v̂Â − κ̂, (19)

which is identical to the pace in (17a). This means that the average travel
time (per unit distance) in excess of the free-flow travel time is also invariant.
Again, if the system empties this quantity would correspond to the average
delay.

As shown next, all transformations existing in the traffic flow literature
are obtained by varying κ̂.
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3.1. Newell’s transformation

Newell’s transformation (Newell, 1993, p. 292) is obtained by setting
κ̂ = 0, and produces the dual FD shown in Fig. 1a, which exhibits an infi-
nite free-flow speed. This means that in free-flow conditions vehicles travel
infinitely fast and that in congestion their travel time equals their delay. The
geometrical interpretation of this transformation has become the standard
method for calculating delays when arrival and departure curves are known;
i.e. shift the arrival curve to the right by the free-flow trip time between the
two locations and the area between the two becomes the total delay.

The mirror image of Newell’s transformation, which has not appeared in
the literature to the best of our knowledge, is obtained by setting κ̂ = 1; see
Fig. 1b. Here the wave speed is infinite, which means that under congestion
waves travel infinitely fast upstream. The geometrical interpretation here is
that when the departure curve is under congestion it can be shifted vertically
upwards by the jam accumulation between the two locations.

3.2. Isosceles transformation

From a practical perspective, isosceles FDs are very convenient, especially
when it comes to numerical solution methods. Within our framework, it
simply means that κ̂ = 1/2, and this corresponds to the transformation in
Daganzo and Knoop (2015).

3.3. Isosceles transformation with offset

The transformation in Laval and Castrillon (2015) adds an offset to the
density, i.e.:

k = k̂ − (κ̂− κ)q̂ − 1/2 (20)

which is possible since constant terms correspond to integration constants in
our framework, which do not alter the invariance property of the transfor-
mations, as noted below eqn. (9). The advantage of this transformation is
that it is the only one where the passing rate of forward and backward wave
speed are identical and equal to 1. As shown in Laval and Castrillon (2015)
this simplifies variational theory significantly.

In this case v̂ = q̂/(k̂ + 1/2) and therefore v = v̂ − (κ̂ − κ) still applies.
The only difference is that −a3b2Â = Â/2 should be added to the total travel
time, but total distance traveled and total delay remain unchanged:

ΨA = Ψ̂− (κ̂− κ)Φ̂ + Â/2, Φ = Φ̂, ∆ = ∆̂. (21)
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4. Examples

In this section we show three examples that illustrate the main concepts
introduced in this paper. In all cases we solve a traffic problem both in primal
and dual coordinates to show that the measures of performance are related
according to the theory proposed here.

4.1. A single bottleneck
Consider an uncongested freeway with a constant flow λ when a bottle-

neck of capacity µ < 1 appears for a duration τ . Fig. 1 presents the standard
kinematic waves solution of the problem in the flow-density plane (first col-
umn) and the time-space plane (second column) using Newell’s transforma-
tion (first row), Newell’s mirror image transformation (second row) and the
isosceles transformation (third row). The solution with a general triangular
FD has been overlaid to each row using dashed lines. It can be seen that
the maximum queue length (2.5 length units) and the duration of congestion
at each location (3.5 time units at x=0) are identical in all figures, which
explains why delays are invariant. Formally, based on this figure it can be
shown that:

Ψ = A/2− (1/2− κ)Aλ, Φ = Aλ (22a)

∆ = (1− λ)A/2, where A =
(1− µ)(λ− µ)τ 2

(1− λ)2
(22b)

which applies to both primal and dual coordinates; for dual coordinates one
has to “put a hat” on all relevant variables. Notice that area A (as defined
in the last row the figure), the total distance traveled and the total delay are
independent of the FD; i.e. they are invariant, as expected. For the total
travel time, next we show that (18) is satisfied for all transformations.

Under Newell’s transformation these measures of performance may be
obtained simply by setting κ = 0 in (22), since this defines the FD associated
with Newell’s transformation. This implies Ψ̂ = A/2 + λA/2. Using this
result in (18) we get Ψ = A/2 + λA/2 − (1 − κ)Aλ = A/2 − (1/2 − κ)Aλ,
which corresponds to (22a), as sought.

For the other transformations the procedure is similar. Under Newell’s
mirror image and Daganzo and Knoop (2015)’s isosceles transformations we
set κ = 1 and κ = 1/2 in (22), respectively, and the reader can verify that
(18) is satisfied too. For Laval and Castrillon (2015)’s transformation one
would have to solve the problem from scratch (because (22) does not account
for the density offset) to obtain Ψ̂ = 0, which also satisfies (21).
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4.2. Random bottlenecks

This example shows that the proposed theory works also for stochastic
problems, by showing that the distribution of delays are the same in primal
and dual coordinates. The setting is similar to the above but now there is a
stream of bottlenecks that appear randomly in space and time according to
a Poisson process of rate f , in units bottlenecks/time-space. The corridor is
an open system with flow entering the system at its upstream boundary and
exiting the system at its downstream boundary. This scenario could be ap-
propriate for modeling weaving sections or pedestrian crossings as in Daganzo
and Knoop (2015), who also provides bounds for the resulting MFD. Here,
we tackle the solution with simulation to highlight the practical usefulness
of the transformations.

The traffic simulation used here gives the exact numerical solution of
the kinematic wave model with a triangular FD. It can be categorized as a
mesoscopic car-following model where each trajectory represents a group of
vehicles, and is described in Laval and Leclercq (2013).

All the primal experiments in this section correspond to an initial and
boundary value problem (IBVP). The boundary value is the flow λ entering
the road segment and the initial density is k0 = λκ. We use κ = 1/7 for the
primal FD, and κ̂ = 1/2 for the dual (isosceles) FD. Notice that homoge-
neous Poisson processes remain invariant since our transformations conserve
areas. Next, we analyze two scenarios that highlight different aspects of the
transformation.

Scenario 1 helps understand better why these transformations work; see
Fig. 2: we (i) start with a given set of initial and boundary conditions,
and bottleneck realizations for the primal problem (left), (ii) perform their
transformation to obtain boundary and bottleneck data for the dual problem
(right), and finally (iii) run the simulation in both cases to obtain the sim-
ulated trajectories shown in the figures. Notice that the dual problem is no
longer an IBVP since the initial data in the primal changed to data along the
moving observer line in the dual. This can be seen by the bold circles in the
figure, which represent initial vehicle positions in the primal problem, and
which map to the corresponding circles in the right column. The difference
between the top and bottom rows of the figure is in the number of bottle-
necks and in the number of vehicles that a trajectory represents in the dual
problem (1 and 2, respectively). The boundary flow drops to zero after a
prescribed time and the simulation ends when the last entering vehicle exits
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the segment. The areas A and Â correspond to the unshaded areas in the
figures.

Comparing the left and right columns it can be seen that the distance
traveled by each vehicle, the delay of each vehicle, and bottleneck queue
lengths are all identical, as expected. That delays are the same can also
be explained by noting that at a fixed location, time intervals are invariant
in our transformations. The time traveled by each vehicle are not, also as
expected from the theory; from the figure it can be seen that the reason is in
the difference in the time spent at free-flow speed (κ̂− κ per unit distance),
since we already noted that at a fixed location time intervals, i.e. delays in
this case, are invariant.

Scenario 2 relaxes the exact correspondence between primal and dual sim-
ulation settings; see Fig. 3. This scenario highlights the practical usefulness
of the proposed transformations by simulating an IBVP for both the primal
and the dual problems, and showing that outputs are still as predicted by
the theory. In this scenario, the dual initial conditions are the transformed
primal ones, as before, but now we stop the simulation at a prescribed time
in both cases. This means that A = Â, and they correspond to the entire
time-space region being simulated; i.e. they are not the transformation of
each other. Similarly, dual bottlenecks are a realization independent from
the primal bottlenecks. As can be seen in the figure the primal and dual
simulation output seem very different. But the measures of performances are
as predicted by the theory. To see this, Fig. 4 presents box-whiskers plots for
the total delay ∆ across 30 repetitions of this experiment, and for different
values of f and λ. Since the system is not emptied, we show the primal total
delay using two methods: (i) directly from the simulation, in orange and (ii)
using (12c), in blue. It can be seen that all intervals overlap, including the
confidence intervals for the mean shown as gray rhombi, and therefore we
can say that both the primal and dual problems yield statistically equivalent
results.

4.3. Optimal ramp-metering control

This final example illustrates that traffic control problem that minimize
total delays can be solve in transformed coordinates altogether, which does
not require FD parameters.

The traffic flow problem considered here is identical to the one in Laval
and Leclercq (2010), but now on-ramps are metered and optimized for min-
imal delay using an optimal control formulation that closely follows Gomes
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and Horowitz (2006). In a nutshell, we consider a long freeway corridor with
continuum inflow and outflow demand rates in time and space. On-ramps
are finite in length and traffic dynamics given by the kinematic wave model.
The optimal control problem was run for three different FDs, i.e. κ = 1/7
and 1/2. Fig. 5(left) shows the optimal ramp-metering rates in space and
time for κ = 1/7; the surfaces for κ = 1/2 is virtually identical, as expected.
To see this, Fig. 5(right) shows a cross-section of the surface for fixed times,
where the overlap is apparent.

5. Discussion

We have identified a family of symmetry transformations of the kinematic
wave model with arbitrary FD. In the case of triangular FDs, flows and total
delay are invariant, which means that all triangular shapes produce the same
solution in terms of flows and delays provided that both time and initial data,
if any, are transformed using (17). These findings can be advantageous in at
least the following areas:

(i) Analytical computations. For capacity or delay computations one may
choose the FD that simplifies the problem the most to carry out the calcu-
lations, which does not require knowing the facility’s FD. The best example
of this approach is, as mentioned earlier, Newell’s method to compute de-
lays. Another example is looking at the dynamics of “holes” –or absence of
vehicles– in the freeway rather than the vehicles themselves, an argument
origin used by Newell (1993) to simplify the solution of inhomogeneous free-
way problems. Since holes travel upstream at pace w and produce waves that
travel downstream at pace u, their FD is a mirror image of the diagram for
regular vehicles. Within our framework this means κ̂ = 1−κ or a2 = 1− 2κ,
which formally proves why the holes approach works. It is expected that the
generalized framework proposed here will open the door for efficient solution
methods for other traffic flow problems.

(ii) Numerical computations. The efficiency of existing numerical tools
based on triangular FDs might be increased dramatically by using an isosceles
FD. For example, under an isosceles diagram (a) Godunov’s method (e.g.,
CTM model) becomes exact (Leclercq et al., 2007), (b) methods based on
variational theory no longer require memory since forward and backward
wave speeds are identical, and (c) methods based on cellular automata (CA)
may be implemented using CA rule 184, which is extremely computationally
efficient.
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(iii) Optimal control problems seeking minimizing delay or total distance
traveled or vehicle accumulation in the context of the MFD, should benefit
from (ii) above not only from faster execution, but possibly from an improved
formulation devoid of memory.

The proposed theory may be considered parameter-free for boundary-
value problems where an invariant quantity is sought (delay, flow or total
distance traveled); no parameters are needed since the initial data nor the
final answer have to be transformed. This can be very useful for delay-
optimizing control problems and for estimating system capacity. Of course,
if we require field implementation one needs to transform the dimensionless
answer to a dimensional one, e.g. transform the dimensionless metering rates
to veh/hr, which requires knowing the capacity. The important point here
is that, for a given set of initial conditions, the ramp-metering strategy that
minimizes total delay, as a proportion of capacity, is independent of capacity.
Problems containing bottlenecks (e.g. traffic lights) require knowing κ if
their trajectories are to be transformed; but as shown in §4.2 if only their
distributions are known and stationary, then no parameters are needed.

There are other transformations that might be useful, albeit not parameter-
free and where the dual FD is not triangular. One example are density-
conserving transformations such as:

k = k̂, q = v0k̂ + q̂, (23a)

t = t̂, x = v0t̂+ x̂, (23b)

where v0 is a parameter. Following §2.2 the reader can verify that in this case
both the total delay and total time traveled are invariant, but not the total
distance traveled. Nonlinear transformations can also be useful, although it
was noted that they would imply the more complicated form T̂ = T̂ (t, x, k, q).
These and other transformations are currently being investigated by the au-
thors.
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Figure 1: The single bottleneck example.
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Figure 2: The random bottlenecks example: sample simulation output for scenario 1.
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Figure 4: The random bottlenecks example, scenario 2: box-whiskers plots for the total
delay ∆ across 30 repetitions of this experiment, and for different values of f and λ.
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in space and time for κ = 1/7; (right) cross-section of the surface for fixed times. The
on-ramp demand is 50% of one lane capacity, the exit probability is 0.1/150 over a distance
of one jam spacing, and the spatial discretization is 15 jam spacing units. On ramps were
loaded during the first 40 time steps and the optimization ends when the system is empty.
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