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ry relations be ween the reflection and transmission 
coefficients for plane elastic waves incident upon an arbitrary horizontally 
stratified medium are derived by a novel approach. Previous results, particu- 
larly for a single interface, are obtained as special cases of this treatment. 

In addition, for perfectly elastic media, projection operators for travelling 
and evanescent waves are introduced and used to derive a number of new 
relationships between the reflection and transmission coefficients. 

1 Introduction 

The reflection and transmission of elastic waves at a plane interface is a problem which has 
attracted considerable attention for a long time. Green (1838) formulated the correct 
boundary conditions for the reflection and refraction of plane waves at an interface of two 
elastic media in a study of light propagation. It was however left to Knott (1899) to derive 
the reflection and transmission coefficients using energy arguments and an alternative 
formulation due to Zoeppritz (1919) obtained the coefficients in terms of amplitudes. Since 
that time these coefficients have been presented by a number of authors, but the results have 
in many cases been marred by minor errors and misprints. 

Some symmetry relations between the reflection and transmission coefficients for a single 
interface have been presented by Frazier (1970) and a more restricted set is given by 
Cervenjl & Ravindra (1971) who also present accurate expressions for the coefficients. The 
generalization of the symmetry properties to multilayered media was made by Lapwood & 
Hudson (1975) and derived by an alternative approach by Woodhouse (1974a). 

The purpose of this paper is to present a unified treatment of the symmetry properties 
of the reflection and transmission coefficients for elastic waves in multilayered media. This 
will allow us to obtain all the previous results as special cases. 

An alternative development exploiting the unitarity properties of the matrix of reflection 
and transmission coefficients leads to the introduction of projection operators for travelling 
and evanescent waves and a number of new relations between the reflection and transmission 
Coefficients. 
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2 Elastic wave propagation in a layered medium 

We will consider plane harmonic elastic waves with displacements of the form 
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u(x, z, t) = ii(k, w,  z) exp [i(kx - at)], (1) 

propagating in a horizontally stratified medium composed of isotropic elastic layers within 
which the elastic wave speed for P waves (a), for S waves @) and the density p depend only 
on the depth coordinate z. 

We will restrict our attention to coupled P-SV wave propagation. For each plane wave 
component the evolution of the horizontal and vertical components of displacement (ii, #) 
and the associated stresses ( T x z ,  T z z )  are described by the differential equations (see, e.g. 
Gilbert & Backus 1966; Kennett 1972), 

aB(k, w, z)/az = A(k, w ,  z) B(k, w ,  z), (2) 

where the stress-displacement vector B is defined as 

A(k, w, z) = 

B(k, a, z) = [U, a, T x z ,  .?,,IT, 
where T denotes a transpose, and the matrix A takes the form 

(4) 
-ik(l - 2Pz/az) 0 0 (pa’)-’ 

uk’ - pw’ 0 0 -ik(l - 2~’/cuz) ’ 

(3) 

B = T V ,  

where T is the eigenvector matrix for A, i.e. such that 

T-’AT = A ,  

where A is diagonal. The new column vector V satisfies the equation 

W/az = [T-’AT - T-’aT/az] V. (7 ) 

If the elastic properties are locally uniform then T is there independent of z so that we have 

avlaz = A V  (8) 

with the solution V(z) = exp [A(z - zo)] V(zo). The diagonal entries of A are just the eigen- 
values of the matrix A and thus 

A =  diag[-iu,, -iup, iu,, iup], 

(9) 
where 

v, = (w2/az - k’)”’, 

up = (w2//3’ -- k’)”’. 
Im u,, up 2 0. 

with v = 4pPZ(1 - p2/az). The stress-displacement vector B has the convenient property of  
remaining continuous across planes or interfaces z = constant. 

In order to relate the stress-displacement vector B more directly to the elastic wave field 
we follow Dunkin (1965) and make a transformation 
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Figure 1. Structure considered for reflection and transmission problems, a layer sequence sandwiched 
between two uniform half spaces in z < z ,  and z > z,. Also illustrated is the convention for up and down- 
going waves. 

Thus the phase factor appearing in the solution of (8) has the form 

exp [A(z - ZO)] = diaguexp [-iv,(z - zo)], exp [-iup(z - ZO)], exp [iv,(z - ZO)], 

and since z increases with increasing depth we see that the exponentials correspond to the 
phase differences to be expected for up and downgoing P and S waves. We may therefore 
identify the elements of V 

~ X P  [ivp(z - z0)in (10) 

v = [$Ut $ U ,  4 D ,  $DIT = [VU, VDIT (1 1) 

where 4, $ are the amplitudes of P and S waves respectively and the suffices U, D represent 
upgoing and downgoing waves (as in Kennett (1974a) - see Fig. 1). The columns of the 
matrix T are the eigenvectors of the matrix A, and from our identification of the elements 
of V these correspond to ‘elementary’ stress-displacement vectors for the different wave 
types. We write 

T = [ b p ,  b s ,  bpD, bsD1 (12) u u  

and the vectors b take the form 

bF,D = et.D [k, Tu,, i2ipku,,  iprIT, 

by*D = e;lD [kivp, ik,  p r ,  k2ptkupIT, 

with p r  = p a z  - 2MZ, p = pO2. We have a free choice of the scaling parameters E, and ep 
and therefore arrange to normalize the b vectors with respect to the energy flux in the z 
direction, i.e. across planes z = constant, 

S ( B )  = (k)  [zlTzz + aT:z - ii*.ixz - P*Tzz]. 

We take 
4 

SO that for propagating waves 

F ( b g  s) = - 1, s(bgs) = 1, 

whilst for evanescent waves 

m b g  s) = 0, ,%bg s) = 0, 
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confirming that an evanescent wave carries no  energy in the z direction. 
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3 Basic propagation invariants 

For convenience in subsequent notation we will introduce the 2 x 2 matrices . 

1 0  
Q1 =(, ,).  = 2 =  (; -;), 
and the 4 x 4 composite matrices 

M = (  0 Q2. ,), N=( :'). -02 - Q1 

The propagation characteristics of the stress-displacement vector B are governed by the 
coefficient matrix A (4) through the differential equation (2). The propagation invariants 
are thus determined by the properties of the matrix A. 

3.1 D I S S I P A T I V E  M E D I A  

Dissipation may be introduced into the seismic wave equations by allowing the seismic wave 
velocities to take on complex values. However, even in the presence of dissipation the coeffi- 
cient matrix A satisfies 

MA t ATM = 0 (20) 

a relation which depends only on the nature of the equations of motion and the stress- 
strain equations. Thus if we introduce a composition Y o f  two wavefields B and B', which 
both satisfy the differential equation (2), 

i o  

4 
Y(B, B') = - B ~ M B '  

we have 

4 
- aY(B,  B')/az = (aBT/az) MB' t BTM(aB'/az) 
i o  

= B ~ ( A ~ M  t MA) B' = 0, 

using (21). Since both B and B' will be continuous across planesz =constant,including planes 
of discontinuity in material properties, so also will be Y(B, B'). Thus if we consider any two 
levels z1 and z, in the horizontally stratified medium, the constancy of Y implies that 

Y(B, B')L, = S ( B ,  B')lzn. (23) 

Further the eigenvector matrix T has the property for a uniform medium 

4 
T ~ M T = -  -N 

1W 

as may be verified directly from the definition of T in terms of the elementary wave vectors 
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b. Thus if the levels z1 and z, lie within regions of uniform material properties so that we 
may write 

B(z1) = ToVo, B'(z~) = TOV; 
B(z,) = T,V,, B'(z,) = T,Vi 

in terms of the decomposition of the wavefields into up and downgoing parts, then 

3.2 P E R F E C T L Y  E L A S T I C  M E D I A  

If all velocities are required to be real, we have an additional property for the coefficient 
matrix A. that 

N A  t AtN = 0 (27) 

where the dagger (t) indicates the Hermitian adjoint, i.e. the complex conjugate of the 
transpose. This relation is a consequence of the derivation of A from a real Hamiltonian for 
perfectly elastic media (Kennett 1974b; Woodhouse 1974b). We introduce a second compo- 
sition X o f  the wavefields B and B' 

i w  

4 
H(B, B') = - B ~ N B '  

which for B = B' reduces to the energy flux .F in the z direction, and we may show by 
analogous reasoning to (22) that X i s  a constant for all levels in the medium and thus 

W B ,  Bf)Iz, = XU4 B'IL,. (29) 

The corresponding property of the eigenvector matrix T is more involved, and reflects as we 
might expect from (16), (17) the distinction between travelling and evanescent waves. We 
find that for a uniform medium 

4 
T+NT = - - E 

i w  

where if both P and S waves are travelling, i.e. v, and vp are real 

- 0 1  0 
E=( 0 J 
but if the P wave becomes evanescent whilst the S wave still propagates, i.e. v, imaginary 
and vp real 

If however both P and S waves are evanescent (v, and vp are imaginary) only oft' diagonal 
terms are present 
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If as in (25) we assume that the levels z1 and zn lie in uniform regions and again make a 
decomposition in terms of the amplitude vectors V for the up and downgoing wave compon- 
ents we find 
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VJ EoVdIz, = V i  En Vi lz, . (32) 

4 Symmetry relations for reflection and transmission 

We consider a sequence of isotropic elastic layers bounded by isotropic half spaces above the 
plane z = z1 and below the plane z = z,. For our single plane wave component the stress- 
displacement fields at the top and bottom of the sequence are related by (Gilbert & Backus 
1966; Kennett 1972) 

B(k, ~ 1 )  = P(k, zt, Zn) B(k, Zn) (33) 

P ( k , z l , z , ) = P l ( k , ~ i , ~ ~ ) P z ( k , ~ z , ~ ~ ) .  -Pn-l(k,zn-l ,zn).  (34) 

where P is the resultant propagator which may be decomposed into layer contributions 

For uniform layers these layer propagators may be found from equation (8) and are identical 
to the Haskell layer matrices. 

The stress-displacement vectors at the top and bottom of the sequence may each be 
expressed in terms of upgoing and downgoing waves so that 

To(k) V O ( ~ ,  Z I - ) =  P(k, ~ 1 ,  z n )  Tn(k) Vn(k,zn +) (35) 
and thus from (1 1) 

in terms of the 2 x 2 partitions of the matrix 

Q = TG'(k) P(k, 2 1 9  zn) Tn(k). (364 

As in Kennett (1974a) we introduce matrices of reflection and transmission coefficients, 
e.g. 

and in terms of the subpartitions of Q 

Alternatively we may look at the reflection and transmission properties more directly in 
terms of the stress-displacement field by making use of the conservation relation (23), 
applied at the top and bottom of the sequence. In terms of the amplitude vectors V from 
(26) we have 
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for even dissipative media. This relation is sufficient to enable us to determine the sym- 
metries in reflection and transmission coefficients by taking specific choices for the ampli- 
tude vectors V. If we consider a plane wave incident on the interface z = z1 from above, then 
corresponding to incident P and S waves we may construct 

A similar set of vectors can be constructed for incidence from below z,, e.g. 

We now choose Vo,Vd to be any pair ofvectors from the set [V~"(Z~),V~(~~),VF(ZI),V:(ZI)] 
and V,, , Vi  to be the corresponding pair from [Vp"(z,), V?(z,,), Vp"(z,,), V:(z,,)] and 
employ the relation (39). Thus for example if we take V? and Vp" at  each of the interfaces 
we obtain 

[$s - GPllz, = 0. (42) 

Similarly using the other pairs of vectors we obtain the symmetry relations for reflection and 
transmission through an arbitrary velocity structure between the planes z = z1 and z = z, 

$s = rSqP 
u - u  rps - TSP 

and 

tPP - tPP  

t S P  -tPS 

tPS tSP 

t s s -  ss' 

D - U  

D - U  

D = U  

D - t U  

(43 1 

The complete symmetry of these relations arises from the choice of elementary b vectors to 
correspond to the propagation directions of upgoing and downgoing P and S waves and the 
normalization employed to refer all these solutions to a common energy flux in the z direc- 
tion. 

These relations may be shown to be equivalent to those presented by Lapwood & Hudson 
(1975), but their choice of up and downgoing P- and S-wave solutions was less convenient. 

The symmetry relations (43) can also be represented in terms of the reflection and trans- 
mission coefficient matrices introduced in (37), so that 
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and these relations will hold for both travelling and evanescent waves in a dissipativemedium. 
The effects of change of normalization of the elementary stress-displacement vectors b 

on these reflection and transmission coefficients is discussed in the Appendix. 
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5 Reflection and transmission at a single interface 

We now specialize the preceding results to the case of a single interface separating two elastic 
media with properties ao, Po, p o  and a,, Pi, pi. In this case equation (3 1) reduces to 

Vo(k z i  -1 = Ti'(k) TiW) Vi(k zi +) = QVi(k  zi +) (45) 

and as we have seen the reflection and transmission coefficient matrices may be related to 
the 2 x 2 subpartitions of Q by equation (36).  For simplicity we will write 

T,'=U, T 1 = T  (46) 

and then in terms of the partitions of the matrices, Q ,  T, U we have 

Qii=UiiTi i+uizTzi ,  Q z z = ~ z i T i z + ~ z 2 T z z ,  

Qiz = uii Tiz + uiz Tzz, Qzi  = uzi Tii + uzz Tzi. 

However from the properties of the 'elementary' b vectors (13) 

Ti,= 0 2  Ti?, 

Tzz = - 0 2  Tzi, Tzi = - 0 2  T22 

UZl = Uil02, uzz = - u 1 2 0 2  

Ti2 = 0 2  Ti1 

(47) 

where u2 is the matrix introduced in (18). On substituting these relations into (47) we find 

where I =  0 1  is the 2 x 2 unit matrix. For a single interface we therefore have the usual 
symmetries 

RD = R:, RU = R:, TD = T$ 

and in addition (52) 

RU =-TDRDT; ' ;  T u T D = I - R D R D .  

These relations were first derived by Frazier (1970) by a rather different and less general 
treatment. 
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The interface matrix Q which may in general be written as (cf Kennett 1974a) 

reduces by virtue of the symmetry relations (52) to 

with our choice of energy normalized reflection and transmission coefficients. 

6 Unitary relations for reflection and transmission 

We will consider again the model of a sequence of layers bounded by uniform half spaces 
above the plane z = z1 and below the plane z = z,, used in our discussion of symmetry 
relations. 

For a perfectly elastic medium we use the conservation relation (29) for the form i%?'(B, B') 
for any two stress-displacement vectors B and B'. We will apply the conservation relation at 
the top and bottom of the sequence of layers. In terms of the amplitude vectors V from (32) 
we have 

V$EoV&, = V~E,V& (55) 

where the matrix E is defined as in (31). By analogy with the treatment for the symmetry 
relation we choose for V , V '  pairs of vectors from the amplitude vectors appropriate to 
incident down or upgoing P and S waves Vp", Vf , . . . (40). 

We will define matrices whose columns are the vectors (40) 

and also a matrix Wcomposed of the complete set of reflection and transmission coefficients 
for the layer sequence 

which will be symmetric, i.e. WT =a by virtue of the symmetry relations (44). We will 
introduce the factorization matrices 

Jll=(; ;), J12=(0 0 6 1  ,), 
0 0  

J21= (:1 ;)¶ h2=( 0 0 1  ), 
and then from the definition of the Vp", VF . . . vectors (40) we may write the mat r ix40  as 

4 0  = J113+ 

and (59) 

4n = J22 a+ J l 2  . 
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The process of selecting pairs of vectors from the set of vectors (40) can be written in the 
form 
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+ i E 0 4 0  = &:En 4, (60) 

so that using the representations (59) we have 

(atJll+ J12) EO(Jll@+ JZl) = @Jzz + JZl) E,(JzzJ@f JlZ). 

We may rearrange this equation into the following form 

9t(JzzE,Jzz - JiiEoJii)9+ (JziEnJzz - J izEoJ i i )9  +at(JzzE,Jiz - JiiEoJzi) 
(62) 

+ (JZI E ~ J I z  - JIZEOJZI) = 0. 
Each of the expressions in brackets may be represented in terms of a single matrix J 

JzzE,Jzz-JllEoJll= J 

JzlE,J22 - JlzEoJll = i s  

JzzEnJlz - JllEoJzl = - i j  
( 6 3 4  

JZlE,J12 -J1zEoJz1= - J 

where J is a diagonal matrix with entries which are either 1 or 0, determined by the conditions 

ill = 1 iff vao is real, 

j zz=  1 iff vpo is real, 

h3= 1 iff v, is real, (63b) 

j M =  1 iff vpn is real, 

where iff indicates a necessary and sufficient condition and 

J = I - J  
with I the 4 x 4 unit matrix. 

In terms of the matrix J the conservation relation (62) takes the form 

at Jat i ( r9-  gt T) = J (64) 
which is our basic unitarity relation. 

Since the radicals vao, vpo, v, , vpn will only be real when the corresponding P or S wave 
is a travelling wave rather than being evanescent we see that J has the role of a projection 
operator onto travelling waves and 1 that of a projection operator onto evanescent waves. 
Thus using these projectors we may isolate particular types of behaviour. We may note that, 
as we would expect, the joint operator 

JT= TJ = o 
whilst (65) 

J J = J ,  TF=T. 
On applying the projector J to the basic unitarity relation (64) we obtain 

( J ~ J ) ~ ( J W J )  = J (66) 

which shows that the subpartition of the overall reflection and transmission matrix Wcorre- 
sponding to travelling waves is unitary and this reflects the conservation of energy amongst 
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the travelling waves. Similarly applying the evanescent projector J to the basic relation (64) 
we find that 

where we have used the symmetry of the matrix 9. Additional relations may also be derived 
by using both projectors 

( J ~ J ) ?  (JwJ) = i ( J ~ J ) +  = i ( J ~ J ) *  

The set of equations (66-68) then enable us to establish a range of interconnections 
between the reflection and transmission coefficients for a sequence of perfectly elastic 
layers. 

6.1 T R A V E L L I N G  W A V E S  

If both the P and S waves for the horizontal wavenumber k are travelling waves at the top 
and base of the stack of layers then vao, v m ,  v,, vm will all be real and so 

J = I ,  T = O ,  
with the result that (64) becomes 

ata = I. 
(69) 

Thus the reflection and transmission coefficient matrix 9 is unitary, a result first obtained 
by Woodhouse (1974a). 

6.2 E V A N E S C E N T  W A V E S  

If on the other hand for the wavenumber k of the plane wave component under considera- 
tion both P waves and S waves are evanescent throughout the layer seqence all the radicals 
vao, vpo, v,, vpn are imaginary so that 

J = O ,  T = I  

and from (64) (70) 
W-.@ = 0. 

Since in addition the matrix 9 is symmetric the whole matrix 9 is real, i.e. all the reflection 
and transmission coefficients are real. 

6.3 T U R N I N G  P O I N T S  FOR BOTH P A N D  s W A V E S  

When for the wavenumber k both P and S waves incident at the top of the layer sequence 
are turned back by the velocity structure (Fig. 2a) v,, vm will be imaginary and so 

J = J l l ,  J = J 2 2 .  

Thus from equation (64) we have 

R ~ R ~  = ~ = a ,  

(71) 
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Figure 2. Schematic representation of  propagation configurations. (a) Turning point for both P and S 
waves. (b) Evanescent P wave, turning point for S wave. (c) Turning point for P wave, travelling S wave. 

using the definition of the matrix 9 (57), thus the reflection coefficients for downward 
propagation form a unitary matrix, and from the symmetry relations (44) the matrix R D  is 
symmetric. 

The unitary condition (7 1) implies that 

Ir:PIz+ I$P12= I';sIzt I$SIZ = 1 

and (72) 

I$pl= I & .  
Alternatively from equations (67) and (68), using the symmetries (44) we find 

T;T: = 21mRU 

RE Tu = iT$. 
(73) 

6.4 E V A N E S C E N T  P ,  T U R N I N G  P O I N T  F O R  s 
If only an S wave can travel at the top of the stack for the particular horizontal wavenumber 
k and is turned back by the velocity structure (Fig. 2b). 

J = diag (0, 1,0,0}, r= diag{l,O, 1, 1) 

and from (66) 

IPS1 = 1. 

$3 [$Pr tPss, t?sl = i t$P > tPS 9 tss 1 
Alternatively we find from equation (68) that 

* D* D* 

and thus 

arg (Gp) = arg (tFs) = arg (t&) = n/4 t % arg ($8) 

where the phase is only determined to within a multiple of 2n; and from (67) 

I $PI* = 2 ~ m $ ~  

I tps I' = 2 1rnrgP, 
and 

I 
together with a number of similar relations. 

I t&lz = 2 ~ m r &  

IPPI = 2 I 1m $ P I ,  I &I I $PI =I 2 ~m t& I 

(74) 

(75) 
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6.5 T U R N I N G  P O I N T  FOR P W A V E S  

If the only radical which is imaginary is uw (Fig. 2c) the roles of J and S in  (74) are reversed 

J = diag(1, 1 , 0 ,  l}, 

and now equation (66) yields that the matrix 

r= diag (O,O, 1,O) 

D 
TPP r% tk!s 

is unitary, and thus 

D 2 -  I $p I' + I r& I' + I tsp I - 1 

(77) 

together with similar results. The fprojector now reduces the right-hand side of (67) to a 
single element and so 

I tgp 1' + I tFs I' + I r& I' = 2 Im ($PI. (78) 
We may extend this approach to all the other possible cases and obtain a number of 

similar results for relationships between the reflection and transmission coefficients for 
perfectly elastic media. 
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Appendix: the effect of alternative normalizations on the reflection and transmission 
coefficients 

The decomposition of the stress-displacement field B into up and downgoing wave com- 
ponents (5) is dependent on the eigenvector matrix T (12, 13) and as we have noted we have 
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a free choice of scaling parameters E Y . ~ , E F ~ .  With the choice of values appropriate to 
energy normalization we were able to arrive at rather simple forms for the symmetry 
relations. 
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Suppose, however, that we choose 

where throughout this section a tilde will indicate that a quantity is not energy normalized. 
The energy normalized results can be recovered by setting 62; = 1. We define the 2 x 2 
matrices H', fiD 

and then any alternative eigenvector matrix T" takes the form 

i = T ( o  tiu 0 *). 
Since the propagator matrix P(k, zl, z , )  is the solution of the differential equation (2) it  
will be independent of the normalization and thus the matrix Q defined in equation (36a) 
transforms as 

Thus using the equations (38) which define the reflection and transmission coefficients in 
terms of the subpartitions of we find 

and the individual coefficients can be obtained from similar formulae, e.g. 

- D  - -U -1 D - D  
r p s  - (1)oa) r P s  7700. 

If we consider the first of the general symmetry relations for layered media (43) 

- D  - U  
- 9 ~ ~ o P  - D  -- - U  - D  'SP 

V o a  9oa 

thus the simple results of (43) do not hold in general for arbitrary normalizations. For 
example the results of Lapwood & Hudson (1975) can be reproduced by setting 

-U = -D = -U -D 
1), 1)a 1)p =1, 1)7p = - 1  
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so that 

FZ=-F& 

TS=-T& 

tsp - - 7&. 

-D - -U 

-D - 
tPS - - tPS 

If we wish to preserve some of the symmetry relations discussed earlier in this paper 
there are two classes of normalization. Firstly if we seek to maintain the overall symmetries 
(43) for a stack of layers, we require, e.g. 
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(A71 

R" -R"T 
D -  D 

and thus from (A6) since R D  is symmetric we need 
" U - D  - U - D  

R D  (HO HO = (HO HO R D  

since the H matrices are diagonal and therefore commute. From the other two symmetries 
in (43) we require 

where the factor h is independent of the velocity structure. Alternatively if we wish to 
preserve the relationships (52) for a single interface we now require 

where now the indices 0 and n refer to the two sides of an interface. For equations (A10) to 
be compatible 

iiF<fi,">-' = hol, fii,"<ii,">-' = h,I 

with 

hoh, = 1 

and to have the simple symmetries for the interface, from (A9) we need 

xo= A, = 1 

and thus 
fiu = f iD .  


