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Abstract We derive some general results on the symmetries of equivelar toroids and
provide detailed analysis of the subgroup lattice structure of the dihedral group D4

and of the octahedral group to complete classification by symmetry type of those in
ranks 3 and 4.
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1 Introduction

Over the last few decades numerous papers dealt with polytopes and maps that have
large automorphism groups but are not necessarily regular (see for example [4, 6, 8,
14, 15]). In particular, a lot of research has been done on chiral polytopes which are
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now better understood. Among the major achievements are the complete character-
isation of their automorphism groups and the proof of their existence in each rank
(see [15, 16]). Chiral polytopes are particular examples of polytopes whose automor-
phism group has only two orbits on the flags. The characterisation of the automor-
phism groups of polytopes in rank 3 with exactly two flag orbits was completed in
[8] and is expected to be completed in [9] for any rank n. Relaxing symmetry further,
we consider equivelar polytopes (first defined and considered in [12]), which are es-
sentially polytopes that can be assigned a Schläfli type. Such polytopes admit local
isomorphisms that need not extend to global symmetries.

The classification of regular and chiral maps on the 2-torus (3-toroids) is well
known. It was initially published in 1948 by Coxeter [2] and beautifully exposed
in [3]. Recently, Duarte [5] extended the classification to all 2-orbit maps on the
torus. Equivelar polyhedral maps on the torus, which are essentially equivelar rank 3
polytopes, were classified by Brehm and Kühnel [1].

The complete classification of regular and chiral toroids of all ranks (which can be
viewed as tessellations of higher dimensional torii) was completed by McMullen and
Schulte in [10] (see also [11, Sect. 6]). In particular, they show that there exist no chi-
ral toroids of rank greater than 3. Furthermore, Hartley, McMullen and Schulte (see
[7]) showed that for n ≥ 2, the n-torus is the only n-dimensional compact euclidean
space-form which can admit a regular or chiral tessellation; moreover, chirality can
only occur if n = 2.

In this paper we study properties of the automorphism groups of equivelar toroids
and classify all equivelar toroids of ranks 3 and 4 into families according to their
symmetry types. Sects. 2 and 3 of the paper give the necessary background on integer
lattices and their symmetries, regular tessellations and toroids of rank n. In Sect. 4
we classify equivelar 3-toroids. In Sect. 5, we determine the conjugacy classes of the
symmetry group of the cubical tessellation that project to automorphisms of 4-toroids.
Finally, in Sects. 6 and 7 we classify equivelar 4-toroids. In particular, we show that
there exist no toroids with two flag orbits, but that there are equivelar toroids with k

orbits of flags for every divisor k of 24 distinct from 2.

2 Symmetries of Integer Lattices

An integer lattice of rank n is a set Λ(A) = {Ax | x ∈ Z
n}, where A is an n by n

integer matrix of non zero determinant |A|. The set of columns of A, called a basis
of Λ(A), is linearly independent. In this section we develop tools that will enable us
to understand symmetries of integer lattices.

We start by determining when two given bases generate the same lattice. The nec-
essary and sufficient conditions for this are in Corollary 2, which follows directly
from the next lemma.

Lemma 1 Let A,B ∈ Z
n×n where |A| �= 0 �= |B|. Then Λ(A) ⊆ Λ(B) if and only if

|B| divides all elements of adj(B)A. In this case, |B| divides |A|.

Proof Note that Λ(A) ⊆ Λ(B) if and only if for each x ∈ Z
n there exists y ∈ Z

n,
such that Ax = By. Recall that adj(B) = |B|B−1, where adj(B) is the adjoint matrix
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of B . It then follows that adj(B)Ax = |B|y. Clearly, there is a solution y ∈ Z
n for

very x ∈ Z
n if and only if every entry of adj(B)A is divisible by |B|. This implies

that |B|n divides |adj(B)A|. Furthermore, for any matrix M with |M| �= 0, we have
|adj(M)| = |M|n−1 and

∣
∣adj(B)A

∣
∣ = ∣

∣adj(B)
∣
∣ · |A| = |B|n |A|

|B| ,

implying that |B| divides |A|. �

Corollary 2 Let A,B ∈ Z
n×n, |A| �= 0 and |B| �= 0. Then Λ(A) = Λ(B) if and only

if |A| = ±|B| and |A| divides each element of adj(B)A and adj(A)B .

In the remainder of the paper we interpret the elements of Λ(A) as a set of points in
E

n with integer coordinates with respect to certain basis. In this context, the following
proposition specifies conditions under which a given linear transformation preserves
Λ(A).

Proposition 3 Let Λ(A) be an integer lattice and μ be a linear transformation given
by the matrix M with |M| �= 0. Then μ preserves the lattice if and only if |A| divides
all entries of adj(MA)A and all entries of adj(A)MA. In this case |M| = ±1. In par-
ticular, if M2 = I the above condition reduces to |A| divides all entries of adj(MA)A.

Proof The matrix M preserves the lattice if and only if Λ(MA) = Λ(A), which by
Corollary 2 is true if and only if |MA| = ±|A| divides all entries of adj(MA)A and all
entries of adj(A)MA. In particular, this implies |M| = ±1. If M2 = I , then adj(M) =
±M . Therefore adj(MA)A = adj(A)adj(M)A = ±adj(A)MA. �

An important class of integer lattices are lattices invariant under a linear hyper-
plane reflection. Let Λ := Λ(A) be a rank n integer lattice in E

n which is symmetric
by a reflection R in a hyperplane Π (hence the origin o is a lattice point invariant
under R). Since for any vector v ∈ Λ, Rv + v ∈ Π , the set of orthogonal projections
of {2v | v ∈ Λ} is a rank n − 1 sublattice contained in the lattice ΛΠ := Π ∩ Λ.

Let v ∈ Λ\ΛΠ be such that d(v,Π) ≤ d(y,Π) for every y ∈ Λ\ΛΠ and let d :=
d(v,Π). As kv is in Λ for any k ∈ Z we note that

⋃

k∈Z
(ΛΠ +kv) ⊆ Λ. Furthermore,

the minimality of d clearly implies that every lattice point must be contained in ΛΠ +
kv, for some k ∈ Z, and hence Λ = ⋃

k∈Z
(ΛΠ + kv). It follows that any point of the

lattice Λ can be written as a point in ΛΠ + kv, for some k ∈ Z (and 2v projects
orthogonally to Π onto a point in ΛΠ ).

To conclude this section, we state some properties about integer lattices in E
2 that

will be used later in Sect. 4.

Lemma 4 Let Λ(A) be an integer lattice of E
2. Then there exist integers a, b and c

such that Λ(A) = Λ(B), with Λ(B) the integer lattice with basis {(a, b), (c,0)}.

Proof Let A1 = (x1, y1) and A2 = (x2, y2) be the columns of A. If y1y2 = 0 the
lemma follows trivially. Otherwise, let r := gcd(y1, y2) and let p,q ∈ Z be such
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that r = py1 + qy2. The lemma follows by Corollary 2, since Λ(A) = Λ(B), for
a = px1 + qx2, b = r and c = x1y2−x2y1

r
. �

The next proposition now follows directly from Proposition 3.

Proposition 5 Let R1 : (x, y) �→ (y, x), R2 : (x, y) �→ (x,−y) and R′
2 : (x, y) �→

(x + y,−y). Let Λ be an integer lattice of E
2 with basis (a, b) and (c,0). Then:

1. R1 preserves Λ if and only if b|a, b|c and c
b
|1 − a2

b2 .
2. R2 preserves Λ if and only if c|2a.
3. R′

2 preserves Λ if and only if c|2a + b.

4. R1R2 preserves Λ if and only if b|a, b|c and c
b
|1 + a2

b2 .

5. R1R
′
2 preserves Λ if and only if b|a, b|c and c

b
|1 + a

b
+ a2

b2 .

3 Toroids of Rank n

We define a tessellation of Euclidean n-space E
n as a locally finite collection U of

n-dimensional convex polytopes (n-polytopes), called cells, which cover E
n and tile

it in a face-to-face manner. That is, the cells of U cover E
n and if two cells have non-

empty intersection, then they have disjoint interiors and meet in a common i-face
of each for some i. We shall only consider Euclidean tessellations with isomorphic
regular convex polytopes as cells.

A flag of an n-polytope is a maximal subset of pairwise incident faces of the
polytope, including the polytope itself. A flag of a tessellation is defined to be a flag
of any of its cells. We say that two flags of U are i-adjacent if they differ only in
a face of dimension i. Note that for each flag Ψ and each i ∈ {0, . . . , n} there is
a unique i-adjacent flag to Ψ ; we denote that flag by Ψ i , and extend this notation
recursively (Ψ ik,...,i1)i0 =: Ψ ik,...,i1,i0 . A tessellation U is said to be regular if its
group of symmetries Aut(U ) (that is, the group of isometries of E

n which preserve
U ) is transitive on the flags of U . The symmetry group of a regular tessellation is a
Coxeter group generated by reflections R0, . . . ,Rn, where Ri maps a fixed (base) flag
Φ to its i-adjacent flag Φi . Note that, given a base flag, the reflections R0, . . . ,Rn

are unique. Regular tessellations are equivelar in the sense that they have a (Schläfli)
type {p1, . . . , pn−1}, where pi is the order of Ri−1Ri . In other words, for each i ≥ 2,
the number pi of i faces between a (i − 2)-face and a (i + 1)-face depends only on
i and not on the chosen faces. Similarly, the number p1 of edges in a 2-face F , does
not depend on the choice of F .

For each n ≥ 2, there is a regular tessellation by n-cubes with type {4,3n−2,4}.
In the plane, there are also triangular and hexagonal tessellations with types {3,6}
and {6,3}, respectively. For n = 4, there are also two exceptional tessellations, one of
type {3,3,4,3} and its dual of type {3,4,3,3}, having 4-cross-polytopes and 24-cells
as cells, respectively.

Table 1 gives a complete list, up to similarity and duality, of all regular Euclidean
tessellations. For each tessellation, the second column of the table gives a set of gen-
erators R0, . . . ,Rn for its symmetry group (here, the points of E

n are given by coor-
dinates (x1, . . . , xn)). The third column of the table gives the central element of the
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Table 1 Symmetries of the regular Euclidean tessellations

Tessellation U Generators of Aut(U ) Central el.

Ri : (x1, . . . , xn) �→ χ

{4,3n−2,4} (−x1 + 1, x2, . . . , xn), i = 0 (R1 · · ·Rn)n

(x1, . . . , xi−1, xi+1, xi , xi+2, . . . , xn), 1 ≤ i < n

(x1, . . . , xn−1,−xn), i = n

{3,6} (−x1 − x2 + 1, x2), i = 0 (R1R2)3

(x2, x1), i = 1

(x1 + x2,−x2), i = 2

{3,3,4,3} (−x1 + 1, x2, x3, x4), i = 0 (R1R2R3R4)6

(x, x − x3 − x4, x − x2 − x4, x − x2 − x3),

where x = (x1 + x2 + x3 + x4)/2, i = 1

(x1, x2, x3,−x4), i = 2

(x1, x2, x4, x3), i = 3

(x1, x3, x2, x4), i = 4

symmetry group of the tessellation, in terms of the generators R0, . . . ,Rn. We shall
make use of such element is Sects. 4 and 5, when we classify the possible symmetry
types that rank 3 and 4 equivelar toroids may have.

We denote by T ≤ Aut(U ) the group of all translations fixing the Euclidean tessel-
lation U . We identify this group with the orbit of the origin o of E

n under T and note
that the set of points oT can be interpreted as an integer lattice. Each subgroup � of T
generated by n linearly independent translations t1, . . . , tn yields a lattice Λ := o� of
rank n, and the corresponding translation vectors v1, . . . , vn determine a fundamental
region for � (which is the parallelepiped spanned by {v1, . . . , vn}).

A toroid of rank n + 1 or an (n + 1)-toroid is the quotient of a tessellation U
of E

n by a rank n subgroup � ≤ T, or using the identification presented above, by
a lattice Λ. We say that Λ induces the toroid, and denote the latter by U /Λ. It is
natural to define an i-face of a toroid U /Λ to be an orbit of an i-face of U and a
flag of U /Λ as an orbit of a flag of U . If the tessellation U is equivelar of Schläfli
type {p1, . . . , pn−1} we say that any toroid U /Λ is also equivelar with Schläfli type
{p1, . . . , pn−1}. Note that the toroids for which all the vertices of each cell of U are
different under �, with the induced partial order are abstract (n + 1)-polytopes, in
the sense of [11].

We now make use of the fact that with any toroid, just as is the case with abstract
polytopes, we can associate a monodromy group (see for example [14]) induced by
a flag action. In fact, abstract polytopes are special cases of F -actions [13], where
F = C , the corresponding Coxeter group. Generally F -actions can be used to study
structures like maps, hypermaps or polytopes where the chosen base flags act as a
reference point for dealing with different kinds of morphism, including automor-
phisms, projections and lifts of automorphisms. Furthermore, F -actions can be used
to find the relationships between the monodromy group and the automorphism group,
through the stabiliser of a base flag and its normaliser in the monodromy group.
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Except for the tessellations with type {6,3} and {3,4,3,3}, the symmetry group
Aut(U ) of a regular tessellation U of the Euclidean space E

n is of the form T � S,
where S denotes the stabiliser of a vertex of U (see for example [11, Sect. 6]). Without
loss of generality, we assume that S is the stabiliser of the origin o. Whenever the
vertex set of U is the vertex set of a lattice (that is, whenever U is not of type {6,3}
nor {3,4,3,3}), we denote it by ΛU .

Note that for a translation ta by a vector a and an isometry s fixing the origin,
s−1tas = tas , where tas is the translation by the image of a under s. This implies that
the action by conjugation by an isometry fixing the origin of a translation group is
equivalent to the action of the isometry on the corresponding translation vectors.

For a given tessellation U the toroids U /Λ and U /Λ′ are isomorphic if � and �′
are conjugate in Aut(U ). It now follows that the toroids are isomorphic if and only
if there is a symmetry in Aut(U ) sending Λ to Λ′. A symmetry γ ∈ Aut(U ) induces
(projects to) an automorphism of a toroid U /Λ if it normalises �, that is, if and only
if the lattice Λ is invariant under γ . Geometrically, this is equivalent to mapping
fundamental regions of � to fundamental regions of �. Clearly, different symmetries
of U may induce the same automorphism of U /Λ. The automorphism group of the
toroid U /Λ is therefore the group induced by the normaliser NormAut(U )(�), that is,
Aut(U /Λ) ∼= NormAut(U )(�)/�.

The automorphism group of U /Λ acts on the set of flags of U /Λ in a natural way.
That is, given a flag Φ of U /Λ, there is a flag Φ̂ of U such that Φ = Φ̂� and hence
for each γ ∈ Aut(U /Λ), Φγ = (Φ̂�)γ = (Φ̂γ̂ )�, where γ̂ ∈ γ�.

Clearly, every translation fixing U induces an automorphism of U /Λ, and the
translations in � induce (project to) the trivial automorphism of U /Λ. The automor-
phism χ of U /Λ induced by the isometry of E

n that sends each vector x to −x (the
central inversion of E

n) plays an important role in our classification of toroids. For
each tessellation U of E

n the last column in Table 1 gives χ in terms of the genera-
tors R1, . . . ,Rn. Since χ normalises any subgroup of T and 〈χ〉 ∩ T = {ε}, it follows
that 〈T, χ〉 = T � 〈χ〉. This implies that any automorphism group of a toroid U /Λ is
induced by a subgroup K such that T � 〈χ〉 ≤ K ≤ Aut(U ).

By the correspondence theorem on group morphisms, the subgroups K with
T � 〈χ〉 ≤ K ≤ Aut(U ) are in one-to-one correspondence with subgroups K′ of S
containing χ , where K′ corresponds to the subgroup T � K′. Therefore, to classify
toroids we need to determine which symmetries in S normalise �.

Note that a translation subgroup � and its conjugate �′ := γ −1�γ , with γ ∈ S
represent isomorphic toroids. (For example, a chiral map and its enantiomorphic
form, that is, the left- and right-handed versions of the same map, are isomorphic
in this sense.) Then, given a subgroup K1 and its conjugate K2 = γ −1K1γ , where
T � 〈χ〉 ≤ K1,K2 ≤ T � S, it follows that K1/� ∼= K2/�

′. Hence, for our classi-
fication only one conjugacy class of K with T � 〈χ〉 ≤ K ≤ Aut(U ) need be con-
sidered; or equivalently, we need to consider only one conjugacy class of K′, with
〈χ〉 ≤ K′ ≤ S.

According to [14], the number of different orbits of flags of a toroid U /Λ under
Aut(U /Λ) equals the index of NormAut(U )(�) in Aut(U ), which is the same as the
index of K′ in S.

We now summarise the above in the following lemma.
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Lemma 6 With the notation as above the following statements hold.

(a) An automorphism γ ∈ S projects to an automorphism of U /Λ if and only if γ

normalises �. This is, if and only if γ (Λ) = Λ.
(b) Since all sublattices Λ are centrally symmetric, χ always projects to Aut(U /Λ).
(c) The automorphism group Aut(U /Λ) of U /Λ is isomorphic to

(K′
� T)/� ∼= K′

� (T/�),

where K′ = {γ ∈ S | γ −1�γ = �} = {γ ∈ S | γ (Λ) = Λ}. In particular, 〈χ〉 ≤
K′ ≤ S. The group Aut(U /Λ) has k orbits on the set of flags of U /Λ if and only
if the index of K in S is k.

(d) The toroids U /Λ and U /Λ′ are isomorphic if and only if � and �′ are conjugate
in Aut(U ). This in turn is true if and only if there exists γ ∈ S, such that Λ =
γ (Λ′).

It is natural to define a regular toroid U /Λ as a toroid whose group of automor-
phisms acts transitively on the set of its flags, or equivalently, a toroid U /Λ is regular
if all symmetries in the stabiliser S ≤ Aut(U ) of the origin o project to an automor-
phism of U /Λ. A toroid is said to be k orbit if its automorphism group has exactly
k orbits on flags. Chiral toroids are defined to be 2-orbit toroids that have adjacent
flags in different orbits.

If the tessellation U is regular, the associated toroid U /Λ can be assigned the
Schläfli type of U and in this case we say that the toroid is equivelar. Clearly, any
regular toroid is equivelar, but the converse is not necessarily true. For example, chiral
3-toroids on the torus are equivelar but not regular.

4 Equivelar 3-Toroids

The classification of regular and chiral toroidal maps was given in 1948 by Coxeter
[2] (see also [3]). The classification of equivelar polyhedral toroidal maps (that is,
toroids in which the intersection of two distinct faces is either empty, a common ver-
tex or a common edge) was recently completed by Brehm and Kühnel in [1]. In this
section, using a new approach, we also classify such toroids. Our methodology ex-
tends to enable the classification in any rank, and shall be used in subsequent sections
for the classification in rank 4.

By definition, equivelar 3-toroids have Schläfli type {4,4}, {3,6} or {6,3}. Our
approach makes use of the fact that vertices of the tessellations of type {4,4} and
{3,6} form an integer lattice. Using duality, one can then describe those toroids with
type {6,3} as well.

4.1 Equivelar Toroids of Type {4,4}
Let U be the regular tessellation with type {4,4}. Using the notation of the previous
section, we note that S = 〈R1,R2〉 and χ ∈ S, where R1,R2 and χ are as in Table 1.
To make use of Lemma 6 we note that in this case there are only three conjugacy
classes of proper subgroups of S distinct from 〈χ〉 containing 〈χ〉, namely 〈χ,R1〉,
〈χ,R2〉 and 〈χ,R1R2〉.
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Fig. 1 Conjugacy classes of
vertex stabilisers for toroids of
type {4,4}

In Fig. 1 we give all five possible conjugacy classes of subgroups K′ with the prop-
erty that 〈χ〉 ≤ K′ ≤ S. The class corresponding to the stabiliser S and representing
all regular (1-orbit) toroids of type {4,4} is labelled ‘1’. The label ‘4’ represents all
4-orbit toroids of type {4,4} and corresponds to the subgroup 〈χ〉 of the stabiliser S.
The three classes corresponding to the subgroups 〈χ,R1R2〉, 〈χ,R1〉 and 〈χ,R2〉 are
labelled 2, 21 and 20,2, respectively, and represent three different classes of 2-orbit
toroids of type {4,4}. The labels used are the same as in [14]. Henceforth, in this
subsection we name the classes by these labels.

The vertex set of the regular tessellation U = {4,4} may be taken to be Z
2, the

set of points in E
2 with integer coordinates. Let the base of the corresponding lattice

Λ{4,4} be the standard orthonormal basis {e1, e2}. Every sublattice Λ of Λ{4,4} can be
described by two generating translations t1 and t2 with vectors v1 and v2, respectively.
The induced toroid U /Λ is denoted by {4,4}v1,v2 .

First we consider the class 1, that is, the case where the toroid U /Λ is regular and
the corresponding vertex stabiliser of o in U is S = 〈R1,R2〉. Then, R1R2 ∈ S is the
rotation by π

2 around o. Assuming v ∈ Λ \ {o} is such that d(v, o) ≤ d(v′, o) for any
v′ ∈ Λ\ {o}, the orbit of v under 〈R1R2〉 is a set of four points forming the vertices of
a square. Clearly, there cannot be other points in Λ at distance d(v, o) from o as the
distance between any such point and v〈R1R2〉 would be smaller than d(v, o). In addi-
tion, since R1,R2 ∈ S, these four points must be either on the coordinate axes x and
y or on the lines y = x and y = −x, yielding the two well-known possible families
of regular toroids {4,4}(a,0),(0,a) and {4,4}(a,a),(a,−a), respectively. (In the notation
of [3], these two toroids are denoted by {4,4}(a,0) and {4,4}(a,a), respectively, but in
order to specify classes of equivelar 3-toroids in general we need to use two vectors.)

Let us now consider the conjugacy class 2, that is, the class consisting of chiral
toroids. The corresponding vertex stabiliser of o is K′ = 〈R1R2〉. As above, using the
rotation R1R2 ∈ K′ we see that the four points in Λ closest to o form a square. If
none of these four points are on a coordinate axis or the lines y = ±x, the toroid is
chiral, otherwise it is regular. Such toroids are the well-known {4,4}(b,c),(−c,b), where
bc(b − c) �= 0 (note that in [3], these are denoted by {4,4}(b,c)).

For the conjugacy class 20,2 the reflection R2 in the x-axis belongs to K′. Fol-
lowing Sect. 2, we let Λ = ⋃

k∈Z
(ΛΠ + kv), where Π is the x-axis and v /∈ Π

can be chosen to be a lattice point closest to the origin among the ones closest
to Π . Let c ∈ Z be such that (c,0) is a generating vector of ΛΠ . Then either
1
2 (v + vR2) ∈ ΛΠ or 1

2 (v + vR2) /∈ ΛΠ giving us the two possible families for
toroids in this class. If 1

2 (v + vR2) ∈ ΛΠ , then v = (0, b) for some b ∈ Z, giving
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us the toroid {4,4}(c,0),(0,b) that is in class 20,2 whenever c �= b, and regular other-
wise. If 1

2 (v + vR2) /∈ ΛΠ , then c ∈ Z is even and v = ( c
2 , b), giving us the toroid

{4,4}(c,0),(c/2,b) = {4,4}(c/2,b),(c/2,−b) that is in class 20,2 whenever b �= c
2 and regu-

lar otherwise. The maps in this class were also described in [5] within the theory of
2-orbit hypermaps.

Similar arguments can now be used for the conjugacy class 21 and the reflection
R1 ∈ K′ in the line y = x. Now Λ = ⋃

k∈Z
(ΛΠ + kv), where Π is the line y = x

and v /∈ Π a lattice point closest to the origin among the ones closest to Π . Let c ∈ Z

be such that (c, c) is a generating vector of ΛΠ . Then either 1
2 (v + vR2) ∈ ΛΠ or

1
2 (v+vR2) /∈ ΛΠ giving us the two possible families for toroids in this class. If 1

2 (v+
vR2) ∈ ΛΠ , then v = (−b, b) for some b ∈ Z, giving us the toroid {4,4}(c,c),(−b,b)

that is in class 21 whenever c �= b and regular otherwise. If 1
2 (v + vR2) /∈ ΛΠ , then

v = (b, c−b) with b ∈ Z, giving us the toroid {4,4}(c,c),(b,c−b) = {4,4}(c−b,b),(b,c−b)

that is in class 21 whenever b �= 0, c and regular otherwise. The maps in this class
were also described in [17], within the theory edge-transitive maps.

Any other lattice not symmetrical by any conjugate of R1, R2 or R1R2 is a lattice
in class 4. We can now prove the following theorem that classifies, up to isomorphism,
all toroids of type {4,4}.

Theorem 7 Equivelar toroids with Schläfli type {4,4} can be described as {4,4}v1,v2 ,
where v1 and v2 are two linearly independent vectors. Furthermore, given integers
a > b > 0 the classes of toroids are as follows.

• Class 1 contains the two families of regular toroids

{4,4}(a,0),(0,a) and {4,4}(a,a),(a,−a).

• Class 2 contains the family of chiral toroids

{4,4}(a,b),(−b,a).

• Class 20,2 contains the two families of toroids

{4,4}(a,0),(0,b) and {4,4}(a,b),(a,−b).

• Class 21 contains the two families of toroids

{4,4}(a,a),(−b,b) and {4,4}(a,b),(b,a).

• Class 4 contains the family of toroids

{4,4}(a,b),(c,0),

where c ≥ a − b, c �= 2a �= 4c and if b | a, c, then c
b

� 1 ± a2

b2 .

Proof First note that for any integer a, {4,4}(a,0),(0,a) and {4,4}(−a,0),(0,−a) are iso-
morphic toroids. For class 1, the condition a > 0 guaranties that any two members
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Fig. 2 Conjugacy classes of
vertex stabilisers for toroids of
type {3,6}

in each family are different. For classes 2, 20,2 and 21, interchanging a and b pro-
duces an isomorphic copy of the toroid (which for class 2 is in fact its enantiomorphic
toroid). The condition a > b > 0 guaranties that any two members in each family are
non-isomorphic.

For class 4, we use Lemma 4 to find the generating vectors (a, b) and (c,0). To
guaranty that two toroids of the family are non-isomorphic, in addition to the condi-
tion a > b > 0, we now need the extra condition c ≥ a − b. Furthermore, by Propo-

sition 5, if either c = 2a, a = 2c or b | a, c and c
b

| 1 ± a2

b2 , the toroid would have
additional symmetries by R1, R2 or R1R2 and hence would have at most two orbits
of flags, thus not belonging to class 4. �

4.2 Equivelar Toroids of Type {3,6}

Let U be the regular tessellation of type {3,6} of the Euclidean plane. It is convenient

(and common) to use {e1,
1
2e1 +

√
3

2 e2} as the basis of the corresponding lattice Λ{3,6}.
Again, using the notation introduced in Sect. 3, we note that S = 〈R1,R2〉 and

χ ∈ S (see Table 1). Making use of Lemma 6 we note that there are, up to conjugation,
only two proper subgroups of S distinct from 〈χ〉 containing 〈χ〉, namely 〈χ,R1R2〉
and 〈χ,R2〉.

In Fig. 2 we give all four possible conjugacy classes of subgroups K′ with 〈χ〉 ≤
K′ ≤ S. As before, the class corresponding to the stabiliser S and representing all
regular (1-orbit) toroids now of type {3,6} is labelled ‘1’. The label ‘6’ represents all
6-orbit toroids of type {3,6} and corresponds to the subgroup 〈χ〉 of the stabiliser S.
The class corresponds to the subgroup 〈χ,R1R2〉, labelled ‘2’, represents all chiral
(2-orbit) toroids of type {3,6}. Finally, label ‘3’ represents 3-orbit toroids of type
{3,6} and corresponds to the subgroup 〈χ,R2〉. Henceforth, in this subsection we
name the classes by these labels.

First we consider the class 1, that is, the case where the toroid U /Λ is regular and
the corresponding vertex stabiliser of o in U is K′ = 〈R1,R2〉. Then, R1R2 ∈ K′ is
the rotation by π

3 around o.
Assuming v ∈ Λ \ {o} is such that d(v, o) ≤ d(v′, o) for any v′ ∈ Λ \ {o}, the orbit

of v under 〈R1R2〉 is a set of six points forming the vertices of a regular hexagon.
Clearly, there can be no other point in Λ at distance d(v, o) from o as the distance
between any such point and v〈R1R2〉 would be smaller than d(v, o). In addition, as
R1,R2 ∈ K′, these six points must be either on the lines y = 0, x = 0 and y = −x or
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on the lines y = x, 2y = −x and y = −2x, yielding the two well-known families of
regular toroids {3,6}(a,0),(0,a) and {3,6}(a,a),(2a,−a), respectively. (In the notation of
[3], these two toroids are denoted by {3,6}(a,0) and {3,6}(a,a), respectively.)

Let us now consider the conjugacy class 2, that is, the class consisting of chiral
toroids. The corresponding subgroup of the vertex stabiliser of o is K′ = 〈R1R2〉.
As in the regular case, the rotation R1R2 ∈ K′, and the six points in Λ \ {o} clos-
est to o form a regular hexagon. If these six points are not on the lines described
above, the toroid is chiral, otherwise it is regular. Such toroids are the well-known
{3,6}(a,b),(−b,a+b), where ab(a − b) �= 0 (in [3] these are denoted {3,6}(a,b)). By
choosing a > b > 0, we guarantee that only one of the two isomorphic (enantiomor-
phic) toroids is considered.

It remains to analyse the class 3. For this class the reflection R2 in the x-axis,
sending a point (x, y) to (x + y,−y), is an element of K′. Following Sect. 2, Λ =
⋃

k∈Z
(ΛΠ + kv), where Π is the x-axis and v /∈ Π is the lattice point closest to the

origin among the ones closest to Π . Let c ∈ Z be such that (c,0) is a generating
vector of ΛΠ . Then, either 1

2 (v + vR2) ∈ ΛΠ or 1
2 (v + vR2) /∈ ΛΠ , giving us the

two possible families for toroids in this class. If 1
2 (v + vR2) ∈ ΛΠ , then the closest

point to o, not in ΛΠ , is on the line through o perpendicular to the x-axis, so that
v = (−d,2d) for some integer d , giving us the toroid {3,6}(c,0),(−d,2d) in class 3.
If 1

2 (v + vR2) /∈ ΛΠ , then v = (a, c − 2a), giving us the toroid {3,6}(c,0),(a,c−2a) =
{3,6}(a,c−2a),(c−a,2a−c) that is in class 3 whenever a �= c and regular otherwise. The
maps in this class were also described in [14] within the theory of k orbit maps.

Any other lattice not symmetrical by a conjugate of R2 or R1R2 is a lattice in
class 6. The proof of the following theorem now follows from Lemma 4 and Propo-
sition 5, using similar arguments to those we used in the proof of Theorem 7.

Theorem 8 Equivelar toroids with Schläfli type {3,6} can be described as {3,6}v1,v2 ,
where v1 and v2 are two linearly independent vectors. Furthermore, given integers
a > b > 0, c > 0 and d > 0 the classes of toroids are as follows.

• Class 1 contains the two families of regular toroids

{3,6}(a,0),(0,a) and {3,6}(a,a),(2a,−a).

• Class 2 contains the family of chiral toroids

{3,6}(a,b),(−b,a+b).

• Class 3 contains the two families of toroids

{3,6}(a,0),(−c,2c) and {3,6}(a,d),(a+d,−d).

• Class 6 contains the family of toroids

{3,6}(a,b),(c,0),

where c ≥ a − b, c � 2a + b and if b | a, c, then c
b

� 1 − a2

b2 and c
b

� 1 + a
b

+ a2

b2 .

The above theorem gives the classification of 3-toroids of type {3,6} and using
duality one derives the classification of 3-toroids of type {6,3}.
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5 Conjugacy Classes of Equivelar 4-Toroids

In this section we determine all classes of equivelar 4-toroids. The toroids are ob-
tained as quotients of the tessellation U of type {4,3,4} of the Euclidean 3-space
according to the conjugacy classes of subgroups of the vertex stabiliser in Aut(U ).
Let {e1, e2, e3} be the standard orthonormal basis of the corresponding lattice Λ{4,3,4}.
Every rank 3 sublattice Λ ⊆ Λ{4,3,4} can be described by three generating translations
t1, t2 and t3 with respect to three linearly independent vectors v1, v2 and v3, respec-
tively. The corresponding 4-toroid P = P (Λ) = U /Λ is denoted by {4,3,4}v1,v2,v3 .

The symmetry group of a vertex-figure of the tessellation {4,3,4} is the octa-
hedral group. Taking the vertex-figure at the origin and specifying its base flag Φ ,
the octahedral group S is generated by the reflections R1,R2,R3 given in Table 1.
Using simple geometric arguments, the relationship between conjugacy classes of
subgroups of S containing the central symmetry χ can be seen to be as in Fig. 3. (In
fact, one can see that this is the subgroup lattice of the automorphism group of the
hemi-octahedron.) Each class labelled k, represents a conjugacy class of subgroups
of index k in S. The index of each subgroup determines the number of orbits of the
toroids in that class. It follows that there are at most 11 different classes of toroids
ranging from regular, that is in class 1, to 24-orbit toroids. As we shall see, some
conjugacy classes contain no toroids. For example, since χ is a word of odd length,
there can be no chiral toroids of rank 4. In Sect. 6 we shall prove that class 2 is in fact
empty. An alternative proof of the nonexistence can be derived from the fact that any
toroid admitting all symmetries required for the class 2 must be regular.

In Fig. 3 certain edges connecting two conjugacy classes of subgroups are labelled
by automorphisms in S, which indicate, just as in Fig. 1 and 2, that a group in the
conjugacy class of smaller index can be generated by adjoining that automorphism to
the group in the class of larger index.

Each class of equivelar 4-toroids in Fig. 3 is uniquely determined by the flag ar-
rangement on a vertex-figure of a toroid in that class. For any toroid P = U /Λ, the
subgroup T/�, whose elements we refer to as the translations of P , is a normal sub-
group of Aut(P ). Hence, the translations of the toroid act vertex-transitively and the
flag arrangement extends to the entire toroid. In particular, the flag arrangement in a
vertex-figure completely determines the flag arrangement in any facet. As the auto-
morphism group of an equivelar 4-toroid P is also facet-transitive, it follows that the
flag arrangement of each facet can be extended to the entire toroid by translations. In
addition, because of the invariance under the central symmetry χ as well as the trans-
lations of P , one can specify the flag arrangement by considering only three 2-faces
of a facet sharing a vertex. The flag arrangement on a facet of 4-toroids in the classes
given in Fig. 3 can be derived from the labels of the edges in the figure and are shown
in Fig. 4.

6 Lattices Invariant Under R3

In this section we describe toroids U /Λ, where Λ is a lattice invariant under R3.
Our technique consists of showing how each family of equivelar 3-toroids listed in
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Fig. 3 Lattice of conjugacy
classes of vertex-stabilisers for
toroids of type {4,3,4}

Theorem 7 can be extended to a family of equivelar 4-toroid invariant under R3.
Throughout, Π denotes the plane z = 0 fixed by R3. As before we let P = P (Λ)

be the 4-toroid induced by Λ. As noted in Sect. 2, ΛΠ = Λ ∩ Π is a 2-dimensional
sublattice of Λ inducing an equivelar toroid K = K(Λ) of type {4,4}.

The classification of regular and chiral toroids of any rank was completed by Mc-
Mullen and Schulte in [10]. Since regular and 2-orbit 4-toroids are all invariant under
R3 (see Fig. 3), in this section we obtain this classification, for rank 4, using methods
similar to the ones we used for rank 3 in Sect. 4. In fact, we conclude that there are
no 2-orbit equivelar toroids of rank 4.

6.1 Extensions of 3-Toroids

Since R3 and the translations preserving U project to symmetries of the 4-toroid P , a
flag containing an edge in the direction of the z-axis and its 0-adjacent flag are in the
same orbit. We consider all possible ways in which the 3-toroid K induced by ΛΠ

can be extended to a 4-toroid. Note that, since χ is the product of the reflections about
the three coordinates planes, the half-turn χR3 about the z-axis leaves Λ invariant. In
other words, the restriction of χ to Π extends to a half-turn in E

3 that preserves Λ.
The other symmetries of K that have to be considered (see Fig. 1) are the reflections
denoted r1 and r2, about the lines x = y and y = 0, respectively, as well as the rotation
r1r2. These symmetries of K need not always extend to symmetries of P . In what
follows we shall make use of the following straight-forward lemma.
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Fig. 4 Flag arrangements on facets of equivelar rank 4 toroids

Lemma 9 Let P , K, r1 and r2 be as above. If r1, r2 or r1r2 are symmetries of K that
extend to symmetries of P , then they extend to R1, R2R3R2 or R1R2R3R2, respec-
tively.

We note that not every symmetry of a 4-toroid P can be obtained by the extensions
given in Lemma 9. In fact, if P is also symmetric under R2R1, then P must be in
class 1 or 2, according to Fig. 3.

The non trivial conjugates of R2R1 in S are R3R2R1R3, R2R3R1R2R3R2 and
R3R2R1R2R3R2. However, since P is invariant under R3 it is invariant under any of
the conjugates of R2R1 if and only if it is invariant under all of them (see Fig. 3).
Hence, to determine the symmetries of P one has to consider which symmetries of
K extend, as well as whether P is invariant under R2R1.
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Following the relationships between classes in Fig. 3 we note that if K is in class 1,
P can be in class 1, 2, 3, 6A, 6B , 6C or 12A, depending on which symmetries of K
extend to P and whether R2R1 is a symmetry of P .

If K is in class 2, 21 or 4, the flags in a facet of P may be labelled as the flags of
12A (see Fig. 4) in such a way that the flags labelled 1,2,3 and 4 contain the 2-faces
parallel to Π . In addition, if K is in class 2 or 21, the flags in a facet of P may also be
labelled as the flags of 6C or 6B , respectively, in such a way that the flags labelled 1
and 2 contain the 2-faces parallel to Π . However, in the labelling of cubes in Fig. 4,
two flags with different labels when restricted to Π , may belong to the same flag orbit
of K. We now deduce the following lemma.

Lemma 10 Let P = P (Λ) be an equivelar 4-toroid invariant under R3, the reflection
in the plane Π (the plane z = 0). If the 3-toroid K induced by Λ ∩ Π is in class 2,
21 or 4 then P has at least 6, 6 or 12 flag orbits, respectively. In particular, P is not
invariant under R2R1.

Finally, if K is in class 20,2, using similar arguments we note that P can be in
class 2, 6A or 12A. Furthermore, the restrictions of 4-toroids in class 3 to the planes
x = 0 and y = 0 are 3-toroids in class 20,2 (see Fig. 4). Moreover, in this case, P
is also invariant under the reflections in the planes x = 0 and y = 0. Therefore, an
extension of a 3-toroid K in class 20,2 can happen to be in class 3. If this case P
has to be invariant under the 4-fold rotation about the x- or y-axis. However, the
restriction of P to the plane x = 0 or y = 0 yields a 3-toroid in class 1. Therefore a
4-toroid in class 3 can be considered as one arising from K in class 1, as we shall do.

Among different ways of extending K to a 4-toroid, the most natural extension
is the one for which all the points of Λ project orthogonally to the points of ΛΠ .
In this case, we say that Λ is a vertical translation lattice with respect to Π , that
is, Λ = ⋃

k∈Z
(ΛΠ + kv) where v = (0,0, d) for some d ∈ Z as defined in Sect. 2.

Throughout this section we shall refer to a vertical translation lattice with respect to
Π simply as a vertical translation lattice.

The following lemma describes the location of the translates of ΛΠ whenever Λ

is not a vertical translation lattice.

Lemma 11 Let Π be the plane z = 0 and Λ a lattice invariant under the re-
flection in Π . Assume also that Λ is not a vertical translation lattice. Then Λ =
⋃

k∈Z
(ΛΠ + kv) for some v = (x, y, d), where x, y are integers, d a positive integer,

(2x,2y,0) ∈ Λ and (x, y,0) /∈ Λ.

Proof As in Sect. 2, we recall that Λ = ⋃

z∈Z
(ΛΠ + kv) for some v = (x, y, d) /∈ Π

where d := d(v,Π) ≤ d(w,Π) for every w ∈ Λ \ ΛΠ . Note that v does not project
orthogonally to Π into a point of Λ since otherwise Λ would be a vertical translation
lattice.

Observe that v + vR3 ∈ ΛΠ , and that this point is (2x,2y,0), the orthogonal
projection of 2v in Π . �

The points of Λ, whenever Λ is not a vertical translation lattice, belong to planes
Π + k(0,0, d) for k ∈ Z. If k is even the points of Λ in Π + k(0,0, d) all project
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orthogonally to ΛΠ . On the other hand, if k is odd the points of Λ in Π + k(0,0, d)

project orthogonally to a translate ΛΠ + w of ΛΠ where w /∈ ΛΠ and 2w ∈ ΛΠ .
Recall that since ΛΠ induces an equivelar 3-toroid of type {4,4}, it is deter-

mined by two independent vectors v1 and v2. Whenever Λ is not a vertical trans-
lation lattice, without loss of generality, by using the translation subgroup we may
choose v to project to either v1

2 , v2
2 or v1+v2

2 . In the remainder of this section,
for each family of equivelar 3-toroids listed in Theorem 7 we shall analyse the
toroid P = U /Λ when Λ is a vertical translation lattice (so that v projects to a
point of ΛΠ ), when v projects to v1+v2

2 (that is, the centre of a fundamental re-
gion of ΛΠ ) and when v projects to v1

2 or v2
2 (the mid-point of an edge of a fun-

damental region of ΛΠ ). This will lead to a classification of equivelar 4-toroids
in classes 1, 2, 3, 6A, 6B , 6C and 12A. To achieve this classification we shall
make use of the flag arrangements on facets of the toroids in these classes given
in Fig. 4.

6.2 Vertical Translation Lattice

We start by assuming that ΛΠ induces a regular 3-toroid K in one of the two families
{4,4}(a,0),(0,a) or {4,4}(a,a),(a,−a) for a positive integer a. In both cases, the symme-
tries r1 and r2 of K defined above extend to symmetries of P . As discussed in the
previous subsection, it follows that P is either in class 3 or regular.

In the case of the first family, if P is regular, then P is also invariant under R2. In
this case, since (0,0, d) ∈ Λ, it follows that (0,0, d)R2 = (0, d,0) ∈ ΛΠ implying
that d ≥ a. On the other hand (0, a,0)R2 = (0,0, a) implying that a ≥ d by the
minimality of d . Hence d = a and Λ = 〈(a,0,0), (0, a,0), (0,0, a)〉, inducing the
regular toroid {4,3,4}(a,0,0),(0,a,0),(0,0,a) (denoted by {4,3,4}(a,0,0) in [11]). The set
of points of Λ forms a cubic lattice. If d �= a, then Λ is not invariant under R2 and
the toroid P = {4,3,4}(a,0,0),(0,a,0),(0,0,d) is in class 3.

In the case of the second family (that is, K is the regular toroid {4,4}(a,a),(a,−a),
for some integer a) we obtain a toroid {4,3,4}(a,a,0),(a,−a,0),(0,0,d) in class 3. In fact,
assuming that P is regular, implies that (a, a,0)R2R1 = (0, a, a) is in Λ not project-
ing to a point in ΛΠ , contradicting the fact that Λ is a vertical translation lattice.

For the case where Λ is a vertical translation lattice and ΛΠ induces a chiral
3-toroid K, P is the 4-toroid {4,3,4}(a,b,0),(−b,a,0),(0,0,d). The symmetry r1r2 of K
extends to a symmetry of P implying that the latter belongs to either class 6C , 3 or 1.
Lemma 10 then implies that the toroid is in class 6C .

We now analyse the case where Λ is a vertical translation lattice and ΛΠ induces
a 3-toroid K in class 20,2. In this case P is the 4-toroid {4,3,4}(a,0,0),(0,b,0),(0,0,d)

or the toroid {4,3,4}(a,b,0),(a,−b,0),(0,0,d) where a > b > 0. The symmetry r2 of K
extends to a symmetry of P . Hence P belongs to either class 6A, 3 or 2 and since
a �= b, clearly P does not belong to class 1. In what follows we shall consider each
of these cases.

We first show that if K is in class 20,2, then P cannot be a 2-orbit toroid.
Suppose otherwise, that is, P is in class 2. Then Λ must be invariant under
R2R1 which cyclically permutes the three coordinate axes. However, the transla-
tions along the x- and y-axes fixing Λ are with respect to the vectors k(a,0,0)
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Table 2 Classes of equivelar 4-toroids with vertical translation lattices invariant under the reflection R3
in the xy-plane

Class of PΠ Generators of P Parameters Class of P

1 (a,0,0), (0, a,0), (0,0, a) a > 0 1

1 (a,0,0), (0, a,0), (0,0, d) a, d > 0, d �= a 3

1 (a, a,0), (a,−a,0), (0,0, d) a, d > 0

20,2 (a,0,0), (0, b,0), (0,0, d) a > b > 0, d > 0, d �= a, b 6A

20,2 (a, b,0), (a,−b,0), (0,0, d) a > b > 0, d > 0

21 (a, a,0), (b,−b,0), (0,0, d) a > b > 0, d > 0 6B

21 (a, b,0), (b, a,0), (0,0, d) a > b > 0, d > 0

2 (a, b,0), (−b, a,0), (0,0, d) a > b > 0, d > 0 6C

4 (a, b,0), (c,0,0), (0,0, d) * 12A

and k(0, b,0) for {4,3,4}(a,0,0),(0,b,0),(0,0,d), and k(2a,0,0) and k(0,2b,0) for
{4,3,4}(a,b,0),(a,−b,0),(0,0,d). In both cases, it follows that a = b, contradicting our
hypothesis. Therefore P is not a 2-orbit toroid.

We recall from Sect. 6.1 that if P is in class 3, then we consider it as a 4-toroid
arising from class 1 and therefore it is not necessary to derive details of such toroids
here.

Assuming P is in class 6A, either P = {4,3,4}(a,0,0),(0,b,0),(0,0,d) or P = {4,3,

4}(a,b,0),(a,−b,0),(0,0,d), with a �= b in both cases. If P = {4,3,4}(a,0,0),(0,b,0),(0,0,d)

and a = d or b = d , then Λ is invariant under the 4-fold rotation about y- or x-axis,
respectively, which would imply that P has 3 orbits of flags and therefore cannot be in
class 6A. On the other hand, it is easy to see that if P = {4,3,4}(a,b,0),(a,−b,0),(0,0,d),
no extra symmetry can be obtained as Λ is not invariant under a 3-fold or a 4-fold
rotation.

In the case where Λ is a vertical translation lattice and ΛΠ induces a 3-
toroid K in class 21, P is the 4-toroid {4,3,4}(a,a,0),(b,−b,0),(0,0,d) or the toroid
{4,3,4}(a,b,0),(b,a,0),(0,0,d) where a > b > 0. By Lemma 10, the toroid must belong
to class 6B , since the symmetry r1 of K extends to a symmetry of P .

Finally, when Λ is a vertical translation lattice and ΛΠ induces a 3-toroid K in
class 4, P is the 4-toroid {4,3,4}(a,b,0),(c,0,0),(0,0,d) with the conditions given in The-
orem 7 for class 4. In this case P is in fact in class 12A as follows from Lemma 10.

The above classification of equivelar 4-toroids arising from vertical translation
lattices invariant under R3 is summarised in Table 2, where “∗” stands for d > 0,
c ≥ a − b, c �= 2a �= 4c, and if b | a and b | c then c/b � 1 ± a2/b2.

6.3 Non-Vertical Translation Lattices

We shall now assume that Λ is not a vertical translation lattice and in the first instance
consider the case in which a point of Λ projects to v1+v2

2 .
Let us start by assuming that the 3-toroid K induced by ΛΠ is regular. As before,

the symmetries r1 and r2 of K extend to symmetries of P . Hence P is either regular
or in class 3. Since v ∈ Λ projects to the centre of the fundamental region of ΛΠ ,
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P is either {4,3,4}(a,0,0),(0,a,0),( a
2 , a

2 ,d) or {4,3,4}(a,a,0),(a,−a,0),(a,0,d), depending on
which of the two regular toroids of type {4,4} is induced by ΛΠ . In the former case, P
is regular whenever d = a

2 , implying that Λ = 〈(a,0,0), (0, a,0), ( a
2 , a

2 , a
2 )〉, giving

us the regular toroid {4,3,4}( a
2 , a

2 ,− a
2 ),( a

2 ,− a
2 , a

2 ),(− a
2 , a

2 , a
2 ) (denoted by {4,3,4}( a

2 , a
2 , a

2 )

in [11]). In this case the set of points of Λ is a body-centred cubic lattice. In the lat-
ter case P is regular whenever d = a. In fact we have Λ = 〈(a, a,0), (a,−a,0),

(a,0, a)〉, giving us the regular toroid {4,3,4}(a,a,0),(a,−a,0),(a,0,a) (denoted by
{4,3,4}(a,a,0) in [11]). The set of points of Λ in this case is a face-centred cubic
lattice. In either case, if P is not regular, then it is in class 3.

If the 3-toroid K induced by ΛΠ is either in class 2 or 21, the corresponding
symmetry r1r2 or r1 extends to a symmetry of P . By Lemma 10 we see that P is,
respectively in class 6C or 6B .

We now turn our attention to the case when the 3-toroid K induced by ΛΠ is in
class 20,2. Then, Λ is either

{4,3,4}
(a,0,0),(0,b,0),( a

2 , b
2 ,d)

or {4,3,4}(a,b,0),(a,−b,0),(a,0,d).

Note that the toroid {4,3,4}
(a,0,0),(0,b,0),( a

2 , b
2 , a

2 )
is isomorphic to

{4,3,4}
(a,0,0),(0,a,0),( a

2 , a
2 , b

2 )
,

which is in class 3. Similarly, {4,3,4}
(a,0,0),(0,b,0),( a

2 , b
2 , b

2 )
is isomorphic to

{4,3,4}
(b,0,0),(0,b,0),( b

2 , b
2 , a

2 )
,

which is again in class 3. On the other hand, the toroids {4,3,4}(a,b,0),(a,−b,0),(a,0,a)

and {4,3,4}(a,b,0),(a,−b,0),(a,0,b) are isomorphic to {4,3,4}(a,a,0),(a,−a,0),(a,0,b) and
{4,3,4}(b,b,0),(b,−b,0),(b,0,a) respectively, which are again in class 3. But all these
toroids in class 3 have been considered before. Similar arguments as we used for
the vertical translation lattices now imply that in both families any other choice of d

yields a toroid in class 6A.
We finally note that if the toroid induced by ΛΠ is in class 4, Lemma 10 implies

that P is in class 12A.
Table 3 contains all the equivelar toroids induced by non-vertical translation lat-

tices Λ such that a point v ∈ Λ projects to v1+v2
2 . In this table, “∗” stands for d > 0,

c ≥ a − b, c �= 2a �= 4c, and if b | a and b | c then c
b

� 1 ± a2

b2 .
We finish the analysis of lattices invariant under R3 by considering the case when

Λ is not a vertical translation lattice and has a generating vector projecting to the
mid-point of an edge of the fundamental region of the 3-toroid K induced by ΛΠ .
That is, it only remains to consider the possibilities of a point of Λ projecting into v1

2
or to v2

2 .
We start by considering the case when K is of type {4,4}(a,0),(0,b) (here b might

be equal to a). Hence, depending on whether a generating vector v ∈ Λ projects to v1
2

or to v2
2 , P is either {4,3,4}(a,0,0),(0,b,0),( a

2 ,0,d) or {4,3,4}
(a,0,0),(0,b,0),(0, b

2 ,d)
. These

toroids cannot have R1R2 as a symmetry since such rotation permutes the coordinate
axes and this is clearly not possible. Note furthermore that in both cases the symmetry
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Table 3 Classes of equivelar 4-toroids induced by non-vertical translation lattices Λ invariant under the
reflection on the xy-plane such that a point v ∈ Λ \ ΛΠ projects to the centre of a fundamental region of
ΛΠ , the sublattice of Λ contained in the xy-plane

Class of PΠ Generators of P Parameters Class of P

1 (a,0,0), (0, a,0), ( a
2 , a

2 , a
2 ) a > 0 1

1 (a, a,0), (a,−a,0), (a,0, a) a > 0

1 (a,0,0), (0, a,0), ( a
2 , a

2 , d) a, d > 0, d �= a
2 3

1 (a, a,0), (a,−a,0), (a,0, d) a, d > 0, d �= a

20,2 (a,0,0), (0, b,0), ( a
2 , b

2 , d) a > b > 0, d > 0, 2d �= a, b 6A

20,2 (a, b,0), (a,−b,0), (a,0, d) a > b > 0, d > 0, d �= a, b

21 (a, a,0), (b,−b,0), ( a+b
2 , a−b

2 , d) a > b > 0, d > 0 6B

21 (a, b,0), (b, a,0), ( a+b
2 , a+b

2 , d) a > b > 0, d > 0

2 (a, b,0), (−b, a,0), ( a−b
2 , a+b

2 , d) a > b > 0, d > 0 6C

4 (a, b,0), (c,0,0), ( a+c
2 , b

2 , d) * 12A

r2 of K extends to P , and that the symmetry r1 of K does not extend even when a = b.
If d = a

2 (d = b
2 , respectively), then Λ is invariant under a 4-fold rotation about the

x-axis (y-axis, respectively) and that toroid can be considered as one arising from a
3-toroid in class 1. Otherwise P is in class 6A.

If the toroid K is regular of type {4,4}(a,a),(a,−a) then without loss of generality
we assume that Λ is {4,3,4}(a,a,0),(a,−a,0),( a

2 , a
2 ,d), as the choice of v1

2 or v2
2 leads to

isomorphic toroids. It is now not difficult to see that Λ is invariant under R1, and
therefore P belongs to class 1, 3 or 6B . Note, however, that the symmetry r2 of K
does not extend, implying in fact that P is in class 6B .

If the toroid K is in the family {4,4}(a,b),(a,−b) then without loss of generality we
can choose Λ to be {4,3,4}

(a,b,0),(a,−b,0),( a
2 , b

2 ,d)
. In this case none of the symmetries

of K extend, and hence these toroids are in class 12A.
In the case where the toroid K is in class 21, the only symmetry of K that

can extend is r1. However, this only happens whenever K belongs to the family
{4,4}(a,a),(b,−b). Therefore, by Lemma 10 the toroids {4,3,4}(a,a,0),(b,−b,0),( a

2 , a
2 ,d)

and {4,3,4}
(a,a,0),(b,−b,0),( b

2 , b
2 ,d)

are in class 6B , while the toroids

{4,3,4}
(a,b,0),(b,a,0),( a

2 , b
2 ,d)

and its isomorphic toroid {4,3,4}
(a,b,0),(b,a,0),( b

2 , a
2 ,d)

belong to class 12A.
Finally, none of the symmetries of a toroid K in class 2 or 4 extend. By Lemma 10

such toroids also belong to class 12A.
In Table 4, “∗” stands for d > 0, c ≥ a − b, c �= 2a �= 4c, and if b | a and b | c then

c
b

� 1 ± a2

b2 .
In particular, the above analysis implies the following theorem.

Theorem 12 There are no 2-orbit equivelar 4-toroids.
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Table 4 Classes of equivelar 4-toroids induced by non-vertical translation lattices Λ invariant under the
reflection in the xy-plane such that a point v ∈ Λ \ ΛΠ projects to the middle point of an edge of the
sublattice of Λ contained in the xy-plane

Class of PΠ Generators of P Parameters Class of P

1 (a,0,0), (0, a,0), ( a
2 ,0, d) a, d > 0, 2d �= a 6A

20,2 (a,0,0), (0, b,0), ( a
2 ,0, d) a > b > 0, d > 0, 2d �= a

20,2 (a,0,0), (0, b,0), (0, b
2 , d) a > b > 0, d > 0, 2d �= b

1 (a, a,0), (a,−a,0), ( a
2 , a

2 , d) a, d > 0 6B

21 (a, a,0), (b,−b,0), ( a
2 , a

2 , d) a > b > 0, d > 0

21 (a, a,0), (b,−b,0), ( b
2 ,− b

2 , d) a > b > 0, d > 0

2 (a, b,0), (−b, a,0), ( a
2 , b

2 , d) a > b > 0, d > 0 12A

20,2 (a, b,0), (a,−b,0), ( a
2 , b

2 , d) a > b > 0, d > 0

21 (a, b,0), (b, a,0), ( a
2 , b

2 , d) a > b > 0, d > 0

4 (a, b,0), (c,0,0), ( a
2 , b

2 , d) *

4 (a, b,0), (c,0,0), ( c
2 ,0, d) *

7 Lattices Not Invariant Under R3

Throughout this section we let P = U /Λ be a 4-toroid such that Λ is not invariant
under R3. If P is in class 4, then Λ is invariant under the 3-fold rotation R2R1, as
well as under the plane reflection R1, whose mirror contains the axis of rotation of
R2R1. If P is in class 8, then Λ is invariant under R2R1, but not under R1 (see Fig. 3).
These two classes are described in Sect. 7.1. If P is in class 12B , then Λ is invariant
under R1 but not under R2R1. This class is described in Sect. 7.2. Finally, if Λ is not
invariant under R1 or R2R1, then P must be in class 24.

7.1 Lattices Invariant Under R2R1

The 3-fold rotation R2R1 fixes the line generated by the vector e = (1,1,1). Let Πe

be the plane x + y + z = 0, invariant under R2R1 and let Λ be a rank 3 sublattice of
Λ{4,3,4} invariant under R2R1. Note that Λ{4,3,4} ∩ Πe is a lattice isomorphic to the
lattice Λ{3,6}, generated by the vectors u1 = (1,0,−1) and u2 = (0,1,−1). For any
v ∈ Λ, v + v(R2R1) + v(R2R1)

2 must project into o. This implies that 3v projects
orthogonally to Πe into a point of Λ since its distance to Πe coincides with that of
v+v(R2R1)+v(R2R1)

2. Hence ΛΠe := Λ∩Πe is a rank 2 sublattice of Λ{4,3,4}∩Πe

invariant under R2R1. It follows from the structure of the conjugacy classes of 3-
toroids with type {3,6} (see Fig. 2) that ΛΠe induces either a regular or a chiral
3-toroid K, and therefore we may choose a generating set {v1, v2} of ΛΠe , where v1
and v2 have the same length and the angle between them is π

3 . We shall consider the
vectors v1 and v2 in terms of the basis {u1, u2}. Since χ is the central inversion at the
origin, the composition R2R1χ is a rotatory reflection of order 6, whose restriction
to the plane Πe is a 6-fold rotation.

Since R1 preserves Πe, if Λ is invariant under R1 then so is ΛΠe . This implies
that the 3-toroid K is regular. However, even if Λ is not invariant under R1, K may
still be regular, as we shall see below.
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We say that Λ is a vertical translation lattice with respect to ΛΠe whenever
Λ = ⋃

k∈Z
(ΛΠe + kv) where v = (l, l, l) for some l ∈ Z as in Sect. 2. In this case,

the distance between Πe and Πe + v (the first translate of ΛΠ in the direction of e

intersecting Λ) is a multiple of
√

3.
The following lemma describes the location of the translates of ΛΠe , including the

case when Λ is not a vertical translation lattice.

Lemma 13 Let Λ be an integer lattice invariant under R2R1, and let Πe and ΛΠe

as above. Let {v1, v2} be a generating set for ΛΠe consisting of vectors with the same
length and an angle of π

3 between them. Then Λ = ⋃

k∈Z
(ΛΠe + kv) where v is a

point in Λ\Πe closest to Πe that projects to either the origin o, to v1+v2
3 or to 2 v1+v2

3 .

Proof Without loss of generality assume that v projects orthogonally to Πe to a point
in the parallelogram determined by v1 and v2, since otherwise we could instead con-
sider the appropriate translate of v.

If Λ is a vertical translation lattice with respect to Πe, then v projects to o.
Recall that 3v projects orthogonally to Πe into a point of Λ. An easy calculation

shows that v projects to one of the nine points iv1 + jv2 where i, j ∈ {0, 1
3 , 2

3 }. If
Λ is not a vertical translation lattice, then i and j are not both 0, giving us eight
possible points for the projection of v. Note that these eight points are equivalent in
pairs under χ and translations preserving Λ, hence without loss of generality we may
assume that v projects to v1

3 , v2
3 , v1+v2

3 or v1+2v2
3 .

If v projects to v1
3 , then it is easy to verify that v − vR2R1 = v1

3 − v1
3 (R2R1) /∈ Λ,

which is a contradiction. Similarly, v cannot project to v2
3 or to v1+2v2

3 . Hence we
need only consider v1+v2

3 and 2 v1+v2
3 as projections of v. �

We note that if Λ is a vertical translation lattice, R1 preserves Λ whenever K is a
regular 3-toroid. When Λ is not a vertical translation lattice and K = {3,6}(a,0),(0,a)

for some integer a (where we take (a,0) and (0, a) in terms of the basis {u1, u2}), R1

is still a symmetry of Λ. However, this is not the case if Λ is not a vertical translation
lattice and K = {3,6}(a,a),(2a,−a), for some integer a.

In conclusion, the classification of toroids in classes 4 and 8 is as in Table 5.
Recall that here we consider toroids induced by lattices invariant under R2R1. As
mentioned above, v is a point in Λ \ΛΠe closest to ΛΠe . We note that in the table the
generating vectors of the toroids are given in terms of the canonical basis {e1, e2, e3}
(as opposed to in terms of {u1, u2} as it was the case for K). The conditions on the
parameters required in the second row of the table ensure that the obtained toroid in
indeed in class 4.

7.2 Class 12B

Toroids in class 12B are invariant under R1, which is the reflection with respect to the
plane x = y, denoted by Π1. Note that the set of points of Λ{4,3,4} in the plane Π1,
generated by the vectors (1,1,0) and (0,0,1), coincides with the point set of a lattice
of rectangles with sides of lengths 1 and

√
2. The only possible symmetries of this
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rectangular lattice stabilising the origin are the half-turn induced by χ and the reflec-
tions with respect to the lines in the directions (1,1,0) and (0,0,1). Consequently, a
toroid induced by a sublattice of the rectangular lattice is of type {4,4} in class 20,2
or in class 4.

Assume that Λ is a sublattice of Λ{4,3,4} invariant under R1, and let ΛΠ1 := Λ ∩
Π1. We say that Λ is a vertical translation lattice whenever Λ = ⋃

k∈Z
(ΛΠ1 + kv)

where v = (d,−d,0) for some d ∈ Z. The following lemma describes the location
of the translates of ΛΠ1 whenever Λ is not a vertical translation lattice. Its proof is
analogous to that of Lemma 11.

Lemma 14 Let Π1 be the plane x = y and Λ a lattice invariant under the reflection
in Π1. If Λ is not a vertical translation lattice, then Λ = ⋃

k∈Z
(ΛΠ1 + kv) for v =

(x + d, x − d, z) ∈ Λ, such that (2x,2x,2z) ∈ Λ and (x, x, z) /∈ Λ.

Assume that ΛΠ1 is not a vertical translation lattice, and that it is generated by
vectors v1 and v2. Lemma 14 implies that the points of Λ project orthogonally to Π1
into translates of either v1

2 , v2
2 or v1+v2

2 .
To determine all toroids in class 12B we shall consider sublattices of Λ{4,3,4} ∩Π1

and determine all possible ways to extend them to sublattices of Λ{4,3,4}. In doing so,
we need to eliminate those extended lattices that gain extra symmetries. According
to Fig. 3 the extra symmetries we need to consider are R3 and R2R1.

We start by analysing the case where ΛΠ1 induces a toroid K in class 20,2.
The generating set of vectors {v1, v2} of ΛΠ1 can be chosen to be either

{(a, a,0), (0,0, b)} or {(a, a, b), (a, a,−b)}. In the first case, the fundamental region
is a rectangle, whereas in the second case it is a rhombus.

We first consider the case where fundamental region of ΛΠ1 is a rectangle. If Λ is
a vertical translation lattice, then v = (d,−d,0) and

P = {4,3,4}(a,a,0),(0,0,b),(d,−d,0) = {4,3,4}(a,a,0),(d,−d,0),(0,0,b)

is in class 3 or 6B , as in Table 2. If v projects to v1
2 , then

P = {4,3,4}
(a,a,0),(0,0,b),( a+d

2 , a−d
2 ,0)

= {4,3,4}
( a+d

2 , a−d
2 ,0),( a−d

2 , a+d
2 ,0),(0,0,b)

is in class 1, 3 or 6B as in Table 2. If v projects to v2
2 , then

P = {4,3,4}
(a,a,0),(0,0,b),(d,−d, b

2 )
= {4,3,4}

(a,a,0),(2d,−2d,0),(d,−d, b
2 )

is in class 6B as in Table 4. Finally, if v projects to v1+v2
2 , then

P = {4,3,4}
(a,a,0),(0,0,b),( a+d

2 , a−d
2 , b

2 )
= {4,3,4}

(a,a,0),(d,−d,0),( a+d
2 , a−d

2 , b
2 )

is in class 1, 3 or 6B as in Table 3. It follows that for all possible choices for projection
of v, Λ is invariant under R3 and hence P is not in class 12B .

We now examine the case when the fundamental region of ΛΠ1 is a rhombus. If v

projects to o, then

P = {4,3,4}(a,a,b),(a,a,−b),(d,−d,0) = {4,3,4}(2a,2a,0),(d,−d,0),(a,a,b)
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is in class 6B (see Table 4). If v projects to v1+v2
2 , then

P = {4,3,4}(a,a,b),(a,a,−b),(a+d,a−d,0) = {4,3,4}(a−d,a+d,0),(a+d,a−d,0),(a,a,b)

is in class 1, 3 or 6B (see Table 3). Now assume that v projects to v1
2 . (Note that the

case v projects to v2
2 leads to an isomorphic toroid, so it is not necessary to consider

it.) It is an easy calculation to verify that vR3 /∈ Λ and so that in this case Λ is not
invariant under R3. Since v projects to v1

2 , the generating vectors of Λ can be taken
to be (a, a, b), (a, a,−b) and ( a+d

2 , a−d
2 , b

2 ). The lattice Λ is now invariant under
R1 but not under R3, implying that the induced toroid is either in class 4 or 12B . By
choosing a different generating set, with two generators in Π1, the toroids in class 4
(listed in Table 5) can also be expressed as indicated below.

{4,3,4}(a,0,−a),(0,a,−a),(c,c,c) = {4,3,4}(a,a,−2a),(c,c,c),(a,0,−a),

{4,3,4}
(a,0,−a),(0,a,−a),( a+c

3 , a+c
3 , −2a+c

3 )
= {4,3,4}

(a,a,−2a),( a+c
3 , a+c

3 , −2a+c
3 ),(a,0,−a)

,

{4,3,4}(a,a,−2a),(2a,−a,−a),(c,c,c) = {4,3,4}(a,a,−2a),(c,c,c),(2a,−a,−a).

(1)

Proposition 3 implies that these toroids do not arise from the lattice Λ. Hence the
toroid P = {4,3,4}

(a,a,b),(a,a,−b),( a+d
2 , a−d

2 , b
2 )

is in class 12B .
We finally analyse the case when K is in class 4. In this case Λ is not invari-

ant under R3, implying that the induced toroid is either in class 4 or 12B , depend-
ing on whether Λ is invariant under R2R1 or not. As before, let v1 and v2 be the
generators of ΛΠ1 . Recall that the generating vectors of the restriction of the lat-
tice Λ{4,3,4} to the plane Π1 are (1,1,0) and (0,0,1). By Lemma 4 and Propo-
sition 5, v1 and v2 can be chosen to be v1 = a(1,1,0) + b(0,0,1) = (a, a, b),
v2 = c(1,1,0) + 0(0,0,1) = (c, c,0) such that c � 2a. Since Λ is invariant under
R1, the toroid P is {4,3,4}(a,a,b),(c,c,0),v , where v is one of the following vectors:
(d,−d,0), ( a+d

2 , a−d
2 , b

2 ), ( c+d
2 + d, c−d

2 ,0) or ( a+c+d
2 , a+c−d

2 , b
2 ), with c � 2a. Fur-

thermore, for P to be in class 12B , Λ cannot be invariant under R2R1. We shall use
Proposition 3 to determine conditions on a, b, c and d under which this happens.

Let A be the matrix whose columns are the generating vectors of Λ. Let

M =

⎛

⎜
⎜
⎝

0 1 0

0 0 1

1 0 0

⎞

⎟
⎟
⎠

be the matrix corresponding to the isometry R2R1. Then, for v = (d,−d,0) we have
|A| = −2bcd whereas |A| = −bcd for the remaining 3 possible choices of v.

We first note that if v = (d,−d,0), that is, v projects to o, then the entry
(adj(MA)A)33 = bcd , implying that the determinant of A divides it only when
bcd = 0. But bcd �= 0 since (a, a, b), (c, c,0), (d,−d,0) generate the lattice Λ, im-
plying that P = {4,3,4}(a,a,b),(c,c,0),(d,−d,0) is in class 12B whenever c � 2a.

If v = ( a+d
2 , a−d

2 , b
2 ), that is, if v projects into v1

2 , then the toroid P is in class
12B whenever |A| does not divide all the entries of the matrices adj(MA)A and
adj(A)MA. That is,
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Table 6 Toroids in class 12B

Projection of v Class of K Generators of P Parameters

v1
2 20,2 (a, a, b), (a, a,−b), ( a+d

2 , a−d
2 , b

2 ) a, b, d > 0; 2 | a
o 4 (a, a, b), (c, c,0), (d,−d,0) a, b, c, d > 0; c � 2a
v1
2 4 (a, a, b), (c, c,0), ( a+d

2 , a−d
2 , b

2 ) a, b, c, d > 0; ∗
v2
2 4 (a, a, b), (c, c,0), ( c+d

2 , c−d
2 ,0) a, b, c, d > 0; ∗∗

(*) 4bcd does not divide all the entries of
⎛

⎜
⎝

2c(−ab + b2 − 2ad) −2c2(b + 2d) c(−ab − bd − 2ad + 2d2 + b2)

2d(a − b)(2a + b) 2cd(2a − b) 2d(2a + b)(a − b − d)

4bc(a − b) 4bc2 2bc(a + d − b)

⎞

⎟
⎠

and
⎛

⎜
⎝

2c(ab − b2 − 2ad) 2c2(b − 2d) c(ab − bd − b2 − 2ad − 2d2)

2d(2a + b)(a − b) 2cd(2a − b) 2(2a + b)(a − b + d)

4bc(b − a) −4bc2 2bc(b + d − a)

⎞

⎟
⎠ .

When v = ( a+c+d
2 , a+c−d

2 , b
2 ) projects to v1+v2

2 no new toroids are derived (since
we may instead take a new fundamental region for ΛΠ1 determined by v′

1 := (a +
c, a + c, b) and v2 = (c, c,0) and so v projects to

v′
1

2 ).
Finally, if v = ( c+d

2 , c−d
2 ,0), that is, if v projects to v2

2 , then again the toroid P is
in class 12B whenever |A| does not divide all the entries of the matrices adj(MA)A

and adj(A)MA. That is,

(**) 4bcd does not divide all the entries of
⎛

⎜
⎝

−4acd −4c2d −2cd(c − d)

2(a − b)(−bc + 2ad + bd) 2c(2ad − bc − bd) −bc2 + 2acd − 2bcd − 2ad2 − 2bd2

4bc(a − b) 4bc2 2bc(c + d)

⎞

⎟
⎠

and
⎛

⎜
⎝

−4acd −4c2d −2cd(c + d)

2(a − b)(bc + 2ad + bd) 2c(bc + 2ad − bd) bc2 + 2acd − 2bcd + 2ad2 + 2bd2

4bc(b − a) −4bc2 −2bc(c − d)

⎞

⎟
⎠ .

In summary we have Table 6, where the divisibility conditions ∗ and ∗∗ are given
above.

8 Conclusions

In Sects. 6 and 7 we classified equivelar 4-toroids. We summarise our analysis in the
following theorem.
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Theorem 15 Toroids with Schläfli type {4,3,4} can be described as {4,3,4}v1,v2,v3 ,
where v1, v2 and v3 are three linearly independent vectors. Furthermore, the classes
of toroids are as follow.

• Class 1 contains three families of toroids, given in Tables 2 and 3.
• Class 3 contains four families of toroids, given in Tables 2 and 3.
• Class 4 contains three families of toroids, given in Table 5.
• Class 6A contains seven families of toroids, given in Tables 2, 3 and 4.
• Class 6B contains seven families of toroids, given in Tables 2, 3 and 4.
• Class 6C contains two families of toroids, given in Tables 2 and 3.
• Class 8 contains three families of toroids, given in Table 5.
• Class 12A contains seven families of toroids, given in Tables 2, 3 and 4.
• Class 12B contains five families of toroids, given in Table 6.
• Class 24 contains all equivelar toroids not isomorphic to toroids in any of the

previous classes.

To determine the class of a 4-toroid {4,3,4}v1,v2,v3 , one needs to repeatedly ap-
ply Proposition 3 where the matrix A is given by the generating vectors v1, v2, v3
and the matrices M are determined by the symmetries which label the edges of
Fig. 3 and their conjugates in the stabiliser S of the origin. One can also use
some geometric arguments to simplify this verification. For example, the toroid
P := {4,3,4}(3,0,0),(1,3,0),(1,1,4) can be seen to be in class 24 as follows. The small-
est vectors in the lattice Λ inducing this toroid that lie on the x-, y- and z-axis are
(3,0,0), (0,9,0) and (0,0,36), respectively. This immediately implies that Λ is not
invariant under R1, R2R1 or any of their conjugates, as any of these symmetries per-
mute the coordinate axes. Furthermore, to see that Λ is not invariant under R3 or
under any of its conjugates (that is, R2R3R2 and R1R2R3R2R1) we use Proposi-
tion 3 and note that det(A) = 36 does not divide all the entries of the corresponding
matrices adj(MA)A.

While in rank 3 each toroid is described by a unique set of parameters given in
Theorems 7 and 8, two different sets of parameters in Tables 2 to 6 may determine the
same 4-toroid. The necessary, but not sufficient, condition is that the determinants of
the matrices determined by the two sets of generators are equal. Further calculations
to eliminate duplications lead to lengthy conditions and complicated analysis, while
not substantially contributing to the findings of the paper and we have chosen to omit
it.

In rank n, for n > 4, the number of possible classes of symmetries of equivelar
n-toroids grows fast. This makes the analysis we present here unfeasible for higher
ranks. However, the ideas on this paper can be used to classify toroids of rank n for
any symmetry type. Of particular interest would be to classify 2-orbit toroids of any
rank n > 4, or to determine that there are none.
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