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1 Introduction

Simplified versions of the AdS/CFT correspondence allow for a detailed study of hologra-

phy that would be impossible in a full string theory setting. A promising approach along

these lines is the investigation of higher spin theories of gravity in anti de Sitter space, which

include a large (possibly infinite) number of fields with spins s = 2, 3, . . . , N , including the

graviton of spin s = 2. The higher spin fields take the place of string excitations. Hologra-

phy in this context is, to some extent, a complicated but tractable field redefinition [1, 2].

This puts holography (in some special cases) on a footing similar to, say, Coleman’s sine-

Gordon/Thirring duality [3] where operators of the two theories have a known one-to-one

map, rather than the more mysterious strong-weak dualities of string theory.

In four bulk dimensions, Klebanov and Polyakov [4] conjectured a duality between

Vasiliev’s higher spin theory [5, 6] and the O(N) vector model at its two isolated critical

points. Recently interest in higher spin dualities was renewed by detailed checks of the

correlation functions [7]. The bulk computations are difficult (though they can be simplified

by a gauge choice [8]), partly because the action of the higher spin theory is unknown.
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In three bulk dimensions, the higher spin theory is much simpler. The massless sector is

described semiclassically by the Chern-Simons action, and thus the graviton and its higher

spin cousins have no propagating modes. Furthermore, the dual CFT is two dimensional

and therefore subject to the strong constraints of the Virasoro algebra and its higher spin

analogs, the W-algebras. This allows for full control of the dual CFT for all values of the

coupling λ, without supersymmetry.

The prime examples of exactly solvable interacting CFTs in two dimensions are the

Virasoro minimal models, with central charge c < 1. These theories, which include ex-

perimentally relevant systems such as the Ising model, are not dual to any semiclassical

gravity-like theory in AdS3 because they do not have enough degrees of freedom to ac-

count for the large Brown-Henneaux central charge [9] of AdS3 gravity, c = 3ℓ/2G ≫ 1,

where ℓ is the AdS radius and G is Newton’s constant. In other words, they have small N .

However, the underlying Virasoro symmetry can be extended to a larger WN -symmetry

with conserved currents of dimensions s = 2, . . . , N . (The pure Virasoro symmetry is then

simply W2.) The corresponding generalization of the Virasoro minimal models, called the

WN -minimal models, allow for a large-N limit and therefore for a potential interpreta-

tion as gravity in AdS3. Other solvable CFTs admitting large N limits were discussed

recently in [10].

Following the appearance of W-symmetry in the asymptotic algebra of AdS3 higher

spin theories [11–13], it was proposed that a particular AdS3 higher spin theory together

with a pair of massive complex scalar fields is dual to the WN minimal models at large

N [14]. Just like the Virasoro minimal models, the WN models are parametrized by a level

k. The large N limit of [14] is taken in such a way that the ’t Hooft coupling, defined by

λ =
N

N + k
, 0 < λ < 1 (1.1)

is held fixed. The dual bulk theory has an infinite tower of massless higher spin fields as

well as two complex scalars with masses

M2 = λ2 − 1 . (1.2)

The partition functions of the two theories were compared in [14], and the first few terms

(as an expansion in the modular parameters q and q̄) were found to match precisely at

arbitrary ’t Hooft coupling λ.

This can be compared to the string theory realization of AdS3/CFT2 where the bound-

ary theory is the D1-D5 CFT [15, 16]. This theory has a simple point in moduli space, the

orbifold point, where many quantities can be computed explicitly. However to compare

to the gravity theory, the results must be extrapolated to strong coupling, and thus only

certain protected quantities can be expected to match. In our context of minimal model

holography, the CFT can be solved for any value of the ’t Hooft parameter, and can be

directly compared to the bulk. We should note that, at least on the face of it, minimal

model holography is only expected to be exact in the large N limit (possibly including 1/N

corrections on both sides), but does not hold directly at finite N . For example, it is not

clear if or how black holes are captured by the finite N minimal model [17].
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In this paper we give further evidence for the minimal model holography of [14]. To

this end we study the higher spin bulk theory whose massless sector is described by the

Chern-Simons theory based on the infinite-dimensional Lie algebra hs[λ]. (hs[λ] is the

higher spin analogue of sl(2) which in turn is relevant for the description of pure gravity

on AdS3; the Chern-Simons theory based on hs[λ] describes the massless sector of the bulk

theory in [14].) For general ’t Hooft parameter λ we analyze the asymptotic symmetry

algebra of this bulk theory, generalizing the analysis of [11] and [12] for λ = 1
2 and λ = N ,

respectively. We show that, for general λ, the resulting algebra agrees with (two copies of)

a specific W∞[λ] algebra that has been previously constructed in the context of integrable

systems by Figueroa-O’Farrill, Mas, and Ramos [18] and independently by Khesin and

Zakharevich [19, 20]. This W-algebra has generating fields of dimension s = 2, 3, . . . ,

which extends hs[λ] much like the Virasoro algebra extends sl(2). The algebra is in general

nonlinear, meaning the commutation relations involve polynomials in the generating fields;

an explicit description is given in appendix B.

The algebra W∞[λ] is in fact related to various W∞-algebras that have appeared in the

literature before. When λ = 1, all nonlinearities can be removed by a change of basis, and

the algebra becomes the well known linear WPRS
∞ algebra of Pope, Romans and Shen [21].

When λ = N , the trace that appears in the Chern-Simons action degenerates and all fields

of spins s > N should be removed; the bulk theory then reduces to sl(N) Chern-Simons

theory and the boundary algebra becomes WN [12].

Given the usual AdS/CFT dictionary, the W∞[λ] algebra should now control the spec-

trum of the dual CFT. The representation theory of W∞[λ] is largely determined by the

representation theory of the global part hs[λ] of the bulk symmetry, since hs[λ] can be

identified with the so-called ‘wedge algebra’ whose general construction was explained

in [22]. We give fairly non-trivial evidence that the large-N ’t Hooft limit of the WN

minimal model representations come indeed from representations of hs[λ]. In particular,

we show that the eigenvalues of the spin-3 zero mode agree (up to some overall normal-

ization which is ambiguous) on the simplest representations. Furthermore we demonstrate

that the characters of these W∞[λ] representations reproduce precisely the characters of

the corresponding WN minimal model representations in the ’t Hooft limit whose first few

terms were determined in [14].

The results of this paper therefore explain part of the match found in [14]. More

importantly, the detailed understanding of the symmetries provides a framework to analyze

the bulk/boundary map in more detail. The full partition functions compared term-by-

term in [14] were organized into representations of sl(2); rearranging the results to be

manifestly hs[λ]-invariant greatly simplifies the task of proving equality to all orders [23].

The paper is organized as follows. In section 2, we review the higher spin algebras

hs[λ], general properties of W-algebras, and the identification of the higher-spin algebra

as the global or ‘wedge’ component of a W-algebra; everything in section 2 is review. In

section 3, we compute the asymptotic symmetries of the hs[λ] higher spin theory, derive the

resulting algebra W∞[λ], and describe the relation of W∞[λ] to various W∞-algebras that

have appeared in the literature. In section 4 we give evidence that the global symmetries of

the boundary CFT are indeed hs[λ]. Some details about the structure of the hs[λ] algebra
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are given in appendix A, and the full commutation relations of W∞[λ] are spelled out in

appendix B.

2 W-symmetry and higher spin algebras

Let us begin by reviewing higher spin algebras, W-algebras, and the connection between

the two.

In ordinary AdS3 gravity, the bulk isometries are the six generators of sl(2) ⊕ sl(2).

Near the conformal boundary, these are enhanced to the Virasoro ⊕Virasoro symmetries of

the dual CFT. Conversely, the exact symmetries of the bulk can be recovered from the CFT

by starting with the Virasoro generators Ln, L̄n and restricting to the global subalgebra

n = 0,±1.

A similar relationship connects higher spin algebras to W-algebras. The analogue of

the bulk isometries sl(2) is the higher spin algebra hs[λ]. It is an infinite-dimensional Lie

algebra that has a simple description in terms of the universal enveloping algebra U(sl(2)),

as we shall review in section 2.1 below. The symmetry algebra of the dual CFT (i.e. the

analogue of the Virasoro algebra) is a W-algebra that we shall denote by W∞[λ]. For a

range of values of λ, it can be understood as the ’t Hooft large N limit of the minimal

model WN -algebras. For generic λ it has non-linear commutation relations, as we shall

demonstrate by an explicit calculation in section 3. Because of these non-linearities, hs[λ]

is not a subalgebra of W∞[λ]. However, even for non-linear W-algebras, there exists a

standard construction by means of which one can associate the ‘finite’ or ‘global’ wedge

algebra to it, i.e. the analogue of sl(2) for the case of Virasoro; this will be explained in

section 2.2.

2.1 Higher spin algebras hs[λ]

The one-parameter family of higher spin Lie algebras hs[λ] has generators

V s
n , s ≥ 2 , |n| < s . (2.1)

V 2
0,±1 forms an sl(2) subalgebra under which V s

n has spin s − 1,

[V 2
m, V s

n ] = (−n + m(s − 1))V s
m+n . (2.2)

(Bulk fields associated to V s
n will have spacetime spin s.) The full commutation relations are

[V s
m, V t

n] =

s+t−1∑

u=2
even

gst
u (m,n;λ)V s+t−u

m+n (2.3)

with structure constants gst
u (m,n;λ) given in appendix A [24].

For the following another description of hs[λ] will be important [24–27]. Consider the

quotient of the universal enveloping algebra U(sl(2)) by the ideal generated by (C2 − µ1),

B[µ] =
U(sl(2))

〈C2 − µ1〉 . (2.4)
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Here C2 is the quadratic Casimir of sl(2); if we denote the generators of sl(2) by J0, J±

with commutation relations

[J+, J−] = 2J0 , [J±, J0] = ±J± , (2.5)

then C2 is given by

C2 ≡ J2
0 − 1

2
(J+J− + J−J+) . (2.6)

Unitary representations of sl(2) have C2 > −1
4 , so we parameterize the Casimir as

µ =
1

4
(λ2 − 1) . (2.7)

The Lie algebra hs[λ] can be identified (as a vector space) with a subspace of B[µ],

hs[λ] ⊕ C = B[µ] . (2.8)

The vector corresponding to C in (2.8) is the identity generator 1 of the universal enveloping

algebra, which one may formally identify with V 1
0 . The modes V 2

0,±1 in the sl(2) subalgebra

of hs[λ] can be identified with J0,±1, respectively, while for n ≥ 2

V s
n = (−1)s−1−n (n + s − 1)!

(2s − 2)!

[
J−, . . . [J−, [J−︸ ︷︷ ︸
s − 1 − n terms

, Js−1
+ ]]

]
. (2.9)

The vector space B[µ] in (2.4) is an associative algebra whose product we denote by ⋆. The

Lie algebra structure of hs[λ]⊕C is then defined by the commutator [X,Y ] = X⋆Y −Y ⋆X.

Note that the identity generator 1 is central. On B[µ] we can define an invariant bilinear

trace [28] via

tr(X ⋆ Y ) = X ⋆ Y |Ja=0 , (2.10)

i.e. by retaining only the term proportional to 1. Since the trace is symmetric, the com-

mutator of two elements in hs[λ] then does not involve 1, and hence the Lie algebra is a

direct sum of hs[λ] ⊕ C.

To get a feeling for the structure of hs[λ] it is useful to work out the first few terms

explicitly. For example we have

V 3
2 = J+J+ , V 3

−2 = J−J− V 3
0 =

1

3

(
J−J++J0+2J0J0

) ∼= J0J0 −
1

12
(λ2 − 1)

V 3
1 = J0J+ +

1

2
J+ , V 3

−1 = J−J0 +
1

2
J− , (2.11)

and the first few commutators are

[V 3
2 , V 3

1 ] = 2V 4
3 [V 3

2 , V 3
0 ] = 4V 4

2 (2.12)

[V 3
2 , V 3

−1] = 6V 4
1 − 1

5
(λ2 − 4)V 2

1 [V 3
2 , V 3

−2] = 8V 4
0 − 4

5
(λ2 − 4)V 2

0 . (2.13)

It is easy to check that these coefficients agree with (2.3). These identities suggest that for

λ = 2, the Lie algebra generated by V s
n with s ≥ 3 form a proper subalgebra of hs[λ]. In

– 5 –
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fact, this is a special case of a more general phenomenon. If λ = N with integer N ≥ 2

then the quadratic form (2.10) degenerates [25, 28, 29],

tr(V s
mV r

n ) = 0 for s > N . (2.14)

This implies that an ideal χN appears, consisting of all generators V s
n with s > N . Factoring

over this ideal truncates to the finite algebra sl(N),

sl(N) = hs[N ]/χN (N ≥ 2) . (2.15)

Note that when λ = 1, the quadratic form (2.10) vanishes identically (as is obvious from

its definition). However, one can rescale the trace by 1/(λ − 1), and the result is non-

degenerate. In fact, the resulting Lie algebra then agrees with the wedge subalgebra of

WPRS
∞ as defined by Pope, Romans and Shen [21], see also [30] and references therein. (As

will be explained in more detail below, the W-algebra WPRS
∞ is linear, and hence the modes

W s
n with |n| < s form a subalgebra, which agrees with hs[1].) Note that λ is the ’t Hooft

parameter of [14], so this case corresponds to the maximal coupling limit.

We should also mention that for λ = 1
2 , the algebra is isomorphic to the hs(1, 1) algebra

as defined in [27, 31, 32]. Blencowe [32] defined the original theory of higher-spin AdS3

gravity as a Chern-Simons theory with bosonic subalgebra hs(1, 1) ⊕ hs(1, 1). This is also

the bulk algebra considered recently by Henneaux and Rey [11].

In the limit λ → ∞ the commutator algebra of sl(2) used in the construction (2.4)

reduces to a classical Poisson bracket algebra [27, 33]. The sl(2) generators J0, J± (properly

rescaled) can be considered coordinates on the 2d hyperboloid defined by C2 = 1. The

hs[∞] algebra is then the Lie-bracket algebra of area-preserving diffeomorphisms of the

hyperboloid H2. This can also be defined as an N → ∞ limit of sl(N), so

hs[∞] = sdiff(H2) = sl(∞) . (2.16)

Finally, we should mention that for any value of λ the zero modes V s
0 all commute

with one another. (This follows because in the quotient space B[µ] we may represent them

in terms of polynomials of J0.) Thus these algebras contain infinitely many commuting

charges.

2.2 W-algebras and wedge algebras

W-algebras consist of the Virasoro generators Ln ≡ W 2
n at level 2, plus a tower of higher-

dimension currents. For example, the family WN has primary operators of dimension s for

s = 2, 3, . . . , N . Its commutation relations are nonlinear, so it is not a Lie algebra (when

expressed in terms of these modes). The most familiar example is the famous W3 algebra

of [34], for which the commutation relations are

[W 2
m,W 2

n ] =
c

12
m (m2 − 1) δm,−n + (m − n)W 2

m+n (2.17)

[W 2
m,W 3

n ] = (2m − n)W 3
m+n

[W 3
m,W 3

n ] =
c

3 · 5! (m2 − 2) (m2 − 1)m δm,−n +
1

30
(m − n)(2m2−mn+2n2−8)W 2

m+n

+
16

22 + 5c
(m − n)

(
∑

p∈Z

: W 2
m+n+pW

2
−p : + xm+n W 2

m+n

)
,

– 6 –
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where the xm are some constants. The commutation relations are only known explicitly

for WN with N = 3 and N = 4.

Because of the first term in the second line of [W 3
m,W 3

n ], the W-algebra is not a (linear)

Lie algebra. As a consequence the definition of the ‘finite’ or ‘global’ subalgebra requires

some care. Naively, this subalgebra should consist of the modes that annihilate the vacuum,

i.e. it should be generated by the ‘wedge’ modes W s
n with |n| < s. However, because of the

non-linear term, the commutator of W 3
2 with W 3

1 , say, contains terms involving W 2
p with

p arbitrary. Thus the above brackets do not close on the wedge modes.

Given the structure of the above algebra, it is not difficult to see how this can be

repaired, at least in this case: the non-linear terms decouple if we take c → ∞, and the

central terms do not contribute provided that we restrict ourselves to the wedge modes.

For the case at hand, the wedge algebra is then simply

[V 2
m, V 2

n ] = (m − n)V 2
m+n (2.18)

[V 2
m, V 3

n ] = (2m − n)V 3
m+n

[V 3
m, V 3

n ] =
1

30
(m − n)(2m2 − mn + 2n2 − 8)V 2

m+n ,

for |n| < s, which is easily seen to be isomorphic to sl(3).

The above construction was generalised by Bowcock and Watts [22] under some fairly

mild conditions to general W-algebras. In particular, they showed that the wedge algebra of

WN is sl(N). More generally, if W(g) is the W-algebra constructed from a Lie algebra g by

Drinfeld-Sokolov reduction [35–37] of the affine algebra ĝ, then the procedure of Bowcock

and Watts gives back g,

g
Drinfeld-Sokolov−−−−−−−−−→ W(g)

Bowcock-Watts−−−−−−−−→ g . (2.19)

The analysis of Bowcock and Watts was concerned with finite-dimensional Lie algebras g.

In the current context, we are interested in the analogous statement for g = hs[λ]. While a

direct application of the Drinfeld-Sokolov reduction in this case is somewhat delicate, one

can think of the Drinfeld-Sokolov reduction as describing the asymptotic symmetries of

the corresponding Chern-Simons gravity theory. Thus we can determine W∞[λ] starting

from hs[λ] by analyzing the algebra of asymptotic symmetries. In this context, the non-

linearities will be related to the curvature of AdS3, and hence should disappear in the limit

where the cosmological constant goes to zero, i.e. for c → ∞. Thus we expect that we can

reobtain from W∞[λ] the original higher spin algebra hs[λ] by going to the wedge, i.e. that

we have

hs[λ]
Asymptotic symmetries−−−−−−−−−−−−→ W∞[λ]

c→∞ , |n|<s−−−−−−−−→ hs[λ] . (2.20)

This is confirmed in section 3. By construction, W∞[λ] describes the symmetries of the

boundary CFT, while hs[λ] is associated to the bulk symmetries. The physical origin

behind this algebraic statement is therefore the usual relation between bulk and bound-

ary symmetries.

– 7 –
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In the following we want to construct W∞[λ] explicitly by calculating the Poisson

brackets of the corresponding charges. Because it is realized by Poisson brackets, it is a

classical W-algebra as in [11, 12]; for example, for W3 it differs from (2.17) by the quantum

correction that shifts the denominator of the last term of (2.17), 5c → 5c + 22. Note that

this does not affect the wedge algebra. In section 4, we shall show that the primary fields

of the dual CFT proposed in [14] indeed define representations of W∞[λ]; this analysis

essentially only relies on the structure of the wedge algebra hs[λ].

3 W∞[λ] from asymptotic symmetries

In this section we generalize the asymptotic symmetry analysis of [11, 12] to a bulk theory

of higher-spin gravity based on the algebra hs[λ]. The results for sl(N) [12] and hs(1, 1) [11]

can be recovered by setting λ to special values as described in section 2.1.

The asymptotic symmetry algebra is the algebra of allowed, nontrivial symmetries of

the theory. A symmetry is ‘allowed’ if it generates a transformation obeying the boundary

conditions; it is ‘nontrivial’ if the associated conserved charge is nonzero. Because conserved

charges are given by an integral over the boundary of a spatial slice, nontrivial symmetries

are those that act at infinity. The commutation relations of the algebra follow from the

Poisson bracket algebra of conserved charges.

Before doing the detailed computation, let us describe the general structure that we

expect. In any theory, the algebra of conserved charges is identical to that of the symmetries

themselves, up to a possible extra term,

{Q(Λ), Q(Γ)} = Q([Λ,Γ]) + K(Λ,Γ) , (3.1)

where Λ,Γ are gauge parameters, Q is the conserved charge, and K denotes the extra term.

If the allowed gauge parameters Λ,Γ are field-independent, then K is a Q-independent

central term. For pure gravity in AdS3, the allowed diffeomorphisms are indeed independent

of the metric and K leads to the Brown-Henneaux central charge of the boundary Virasoro

algebra [9]. More generally, the allowed gauge transformations can be field dependent, in

which case K may depend nonlinearly on Q,

K(Λ,Γ) ∼ nonlinear terms in Q + central terms . (3.2)

For global symmetries of the bulk vacuum, in our case hs[λ], the term Q([Λ,Γ]) in (3.1) is

again a generator of hs[λ], while K has only nonlinear contributions. Thus the asymptotic

symmetries form a nonlinear algebra whose linear, global part is hs[λ], directly paralleling

the discussion of section 2.2. (The gauge-fixing procedure used to simplify the computation

below obscures this relationship by introducing additional field dependence in the gauge

transformations, but the structure (3.1) is guaranteed to reappear in the final answer.)

To compute the asymptotic algebra we apply the formalism of [9, 38–41] to the Chern-

Simons formulation of higher spin gravity. This is a topological theory with only boundary

excitations. Although for holographic minimal models we are ultimately interested in a

theory containing additional propagating scalars, we do not expect the scalars to affect

– 8 –
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the asymptotic symmetries for masses above the Breitenlohner-Freedman bound. The case

M2 = M2
BF, or λ = 0 in the dual CFT, may allow for interesting modifications because

the scalars have relaxed behavior at infinity [42, 43]. Here we simply impose boundary

conditions on the scalars that prevent any new contribution to the asymptotic charges.

3.1 The bulk theory

We consider a theory of higher spin gravity in AdS3 given by the Chern-Simons action

S = SCS[A] − SCS[Ã] , (3.3)

with

SCS[A] =
k̂

4π

∫
tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
. (3.4)

The level k̂ here is related, but not equal, to the level k of the coset CFT on the

boundary, see [14]. (A, Ã) take values in1

hs[λ] ⊕ hs[λ] , (3.5)

with generators

V s
n , |n| < s , Ṽ t

m , |m| < t . (3.6)

This theory was first defined in [27], and the trace was derived in [28], though we use the

PRS formulation of the higher spin algebra [24] as described in section 2.1. We focus on

A, but similar statements hold for Ã.

Following [11, 12], imposing the AdS boundary conditions and gauge fixing sets

A+ = e−ρV 2
0 a(T + φ)eρV 2

0 , A− = 0 , Aρ = e−ρV 2
0 ∂ρe

ρV 2
0 , (3.7)

where T, φ are boundary coordinates, ρ is the radial coordinate, A± = Aφ ± AT , and

a(T + φ) = V 2
1 +

2π

k̂

∑

s≥2

1

Ns

Ls(T + φ)V s
−s+1 . (3.8)

The Ls are arbitrary functions which will be interpreted as currents of the dual CFT. From

now on we work at fixed time T , so a = a(φ), Ls = Ls(φ). The coefficient Ns chosen to

normalize the currents in (3.8) is

Ns = tr(V s
−s+1V

s
s−1) . (3.9)

Ns is a rational function of λ, see (A.4) for the explicit formula.

1The bulk analysis is well defined for all λ ≥ 0, but to compare safely to the CFT one should restrict to

0 < λ < 1.
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3.2 Gauge transformations

The hs[λ] gauge symmetries of the form

Γ(T + φ) = e−ρV 2
0 γ(T + φ)eρV 2

0 (3.10)

preserve the gauge fixing condition, and act on the gauge field as

δa = γ′ + [a, γ] . (3.11)

At fixed time T = 0, let us expand them in components as

γ(φ) =
∑

s≥2

∑

|n|<s

γs,n(φ)V s
n . (3.12)

The highest-weight generators play a special role so we denote them by

ηs(φ) ≡ γs,s−1(φ) . (3.13)

Gauge symmetries which do not vanish near the boundary are physical symmetries,

relating physically inequivalent states. These symmetries have corresponding conserved

charges2

Q(γ) =

∫
dφ
∑

s≥2

Lsηs . (3.14)

These charges generate gauge transformations under Poisson brackets. That is, for any

expression X given in terms of the phase space variables,

{X ,Q(γ)} = δγX . (3.15)

The gauge parameters γs,n are not all independent, because we must also restrict

to gauge transformations that maintain the boundary condition (3.8). Plugging a gen-

eral γ (3.12) into the transformation law (3.11), and using the hs[λ] commutation rela-

tions (2.3) gives

δa =
∑

r≥2

∑

|n|<r

cr,nV r
n (3.16)

with

cr,n = γ′
r,n + (−n + r) γr,n−1

+
∑

s≥2

∑

u

2π

k̂Ns

Ls γr+u−s,n+s−1 gs,r+u−s
u (−s + 1, n + s − 1;λ) . (3.17)

The term containing γr,n−1 should be dropped if n = −r + 1, and the range of u is

2s > u ≥ max(2, s − r + |n + s − 1| + 1) , u ∈ 2Z . (3.18)

2For field-independent gauge transformations, this would be Q(γ) = k̂

2π

R

dφ tr(aγ). When the gauge

parameter is field-dependent, the V 2
1 component of a must be dropped to ensure that the variation of

this charge cancels the boundary term in the variation of the bulk generator of field-dependent gauge

transformations.
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The boundary condition (3.8) requires

cr,n = 0 , n 6= −r + 1 . (3.19)

This infinite set of equations for the gauge parameters γr,n can be solved iteratively in

terms of the highest-weight gauge parameters ηr [11].

The existence of the conserved charges (3.14) indicates that the asymptotic symmetries

form a W-algebra, with one current at each spin s ≥ 2. The commutation relations of the

W-algebra,

{Ls(φ), Lt(φ
′)} , (3.20)

for given choices of s, t are computed as follows. First, keep ηs arbitrary but set all other

ηr = 0, r 6= s. Solve the equations (3.19) iteratively, fixing the γr,n as functions of the

gauge parameter ηs. Then from (3.8) and (3.16), the asymptotic symmetry algebra is

δsLt =
k̂

2π
Ntct,−t+1(ηs) . (3.21)

This variation can be converted to a Poisson bracket using (3.15) and (3.14),

∫
dφ ηs(φ){Lt(φ

′), Ls(φ)} = δsLt(φ
′) =

k̂

2π
Ntct,−t+1(ηs(φ

′)) . (3.22)

3.3 The structure of W∞[λ]

We now apply the procedure described above to compute structure constants of W∞[λ].

We write the results for δsLt to keep the formulae compact, but this can easily be converted

to the commutator of currents using (3.22), or into commutators for the Fourier modes.

For now we give only the results for low spins, but arbitrary spins will be considered from

another angle in section 3.5.

As an example, first consider the action of the stress tensor s = 2. All λ-dependence

drops out, so this was computed in [11]. The solution of (3.19) for r > 2 is

γr,n = 0 (n > −r + 1) (3.23)

γr,−r+1 =
2π

k̂Nr

Lrη2 ,

while for r = 2,

γ2,0 = −η′2 , γ2,−1 =
2π

k̂N2

L2η2 +
1

2
η′′2 . (3.24)

Plugging these into cr,−r+1 and using (3.21) gives the δ2Lr variations written

explicitly below.
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More generally, the solutions for γt,n depend on the structure constants gst
u (m,n;λ)

and therefore involve polynomials in λ. The results for low spins are

δ2L2 = L′
2η + 2η′L2 −

c

24π
η′′′ (3.25)

δ2Lt = L′
tη + tη′Lt (t > 2) (3.26)

δ3L3 = 4L4η
′ + 2L′

4η − N3

12
(15L′

2η
′′ + 9η′L′′

2 + 10L2η
′′′ + 2L′′′

2 η) (3.27)

+
32π

c
N3L2(L2η)′ +

c

288π
N3∂

5
φη

δ3L4 = 5L5η
′ + 2ηL′

5 +
N4

15N3
(14L′

3η
′′ + 6L′′

3η
′ + 14L3η

′′′ + ηL′′′
3 ) (3.28)

−8π

5c

N4

N3
(25L3L

′
2η + 52L2L3η

′ + 18L2L
′
3η)

δ3L5 = 6L6η
′ + 2ηL′

6 +
N5

56N4
(45L′

4η
′′ + 15L′′

4η
′ + 60L4η

′′′ + 2L′′′
4 η) (3.29)

+
84π

5c

N5

N2
3

(3L2
3η

′ + 2L3L
′
3η) − 48π

7c

N5

N4
(7L4L

′
2η + 15L4L2η

′ + 4L2L
′
4η) .

The schematic form of the first spin-4 variation is

δ4L4 ∼ L6η + N4L2η + g44
4 (−3, 0;λ)L4η +

N4

c
(L2)

2η +
560N2

4 + 69N3N5

cN2
3

(L3)
2η

+
1

c
g44
4 (−3, 0;λ)L4L2η +

N4

c2
(L2)

3η +
cN4

8640π
∂7

φη , (3.30)

where we have ignored derivatives and numerical factors except in the central term, but

kept all λ and c dependence. The subscript on η has been suppressed; for spin-s variations

δsLt, take η to be ηs. Reversed variations, like δ3L2, can be found by the same process, or

by converting (3.25)–(3.30) to Poisson brackets using (3.22), and then using (3.22) again

to compute the variation; for example,

δ3L2 = 3L3η
′ + 2L′

3η . (3.31)

The first few λ-dependent factors, defined in (3.9) and (A.2), are

N3 =
16

5
q2(λ2 − 4) (3.32)

N4 = −384

35
q4(λ2 − 4)(λ2 − 9)

N5 =
4096

105
q6(λ2 − 4)(λ2 − 9)(λ2 − 16)

g44
4 (−3, 0;λ) =

16

5
q2(λ2 − 19) .

(Recall q is a normalization factor in the algebra that can be set to one.)

The central charge of the Virasoro algebra δ2L2 is

c = 6k̂ . (3.33)

– 12 –



J
H
E
P
0
5
(
2
0
1
1
)
0
3
1

According to (3.26), the higher spin currents are Virasoro primaries.

It is straightforward to convert to modes. To put the algebra in standard form with

no central terms inside the wedge |n| < s, we first shift the stress tensor

L2(φ) → L2(φ) − k̂

8π
. (3.34)

We have checked that if we restrict to the wedge |n| < s and scale c → ∞ to eliminate

the nonlinear terms, then the variations above become the commutators (2.3) of hs[λ] as

required by the general discussion around (3.1). This is the Bowcock-Watts procedure ap-

plied to the infinite Lie algebra hs[λ], and demonstrates explicitly the relationship between

W∞[λ] and hs[λ].

3.4 Linear W∞[λ] at λ = 1

The W∞[λ] algebra given above appears to be nonlinear, since quadratic and higher terms

appear on the right-hand side. This nonlinearity stems from the fact that the allowed gauge

transformations are field dependent. By contrast in ordinary AdS3 gravity the Brown-

Henneaux diffeomorphisms are fixed once and for all, and do not depend on the metric.

To confirm that W∞[λ] is truly nonlinear, we must check whether a redefinition of the

currents can linearize the algebra. For example, in the [L3, L3] commutation relation (3.27),

we can absorb the nonlinear term (L2)
2 into a redefinition of L4. There is no guarantee,

however, that this will work for higher commutators. We will show that for generic λ,

W∞[λ] is indeed truly nonlinear, but that for λ = 1 the algebra linearizes after redefining

the generators. In fact, it becomes the linear algebra WPRS
∞ defined by Pope, Romans and

Shen [21] (see also [30] and references therein)

W∞[1] = WPRS
∞ . (3.35)

The wedge algebra of WPRS
∞ (which in this case is actually a proper subalgebra since

there are no nonlinearities) is hs[1]. In fact, the full commutation relations of WPRS
∞ are

given by (2.3) with λ = 1, where we now allow m,n to range over all integers instead of

restricting to the wedge modes. For λ 6= 1, the hs[λ] commutation relations (2.3) cannot

be extended outside the wedge in this manner, as the resulting algebra would violate the

Jacobi identity.3 Thus it is not surprising that we find a linear algebra at λ = 1 and a

nonlinear algebra otherwise.

The linearization of the algebra relies on a large number of nontrivial cancellations

in the commutators, which we have checked for {L3, L3}, {L4, L3}, {L5, L3}, {L4, L4}
and {L5, L4}, fixing the redefined generators through spin 7. These commutators already

3If the spin-1 current is included, then hs[0]⊕C can also be extended outside the wedge, resulting in

the W
PRS
1+∞ algebra constructed in [44]. W

PRS
1+∞ is related to W∞[0] by a constraint that removes the spin-1

current, introducing nonlinearities through the Dirac bracket procedure [18]; this is a special case of the

general construction of W∞[λ] described in section 3.5 below. For other values of λ, hs[λ] can be embedded

in a linear W∞ algebra by twisting W
PRS
1+∞ [45–47], but the resulting algebras have no obvious connection

to the nonlinear algebra constructed here.

– 13 –
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greatly overconstrain the field redefinitions required to define a linear algebra, so this

strongly suggests that linearity continues to all orders.

The redefined generators will be denoted L̃s. No redefinitions are necessary for spin-2, 3

other than a shift of the zero mode:

L2 = L̃2 −
k̂

8π
, L3 = L̃3 . (3.36)

Consider {L̃3, L̃3} given in (3.27). This is linear if we redefine

L4 = L̃4 + βL̃2
2 , β = −64π

15k̂
q2(λ2 − 4) . (3.37)

Now consider

{L̃4, L̃3} = {L4, L3} − 2βL̃2{L2 , L3} . (3.38)

The nonlinear terms must be absorbed into a redefinition of L5 of the form

L5 = L̃5 + γL̃2L̃3 . (3.39)

Plugging into (3.27) and (3.26) we find

β = −8π

5k̂
q2(λ2 − 9) , γ =

50

7
β . (3.40)

Comparing the restriction on β to (3.37), we see that the algebra cannot be linearized

unless λ = 1. Thus we set λ = 1 and proceed, with coefficients so far

β =
64πq2

5k̂
, γ =

640πq2

7k̂
. (3.41)

Next consider {L̃4 , L̃4}. Using (3.22), this is related to the variation

δ̃4L̃4 = δ4L4 + δ2L4 − 2βL̃2(δ4L2 + δ2L2) (3.42)

where we set

η4 = η , η2 = −2βηL̃2 . (3.43)

The right-hand side of (3.42) has 10 nonlinear terms, but all vanish at λ = 1 if we choose

L6 = L̃6 +
40960π2q4

21k̂2
L̃3

2 +
640πq2

3k̂
L̃2L̃4 +

5440πq2

21k̂
L̃2

3 −
1280πq4

21k̂
(L̃′

2)
2 (3.44)

+
1024πq4

21k̂
L̃2L̃

′′
2 −

1024πq4

21k̂
L̃2

2 .

Similarly, the variation corresponding to {L̃5, L̃4} has 17 nonlinear terms which disappear

at λ = 1 if we define

L7 = L̃7 +
4480πq2

11k̂
L̃5L̃2 +

58240πq2

33k̂
L̃4L̃3 −

17920πq4

33k̂
L̃′

2L̃
′
3 (3.45)

+
3584πq4

11k̂
L̃′′

2L̃3 +
5120πq4

33k̂
L̃2L̃

′′
3 +

1433600π2q4

33k̂2
L̃2

2L̃3 −
6144πq4

11k̂
L̃2L̃3 .
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Having fixing the L̃s generators for s ≤ 7, we have fully determined all currents appearing in

{L̃5, L̃3}. This is also linear. Note that inhomogeneous terms, like the last term in (3.44)

and (3.45), are allowed when going to a nonprimary basis and result in the expected

{L̃2, L̃6} and {L̃2, L̃7} commutators.

Converting the δ̃sL̃t variations to mode commutators gives precisely the WPRS
∞ algebra

discussed above. This is the natural linear extension of hs[1] outside the wedge, and

provides a consistency check of our computation because WPRS
∞ is known to satisfy the

Jacobi identity.

3.5 Full commutation relations at arbitrary λ

So far we have resorted to case-by-case computations at low spins, rather than attempting

to find a general solution to the infinite system of equations (3.17) determining the asymp-

totic algebra. We will now demonstrate that after a change of basis, the low-spin commu-

tation relations exactly match a one-parameter family of nonlinear W∞ algebras discovered

by Figueroa-O’Farrill, Mas, and Ramos [18] and by Khesin and Zakharevich [19, 20]. The

full commutation relations of this algebra are known, so this provides the explicit commu-

tators of W∞[λ] for all spins in closed form.

In [18–20], building on [48–53], a family of non-linear W∞ algebras was proposed in the

context of integrable systems and the KP hierarchy (a generalization of the KdV hierarchy).

The construction starts with a one-parameter nonlinear algebra W(λ)
KP with currents Us of

dimensions s = 1, 2, . . . . (The algebra W(λ)
KP is a Hamiltonian structure for the KP hierarchy

and can be realized by pseudodifferential operators.) Imposing the second-class constraint

U1 = 0 and going to the induced Dirac brackets gives a nonlinear W-algebra of spins

2, 3, . . . , denoted Ŵ(λ)
∞ in [18]. We claim that this algebra is identical to the asymptotic

symmetry algebra of higher spin gravity,

Ŵ(λ)
∞

∼= W∞[λ] . (3.46)

The first evidence for this isomorphism comes from the degeneration points. It was observed

in [18–20] that Ŵ(λ)
∞ is a ‘universal’ W-algebra, in the sense that other known W-algebras

can be obtained by setting λ to specific values. Setting λ = 1 gives WPRS
∞ , while setting

λ = N for integer N ≥ 2 and constraining fields with spins greater than N to vanish leads

to WN . The same is true for W∞[λ]; the case λ = 1 was shown in section 3.4 and the case

λ = N follows from (2.15) together with the results of [12].

This is suggestive, but to identify the two algebras we must compare the commutation

relations as a function of λ. The process is similar to checking linearity in section 3.4 so

we will be brief. The Ŵ(λ)
∞ commutators are [18]

{Us(φ) , Ut(φ
′)} = Pst(φ)δ(φ − φ′) , (3.47)

where Pst is a differential operator given in appendix B. This can be converted to variations

δsUt using the first equality in (3.22). The action of the stress tensor U2 on higher spin

fields indicates that they are not Virasoro primary, whereas we computed W∞[λ] in a

– 15 –
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primary basis. Therefore to compare with the W∞[λ] algebra (3.25)–(3.30), we first go to

a non-primary basis,

L2 = U2 , L3 = U3 + p3U
′
2 , L4 = U4 + p4U

2
2 + p5U

′′
2 + p6U

′
3 , . . . . (3.48)

Plugging this ansatz into (3.25)–(3.30) and choosing the coefficients to reproduce the

{U2, Us} commutators in (3.47) fixes all of the coefficients pi for spins s ≤ 5,

L2 = U2 (3.49)

L3 = U3 −
1

2
(λ − 2)U ′

2

L4 = U4 +
1

2
(3 − λ)U ′

3 +
1

10
(λ − 2)(λ − 3)U ′′

2 − (λ − 2)(λ − 3)(5λ + 7)

10c(λ2 − 1)
U2

2

L5 = U5 −
1

2
(λ − 4)U ′

4 +
3

28
(λ − 3)(λ − 4)U ′′

3 − 1

84
(λ − 2)(λ − 3)(λ − 4)U ′′′

2

+
(λ − 3)(λ − 4)(13 + 7λ)

14c(λ2 − 1)

(
(λ − 2)U ′

2 − 2U3

)
U2 .

(The redefinition of L6, which is also needed but will not be written explicitly, is fixed

up to a single coefficient.) The fact that such a field redefinition is possible is already

nontrivial. Now using the W∞[λ] algebra (3.25)–(3.30), we compute {U3 , U3}, {U3 , U4},
and {U4 , U4}, and after fixing the final coefficient in the spin-6 operator, we find an exact

match to (3.47) including central terms.

This exhibits the identity between W∞[λ] and Ŵ(λ)
∞ by a brute-force change of basis,

but in fact it follows from the connection between the asymptotic symmetry computation

and the Drinfeld-Sokolov reduction, which is in turn related to the integrability framework

used to construct Ŵ(λ)
∞ . As argued in [12], imposing the AdS boundary conditions in

the asymptotic symmetry computation is equivalent to Drinfeld-Sokolov reduction of the

current algebra ĥs[λ] (the affinization of hs[λ]). It was proven in [54] that the Drinfeld-

Sokolov reduction of hs[λ]⊕C gives W(λ)
KP, and so eliminating the spin-1 field corresponding

to C leads to the relation (3.46) found here.4

4 The W∞[λ] CFT

Now we want to switch gears and consider the problem from the point of view of the dual

CFT. The above analysis suggests that the boundary CFT should have the W-algebra

W∞[λ] as its symmetry. Thus the states of this CFT must fall into representations of this

algebra. Our goal is to provide evidence that the ’t Hooft limit of the coset theory defining

the minimal model CFT indeed satisfies this expectation, thereby providing a nontrivial

check of the proposed duality. This check will be insensitive to the detailed structure of

the nonlinear terms in W∞[λ], so it should be considered a check on the global symmetries.

4The argument of [54] is quite different from what we have done here, and actually involves some

extension of hs[λ] ⊕ C whose direct interpretation in the current context is not clear to us. We thank the

authors of [12] for bringing reference [54] to our attention.
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Recall from [14, 37] that the WN minimal model at level k is the conformal field theory

based on the coset
su(N)k ⊕ su(N)1

su(N)k+1
. (4.1)

The central charge of this CFT is

c = (N − 1)
(
1 − N

N + k

N + 1

N + 1 + k

)
, (4.2)

and the representations that survive in the ’t Hooft limit can all be obtained by taking

successive tensor powers of the representations labelled by

(0; f) , (0, f̄ ) , (f; 0) , (̄f ; 0) . (4.3)

Here (ρ; ν) labels the representation of the coset model (4.1) with ρ being the representation

of su(N)k, while ν is the representation of su(N)k+1. f denotes the fundamental represen-

tation of su(N), while f̄ is the anti-fundamental representation, see [14] for further details.

In the ’t Hooft limit, the conformal dimensions of the corresponding primary states are

h(0; f) = h(0, f̄ ) =
1

2
(1 − λ) , h(f; 0) = h(̄f ; 0) =

1

2
(1 + λ) . (4.4)

Furthermore, it was argued that their characters are of the form

χ(0;f)(q) = χ(0;̄f)(q) = q
1
2
(1−λ)− c

24
1

(1 − q)

∞∏

s=2

∞∏

n=s

1

(1 − qn)
, (4.5)

and

χ(f;0)(q) = χ(̄f;0)(q) = q
1
2
(1+λ)− c

24
1

(1 − q)

∞∏

s=2

∞∏

n=s

1

(1 − qn)
. (4.6)

In the following we want to show that at least these four representations are indeed repre-

sentations of W∞[λ].

4.1 The wedge algebra

In the ’t Hooft limit, N → ∞ for fixed λ, and hence c → ∞, see (4.2). As was argued

above, the subalgebra generated by W s
n with |n| < s then defines a closed subalgebra,

namely the wedge algebra. Furthermore, for the case of W∞[λ], the wedge algebra is

precisely equal to hs[λ].

Now suppose φ defines a primary state of the W∞[λ] algebra. Then it must, in par-

ticular, define a representation of hs[λ]. Conversely, any representation of hs[λ] gives rise

to a representation of W∞[λ] by the usual Verma module construction. This is to say, we

postulate that φ is annihilated by all positive modes, and define the Verma module to be

the representation of W∞[λ] that is generated by the action of the negative modes from φ.

This is uniquely determined once we know the action of all zero modes on φ. For specific

choices of the central charge the resulting Verma module may be reducible, but generically

this representation of W∞[λ] will be irreducible.
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The above statement may sound a bit abstract, but is familiar from many examples.

For instance, for the case of a WZW model based on ĝ, this is just the statement that the

representation of ĝ is uniquely characterized by a representation of the finite dimensional

Lie algebra g on the highest weight states. The resulting representation generically does

not have any null-vectors; they only arise if k is a positive integer or an admissible fractional

level. Similarly, a Virasoro highest weight representation is uniquely characterized by the

conformal dimension. The only generic null vector appears for h = 0 since then L−1φ = 0.

This null-vector is already visible within the wedge algebra. Apart from that, at fixed h

there are only additional null vectors for specific values of the central charge c.

Returning to the case at hand, we have a very explicit description of hs[λ] as a quo-

tient of the universal enveloping algebra of sl(2), see (2.4), and we can hence study its

representation theory directly. In particular, there is one simple class of representations of

hs[λ]: these are the representations of sl(2) for which the quadratic Casimir takes the value
1
4 (λ2 − 1)! On a highest weight state, i.e. a state with J+φ = 0, with conformal dimension

h, i.e. J0φ = hφ, the quadratic Casimir (2.6) takes the eigenvalue

C2φ = h (h − 1)φ . (4.7)

Thus φ has C2 = 1
4(λ2 − 1) if h = h± = 1

2(1 ± λ). Let us call the corresponding states

φ±, i.e.

J+φ± = 0 , J0φ± = h±φ± , with h± =
1

2
(1 ± λ) . (4.8)

Both φ± generate a representation of sl(2), that defines a representation of hs[λ].

These two representations of hs[λ] now correspond to the two representations that

appeared in [14]

φ− ↔ (0; f) and φ+ ↔ (̄f ; 0) . (4.9)

(The reason why we group together this pair of representations will become clear momen-

tarily.) These are not the only representations though. The wedge algebra hs[λ] has the

automorphism

V s
n 7→ (−1)sV s

n , (4.10)

as follows immediately from the structure of the commutators in (2.3). This automorphism

corresponds to ‘charge conjugation’. As we shall see momentarily V 3
0 has a non-trivial eigen-

value on the above representations labelled by h±; thus the representations corresponding

to φ± are not self-conjugate, and we need to introduce their conjugate representations φ̄±

as well. This is mirrored by the fact that also the representations in (4.9) are not self-

conjugate; their conjugate representations are given by the other two representations that

appeared in [14]

φ̄− ↔ (0; f̄) and φ̄+ ↔ (f; 0) . (4.11)

4.2 Characters

There is one simple consistency check one can immediately perform. Since the representa-

tions φ± and φ̄± are actually representations of sl(2), we know the characters of their hs[λ]
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representations explicitly; it is simply given by

χφ±
(q) = χφ̄±

(q) =
qh±

(1 − q)
. (4.12)

The associated representation of W∞[λ] is then simply obtained by multiplying with the

Verma module partition function coming from the negative modes that are ‘outside’ the

wedge, i.e. the modes W s
n with n ≤ −s. Thus the corresponding W∞[λ] characters χ̂φ±

(q)

are then

χ̂φ±
(q) = χ̂φ̄±

(q) = q−
c

24 χφ±
(q) ×

∞∏

s=2

∞∏

n=s

1

(1 − qn)
. (4.13)

This then reproduces precisely (4.5) and (4.6).

4.3 The spin 3 zero mode

For the above argument it was important that the eigenvalue of V 3
0 does not vanish on the

highest weight state. In fact, given (2.11) it is easy to determine V 3
0 explicitly on φ±,

V 3
0 φ± =

1

3
h±(2h± + 1)φ± =

1

6
(1 ± λ)(2 ± λ)φ± . (4.14)

Unless λ = 1 or λ = 2 this does not vanish.

Actually, we can test the above identification further by comparing these eigenvalues

with the eigenvalue of the spin 3 mode of the coset algebra. (This will then also allow us

to explain why the representations should be paired up as in (4.9) and (4.11).) In the coset

description the spin 3 field is the singlet in su(N)k ⊕ su(N)1 at conformal weight three

that is primary with respect to the diagonal su(N)k+1 algebra. Let us denote the modes

of su(N)k by Ka
n, while those of su(N)1 will be denoted by Ja

n . We make the ansatz for

the singlet state at conformal weight three to be of the form

W = dabc

(
a1K

a
−1K

b
−1K

c
−1 + a2K

a
−1K

b
−1J

c
−1 + a3K

a
−1J

b
−1J

c
−1 + a4J

a
−1J

b
−1J

c
−1

)
Ω , (4.15)

where dabc is the (unique) symmetric traceless invariant tensor of rank 3 for sl(N) (with

N ≥ 3). The condition that W is primary with respect to su(N)k+1 means that is must

be annihilated by Kd
1 + Jd

1 for all d. Using the commutation relations

[Ka
m,Kb

n] = fabcK
c
m+n + k mδabδm,−n , [Ja

m, Jb
n] = fabcJ

c
m+n + mδabδm,−n , (4.16)

this leads to the relations (see [55])

3(k + N)a1 + a2 = 0 , (2k + N)a2 + (2 + N)a3 = 0 , ka3 + 3(1 + N)a4 = 0 , (4.17)

where we have used the tensor identity (see for example [56, Appendix B])

dabcfdaefebg = Ndcdg . (4.18)

This determines the state uniquely, up to an overall normalization. In the ’t Hooft limit

we get (note that the term proportional to K · K · K drops out in this limit)

W = dabc

(
3

λ2

(1 − λ)(2 − λ)
Ka

−1K
b
−1J

c
−1 − 3

λ

(1 − λ)
Ka

−1J
b
−1J

c
−1 + Ja

−1J
b
−1J

c
−1

)
Ω . (4.19)
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Now we can evaluate the zero mode of this state on the primary states (4.3). For the states

(0; f) and (0; f̄) this is straightforward since Ka
0 = 0, and hence we simply get

W0(0; f) = C(0; f) , W0(0; f̄) = −C(0; f̄) , (4.20)

where C is an (unimportant) constant defined by

dabcJ
a
0 Jb

0Jc
0 |f〉 = C |f〉 , dabcJ

a
0 Jb

0Jc
0 |̄f〉 = −C |̄f〉 . (4.21)

On the other hand, for the states (f; 0) and (̄f; 0) the analysis is more subtle. In the first

case, the ground states transform as [f, f̄ ] with respect to Ka
0 , Ja

0 , but since we are only

interested in the singlet component with respect to the diagonal, we have Ka
0 + Ja

0 = 0.

(Similarly, in the second case, the ground states transform as [̄f, f] with respect to Ka
0 , Ja

0 ,

and we are again only interested in the singlet component, i.e. the linear combination that

is annihilated by Ka
0 + Ja

0 .) Using the singlet condition to replace Ka
0 by Ja

0 we then get

W0(f; 0) =

(
3

λ2

(1 − λ)(2 − λ)
+ 3

λ

(1 − λ)
+ 1

)
dabcJ

a
0 Jb

0Jc
0 (f; 0)

= −C
(1 + λ)(2 + λ)

(1 − λ)(2 − λ)
(f; 0) , (4.22)

and similarly

W0(̄f ; 0) = C
(1 + λ)(2 + λ)

(1 − λ)(2 − λ)
(̄f; 0) . (4.23)

Now we can compare these results with the action of V 3
0 on the primary states φ± and

φ̄±. A priori, we do not know how to fix the relative normalisation between V 3
0 and W0.

However, if we want to identify φ− ↔ (0; f), see eq. (4.9), it follows that we must have

V 3
0 =

(1 − λ)(2 − λ)

C
W0 . (4.24)

Having fixed the relative normalisation, we can now compare the eigenvalues on the re-

maining states. In particular we find, using (4.24) as well as (4.20) and (4.22), (4.23)

V 3
0 (0; f̄ ) = −(1 − λ)(2 − λ) (0; f̄ ) (4.25)

V 3
0 (f; 0) = −(1 + λ)(2 + λ) (f; 0) (4.26)

V 3
0 (̄f ; 0) = (1 + λ)(2 + λ) (̄f ; 0) . (4.27)

Given (4.14) this is then in perfect agreement with the identifications (4.9) and (4.11).

One may wonder whether one could repeat the analysis for the eigenvalue of the spin

4 field, but it is not clear to us how to do this. On the hs[λ] representations it is again

straightforward to calculate the eigenvalues of V 4
0 . This mode should now be identified

with a zero mode of a spin 4 state in the coset theory. However, at conformal dimension

four, there is the analogue of (4.15), but also the quasiprimary state associated to the

normal ordered product of : LL :. In relating the mode V 4
0 with the zero mode of the

spin 4 state, there are then two unknown parameters (namely the coefficient in front of the

analogue of (4.15), and the coefficient in front of : LL :), and we cannot make any check,

unless there is some independent way of fixing the normalizations.
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A Structure constants of higher spin algebras

The higher spin algebra hs[λ] has commutators (2.3) with structure constants [24]

gst
u (m,n;λ) =

2qu−2

(u − 1)!
φst

u (λ)N st
u (m,n) (A.1)

N st
u (m,n) =

u−1∑

k=0

(−1)k

(
u − 1

k

)
[s−1+m]u−1−k[s−1−m]k[t − 1 + n]k[t − 1 − n]u−1−k

φst
u (λ) = 4F3

[
1
2 + λ , 1

2 − λ , 2−u
2 , 1−u

2
3
2 − s , 3

2 − t , 1
2 + s + t − u

1

]

,

where [a]n ≡ Γ(a + 1)/Γ(a + 1 − n) is the descending Pochhammer symbol. q is an

arbitrary number that can be scaled to q = 1, but it is useful to keep explicitly because

q accounts for all possible rescalings of the generators consistent with the leading term in

the commutator as well as the usual normalization of the sl(2) subalgebra and its action on

higher spin generators (2.2). In the enveloping algebra construction (2.9), q = 1
4 , whereas

in the discussion of the λ → ∞ limit we scaled q ∼ 1/λ. In the comparison to Ŵ(λ)
∞ in

section 3.5 we have also set q = 1
4 .

A few special values of the structure constants are useful. For λ = 1
2 , we have φst

u (1
2) = 1

and the algebra becomes hs(1, 1). In the asymptotic symmetry computation for general λ,

only structure constants with m = −s + 1 appear in (3.17), and these simplify to

gst
u (−s + 1, n;λ) =

(−1)u+1qu−2Γ(2s − 1)Γ(n + t)

2Γ(2s − u)Γ(1 + n + t − u)Γ(u)
φst

u (λ) . (A.2)

The quadratic form (2.10) is explicitly

tr(V s
mV t

n) ≡ 3

4q(λ2 − 1)
gst
s+t−1(m,n, λ) (A.3)

= Ns

(−1)s−m−1

(2s − 2)!
Γ(s + m)Γ(s − m)δstδm,−n

Ns ≡ 3 · 4s−3√πq2s−4Γ(s)

(λ2 − 1)Γ(s + 1
2)

(1 − λ)s−1(1 + λ)s−1 , (A.4)

where (a)n = Γ(a+n)/Γ(a) is the ascending Pochhammer symbol and the overall constant

has been chosen to set

tr(V 2
1 V 2

−1) = −1 . (A.5)
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B Full commutation relations of W∞[λ]

In this appendix we reproduce the commutation relations of the algebra Ŵ(λ)
∞ [18] which

after the change of basis described in section 3.5 is equivalent to W∞[λ]. The Dirac bracket

of currents is (3.47), where Pst(φ) has two contributions,

Pst(φ) = PKP
st (φ) + δPst(φ) . (B.1)

The first contribution is the commutator of W(λ)
KP , including the spin-1 field,

PKP
st =

c

λ

s∑

u=1

(
t − λ − 1

t + u − 1

)(
λ

s − u

)

∂s+t−1 −
s∑

u=1

(
s − 1

u − 1

)

Ut+u−1(−∂)s−u (B.2)

+

s−1∑

u=1

s−u∑

r=1

(
t − λ − 1

t + u − 1

)(
λ − r

s − r − u

)

Ur∂
s+t−r−1

+
s∑

u=1

t+u−1∑

r=1

(
t − λ − 1

t + u − r − 1

)(
λ

s − u

)
∂s+t−r−1Ur

−λ

c

s−1∑

u=1

s−u∑

r=1

(
s − r − 1

u − 1

)
Ut+u−1(−∂)s−u−rUr

+
λ

c

s−1∑

u=1

s−u∑

r=1

u+t−1∑

p=1

(
t − λ − 1

t + u − p − 1

)(
λ − r

s − r − u

)

Ur∂
s+t−r−p−1Up ,

where ∂ = ∂φ, and currents are evaluated at φ. The second contribution, which comes

from imposing the constraint U1 = 0 and going to Dirac brackets, is

δPst =
c

λ2
(−1)s−1

(
s − λ − 1

s

)(
t − λ − 1

t

)

∂s+t−1 (B.3)

+
(−1)s−1

λ

(
s − λ − 1

s

)
t−1∑

r=2

(
t − λ − 1

t − r

)

∂s+t−r−1Ur

+
(−1)t

λ

(
t − λ − 1

t

)
s−1∑

r=2

(
s − λ − 1

s − r

)

Ur(−∂)s+t−r−1

+
(−1)s−1

c

s−1∑

r=2

t−1∑

u=2

(
s − λ − 1

s − r

)(
t − λ − 1

t − u

)

(−1)rUr∂
s+t−r−u−1Uu .

It is was conjectured in [18] that λ is not a true parameter of the algebra W(λ)
KP, i.e., that

different values of λ are simply different choices of basis for the same algebra (except for

integer values of λ). However, after the reduction, λ becomes a true parameter, and the

algebras Ŵ(λ)
∞ are inequivalent for different values of λ.5

5Note that there is a typo in Conjecture 4.14 of [18]: Ŵ
(λ)
∞ should be replaced by W

(λ)
KP . We thank José

Figueroa-O’Farrill for clarification of this point.
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