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1 Introduction

In order to construct and study supersymmetric field theories in the presence of background

supergravity fields, a formalism is required to determine (conformal) isometries of the

corresponding curved superspace.1 Such a formalism was developed long ago [3] within the

framework of the Grimm-Wess-Zumino (GWZ) geometry [4, 5], which underlies the Wess-

Zumino (WZ) formulation for old minimal supergravity [6] (see [7] for a review) discovered

independently in [8–13]. The key outcomes of the analysis given in [3] may be summarised

as follows:

• Rigid symmetries of every superconformal field theory on a curved superspace M4|4

are generated by conformal Killing supervector fields on M4|4, ξA = (ξa, ξα, ξ̄α̇), with

ξ̄a = ξa. The defining property of ξA is that the first-order operator ξADA maps the

space of covariantly chiral scalars into itself,

D̄β̇φ = 0 =⇒ D̄β̇

(
ξADAφ

)
= 0 , (1.1)

where DA = (Da,Dα, D̄
α̇) are the superspace covariant derivatives. These conditions

imply that the spinor component ξα is determined in terms of the vector component

ξa as ξα = − i
8D̄β̇ξ

αβ̇ , and the latter obeys the superconformal Killing equation

D(βξα)α̇ = 0 ⇐⇒ D̄(β̇ξαα̇) = 0 . (1.2)

• Rigid symmetries of every supersymmetric field theory on M4|4 are associated with

those conformal Killing supervector fields ξA which preserve the volume of the chiral

subspace of M4|4. This condition is equivalent to

DαD̄α̇ξ
αα̇ = 4Gαα̇ξ

αα̇ =⇒ Daξ
a = 0 , (1.3)

where Gαα̇ is the superspace analogue of the Ricci tensor.

Every solution of the equations (1.2) and (1.3) is called a Killing supervector field.

IfM4|4 is chosen to be Minkowski superspace, the general solution of the equation (1.2)

corresponds to the ordinary superconformal transformations which span SU(2, 2|1) [14–17].

1An important example of a curved superspace is the four-dimensional (4D) N = 1 anti-de Sitter (AdS)

superspace [1, 2], AdS4|4.
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In the case of supersymmetric curved backgrounds in old minimal supergravity, the equa-

tions (1.2) and (1.3) allow one to obtain all the results described in an influential work

of Festuccia and Seiberg [18] and related publications (see e.g. [19, 20]) in the component

setting, as was demonstrated in [21] (see also [22] for a review).

The approach presented in [3] is universal, for in principle it may be generalised to

curved backgrounds associated with any supergravity theory formulated in superspace, see

the discussion in [22]. In particular, it has been properly generalised to study supersym-

metric backgrounds in 3D N = 2 supergravity [23], 4D N = 2 supergravity [24], 5D N = 1

supergravity [25] and 6D N = (1, 0) supergravity [26]. It should also be mentioned that

this approach has been used to construct general rigid supersymmetric field theories in 5D

N = 1 [27], 4D N = 2 [28–31] and 3D (p, q) [32–34] anti-de Sitter superspaces.

The present paper is aimed, in part, at extending the analysis given in section 6.4 of [3]

to the so-called U(1) superspace geometry proposed by Howe in 1981 [35, 36] and soon after

reviewed and further developed in [37].2 It is called ‘U(1) superspace’ since its structure

group SL(2,C)×U(1)R contains the R-symmetry factor U(1)R that is absent in the case of

the GWZ geometry [4, 5]. The U(1) superspace is a powerful setting to formulate N = 1

supergravity-matter systems for two reasons. Firstly, it allows us to describe conformal

supergravity by including the super-Weyl transformations in the supergravity gauge group.

Secondly, every off-shell formulation for N = 1 supergravity can be realised as a super-

Weyl invariant coupling of conformal supergravity to a compensating supermultiplet Ξ.

In fact, similar properties also hold in the case of the GWZ geometry. One may then

ask a natural question: what is the point of introducing U(1) superspace if the GWZ

geometry allows one to achieve the same goals? There are at least three answers to this

question. Firstly, the GWZ geometry is a gauge-fixed version of U(1) superspace in the

sense that the former is obtained from the latter by partially fixing the super-Weyl gauge

symmetry. Secondly, since the super-Weyl and local U(1)R transformations are described

by unconstrained real parameters in U(1) superspace, these local symmetries may be used

to gauge away any compensating scalar supermultiplet Ξ by imposing the condition Ξ = 1.

In the case of the GWZ geometry, such a gauge fixing is possible only in the case of

old minimal supergravity. Thirdly, U(1) superspace is more useful for describing the new

minimal formulation of N = 1 supergravity [38, 39].3

Along with the (conformal) Killing vector superfields ξαα̇, which generate the (con-

formal) isometries of a curved superspace M4|4, in this paper (sections 4 and 5) we will

analyse the structure of (conformal) Killing tensor superfields ℓα(m)α̇(n) = ℓ(α1...αm)(α̇1...α̇n),

with m and n non-negative integers, m + n > 0. Some of the motivations to study these

supersymmetric extensions of the (conformal) Killing tensor fields are similar to those that

2One of the most important original developments presented in [37] is the complete solution of the

torsion constraints, which characterise the U(1) superspace geometry, in terms of unconstrained superfield

prepotentials.
3There exists an alternative formulation for conformal supergravity, the so-called conformal superspace

approach [40], which is more general than U(1) superspace in the sense that the latter is obtained from the

former by partially fixing the gauge freedom. When studying the symmetries of supergravity backgrounds,

however, U(1) superspace is more economical for applications to deal with.
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have been pursued in the non-supersymmetric case, which are: (i) higher-order integrals of

motion, see e.g. [41]; (ii) new conserved currents from old ones, see e.g. [42]; and (iii) higher

symmetries of relativistic wave equations, see e.g. [43–48]. There are also conceptually new

motivations. In particular, if a curved superspace M4|4 possesses a (conformal) Killing

spinor superfield ℓα, extended supersymmetric field theories may be constructed, including

superconformal nonlinear σ-models on hyperkähler cones, see section 4.4.

The concept of a Killing tensor superfield ℓα(n)α̇(n) = ℓ̄α(n)α̇(n) was introduced in

1997 [49] in the framework of N = 1 AdS supersymmetry. There are two types of con-

straints obeyed by ℓα(n)α̇(n), which are:

D(α1
ℓα2...αn+1)α̇(n) = 0 ⇐⇒ D̄(α̇1

ℓα(n)α̇2...α̇n+1) = 0 , (1.4a)

DβD̄β̇ℓβα1...αn−1β̇α̇1...α̇n−1
= 0 ⇐⇒ D̄β̇Dβℓβα1...αn−1β̇α̇1...α̇n−1

= 0 . (1.4b)

These differential constraints have a natural origin in the context of the two dually equiv-

alent gauge models for the massless superspin-(n + 1
2) multiplet in AdS4|4 which were

proposed in [50]. The dynamical variables of these models consist of a gauge superfield

and a compensating supermultiplet. In both models the gauge superfield is the same, that

is a real unconstrained superconformal prepotential Hα(n)α̇(n), while the compensators are

different. In one model the compensator is a transverse linear superfield Γα(n−2)α̇(n−2),

and in the other is it a longitudinal linear superfield Gα(n−2)α̇(n−2).
4 The corresponding

constraints are

D̄β̇Γα(n−2)β̇α̇(n−3) = 0 , (1.5a)

D̄(α̇1
Gα(n−2)α̇2...α̇n−1) = 0 . (1.5b)

Equation (1.4a) means that the gauge variation of Hα(n)α̇(n) is equal to zero if the gauge

parameter is chosen to be ℓα(n)α̇(n−1). In addition, requiring the gauge variation of the

compensator (either the transverse or the longitudinal one) to vanish leads to the equa-

tion (1.4b). It was shown in [49] that the space of Killing tensor superfields ℓα(n)α̇(n) can

be endowed with the structure of a superalgebra, which is one of the higher-spin super-

algebras constructed by Fradkin and Vasiliev [52–54] (see also [55, 56]), with respect to

the bracket (4.63) restricted to AdS4|4. A conformal Killing tensor superfield ℓα(n)α̇(n)
in AdS4|4 is obtained by removing the condition (1.4b) which is not compatible with the

superconformal symmetry (this aspect was not discussed explicitly in [49]).

In 2016, Howe and Lindström [57] generalised the notion of a conformal Killing tensor

to superspace in diverse dimensions.5 In the case of 4D N = 1 AdS supersymmetry,

their definition is equivalent to imposing the condition (1.4a). Our definition of conformal

Killing tensor superfields in curved superspace differs from the one given in [57], however

they prove to be equivalent.

This paper is organised as follows. Section 2 is devoted to a brief review of U(1)

superspace. The conformal isometries of a supergravity background are studied in sec-

tion 3. We also describe the action principle for superconformal field theories in a curved

4The terminology follows [50, 51].
5See also [58, 59] for related work in which they discussed the relation of superconformal Killing tensors

to higher dimensional supercurrents, superconformal Killing-Yano tensors, super-Laplacians etc.
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superspace and give an example of such dynamical systems — a superconformal nonlinear

σ-model. Section 4 is devoted to a systematic study of conformal Killing tensor super-

fields ℓα(m)α̇(n) in curved superspace. We demonstrate the significance of different types

of conformal Killing tensor superfields for various superconformal field theories in curved

superspace. The isometries of a supergravity background are studied in section 5. We also

introduce Killing spinor ℓα and tensor ℓα(n)α̇(n) superfields and demonstrate their signifi-

cance for several supersymmetric field theories in curved superspace. The symmetries of

bosonic supergravity backgrounds are studied in section 6. Concluding comments are given

in section 7. The main body of the paper is accompanied by several technical appendices.

Appendix A is devoted to the closed super 4-form which describes the chiral action princi-

ple. Appendix B concerns various aspects of the component reduction. The Weyl multiplet

gauge is introduced in appendix C.

2 The ABC of U(1) superspace

In this section we review the structure of U(1) superspace [35–37]. Our presentation is

analogous to [60].

2.1 The geometry of U(1) superspace

We consider a curved N = 1 superspace M4|4 parametrised by local coordinates zM =

(xm, θµ, θ̄µ̇). Its structure group is chosen to be SL (2,C) × U(1)R and so the covariant

derivatives DA =
(
Da,Dα, D̄

α̇
)
have the form

DA = EA +ΩA + iΦAA . (2.1)

Here EA denotes the frame field, EA = EA
M∂M , with EA

M being the inverse vielbein. The

Lorentz connection ΩA can be written in two different forms,

ΩA =
1

2
ΩA

bcMbc = ΩA
βγMβγ + Ω̄A

β̇γ̇M̄β̇γ̇ , (2.2)

depending on whether the Lorentz generators with vector (Mbc = −Mcb) or spinor (Mβγ =

Mγβ and M̄β̇γ̇ = M̄γ̇β̇) indices are used. The Lorentz generators act on vectors and Weyl

spinors as follows:

MabVc = 2ηc[aVb] , Mαβψγ = εγ(αψβ) , M̄α̇β̇ψ̄γ̇ = εγ̇(α̇ψ̄β̇) . (2.3)

The last term in (2.1) is the U(1)R connection, with the R-symmetry generator A being

normalised by

[A,Dα] = −Dα , [A, D̄α̇] = +D̄α̇ . (2.4)

The supergravity gauge freedom includes local K-transformations of the form

δKDA = [K,DA] , K = ξBDB +KβγMβγ + K̄ β̇γ̇M̄β̇γ̇ + iρA . (2.5)
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Here the gauge parameter K incorporates several parameters describing the general coor-

dinate (ξB), local Lorentz (Kβγ and K̄ β̇γ̇) and local chiral (ρ) transformations. Given a

tensor superfield U (with suppressed indices), its K-transformation law is

δKU = KU . (2.6)

The covariant derivatives obey graded commutation relations

[DA,DB} = TAB
CDC +RAB

γδMγδ + R̄AB
γ̇δ̇M̄γ̇δ̇ + iFABA , (2.7)

where TAB
C is the torsion, RAB

γδ and its conjugate RAB
γ̇δ̇ constitute the Lorentz cur-

vature, and FAB is the U(1)R field strength. To describe conformal supergravity, the

covariant derivatives have to obey certain constraints [35, 36]. Their solution is given by

the relations

{Dα,Dβ} = −4R̄Mαβ , {D̄α̇, D̄β̇} = 4RM̄α̇β̇ , (2.8a)

{Dα, D̄α̇} = −2iDαα̇ , (2.8b)
[
Dα,Dββ̇

]
= iεαβ

(
R̄ D̄β̇ +Gγ

β̇Dγ − (DγGδ
β̇)Mγδ + 2W̄β̇

γ̇δ̇M̄γ̇δ̇

)

+i(D̄β̇R̄)Mαβ −
i

3
εαβX̄

γ̇M̄γ̇β̇ +
i

2
εαβX̄β̇A , (2.8c)

[
D̄α̇,Dββ̇

]
= −iεα̇β̇

(
RDβ +Gβ

γ̇D̄γ̇ − (D̄γ̇Gβ
δ̇)M̄γ̇δ̇ + 2Wβ

γδMγδ

)

−i(DβR)M̄α̇β̇ +
i

3
εα̇β̇X

γMγβ +
i

2
εα̇β̇XβA , (2.8d)

which lead to

[
Dαα̇,Dββ̇

]
= εαβψ̄α̇β̇ + εα̇β̇ψαβ , (2.8e)

ψαβ = −iG(α
γ̇Dβ)γ̇ +

1

2
D(αRDβ) +

1

2
D(αGβ)

γ̇D̄γ̇ +Wαβ
γDγ

+
1

6
X(αDβ) +

1

4
(D2 − 8R)R̄Mαβ +D(αWβ)

γδMγδ

−
1

6
D(αX

γMβ)γ −
1

2
D(αD̄

γ̇Gβ)
δ̇M̄γ̇δ̇ −

1

4
D(αXβ)A , (2.8f)

ψ̄α̇β̇ = iGγ
(α̇Dγβ̇) −

1

2
D̄(α̇R̄D̄β̇) −

1

2
D̄(α̇G

γ
β̇)Dγ − W̄α̇β̇

γ̇D̄γ̇

−
1

6
X̄(α̇D̄β̇) +

1

4
(D̄2 − 8R̄)RM̄α̇β̇ − D̄(α̇W̄β̇)

γ̇δ̇M̄γ̇δ̇

+
1

6
D̄(α̇X̄

γ̇M̄β̇)γ̇ +
1

2
D̄(α̇D

γGδ
β̇)Mγδ −

1

4
D̄(α̇X̄β̇)A . (2.8g)

The torsion and curvature tensors are expressed in terms of the real vector Ga and the

complex superfields R, Xα and Wαβγ =W(αβγ), which have the U(1)R charges

AR = 2R , AXα = Xα , AWαβγ =Wαβγ . (2.9)

and are covariantly chiral,

D̄α̇R = 0 , D̄α̇Xα = 0 , D̄α̇Wαβγ = 0 . (2.10)

– 5 –
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These superfields obey the following Bianchi identities:

Xα = DαR− D̄α̇Gαα̇ , (2.11a)

DαXα = D̄α̇X̄
α̇ , (2.11b)

DγWαβγ = iD(α
γ̇Gβ)γ̇ −

1

3
D(αXβ) . (2.11c)

Equation (2.11b) means that Xα is the chiral field strength of an Abelian vector multiplet.

In what follows we will use the notation (M4|4,D) for the superspace M4|4 endowed

with the geometry described.

2.2 Super-Weyl transformations

In order for the above superspace geometry to describe conformal supergravity, the super-

gravity gauge group should include super-Weyl transformations, with the corresponding

parameter Σ being a real unconstrained scalar superfield. The defining property of these

local rescalings is that they preserve the structure of the algebra of covariant derivatives.

In the infinitesimal case, the super-Weyl transformation is

δΣDα =
1

2
ΣDα + 2DβΣMβα +

3

2
DαΣA , (2.12a)

δΣD̄α̇ =
1

2
ΣD̄α̇ + 2D̄β̇ΣM̄β̇α̇ −

3

2
D̄α̇ΣA , (2.12b)

δΣDαα̇ = ΣDαα̇ + iDαΣD̄α̇ + iD̄α̇ΣDα + iD̄α̇D
βΣMβα

+iDαD̄
β̇ΣM̄β̇α̇ −

3

4
i
[
Dα, D̄α̇

]
ΣA , (2.12c)

and the corresponding variations of the torsion and curvature superfields are

δΣR = ΣR+
1

2
D̄2Σ , (2.13a)

δΣGαα̇ = ΣGαα̇ + [Dα, D̄α̇]Σ , (2.13b)

δΣWαβγ =
3

2
ΣWαβγ , (2.13c)

δΣXα =
3

2
ΣXα −

3

2
(D̄2 − 4R)DαΣ . (2.13d)

In appendix C we demonstrate that the gauge transformations (2.5) and (2.12) allow us to

choose a Wess-Zumino gauge in which the remaining fields constitute the Weyl multiplet

of conformal supergravity.

Consider a tensor superfield U of U(1)R charge qU ,

AU = qUU . (2.14)

It is called primary if its super-Weyl transformation has the form

δΣU = ∆UΣU , (2.15)

– 6 –
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for some parameter ∆U called the dimension of U . Given a primary superfield Ψα1...αn =

Ψ(α1...αn), which is covariantly chiral, D̄β̇Ψα1...αn = 0, its dimensions and U(1)R charge are

related to each other by

qΨ =
2

3
∆Ψ . (2.16)

For completeness, we also provide the finite super-Weyl transformation. It is

D′
α = e

1
2
Σ

(
Dα + 2DβΣMβα +

3

2
DαΣA

)
, (2.17a)

D̄′
α̇ = e

1
2
Σ

(
D̄α̇ + 2D̄β̇ΣM̄β̇α̇ −

3

2
D̄α̇ΣA

)
, (2.17b)

D′
αα̇ = eΣ

(
Dαα̇ + iDαΣD̄α̇ + iD̄α̇ΣDα + i

(
D̄α̇D

βΣ+ 2D̄α̇ΣD
βΣ
)
Mβα

+i
(
DαD̄

β̇Σ+ 2DαΣD̄
β̇Σ
)
M̄β̇α̇

−3i

(
1

4

[
Dα, D̄α̇

]
Σ+DαΣD̄α̇Σ

)
A

)
. (2.17c)

The corresponding transformation laws for the torsion and curvature superfields are

R′ = eΣ
(
R+

1

2
D̄2Σ− (D̄Σ)2

)
, (2.18a)

G′
αα̇ = eΣ

(
Gαα̇ + [Dα, D̄α̇]Σ + 2DαΣD̄α̇Σ

)
, (2.18b)

W ′
αβγ = e

3
2
ΣWαβγ , (2.18c)

X ′
α = e

3
2
Σ

(
Xα −

3

2
(D̄2 − 4R)DαΣ

)
. (2.18d)

The super-Weyl tensor Wαβγ and its conjugate W̄α̇β̇γ̇ are the only torsion superfields which

transform homogeneously under the super-Weyl group.

2.3 From U(1) superspace to the Grimm-Wess-Zumino geometry

As pointed out above, the covariantly chiral spinor Xα is the field strength of an Abelian

vector multiplet. It follows from (2.18d) that the super-Weyl gauge freedom allows us to

choose the gauge

Xα = 0 . (2.19)

In this gauge the U(1)R curvature vanishes, in accordance with (2.8), and therefore the

U(1)R connection may be gauged away,

ΦA = 0 . (2.20)

As a result, the algebra of covariant derivatives reduces (2.8) reduces to that describing

the GWZ geometry [4, 5].

– 7 –
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Equation (2.18d) tells us that imposing the condition Xα = 0 does not fix completely

the super-Weyl freedom. The residual transformations are generated by parameters of

the form

Σ =
1

2

(
σ + σ̄

)
, D̄α̇σ = 0 . (2.21)

However, in order to preserve the U(1)R gauge ΦA = 0, every residual super-Weyl trans-

formation (2.21) must be accompanied by a compensating U(1)R transformation with

ρ =
3

4
i
(
σ̄ − σ

)
. (2.22)

This leads to the transformation [61, 62]

δσDα =

(
σ̄ −

1

2
σ

)
Dα + (Dβσ)Mαβ , (2.23a)

δσD̄α̇ =

(
σ −

1

2
σ̄

)
D̄α̇ + (D̄β̇σ̄)M̄α̇β̇ , (2.23b)

δσDαα̇ =
1

2
(σ + σ̄)Dαα̇ +

i

2
(D̄α̇σ̄)Dα +

i

2
(Dασ)D̄α̇

+(Dβ
α̇σ)Mαβ + (Dα

β̇σ̄)M̄α̇β̇ . (2.23c)

The torsion tensors transform as follows:

δσR = 2σR+
1

4
(D̄2 − 4R)σ̄ , (2.24a)

δσGαα̇ =
1

2
(σ + σ̄)Gαα̇ + iDαα̇(σ − σ̄) , (2.24b)

δσWαβγ =
3

2
σWαβγ . (2.24c)

3 Conformal isometries of curved superspace

Let (M4|4,D) be a background superspace. A real supervector field ξ = ξBEB is called

conformal Killing if

(δK + δΣ)DA = 0 (3.1)

for some Lorentz (Kβγ), chiral (ρ) and super-Weyl (Σ) parameters. Every solution to (3.1)

defines a superconformal transformation of the superspace (M4|4,D).

3.1 Implications of the superconformal Killing equation

Equation (3.1) contains nontrivial information. Choosing A = α in (3.1) and making use of

the definition (2.5) and (2.12) in conjunction with the graded commutation relations (2.8),
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we derive

(δK+δΣ)Dα =

(
Kα

β −Dαξ
β −

i

2
ξαβ̇G

ββ̇ − iδα
βρ+

1

2
δα

βΣ

)
Dβ

+

(
Dαξ̄

β̇ +
i

2
ξα

β̇R̄

)
D̄β̇ + 2i

(
ξ̄β̇δα

β −
i

4
Dαξ

ββ̇

)
Dββ̇

−

(
DαK

βγ + 4R̄δα
(βξγ)−

i

2
δα

(βξγ)γ̇D̄γ̇R̄−
i

2
ξαα̇D

(βGγ)α̇− 2δα
(βDγ)Σ

)
Mβγ

−

(
DαK̄

β̇γ̇ + iξαα̇W̄
α̇β̇γ̇ +

i

6
ξα

(β̇X̄ γ̇)

)
M̄β̇γ̇

−i

(
Dαρ+

1

4
ξαα̇X̄

α̇ +
3i

2
DαΣ

)
A . (3.2)

Setting this to zero, we can read off the necessary conditions on our gauge and super-Weyl

parameters for ξ to be conformal Killing. These conditions can be split into two types.

The first type provides expressions for the transformation parameters in terms of ξ

ξα = −
i

8
D̄α̇ξ

αα̇ , (3.3a)

Kαβ [ξ] = D(αξβ) −
i

2
ξ(α

α̇Gβ)α̇ , (3.3b)

ρ[ξ] = −
i

4

(
Dαξα − D̄α̇ξ̄

α̇
)
−

1

4
Gαα̇ξαα̇ , (3.3c)

Σ[ξ] = −
1

2

(
Dαξα + D̄α̇ξ̄

α̇
)
. (3.3d)

The second type yields expressions for the spinor covariant derivatives of the parameters

in terms of the original parameters and DαΣ[ξ], including the following:

Dαξβ = εαβ

(
i

4
Gγγ̇ξγγ̇ + iρ[ξ]−

1

2
Σ[ξ]

)
+Kαβ [ξ] +

i

2
ξ(α

α̇Gβ)α̇ , (3.4a)

Dαξ̄β̇ = −
i

2
ξαβ̇R̄ , (3.4b)

Dαξββ̇ = 4iεαβ ξ̄β̇ , (3.4c)

DαK
βγ [ξ] = 2δα

(βDγ)Σ[ξ]− 4δα
(βξγ)R̄+

i

2
δα

(βξγ)γ̇D̄γ̇R̄

+
i

2
ξαα̇D

(βGγ)α̇ , (3.4d)

DαK̄
β̇γ̇ [ξ] = −iξαα̇W̄

α̇β̇γ̇ −
i

6
ξα

(β̇X̄ γ̇) , (3.4e)

Dαρ[ξ] = −
1

4
ξαα̇X̄

α̇ −
3i

2
DαΣ[ξ] . (3.4f)

The relations (3.3) tell us that all the parameters are completely determined in terms of

ξa and its covariant derivatives. As will be shown below, the relations (3.4) imply that the

the superalgebra of conformal Killing supervector fields is finite dimensional.

The above analysis shows that ξ = ξAEA is a conformal Killing supervector field if it

has the form

ξA =

(
ξa,−

i

8
D̄β̇ξ

αβ̇ ,−
i

8
Dβξβα̇

)
, (3.5a)
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where ξa obeys the equation

D(αξβ)β̇ = 0 ⇐⇒ D̄(α̇ξββ̇) = 0 , (3.5b)

in accordance with (3.4c). Provided the equation (3.5b) and definitions (3.3) hold, one

may check that all the conditions (3.4) are satisfied. Equation (3.5b) also implies that ξa

is covariantly linear,

(
D2 + 2R̄

)
ξa = 0 , (3.6)

as well as the ordinary conformal Killing equation

D(aξb) =
1

4
ηabD

cξc ⇐⇒ D(α(α̇ξβ)β̇) = 0 . (3.7)

Due to the relation {Dα, D̄α̇} = −2iDαα̇, the equation (3.1) with A = a is automatically

satisfied once (3.1) with A = α holds. Still the implications of the equation (3.1) with A = a

prove to be very useful for computations, and we spell them out here:

Dαα̇ξ
β = −iξαG

β
α̇ − iδα

β ξ̄α̇R−
1

4
ξα

β̇D̄(α̇G
β
β̇) +

1

4
δ(α

βξγα̇Dγ)R

+
1

2
ξγα̇Wαγ

β +
1

12
δ(α

βXγ)ξ
γ
α̇ + iδα

βD̄α̇Σ[ξ] , (3.8a)

Dαα̇ξ
ββ̇ = −iδ(α̇

β̇ξα
γ̇Gβ

γ̇) + iδ(α
βξγα̇Gγ)

β̇ − 2δα̇
β̇Kα

β [ξ]− 2δα
βK̄α̇

β̇ [ξ]

−2δα
βδα̇

β̇Σ[ξ], (3.8b)

Dαα̇K
βγ [ξ] = iξαD

(βGγ)
α̇ + iδα

(βξγ)D̄α̇R̄+
i

3
δα

(β ξ̄α̇X
γ) − 2iξ̄α̇Wα

βγ

+
1

4
ξα

β̇D̄(α̇D
(βGγ)

β̇) +
1

8
δα

(βξγ)α̇(D
2 − 8R̄)R+

1

2
ξλα̇D(αWλ)

βγ

−
1

12
ξλα̇δ(α

(βDλ)X
γ) + iδα

(βD̄α̇D
γ)Σ[ξ] , (3.8c)

Dαα̇ρ[ξ] =
1

2
ξ̄α̇Xα −

1

2
ξαX̄α̇ +

i

8
ξα

β̇D̄(α̇X̄β̇) +
i

8
ξβα̇D(αXβ)

−
3

4
[Dα, D̄α̇]Σ[ξ] . (3.8d)

We emphasise once more that these identities may be derived by making use of (3.4).

3.2 The superconformal algebra

It follows from (3.1) that commuting two superconformal transformations of (M4|4,D)

results in another transformation of the same type,

[
δK[ξ2] + δΣ[ξ2], δK[ξ1] + δΣ[ξ1]

]
DA =

(
δK[ξ3] + δΣ[ξ3]

)
DA = 0 , (3.9a)

K[ξ3] :=
[
K[ξ2],K[ξ1]

]
. (3.9b)

This means that the set of all conformal Killing supervector fields forms a Lie superalgebra,

the superconformal algebra of (M4|4,D).
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It is of interest to derive the explicit expressions for Σ[ξ3] and ξ
a
3 in terms of ξa1 and

ξa2 . A routine calculation gives

[K[ξ3],DA] +
[
K[ξ2], δΣ[ξ1]DA

]
−
[
K[ξ1], δΣ[ξ2]DA

]
= 0 . (3.10)

Specialising here to the A = α case and extracting the super-Weyl parameter, we find

Σ[ξ3] = ξA2 DAΣ[ξ1]− ξA1 DAΣ[ξ2] . (3.11)

For the vector component ξa3 we obtain

ξαα̇3 = −
1

2
ξ
ββ̇
1 Dββ̇ξ

αα̇
2 −

i

16
D̄β̇ξ

αβ̇
1 Dβξ

βα̇
2 +

i

2
ξ
αβ̇
1 ξ

βα̇
2 Gββ̇ −

(
1 ↔ 2

)
. (3.12)

One may check that ξαα̇3 obeys the superconformal Killing equation (3.5b).

The superconformal algebra of (M4|4,D) turns out to be finite dimensional, and its

dimension does not exceed that of the N = 1 superconformal group SU(2, 2|1). In order

to prove this claim, we introduce the following set of parameters:

Ξ :=
{
ξA, Kαβ [ξ], K̄α̇β̇ [ξ], ρ[ξ], Σ[ξ], DAΣ[ξ]

}
. (3.13)

It is not difficult to demonstrate that DAΞ is a linear combination of the elements of (3.13).

Actually, it suffices to show that DαΞ satisfies this property, as the general case immediately

follows. Due to the relations (3.4) and (3.8), we only need to analyse DαDBΣ[ξ]. Direct

calculations give

DαDβΣ[ξ] =
1

2
εαβD

2Σ = −εαβ
((

Σ[ξ]− 2iρ[ξ]
)
R̄+ ξcDcR+ ξ̄D̄R̄

)
, (3.14a)

DαD̄β̇Σ[ξ] = −iDαβ̇Σ[ξ] +
1

2
ξ̄γ̇D̄γ̇Gαβ̇ −

1

2
ξγDγGαβ̇

−
1

4
ξα

γ̇Dγ
(β̇Gγγ̇) +

1

4
ξγβ̇D(α

γ̇Gγ)γ̇ +
1

4
ξγγ̇Dαβ̇Gγγ̇

−
1

2
Kα

γ [ξ]Gγβ̇ −
1

2
K̄β̇

γ̇ [ξ]Gαγ̇ −
1

2
Gαβ̇Σ[ξ] , (3.14b)

DαDββ̇Σ[ξ] = εαβ

[(
i

8
δα̇β̇Σ[ξ] +

1

12
δα̇β̇ρ[ξ] +

i

12
K̄α̇

β̇ [ξ]

)(
X̄α̇ + 3D̄α̇R̄

)
+ iR̄D̄β̇Σ[ξ]

−
i

2
Gγ

β̇DγΣ[ξ]−
i

12
ξ̄α̇D̄(α̇X̄β̇) +

7i

24
ξ̄β̇DX −

i

8
ξ̄β̇D̄

2R̄+
3i

4
ξγGγβ̇R̄

−
i

8
ξγD2Gγβ̇ +

1

12
ξγα̇DγD̄(α̇X̄β̇) −

1

48
ξγβ̇D

2Xγ −
i

8
ξγα̇Dγα̇(D̄β̇R̄− X̄β̇)

]

+

[
6

(
i

8
δα̇β̇Σ[ξ] +

1

12
δα̇β̇ρ[ξ] +

i

12
K̄α̇

β̇ [ξ]

)
D(αGβ)α̇ + iK(α

γ [ξ]Dβ)Gγβ̇

−
i

2
Kαβ [ξ]

(
D̄β̇R̄− X̄β̇

)
−

i

2
ξ̄α̇D̄α̇D(αGβ)β̇ −

i

4
ξ(α
(
D2 + 2R̄

)
Gβ)β̇

−
1

12
ξ(α(α̇Gβ)β̇)X̄

α̇ −
1

12
ξ(αα̇Gβ)

α̇X̄β̇ −
i

4
ξγα̇Dγα̇D(αGβ)β̇

]
(3.14c)

Thus, we have demonstrated that the superconformal algebra is finite dimensional.
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3.3 Conformally related superspaces

Let (M4|4,D) and (M4|4, D̂) be two supergravity backgrounds. We say that the two

superspaces are conformally related if their covariant derivatives D̂A and DA are related to

each other by a finite super-Weyl transformation (2.17),

D̂α = e
1
2
Σ

(
Dα + 2DβΣMβα +

3

2
DαΣA

)
, (3.15a)

ˆ̄Dα̇ = e
1
2
Σ

(
D̄α̇ + 2D̄β̇ΣM̄β̇α̇ −

3

2
D̄α̇ΣA

)
, (3.15b)

D̂αα̇ =
i

2

{
D̂α,

ˆ̄Dα̇

}
. (3.15c)

These superspaces prove to have the same conformal Killing supervector fields,

ξ = ξAEA = ξ̂AÊA , (3.16)

where the components ξ̂A are given by

ξ̂αα̇ = e−Σξαα̇, ξ̂α = e−
1
2
Σ

(
ξα +

i

2
ξαβ̇D̄β̇Σ

)
. (3.17)

The transformed supervector field ξ̂A also satisfies (3.5) (in the new basis), thus it is a

conformal Killing vector

ξ̂A =

(
ξ̂a,−

i

8
ˆ̄Dβ̇ ξ̂

αβ̇ ,−
i

8
D̂βξβα̇

)
, D̂(αξ̂β)β̇ = 0 . (3.18)

One can relate the remaining parameters generating conformal isometries in each geometry

in a simple way

Σ[ξ̂] = Σ[ξ]− ξADAΣ[ξ] , (3.19a)

Kαβ [ξ̂] = Kαβ [ξ] + 2D(αΣξβ) +
i

2
D̄α̇D(αΣξβ)

α̇ , (3.19b)

ρ[ξ̂] = ρ[ξ] +
3i

2
DαΣξα −

3i

2
D̄α̇Σξ̄

α̇ −
3

8
[Dα, D̄α̇]Σξαα̇ . (3.19c)

It then follows that the gauge transformation is identical in these two geometries K[ξ] =

K[ξ̂]; it is a super-Weyl invariant operator.

3.4 Superconformal field theory

Let ϕi be the dynamical superfield variables describing a matter system coupled to con-

formal supergravity. The matter action is required to be invariant under the super-Weyl

transformations (2.12) accompanied by certain transformations of the matter superfields

of the form

δΣϕ
i = ∆(i)Σϕ

i , (3.20)

where ∆(i) denotes the dimension of ϕi. In general, the matter action includes two terms

S =

∫
d4xd2θd2θ̄ E L+

{∫
d4xd2θ E Lc + c.c.

}
, E−1 = Ber(EA

M ) , (3.21)
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with E being the so-called chiral density. Here the full superspace Lagrangian L is a primary

real scalar superfield of dimension +2, while Lc is a primary covariantly chiral superfield,

D̄α̇Lc = 0, of dimension +3,

δΣL = 2ΣL , δΣLc = 3ΣLc . (3.22)

It should be pointed out that the full superspace measure E and the chiral density E have

the following super-Weyl transformation laws

δΣE = −2ΣE , δΣE = −3ΣE . (3.23)

The chiral density can be naturally defined using the prepotential solution of the

supergravity constraints given in [37]. It can also be obtained using the general formalism

of integrating out fermionic dimensions, which was developed in [63]. Probably the simplest

definition of the chiral action

Sc =

∫
d4xd2θ E Lc , (3.24)

is described in appendix A. The full superspace action can be represented as an integral

over the chiral subspace,
∫

d4xd2θd2θ̄ E L = −
1

4

∫
d4xd2θ E

(
D̄2 − 4R

)
L . (3.25)

In the case of a fixed supergravity background, the matter action (3.21) is invariant

under superconformal transformations of the form

δξϕ
i = K[ξ]ϕi +∆(i)Σ[ξ]ϕ

i , (3.26)

where ξA is an arbitrary conformal Killing supervector field of the background curved

superspace (M4|4,D).

An important example of a superconformal field theory in curved superspace is the

massless Wess-Zumino model

S[φ, φ̄] =

∫
d4xd2θd2θ̄ E φ̄φ+

{
λ

3!

∫
d4xd2θ E φ3 + c.c.

}
, D̄α̇φ = 0 , (3.27)

with λ a coupling constant. Here the chiral scalar φ is primary and of dimension +1.

3.5 Superconformal sigma models

A nontrivial example of a superconformal field theory on (M4|4,D) is a nonlinear sigma

model. The target spaces of superconformal sigma models are Kähler cones [64]. Let us

recall what this means. Consider a Kähler manifold (N , gµν , J
µ
ν), where µ, ν = 1, . . . , 2n,

and introduce local complex coordinates φi and their conjugates φ̄ī, in which the complex

structure Jµ
ν is diagonal. It is called a Kähler cone [64] if it possesses a homothetic

conformal Killing vector

χ = χi ∂

∂φi
+ χ̄ī ∂

∂φ̄ī
≡ χµ ∂

∂ϕµ
, (3.28)
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with the following properties:

∇νχ
µ = δν

µ ⇐⇒ ∇jχ
i = δj

i , ∇j̄χ
i = ∂j̄χ

i = 0 , (3.29)

which show, in particular, that χ is holomorphic. In terms of the scalar field K := gij̄ χ
iχ̄j̄

on the target space, these properties imply that

χi = gij̄ χ̄
j̄ = ∂iK , gij̄ = ∂i∂j̄K , (3.30)

and therefore

χi(φ)∂iK(φ, φ̄) = K(φ, φ̄) . (3.31)

The real function K(φ, φ̄) is a globally defined Kähler potential. Associated with χ is the

U(1) Killing vector field

V µ = Jµ
νχ

ν , ∇µVν +∇νVµ = 0 . (3.32)

Local complex coordinates φi can always be chosen such that χi(φ) = φi.

Consider the following nonlinear σ-model

S =

∫
d4xd2θd2θ̄ E K

(
φ, φ̄

)
, D̄α̇φ

i = 0 , (3.33)

where the action of the U(1)R generator on φi is defined as

Aφi =
2

3
χi(φ) . (3.34)

The action is invariant under super-Weyl transformations

δΣφ
i = Σχi(φ) . (3.35)

In the case of a fixed supergravity background, the matter action (3.21) is invariant under

superconformal transformations of the form

δξφ
i = K[ξ]φi +Σ[ξ]χi(φ) , (3.36)

where ξA is an arbitrary conformal Killing supervector field of the background curved

superspace (M4|4,D).

4 Conformal Killing tensor superfields

As discussed in section 3, every conformal Killing supervector field ξA of the background

curved superspace (M4|4,D) is determined by its vector component ξa, which is real and

constrained by

D(αξβ)β̇ = 0 ⇐⇒ D̄(α̇ξββ̇) = 0 . (4.1)

It follows from (3.17) that ξαα̇ has the super-Weyl transformation law

δΣξαα̇ = −Σξαα̇ , (4.2)

which is uniquely determined by requiring equations (4.1) to be super-Weyl invariant. This

construction admits nontrivial generalisations.
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4.1 Definitions

Let m and n be non-negative integers. A primary tensor superfield ℓα(m)α̇(n) on (M4|4,D)

is called conformal Killing if it obeys the constraints6

D(α1
ℓα2...αm+1)α̇(n) = 0 =⇒

(
D2 + 2mR̄)ℓα(m)α̇(n) = 0 , (4.3a)

D̄(α̇1
ℓα(m)α̇2...α̇n+1) = 0 =⇒

(
D̄2 + 2nR)ℓα(m)α̇(n) = 0 . (4.3b)

These conditions imply the following transformation properties:

δΣℓα(m)α̇(n) = −
1

2
(m+ n)Σ ℓα(m)α̇(n) , (4.4a)

Aℓα(m)α̇(n) = −
1

3
(m− n)ℓα(m)α̇(n) . (4.4b)

If m = n, then ℓα(n)α̇(n) is neutral with respect to the R-symmetry group U(1)R, and

therefore it is consistent to restrict ℓα(n)α̇(n) to be real. Another special choice is n = 0, in

which case ℓα(m) is covariantly chiral, D̄α̇ℓα(m) = 0.

The constraints (4.3) provide a natural generalisation of the concept of a conformal

Killing tensor field Lα(m)α̇(n) on a curved spacetime M4 [65].7 By definition, Lα(m)α̇(n) is

a primary field which obeys the equation

∇(α1

(α̇1Lα2...αm+1)
α̇2...α̇n+1) = 0 , (4.5)

where ∇αα̇ is the torsion-free Lorentz-covariant derivative. The condition that Lα(m)α̇(n)

is primary means that it changes homogeneously under a Weyl transformation

δσ∇a = σ∇a −∇bσMab , (4.6)

with σ(x) the Weyl parameter. The unique Weyl transformation law of Lα(m)α̇(n), which

is compatible with the constraint (4.5), is

δσLα(m)α̇(n) = −
1

2
(m+ n)σLα(m)α̇(n) . (4.7)

Given two conformal Killing tensor superfields ℓα(m)α̇(n) and ℓα(p)α̇(q) on (M4|4,D),

their symmetric product

ℓα(m+p)α̇(n+q) := ℓ(α1...αm(α̇1...α̇n
ℓαm+1...αm+p)α̇n+1...α̇n+q) , (4.8)

is also conformal Killing. This operation allows one to generate new conformal Killing

tensor superfields from given ones.

Constraints (4.3) naturally occur in the framework of conformal higher-spin gauge

supermultiplets [66, 67]. For m ≥ n > 0 such a supermultiplet is described by an uncon-

strained primary prepotential Υα(m)α̇(n) defined modulo gauge transformations

δΛ,ζΥα(m)α̇(n) = D(α1
ζα2...αm)α̇1...α̇n

+ D̄(α̇1
Λα1...αmα̇2...α̇n) , (4.9)

6These constraints can be naturally lifted to the conformal superspace of [40].
7Penrose and Rindler [65] called Lα(m)α̇(n) a Killing spinor.
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with unconstrained primary gauge parameters ζα(m−1)α̇(n) and Λα(m)α̇(n−1). In the m >

n = 0 case, the conformal gauge supermultiplet is described by an unconstrained primary

prepotential Υα(m) defined modulo gauge transformations

δζ,λΥα(m) = D(α1
ζα2...αm) + λα(m) , D̄β̇λα(m) = 0 . (4.10)

Now, if we look for special gauge parameters ζα(m−1)α̇(n) and Λα(m)α̇(n−1) such that the vari-

ation (4.9) vanishes, δΛ,ζΥα(m)α̇(n) = 0, then ℓα(m)α̇(n) := D(α1
ζα2...αm)α̇1...α̇n

is a solution

to the constraints (4.3).

A higher-spin interpretation exists also for the conformal Killing tensors (4.5). We

recall that a conformal higher-spin gauge field hα(m+1)α̇(n+1) is a primary field defined

modulo gauge transformations [68]

δλhα(m+1)α̇(n+1) = ∇(α1(α̇1
λα2...αm+1)α̇2...α̇n+1) , (4.11)

where the gauge parameter λα(m)α̇(n) is also primary. The conformal Killing tensors (4.5)

correspond to those values of the gauge parameter λα(m)α̇(n) which leave the gauge field

invariant, δLhα(m+1)α̇(n+1) = 0.

The importance of the conformal Killing superfields ℓα(m)α̇(n) introduced is that they

generate symmetries of dynamical systems on (M4|4,D). We have seen that the N = 1

superconformal transformations are described by ℓαα̇. In the next subsection, we introduce

various important conformal supercurrents and describe their interplay with conformal

Killing tensor superfields. Following this, in sections 4.3 and 4.4 we show that extended

superconformal transformations are formulated in terms of ℓα and its conjugate. Then in

section 4.5, it will be demonstrated that higher-rank analogues of ℓαα̇, the conformal Killing

tensor superfields ℓα(n)α̇(n), generate symmetries of the massless Wess-Zumino operator.

4.2 Conserved current supermultiplets

When considering conformal field theories on R
d−1,1, a well-known procedure exists to gen-

erate conserved conformal currents by making use of a symmetric, traceless and conserved

energy-momentum tensor T ab

T ab = T ba , ηabT
ab = 0 , ∂bT

ab = 0 , (4.12)

with ηab the Minkowski metric. Given a conformal Killing vector field ξ = ξa∂a,

∂aξb + ∂bξa =
2

d
ηab∂cξ

c , (4.13)

the following vector field

ja[ξ] = T abξb (4.14)

is conserved, ∂aj
a = 0. The construction is naturally generalised to a curved space. It also

has a higher-spin extension [42]. Here we will present supersymmetric extensions of these

constructions building, in part, on the earlier work [69].
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Let m and n be positive integers. A primary tensor superfield Jα(m)α̇(n) on (M4|4,D)

is called a conformal supercurrent of valence (m,n) if it obeys the constraints

DβJ
βα(m−1)α̇(n) = 0 =⇒

(
D2 − 2(m+ 2)R̄

)
Jα(m)α̇(n) = 0 , (4.15a)

D̄β̇J
α(m)β̇α̇(n−1) = 0 =⇒

(
D̄2 − 2(n+ 2)R

)
Jα(m)α̇(n) = 0 . (4.15b)

These conditions imply the following superconformal transformation properties:

δΣJ
α(m)α̇(n) =

(
2 +

1

2
(m+ n)

)
Σ Jα(m)α̇(n) , (4.16a)

AJα(m)α̇(n) =
1

3
(m− n)Jα(m)α̇(n) . (4.16b)

If m = n, then Jα(n)α̇(n) is neutral with respect to the R-symmetry group U(1)R, and

therefore it is consistent to restrict Jα(n)α̇(n) to be real. The m = n = 1 case corresponds

to the ordinary conformal supercurrent [70]. The case m = n > 1 was first described in

Minkowski superspace in [71] (see also [58, 66]) and extended to AdS superspace in [72].

In the case m > n = 0, the constraints (4.15) should be replaced with

DβJ
βα(m−1) = 0 =⇒

(
D2 − 2(m+ 2)R̄

)
Jα(m) = 0 , (4.17a)

(D̄2 − 4R)Jα(m) = 0 . (4.17b)

The superconformal transformation properties of Jα(m) are obtained from (4.16) by set-

ting n = 0. The case n = 1 was first considered in [73], where it was shown that the

spinor supercurrent Jα naturally originates from the reduction of the conformal N = 2

supercurrent [74] to N = 1 superspace.

Finally, for m = 0 the constraints (4.17) should be replaced with

(D2 − 4R̄)J = 0 , (4.18a)

(D̄2 − 4R)J = 0 . (4.18b)

This is the flavour current supermultiplet [75].

Let Jα(m)α̇(n) be a conformal supercurrent of valence (m,n), and ℓα(p)α̇(q) a conformal

Killing tensor superfield of valence (p, q), with m ≥ p and n ≥ q. Then the following

composite object

Jα(m−p)α̇(n−q)[ℓ] := Jα(m−p)β(p)α̇(n−q)β̇(q)ℓβ(p)β̇(q) (4.19)

proves to be a conformal supercurrent of valence (m− p, n− q).

4.3 Conformal Killing spinor superfields and hypermultiplet

A free superconformal hypermultiplet may be described by two primary superfields of

dimension +1, a chiral scalar φ and a complex linear scalar Γ,

(D̄2 − 4R)Γ = 0 , AΓ = −
2

3
Γ . (4.20)
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The corresponding action

Shypermultiplet =

∫
d4xd2θd2θ̄ E

{
φ̄φ− Γ̄Γ

}
, (4.21)

is super-Weyl invariant.8

A comment is required regarding the U(1)R charge assignment in (4.20). In general,

given a primary complex linear superfield Γ of dimension ∆Γ and U(1)R charge qΓ,

(D̄2 − 4R)Γ = 0 , AΓ = qΓΓ , (4.22)

its charge and dimension are related to each other as

qΓ =
2

3
∆Γ −

4

3
, (4.23)

as a consequence of the identity

δΣ
(
D̄2 − 4R

)
= Σ

(
D̄2 − 4R

)
− 4(D̄α̇Σ)D̄

α̇ + 4(D̄α̇Σ)D̄β̇M̄α̇β̇ − 3(D̄α̇Σ)D̄
α̇
A

−
3

2
(D̄2Σ)A− 2(D̄2Σ) . (4.24)

The above properties and relations are similar to those derived in [82] in the case of three-

dimensional N = 2 supergravity. The U(1)R charge of Γ was fixed in (4.20) in order for

the action (4.21) to be super-Weyl invariant.

Given a conformal Killing spinor superfield ℓα constrained according to (4.3),

D(αℓβ) = 0 , D̄α̇ℓβ = 0 , (4.25)

we associate with it the following transformation

δφ = ℓ̄α̇D̄
α̇Γ +

1

2
(D̄α̇ℓ̄

α̇)Γ , (4.26a)

δΓ = −ℓαDαφ−
1

2
(Dαℓα)φ . (4.26b)

It may be checked that D̄α̇δφ = 0 and (D̄2 − 4R)δΓ = 0. It may also be verified that

δφ and δΓ are primary superfields. A routine calculation shows that the hypermultiplet

action (4.21) is invariant under the transformation (4.26), which is a curved superspace

extension of that given in [79].

The massless hypermultiplet model (4.21) has a dual formulation realised in terms of

two primary dimension-1 chiral scalars φ and ψ. The dual action

S
(dual)
hypermultiplet =

∫
d4xd2θd2θ̄ E

{
φ̄φ+ ψ̄ψ

}
, (4.27)

8A chiral scalar φ and a complex linear scalar Γ are the physical N = 1 superfields of the arctic

hypermultiplet [76, 77] realised in N = 1 Minkowski superspace. In addition to φ and Γ, this off-shell

hypermultiplet includes an infinite tail of auxiliary N = 1 superfields which are complex unconstrained and

vanish on-shell. The superconformal arctic hypermultiplets were formulated in [78, 79]. General couplings

of arctic hypermultiplets to 5D N = 1 and 4D N = 2 conformal supergravities were presented in [80, 81].
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is obviously super-Weyl invariant. In this dual formulation, the rigid symmetry (4.26)

turns into

δφ =
1

2

(
D̄2 − 4R

) (
ℓ̄ψ̄
)
, (4.28a)

δψ = −
1

2

(
D̄2 − 4R

) (
ℓ̄φ̄
)
. (4.28b)

Here ℓ̄ is the complex conjugate of a prepotential ℓ defined by

ℓα = Dαℓ , Aℓ =
2

3
ℓ . (4.29)

Equation (4.25) guarantees the existence of the prepotential ℓ, which is is defined modulo

arbitrary shifts

ℓ → ℓ+ λ̄ , Dαλ̄ = 0 . (4.30)

The scalar ℓ is primary and of dimension −1.

4.4 Conformal Killing spinor superfields and nonlinear σ-models

Now let us return to the nonlinear σ-model (3.33) and assume that its target space is a

hyperkähler cone [83]. This means that (i) it is a hyperkähler manifold (N , gµν , (JA)
µ
ν),

where µ, ν = 1, . . . , 4n and A = 1, 2, 3; and (ii) it is a Kähler cone with respect to each

complex structure. We pick one of the complex structures, say J3, and introduce complex

coordinates φi compatible with it. In these coordinates, J3 has the form

J3 =

(
i δij 0

0 −i δī j̄

)
. (4.31)

Two other complex structures, J1 and J2, become

J1 =

(
0 gik̄ω̄k̄j̄

gīkωkj 0

)
, J2 =

(
0 i gik̄ω̄k̄j̄

−i gīkωkj 0

)
, (4.32)

where gij̄(φ, φ̄) is the Kähler metric, and ωij(φ) = −ωji(φ) is the holomorphic symplectic

two-form.

It may be shown that the σ-model action (3.33) is invariant under the transformation

δφi =
1

2

(
D̄2 − 4R

){
ℓ̄ ωijχj

}
. (4.33)

The proof is analogous to that given in [84] in the case of Minkowski superspace.9 If we

replace in the right-hand side of (4.33) ℓ̄→ ℓ̄+λ, with λ chiral, then the λ-dependent part

of the transformation a trivial symmetry (i.e., it vanishes on-shell) of the model.

9See also the seminal paper [85] for the non-superconformal case.
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4.5 Symmetries of the massless Wess-Zumino operator

Higher symmetries of relativistic wave equations have been studied over several decades.

In particular, it was shown by Shapovalov and Shirokov [45] and, a decade later, by East-

wood [47] that the symmetry algebra of the d’Alembertian on R
p,q, with p+ q ≥ 3, is iso-

morphic to (a quotient of) the universal enveloping algebra of the Lie algebra of conformal

motions that span SO(p+1, q+1). Such infinite-dimensional algebras and their supersym-

metric extensions play a fundamental role in higher-spin gauge theory [86]. Time has come

to understand the higher symmetries of supersymmetric extensions of the d’Alembertian.

To the best of our knowledge, so far there has appeared only one work on the topic, written

by Howe and Lindström [58], where the symmetries of such operators are studied in flat

superspaces in diverse dimensions.

In our discussion of superconformal field theories we re-derived the well-known re-

sult that conformal Killing supervector fields generate symmetries of the theories in ques-

tion (3.26). In this section our analysis will be restricted to the free, massless theory

obtained from (3.27) by setting λ = 0,

S[φ, φ̄] =

∫
d4xd2θd2θ̄ E φ̄φ . (4.34)

This model proves to have higher symmetries. The corresponding super-Weyl invariant

equation of motion for φ̄ is

Πφ = 0 , Π := −
1

4

(
D2 − 4R̄

)
. (4.35)

We will refer to Π and its conjugate Π̄ = −1
4

(
D̄2 − 4R

)
as the (massless) Wess-Zumino

operators. These operators are examples of super-Laplacians discussed in [58].

Here we will study symmetries of the Wess-Zumino operator Π. A scalar differential

operator O will be called a symmetry operator of Π if it obeys the two conditions

D̄α̇Oφ = 0 , (4.36a)

ΠOφ = 0 , (4.36b)

for every on-shell chiral scalar φ, (4.35). Similar to the non-supersymmetric case [47], two

symmetry operators O and Õ are said to be equivalent, O ∼ Õ, if

Õ−O = Fα̇D̄
α̇ + HΠ ⇐⇒ O ∼ Õ , (4.37)

for some operators Fα̇ and H.

Since φ is a primary superfield of dimension +1, we will impose one more condition on

O, which is

δΣ(Oφ) = ΣOφ . (4.38)

In other words, we require O to be a conformally invariant operator. In what follows, we

will use bold-face capital letters, e.g. O, to denote symmetry operators which only satisfy

conditions (4.36a) and (4.36b).
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Given a positive integer n, we look for an nth-order symmetry operator

O(n) =

n∑

k=0

ζA1...AkDAk
. . .DA1 , (4.39a)

where the coefficients may be chosen to be graded symmetric

ζA1...AiAi+1...Ak = (−1)εAi
εAi+1 ζA1...Ai+1Ai...Ak , 1 ≤ i ≤ k − 1 . (4.39b)

Modulo the equivalence (4.37), O(n) may be brought to a canonical form given by

O(n) =
n∑

k=0

ζα(k)α̇(k)Dα1α̇1 . . .Dαkα̇k
+

n−1∑

k=0

ζα(k+1)α̇(k)Dα1α̇1 . . .Dαkα̇k
Dαk+1

. (4.40)

Now, imposing the condition (4.36a) proves to lead to a number of constraints on the

coefficients in (4.40), including the following

D̄β̇ζ
α(n)α̇(n) = −2iζα(n)(α̇1...α̇n−1δα̇n)

β̇ , (4.41)

which is equivalent to

D̄(α̇1
ζα(n)α̇2...α̇n+1) = 0 , (4.42a)

ζα(n)α̇(n−1) =
in

2(n+ 1)
D̄β̇ζ

α(n)α̇(n−1)β̇ . (4.42b)

We see that ζα(n)α̇(n−1) is determined in terms of ζα(n)α̇(n), and the latter is longitudinal

linear. In fact, imposing the condition (4.36a) also leads to the equation

D̄β̇ζ
α(n)α̇(n−1) = inζα(n)β̇

α̇(n−1)R , (4.43)

which automatically holds as a consequence of (4.42b).

Requiring the fulfilment of (4.38), a routine calculation allows us to express

ζα(n−1)α̇(n−1) in terms of the top component ζα(n)α̇(n) as follows:

ζα(n−1)α̇(n−1) =
n2

2(n+ 1)
Dββ̇ζβα(n−1)β̇α̇(n−1) −

in2

4(n+ 1)(2n+ 1)
[Dβ , D̄β̇ ]ζβα(n−1)β̇α̇(n−1)

+
in(n+ 1)

2(2n+ 1)
Gββ̇ζβα(n−1)β̇α̇(n−1) . (4.44)

It should be remarked that the general solution to the constraint (4.42a) is

ζα(n)α̇(n) = D̄(α̇1
υα(n)α̇2...α̇n) , Aυα(n)α̇(n−1) = −υα(n)α̇(n−1) , (4.45)

where the prepotential υα(n)α̇(n−1) is defined modulo arbitrary shifts of the form

υα(n)α̇(n−1) → υα(n)α̇(n−1) + τα(n)α̇(n−1) , D̄(α̇1
τα(n)α̇2...α̇n) = 0 . (4.46)

Prepotential solution (4.45) will be important for our subsequent analysis.
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Suppose we have satisfied (4.36a). Then imposing the condition (4.36b) leads to new

constraints on the coefficients in (4.40), including the following

D(α1
ζα2...αn+1)α̇(n) = 0 . (4.47)

Equations (4.42a) and (4.47) tell us that the top component ζα(n)α̇(n) in (4.40) obeys

the same constraints (4.3) which are imposed on the conformal Killing tensor superfield

ℓα(n)α̇(n). These constraints are consistent with the reality condition ζ̄α(n)α̇(n) = ζα(n)α̇(n),

which will be assumed in what follows.

So far we have not attempted to find a general solution of the constrains (4.36) for

O(n). Such a solution is easy to work out in the case of Minkowski superspace for which a

consistent ansatz for an irreducible operator O(n) is given by

O
(n) = ζα(n)α̇(n)∂α1α̇1 . . . ∂αnα̇n + ζα(n)α̇(n−1)∂α1α̇1 . . . ∂αn−1α̇n−1Dαn , (4.48)

where DA = (∂a, Dα, D̄
α̇) are the flat superspace covariant derivatives. In this case the

constraints (4.36) are equivalent to the relations

D̄(α̇1
ζα(n)α̇2...α̇n+1) = 0 , D(α1

ζα2...αn+1)α̇(n) = 0 , (4.49a)

ζα(n)α̇(n−1) = −
in

2(n+ 1)
D̄β̇ζα(n)α̇(n−1)β̇ . (4.49b)

We emphasise that (4.48) is a flat-superspace solution of the constrains (4.36). If the

equation (4.38) is also required, then certain lower-order terms must be added to (4.48),

as follows from from eq. (4.44) and also from the explicit expressions for O(1) and O(2)

given below.

The explicit structure of the flat-superspace symmetry (4.48) tells us that it is always

possible to construct a solution for the coefficients ζα(k)α̇(k) and ζα(k+1)α̇(k) of all operators

in (4.40) of order n− 1, . . . , 0 which are proportional to certain components of the torsion

tensor and their covariant derivatives.

The above consideration can be extended to anti-de Sitter superspace, AdS4|4, which

is characterised by the following algebra of covariant derivatives [3]

{Dα, D̄α̇} = −2iDαα̇ , (4.50a)

{Dα,Dβ} = −4µ̄Mαβ , {D̄α̇, D̄β̇} = 4µ M̄α̇β̇ , (4.50b)

[Dα,Dββ̇ ] = iµ̄ εαβD̄β̇ , [D̄α̇,Dββ̇ ] = −iµ εα̇β̇Dβ , (4.50c)

[Dαα̇,Dββ̇ ] = −2µ̄µ
(
εαβM̄α̇β̇ + εα̇β̇Mαβ

)
, (4.50d)

with µ 6= 0 being a complex parameter (the scalar curvature of AdS4 is equal to −12|µ|2).

One can show that the following irreducible operator is a consistent ansatz for O
(n)

O
(n) = ζα(n)α̇(n)Dα1α̇1 . . .Dαnα̇n + ζα(n)α̇(n−1)Dα1α̇1 . . .Dαn−1α̇n−1Dαn . (4.51a)
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Here, the constraints (4.36) are equivalent to

D̄(α̇1
ζα(n)α̇2...α̇n+1) = 0 , D(α1

ζα2...αn+1)α̇(n) = 0 , (4.51b)

ζα(n)α̇(n−1) = −
in

2(n+ 1)
D̄β̇ζα(n)α̇(n−1)β̇ , (4.51c)

D̄β̇ζα(n)α(n−1) = inµζα(n)α̇(n−1)β̇ . (4.51d)

We again emphasise that (4.51) is an AdS-superspace solution of the constraints (4.36).

We now determine O(1) and O(2) in U(1) superspace. Setting n = 1 in (4.40) gives

O(1)φ =
(
ζαα̇Dαα̇ + ζαDα + ζ

)
φ . (4.52)

Requiring O(1)φ to be chiral allows us to obtain

D̄α̇ζ = −
i

3
ζαα̇Xα . (4.53)

Additionally, the property that the transformed field remains primary with dimension +1

leads to the following super-Weyl transformation laws for the parameters

δΣζαα̇ = −Σζαα̇ , (4.54a)

δΣζα = −
Σ

2
ζα − iD̄α̇Σζαα̇ , (4.54b)

δΣζ = −2DαΣζα −Dαα̇Σζαα̇ +
i

2
[Dα, D̄α̇]Σζαα̇ . (4.54c)

A solution to (4.53) which is consistent with (4.54c) is given by

ζ = −
i

3
υαXα +

i

12

(
D̄2 − 4R

)
Dαυα , (4.55)

with the prepotential υα being defined according to (4.45).

It should be emphasised that the second (chiral) term in (4.55) is not determined by the

condition (4.36a) which only constrains ζ to satisfy (4.53). However, this term is uniquely

fixed if we further require the condition (4.38) to hold. Making use of the identity

[
D̄2,Dα

]
= −4 (Gαα̇ − iDαα̇) D̄

α̇ + 4RDα − 4D̄α̇Gα
β̇M̄α̇β̇ + 8Wα

βγMβγ

−
4

3
XβMαβ − 2XαA , (4.56)

one may obtain from (4.55) a different expression for ζ given by

ζ =

(
1

4
Dαα̇ +

i

3
Gαα̇ −

i

24
[Dα, D̄α̇]

)
ζαα̇ , (4.57)

which reveals that all parameters of the operator O(1) are expressible in terms of the vector

ζαα̇. This is in agreement with the results of the top-down approach (3.3).

Once the background superspace (M4|4,D) possesses first-order symmetry operators

O
(1)
ζ1
, . . . ,O

(1)
ζn
,, we can generate a higher-order symmetry operator, Õ(n), defined by

Õ(n) := O
(1)
ζ1
. . .O

(1)
ζn
, n = 2, 3, . . . . (4.58)
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By construction, it satisfies the conditions (4.36) and (4.38). Of course, it does not have

the canonical form (4.40), however it may be brought to such a form by factoring out a

contribution of the type (4.37).

Next, we consider the n = 2 case

O(2)φ =
(
ζαβα̇β̇Dαα̇Dββ̇ + ζαβα̇Dαα̇Dβ + ζαα̇Dαα̇ + ζαDα + ζ

)
φ . (4.59)

Requiring the conditions (4.36) leads to the integrability conditions

D̄α̇ζββ̇ = 2iεα̇β̇ζβ + 2iζαγα̇β̇Wαβγ − iζαβα̇β̇

(
DαR+

1

3
Xα

)
− iζβ

γ
α̇
γ̇D̄γ̇Gγβ̇

−ζαβ(α̇Gαβ̇) , (4.60a)

D̄α̇ζα = iζαα̇R+
i

2
ζα

β
α̇

(
DβR+

1

3
Xβ

)
+ iζα

β
α̇
β̇Dββ̇R− iζβγα̇Wαβγ

−ζα
β
α̇
β̇Gββ̇ , (4.60b)

D̄α̇ζ =
i

3
ζαα̇Xα +

i

3
ζαβα̇DαXβ +

1

3
ζαβα̇

β̇XαGββ̇ −
i

3
ζαβα̇

β̇Dββ̇Xα . (4.60c)

So far we have not taken into account the condition (4.38); the transformed field,

O(2)φ, retains the property of being primary and of dimension +1. This condition fixes

the super-Weyl transformation laws for the parameters

δΣζαβα̇β̇ = −2Σζαβα̇β̇ , (4.61a)

δΣζαβα̇ = −
3

2
Σζαβα̇ + 2iD̄β̇Σζαβα̇β̇ , (4.61b)

δΣζαα̇ = −Σζαα̇ − 4Dββ̇Σζαβα̇β̇ + i[Dβ , D̄β̇ ]Σζαβα̇β̇ − 4DβΣζαβα̇ , (4.61c)

δΣζα = −
1

2
Σζα + iD̄α̇Dββ̇Σζαβα̇β̇ − 2Dββ̇Σζαβα̇β̇ + iDα̇Σζαα̇ , (4.61d)

δΣζ =
i

2
Dαα̇[Dβ , D̄β̇ ]Σζαβα̇β̇ − 2DαDββ̇Σζαββ̇ +

i

2
[Dα, D̄α̇]Σζαα̇

−2DαΣζα −Dαα̇Σζαα̇ −Dαα̇Dββ̇Σζαβα̇β̇ . (4.61e)

The requirement that (4.36) and (4.38) are satisfied leads to the unique solution

ζαα̇ =
2

3
Dββ̇ζαβα̇β̇ −

i

15
[Dβ , D̄β̇ ]ζαβα̇β̇ +

3i

5
ζαβα̇β̇G

ββ̇ , (4.62a)

ζα = −
2i

15
D̄α̇Dββ̇ζαβα̇β̇ −

1

10
ζαβα̇β̇D̄

α̇Gββ̇ +
1

15
D̄α̇ζαβα̇β̇G

ββ̇ , (4.62b)

ζ =
1

15
Dαα̇Dββ̇ζαβα̇β̇ −

i

60
Dαα̇[Dβ , D̄β̇ ]ζαβα̇β̇ +

7i

30
Dαα̇ζαβα̇β̇G

ββ̇

+
1

30
[Dα, D̄α̇]ζαβα̇β̇G

ββ̇ +
1

20
Dαζαβα̇β̇D̄

α̇Gββ̇ −
13

60
D̄α̇ζαβα̇β̇D

αGββ̇

+
2i

5
ζαβα̇β̇D

αα̇Gββ̇ +
3

20
ζαβα̇β̇ [D

α̇, D̄α̇]Gββ̇ −
1

5
ζαβα̇β̇G

αα̇Gββ̇ . (4.62c)

Thus, this transformation is completely determined by the conformal Killing tensor ζαβα̇β̇ .

It is crucial to note that if we relax condition (4.38), the solution ceases to be uniquely
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defined and may be constructed in such a way that the coefficients ζαα̇ , ζα and ζ vanish

in the flat (or AdS) superspace limit.

In the case of a symmetry operator (4.40) of arbitrary order, we expect that our

conceptual results for O(1) and O(2) generalise; all components are uniquely determined in

terms of ζα(n)α̇(n) and a suitable flat (or AdS) superspace limit may be constructed.

4.6 Supersymmetric even Schouten-Nijenhuis bracket

In analogy with the space of conformal Killing supervector fields, we wish to endow our

construction with an additional structure allowing us to combine two conformal Killing

tensors and produce a third. Consider two such tensors ζ1
α(m)α̇(m) and ζ2

α(n)α̇(n). It can

then be shown that the following bracket (an implicit symmetrisation over all α-indices

and, independently, all α̇-indices is assumed below)

[ζ1, ζ2]α(m+n−1)α̇(m+n−1) =

−
m

2
ζ1α(m−1)

β
α̇(m−1)

β̇Dββ̇ζ
2
α(n)α̇(n) +

n

2
ζ2α(n−1)

β
α̇(n−1)

β̇Dββ̇ζ
1
α(m)α̇(m)

−
imn

4(m+ 1)(n+ 1)

(
D̄β̇ζ

1
α(m)

β̇
α̇(m−1)Dβζ

2
α(n−1)

β
α̇(n) − D̄β̇ζ

2
α(n)

β̇
α̇(n−1)Dβζ

1
α(m−1)

β
α̇(m)

)

+
imn

2

(
ζ1α(m)α̇(m−1)

β̇ζ2α(n−1)
β
α̇(n−1) − ζ2α(n)α̇(n−1)

β̇ζ1α(m−1)
β
α̇(m−1)

)
Gββ̇ (4.63)

also satisfies these conditions and hence is a new conformal Killing tensor superfield. Hence,

for a given supergravity background, the set of conformal Killing tensor superfields ζα(n)α̇(n)
is a superalgebra with respect to the above bracket.

The Gββ̇-dependent terms in (4.63) can be removed by redefining the vector covariant

derivative by the rule

Dαα̇ → D̃αα̇ = Dαα̇ +
i

2

(
Gβ

α̇Mαβ −Gα
β̇M̄α̇β̇

)
(4.64a)

or, equivalently,

Da → D̃a +
1

4
εabcdG

bM cd . (4.64b)

The specific feature of the covariant derivatives D̃A = (D̃a,Dα, D̄
α̇) is the torsion-free

condition T̃ab
c = 0. In terms of the covariant derivatives D̃A, the bracket (4.63) coincides

with the one proposed in [57] where it was called the “supersymmetric even Schouten-

Nijenhuis bracket.”

In the case of N = 1 AdS superspace, the bracket (4.63) coincides with the one given

in [49] for Killing tensor superfields.

5 Isometries of curved superspace

As is well known, every off-shell formulation for N = 1 supergravity is obtained by cou-

pling conformal supergravity to a compensating supermultiplet. Different supergravity

theories correspond to different compensators, see, e.g., [37, 87–89]. For a given theory,
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the compensator Ξ is a nowhere vanishing primary scalar superfield, which obeys certain

constraints and has a non-zero dimension, ∆Ξ 6= 0, and some U(1)R charge qΞ. In the case

of new minimal supergravity, qΞ = 0 and the compensator is real. For the old minimal and

non-minimal formulations, qΞ is non-zero. Once Ξ is specified, supergravity background is

a triple (M4|4,D,Ξ).

5.1 Off-shell supergravity and Killing vector superfields

Let ξ = ξBEB be a conformal Killing supervector field on (M4|4,D),

(
δK[ξ] + δΣ[ξ]

)
DA = 0 . (5.1a)

It is called a Killing supervector field if it leaves the compensator Ξ invariant,

(
δK[ξ] +∆ΞΣ[ξ]

)
Ξ = 0 . (5.1b)

The latter condition can be rewritten in the form

ξBDBΞ + (∆ΞΣ[ξ] + iqΞρ[ξ])Ξ = 0 . (5.2)

The set of all Killing supervector fields on (M4|4,D,Ξ) is a Lie superalgebra.

The Killing equations (5.1) are super-Weyl invariant in the sense that they hold for all

conformally related supergravity backgrounds. In the presence of a compensator, the notion

of conformally related superspaces given in section 3.3 should be generalised as follows. Two

supergravity backgrounds (M4|4, D̂, Ξ̂) and (M4|4,D,Ξ) are said to be conformally related

provided the covariant derivatives D̂A and DA are related to each other according to (3.15),

and the same super-Weyl parameter Σ relates the compensators,

Ξ̂ = e∆ΞΣΞ . (5.3)

Applying a super-Weyl transformation allows us to choose the gauge

Ξ̄Ξ = 1 , (5.4)

and then (5.2) reduces to

Σ[ξ] = 0 ⇐⇒ Dαξα + D̄α̇ξ̄
α̇ = 0 =⇒ Daξ

a = 0 . (5.5)

In this gauge the Killing equations (5.1) take the simplified form

δK[ξ]DA = [K[ξ],DA] = 0 . (5.6)

Once Σ[ξ] = 0 the left-hand side of each relation in (3.14) is equal to zero, and therefore

the right-hand side must vanish as well. It is an instructive exercise to demonstrate, with

the aid of the relations (3.4) and (3.8), that this is indeed the case.

For qΞ 6= 0 it is always possible to impose a stronger gauge condition than (5.4).

Indeed, applying a combined super-Weyl and local U(1)R transformation allows us to set

Ξ = 1 , (5.7)
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and then the Killing condition (5.2) turns into

Σ[ξ] = 0 , ξBΦB + ρ[ξ] = 0 . (5.8)

When studying the symmetries of bosonic supergravity backgrounds, we will keep

some of the components of Ξ alive and, instead, impose the so-called Weyl multiplet gauge

described in appendix C.

5.2 Conformal compensators

In this subsection we briefly review the structure of the compensating supermultiplets

which correspond to the old minimal [6, 12, 13] and new minimal [38, 39] formulations

for N = 1 supergravity. The non-minimal formulations for Poincaré [87, 90, 91] and AdS

supergravity [60] will not be discussed here.

In the old minimal formulation, the compensator is a nowhere vanishing primary chiral

scalar S0 with the superconformal properties

D̄α̇S0 = 0 , ∆S0 = 1 , qS0 =
2

3
. (5.9)

The supergravity action is

SSG,old = −
3

κ2

∫
d4xd2θd2θ̄ E S̄0S0 +

{
µ

κ2

∫
d4xd2θ E S3

0 + c.c.

}
, (5.10)

where κ is the gravitational coupling constant, and µ is a complex parameter related to

the cosmological constant. Making use of the super-Weyl and local U(1)R transformations,

the chiral compensator can be gauged away resulting with

S0 = 1 =⇒ ΦA = 0 =⇒ Xα = 0 . (5.11)

In the new minimal formulation, the compensator is a nowhere vanishing primary

scalar L constrained by10

L̄ = L , (D̄2 − 4R)L = 0 =⇒ ∆L = 2 . (5.12)

The supergravity action is

SSG,new =
3

κ2

∫
d4xd2θd2θ̄ E L ln

L

S̄0S0
, (5.13)

where the chiral scalar S0, eq. (5.9) is a pure gauge degree of freedom. The super-Weyl

invariance allows one to choose the gauge

L = 1 =⇒ R = 0 . (5.14)

10The linear compensator (5.12) was introduced in [88]. It is a tensor multiplet [92] such that its field

strength L is nowhere vanishing.
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5.3 Killing spinor superfields and massive hypermultiplet

To describe a massive hypermultiplet, we consider the following generalisation of (4.27)

S
(m)
hypermultiplet =

∫
d4xd2θd2θ̄ E

{
φ̄φ+ ψ̄ψ

}
+

{
m i

∫
d4xd2θ E S0ψφ+ c.c.

}
, (5.15)

where m is a real mass parameter. When analysing this model, we will adopt the super-

Weyl gauge S0 = 1, and therefore the U(1)R connection is equal to zero, ΦA = 0.

Through a direct computation, we find that the transformation (4.28) is also a sym-

metry of the massive theory only if ℓ is constrained to be real,

ℓ̄ = ℓ =⇒ Dαα̇ℓ = 0 , (5.16a)

where we have used the relations (4.25) and (4.29), which imply

D̄α̇Dαℓ = 0 . (5.16b)

These conditions may be shown to have the following non-trivial implication:

Dα

(
D̄2 − 4R

)
ℓ = −4D̄α̇(Gαα̇ℓ) (5.17)

Now, in conjunction with the identity D̄α̇

(
D̄2 − 4R

)
ℓ = 0, we observe that

Gαα̇ = 0 =⇒
(
D̄2 − 4R

)
ℓ = const . (5.18)

The condition Gαα̇ = 0 means that the background under consideration is Einstein, i.e. it

is a solution of supergravity equations of motion.

To realise a second supersymmetry transformation in N = 1 AdS superspace,

refs. [49, 93] made use of a background scalar superfield ε subject to the constraints

ε̄ = ε , D̄α̇Dαε = 0 , (D̄2 − 4µ)ε = 0 . (5.19)

The parameter ε naturally originates within the N = 2 AdS superspace approach [28].

The Killing superfield ℓ introduced above contains two additional scalar parameters as

compared with ε.

5.4 Symmetries of the massive Wess-Zumino operator

A massive scalar supermultiplet in curved superspace is described by the action

S[φ, φ̄] =

∫
d4xd2θd2θ̄ E φ̄φ+

{
m

2

∫
d4xd2θ E S0φ

2 + c.c.

}
, D̄α̇φ = 0 , (5.20)

with m = m̄ a mass parameter. In what follows we will work in the super-Weyl gauge

S0 = 1. Then the equations of motion are

Hm

(
φ

φ̄

)
= 0 , Hm =

(
m Π̄

Π m

)
, Π := −

1

4

(
D2 − 4R̄

)
. (5.21)
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We now wish to understand what additional conditions must be imposed upon the

nth-order operator (4.40) so that we obtain a symmetry of this theory. Since it has been

shown that all coefficients are expressed in terms of the top component, we expect that

this condition may be written as a closed form equation in ζα(n)α̇(n).

In the massive case, the requirement that the symmetry operator O(n) preserves the

equation of motion

ΠO(n)φ+m
(
O(n)φ

)
= 0 , (5.22)

leads to new conditions which arise from setting the contributions proportional to the

derivatives of φ̄ to zero. The most fundamental of these is

DβD̄β̇ζβα(n−1)β̇α̇(n−1) = 2(n+ 1)Gββ̇ζβα(n−1)β̇α̇(n−1)

+
2i(n+ 1)

n

(
ζα(n−1)α̇(n−1) − ζ̄α(n−1)α̇(n−1)

)
. (5.23)

It is more useful to work with an expression only in terms of the top component.

Substituting (4.44) into (5.23) yields the Killing condition

DβD̄β̇ζβα(n−1)β̇α̇(n−1) = 2n(n+ 1)Gββ̇ζβα(n−1)β̇α̇(n−1) , (5.24)

which implies

Dββ̇ζβα(n−1)β̇α̇(n−1) = 0 . (5.25)

Fixing n = 1, we obtain the well-known Killing condition for supervector fields (1.3).

In the case of AdS superspace AdS4|4, Gαα̇ = 0 and the Killing condition (5.24) reduces

to (1.4b) originally described in [49]. Given two Killing tensor superfields ζ1
α(m)α̇(m) and

ζ2
α(n)α̇(n) in AdS4|4, the bracket (4.63) coincides with the one presented in [49].

6 Bosonic backgrounds

Similar to general relativity, of special interest are supergravity backgrounds which support

unbroken symmetries. In the context of supersymmetric field theory we are primarily

interested in those backgrounds which possess some amount of unbroken supersymmetry.

This naturally leads us to restrict our attention to so-called bosonic backgrounds. By

definition such a supergravity background has no covariant fermionic fields,

DαR| = 0 , DαGββ̇ | = 0 , Wαβγ | = 0 , Xα| = 0 , (6.1)

where the bar projection is defined as in eq. (B.1). These conditions imply that the gravitino

can be gauged away. In the remainder of this section we will assume that the gravitino is

absent. We will also make use of the Weyl multiplet gauge described in appendix C.

Since there are no background fermionic fields, it follows from the equations (3.4) that

every conformal Killing supervector field can uniquely be written as a sum of even and odd

ones. A conformal Killing supervector field ξA is called even if

va(x) := ξa| 6= 0 , ξα| = 0 . (6.2)
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A conformal Killing supervector field ξA is called odd provided

ξa| = 0 , ǫα(x) := ξα| 6= 0. (6.3)

All information about the even and odd conformal Killing supervector fields is encoded in

the vector va and spinor ǫα fields, respectively.

6.1 Conformal isometries

In this section we make extensive use of the component field formalism reviewed in ap-

pendix B and work within the Weyl multiplet gauge constructed in appendix C. Since the

gravitino has been gauged away, which is possible due to (6.1), the component torsion ten-

sor (C.4b) vanishes, which leaves us with a torsionless Lorentz connection. The component

covariant derivative is

Da| = Da ,
[
Da,Db

]
=

1

2
Rab

cdMcd + iFabA . (6.4)

where the Lorentz curvature and U(1)R field strength take the form

Rabcd =
1

2
(σab)

αβ(σcd)
γδD(αWβγδ)| −

1

2
(σ̃ab)

α̇β̇(σ̃cd)
γ̇δ̇D̄(α̇W̄β̇γ̇δ̇)|

+
1

4

(
(σ̃ab)

α̇β̇(σcd)
αβ + (σab)

αβ(σ̃cd)
α̇β̇
)
D(αD̄(α̇Gβ)β̇)|

−
1

24

(
ηc[aηb]d − ηd[aηb]c

)
DαXα| , (6.5a)

Fab =
i

8
(σab)

αβDαXβ | −
i

8
(σ̃ab)

α̇β̇D̄α̇X̄β̇ | . (6.5b)

When working with a U(1)R neutral field ψ(x), it holds that Daψ = ∇aψ, where

∇a := Da − iϕaA (6.6)

is the torsion-free Lorentz-covariant derivative.

In section 3, we derived the necessary conditions on the transformation parameters

Ξ, eq. (3.13), associated with a conformal Killing supervector field ξA. Here, we wish

to extract from these conditions all the restrictions on even and odd conformal Killing

supervector fields. These are readily derivable by bar projecting the results for DaΞ.

Let ξA be an even conformal Killing supervector field. Making use of the defini-

tions (B.12) and bar projecting eq. (3.8b) leads to

∇avb = kab[v] + ηabσ[v] , (6.7)

which implies

kab[v] = ∇[avb] , σ[v] =
1

4
∇av

a . (6.8)

We see that va is a conformal Killing vector field,

∇(avb) =
1

4
ηab∇cv

c . (6.9)
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Further, one may show that every conformal Killing vector field on M4 may be lifted to a

unique even conformal Killing supervector field on M4|4. It should be remarked that the

U(1)R parameter ̺[v] is given by

∇a̺[v] = −Fabv
b . (6.10)

Let ξA be an odd conformal Killing supervector field, eq. (6.3). Then the bar projection

of (3.8a) yields the conformal Killing spinor equation

Dαα̇ǫβ = −iεαβ η̄α̇[ǫ] , (6.11)

where we have defined ηα := DαΣ|. The equivalent form of this equation is

D(αα̇ǫβ) = 0 . (6.12)

6.2 Isometries of old minimal supergravity backgrounds

Let ξ = ξBEB be a conformal Killing supervector field on (M4|4,D), eq. (5.1a). We recall

that the transformation δK[ξ]+ δΣ[ξ] is said to be an isometry if the conformal compensator

is left invariant, eq. (5.1b). In general, this requirement leads to severe restrictions on the

symmetry parameters. Here, we will investigate the case of old minimal supergravity.

By making use of the Weyl, local U(1)R and S-supersymmetry transformations we are

able to adopt the gauge

S0| = 1 , DαS0| = 0 . (6.13)

This leaves us with a single component field which cannot be gauged away

M := −
1

4
D2S0| . (6.14)

As we have fixed the local U(1)R invariance in this gauge, it is more convenient to work

with the Lorentz-covariant derivative (6.6).

We find that in the case of an even symmetry, equation (5.1b) is equivalent to the

conditions

σ[v] = 0 , ̺[v] = vaϕa , va∇aM = 0 . (6.15)

As a result, (6.7) reduces to

∇avb = kab[v] =⇒ ∇(avb) = 0 , (6.16)

and therefore va is a Killing vector field.

If we instead consider odd symmetries, we obtain

ηα[ǫ] = −Mǫα −
2

3
ǭα̇ϕαα̇ . (6.17)

Thus, we are able to obtain from (6.11) the Killing spinor equation

∇αα̇ǫβ = iϕ(αα̇ǫβ) + iεαβ

(
M̄ ǭα̇ +

1

6
ϕγα̇ǫ

γ

)
, (6.18)

which was originally given in [18].
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6.3 Isometries of new minimal supergravity backgrounds

In the case of new minimal supergravity, the conformal compensator L is a linear multiplet,

eq. (5.12). Associated with L is the real vector descendant

Lαα̇ := −
1

2

[
Dα, D̄α̇

]
L+Gαα̇L (6.19)

with the important property

Dαα̇Lαα̇ =
i

2

(
X̄α̇ + 3D̄α̇R̄

)
D̄α̇L−

i

2
(Xα + 3DαR)DαL . (6.20)

Working in the Weyl multiplet gauge, the freedom to perform the Weyl and S-

supersymmetry transformations allows us to impose the additional gauge conditions

L| = 1 , DαL| = 0 . (6.21)

Owing to the reality of L, we stay with unbroken U(1)R transformations. The only re-

maining component field of L is

Hαα̇ := Lαα̇ | . (6.22)

Making use of (6.20), we arrive at the constraint

∇aHa = 0 . (6.23)

Considering the case of an even symmetry, equation (5.1b) leads to

σ[v] = 0 , vb∇bHa = 0 . (6.24)

As a result, the Killing vector equation is given by

∇avb = kab[v] =⇒ ∇(avb) = 0 . (6.25)

In the case of odd symmetries, we deduce the charged Killing spinor equation

ηα[ǫ] = −
1

2
Hαβ̇ ǭ

β̇ =⇒ Dαα̇ǫβ =
i

2
εαβHγα̇ǫ

γ , (6.26)

which is equivalent to the one originally derived in [18].

6.4 Components of the (conformal) Killing tensor superfields

Given a primary tensor field tα(p)α̇(q) on a curved spacetime, we say that it is conformal

Killing if it satisfies

Dαα̇tα(p)α̇(q) = 0 . (6.27)

Further, it is said to be Killing if

Dββ̇tβα(p−1)β̇α(q−1) . (6.28)
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Consider a conformal Killing tensor superfield ℓα(m)α̇(n) on M4|4 with m ≥ 1 and

n ≥ 1. It obeys the constraints (4.3a) and (4.3b). At the component level it contains four

independent fields:

Kα(m)α̇(n) := ℓα(m)α̇(n)| , (6.29a)

Mα(m−1)α̇(n) := Dβℓβα(m−1)α̇(n)| , (6.29b)

Nα(m)α̇(n−1) := D̄β̇ℓα(m)β̇α̇(n−1)| , (6.29c)

Lα(m−1)α̇(n−1) := [Dβ , D̄β̇ ]ℓβα(m−1)β̇α̇(n−1)| . (6.29d)

By a straightforward calculation, we find that each component field defines a conformal

Killing tensor field on the background in the sense of (6.27). In the special case where

ℓα(m)α̇(n) is Killing, it is easily shown that these component fields also satisfy the Killing

condition (6.28).

6.5 Components of conformal supercurrents

A primary tensor field tα(p)α̇(q) on a curved spacetime will be called a conserved current if

it satisfies the divergenceless condition

Dββ̇t
βα(p−1)β̇α̇(q−1) = 0 . (6.30)

Given a conformal supercurrent Jα(m)α̇(n), eq. (4.15), it contains four independent

component fields, which can be chosen as follows (an implicit symmetrisation over all α-

indices and, independently, all α̇-indices is assumed)

jα(m)α̇(n) := Jα(m)α̇(n)| , (6.31a)

Qα(m+1)α̇(n) := DαJα(m)α̇(n)| , (6.31b)

Sα(m)α̇(n+1) := D̄α̇Jα(m)α̇(n)| , (6.31c)

Tα(m+1)α̇(n+1) := [Dα, D̄α̇]Jα(m)α̇(n)| . (6.31d)

It is easily verified that jα(m)α̇(n), Qα(m+1)α̇(n) and Sα(m)α̇(n+1) define conserved currents

satisfying eq. (6.30) for an arbitrary background. This is true for Tα(m+1)α̇(n+1) only in the

special case where m=n=1. Let us elaborate on the current (6.31d) in some more detail.

In the case of AdS and Minkowski superspace backgrounds, Tα(m+1)α̇(n+1) may always

be improved,

T
α(m+1)α̇(n+1) := Tα(m+1)α̇(n+1) −

2i(m− n)

m+ n+ 2
Dαα̇jα(m)α̇(n) , (6.32)

to give a conserved current, Dββ̇T
βα(m)β̇α̇(n) = 0, for arbitrary positive integers m and

n. Since the supercurrent Jα(m)α̇(n) is a primary superfield, it should be always possible

to improve (6.31d) to a conserved current in a conformally flat background, Cabcd = 0.

However, if the background Weyl tensor is non-vanishing, Cabcd 6= 0, it is not possible

to improve Tα(m+1)α̇(n+1) to a conserved current provided m > 1 and/or n > 1. This

conclusion is analogous to a recent result of Beccaria and Tseytlin [94] who demonstrated
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that for a conformal scalar field in curved space there is no way to construct a conserved

traceless symmetric spin-3 current J abc if the background Weyl tensor is non-vanishing.

Next, we consider conformal supercurrents of the form Jα(m) (4.17). At the component

level, it contains two possible candidates for conserved currents:

jα(m)α̇ := D̄α̇Jα(m)| , (6.33a)

Tα(m+1)α̇ := [Dα, D̄α̇]Jα(m)| . (6.33b)

A routine calculation reveals that jα(m)α̇ does indeed constitute a conserved current. In

the context of AdS and Minkowski superspaces, it is always possible to extend Tα(m)α̇ to

a conserved current by setting m = 0 in (6.32), however this fails in the general case.

The final case of interest is that of a scalar conformal supercurrent J (4.18a). It

contains a single current at the component level,

Tαα̇ := [Dα, D̄α̇]J | , Dαα̇T
αα̇ = 0 , (6.34)

which is conserved for any curved background.

6.6 Maximally supersymmetric backgrounds

There exist only five maximally supersymmetric backgrounds in off-shell 4D N = 1 super-

gravity, as was first demonstrated by Festuccia and Seiberg [18] in the component setting.

There is a remarkably simple superspace derivation of this classification [95, 96] which we

review here. Unlike the previous analysis in this section, which has relied on the Weyl

multiplet gauge, this derivation makes use of the gauge condition (5.7).

We start by recalling an important theorem concerning the maximally supersymmetric

backgrounds [22, 25]. For any supergravity theory in D dimensions formulated in super-

space, all maximally supersymmetric spacetimes correspond to those supergravity back-

grounds which are characterised by the following properties: (i) all Grassmann-odd com-

ponents of the superspace torsion and curvature tensors vanish; and (ii) all Grassmann-even

components of the torsion and curvature tensors are annihilated by the spinor derivatives.

In the case of 4D N = 1 supergravity, the above theorem means the following:

Xα = 0 , (6.35a)

Wαβγ = 0 , (6.35b)

DαR = 0 =⇒ DAR = 0 , (6.35c)

DαGββ̇ = 0 =⇒ DAGββ̇ = 0 . (6.35d)

Equation (6.35a) tells us that all maximally supersymmetric backgrounds are realised in

terms of the GWZ geometry [4, 5]. Equation (6.35b) tells us that all maximally super-

symmetric backgrounds are conformally flat. Equations (6.35c) and (6.35d) restrict R

and Gββ̇ to be covariantly constant. Equation (6.35d) has an integrability condition that

follows from

0 =
{
D̄α̇, D̄β̇

}
Gγγ̇ = 4Rεγ̇(α̇Gγβ̇) , (6.36)
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and therefore we obtain the constraint

RGαα̇ = 0 . (6.37)

There is an alternative way to arrive at this constraint. Relation (6.35d) tells us that

Gββ̇ satisfies the superconformal Killing equation (3.5b), and therefore the condition (3.6)

holds. Since Gββ̇ is covariantly constant, (3.6) reduces to (6.37).

The simplest solution to (6.37) is R = 0 and Gαα̇ = 0, which corresponds to Minkowski

superspace. Another solution is described by Gαα̇ = 0 and R = µ 6= 0, which corresponds to

the AdS superspace (4.50). The three remaining superspaces are characterised by formally

identical anti-commutation relations

{Dα,Dβ} = 0 , {D̄α̇, D̄β̇} = 0 , {Dα, D̄β̇} = −2iDαβ̇ , (6.38a)

[Dα,Dββ̇ ] = iεαβG
γ
β̇Dγ , [D̄α̇,Dββ̇ ] = −iεα̇β̇Gβ

γ̇D̄γ̇ , (6.38b)

[Dαα̇,Dββ̇ ] = −iεα̇β̇Gβ
γ̇Dαγ̇ + iεαβG

γ
β̇Dγα̇ , (6.38c)

where Gb is covariantly constant, DAGb = 0. The difference between these superspaces is

encoded in the Lorentzian type of Ga. Since G2 = GaGa is constant, the geometry (6.38)

describes three different superspaces, M
4|4
T , M

4|4
S and M

4|4
N , which correspond to the choices

G2 < 0, G2 > 0 and G2 = 0, respectively. The Lorentzian manifolds, which are the bosonic

bodies of the superspaces M
4|4
T , M

4|4
S and M

4|4
N , are R × S3, AdS3 × R and a pp-wave

spacetime, respectively. The latter spacetime is isometric to the so-called Nappi-Witten

group [97], as shown in [98].

Each superspace (6.38) is maximally supersymmetric solution of R2 supergravity [96].

7 Conclusion

To conclude this paper we summarise the main results obtained and list several interesting

open problems. The main outcomes of this work include the following.

• We described the general structure of (conformal) isometries of supergravity back-

grounds within the U(1) superspace setting. Using the formalism developed, it is

trivial to read off the known (conformal) Killing spinor equations for unbroken su-

persymmetry transformations. What is more important is that our formalism makes

it possible to reconstruct, starting from a given (conformal) Killing spinor field, a

unique (conformal) Killing supervector field which generates the corresponding su-

persymmetry transformation on M4|4.

• It was shown that the infinitesimal (conformal) isometry transformations form a

closed algebra for any supergravity background.

• We introduced the (conformal) Killing tensor superfields ℓα(m)(α̇(n), where m and n

non-negative integers, m+n > 0, and demonstrated their significance in the following

cases: (i) m = n, with the choice n = 1 corresponding to the (conformal) isometries;

– 35 –



J
H
E
P
0
4
(
2
0
2
0
)
1
3
3

and (ii) m − 1 = n = 0. In particular, we showed that extended (conformal) super-

symmetry transformations are formulated in terms of the (conformal) Killing spinor

superfields ℓα. It was proved that the conformal Killing tensor superfields with m = n

generate all (non-trivial) symmetries of the massless Wess-Zumino operator and form

a superalgebra with respect to the bracket (4.63). In the case of conformally flat su-

perspaces this leads to a geometric realisation of the N = 1 conformal higher-spin

superalgebra [99, 100].11

• We introduced the conformal supercurrents Jα(m)α̇(n) of arbitrary valence (m,n) in

a supergravity background and analysed their component structure.

Interesting open problems include the following.

• We believe that all coefficients of the symmetry operator O(n), eq. (4.40), can be

expressed in terms of the top component ζα(n)α̇(n). We have been able to prove this

for the lowest cases n = 1, 2. It would be interesting to extend the proof to greater

values of n. In the case of Minkowski superspace, this was proved in [58].

• We expect that the component field defined by (6.31d) can be improved to a conserved

current T
α(m+1)α̇(n+1) (m,n ≥ 0), on any conformally flat bosonic background. A

proof of this result would be important. Perhaps the best approach to address this

problem is to make use of conformal superspace [40].12

• It would be interesting to extend the analysis of section 4 to off-shell supergravity

backgrounds in diverse dimensions. In particular, it is an interesting problem to

describe the higher symmetries of a massless hypermultiplet in 4D N = 2 conformal

supergravity backgrounds.

• It would be interesting to make use of the techniques developed in our paper to iden-

tify supersymmetric models whose symmetries are generated by the superconformal

Killing-Yano tensor introduced by Howe and Lindström [59].

• As an extension of Eastwood’s influential work [47], there have appeared several

publications on higher symmetries of the conformal powers of the Laplacian includ-

ing [102–105].13 It would be interesting to carry out a similar analysis for the N = 1

and N = 2 superconformal extensions of ✷2 proposed in [109, 110].

• General non-conformal deformations of the conformal supercurrents Jα(n)α̇(n) and

Jα(n+1)α̇(n), eq. (4.15), were described in [72, 111, 112] for the cases of Minkowski and

AdS backgrounds. Various aspects of such non-conformal higher-spin supercurrents

11All conformal higher-spin superalgebras in four dimensions were classified in [101]. These results were

extended to higher dimensions in [48].
12While proof-reading the manuscript, we were able to prove this claim by deriving a closed form expres-

sion for the divergence of this improved component field as a function of the background Weyl tensor and

the lower spin current jα(m)α̇(n). A complete proof will be described elsewhere.
13The symmetry algebras for higher-derivative equations such as ✷n were actually introduced in the bulk

language in [106]. See also [107, 108] for further developments.

– 36 –



J
H
E
P
0
4
(
2
0
2
0
)
1
3
3

in Minkowski superspace were studied in [113–115]. It would be interesting to study

consistent non-conformal deformations of other conformal supercurrents introduced

in section 4.2.
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A Chiral action

There is an alternative way to define the chiral action (3.24) that follows from the superform

approach to the construction of supersymmetric invariants [116–120]. It is based on the

use of the following super four-form

Ξ4[Lc] = 2iĒδ̇ ∧ Ēγ̇ ∧ E
b ∧ Ea(σ̃ab)

γ̇δ̇Lc +
i

6
εabcdĒδ̇ ∧ E

c ∧ Eb ∧ Ea(σ̃d)δ̇δDδLc

−
1

96
εabcdE

d ∧ Ec ∧ Eb ∧ Ea
(
D2 − 12R̄

)
Lc , (A.1)

which was constructed by Binétruy et al. [121] and independently by Gates et al. [120].14

Here we have made use of the superspace vielbein

EA = (Ea, Eα, Ēα̇) = dzMEM
A . (A.2)

These super one-forms constitute the dual basis to EA = (Ea, Eα, Ē
α̇) = EA = EA

M∂M .

The super four-form (A.1) is closed,

dΞ4[Lc] = 0 . (A.3)

The chiral action (3.24) can be recast as an integral of Ξ4[Lc] over a spacetime M4,

Sc =

∫

M4

Ξ4[Lc] , (A.4)

where M4 is the bosonic body of the curved superspace M4|4 obtained by switching off

the Grassmann variables. The representation (A.4) provides the simplest way to reduce

the action from superfields to components.

Making use of the super-Weyl transformation laws

δΣE
a = −ΣEa , δΣE

α = −
1

2
ΣEα −

i

2
D̄β̇E

b(σ̃b)
β̇α , (A.5)

it may be shown that the super four-form (A.1) is super-Weyl invariant. This result extends

the analysis given in [123] where the GWZ geometry was used. In conformal superspace [40]

the superform (A.1) was described in [124].

14A simple derivation of (A.1), based on the use of an on-shell vector multiplet, was given in [122].
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B Component reduction

To study supergravity-matter theories at the component level, it is necessary to make use

of the technique of bar projection. Given a superfield Ξ(z) defined on M4|4, we define

Ξ|(x) := Ξ(x, θ, θ̄)|θµ=θ̄µ̇=0 . (B.1)

Thus, Ξ| is a field defined on the background spacetimeM4. In the same way, we may define

the bar projection of a covariant derivative by bar projecting the connection superfields

DA| := EA
M |∂M +

1

2
ΩA

bc|Mbc + iΦA|A . (B.2)

In particular, the bar projected vector covariant derivative takes the form

Da| = Da +
1

2
ψa,

βDβ |+
1

2
ψ̄a,β̇D̄

β̇ | , (B.3)

where we have introduced both the gravitino ψa,
β and the charged spacetime covariant

derivative

Da = ea +
1

2
ωa

bcMbc + iϕaA . (B.4)

B.1 Wess-Zumino gauge

By making use of the K gauge freedom (2.5), we are able to fix a Wess-Zumino gauge on

the spinor covariant derivatives

Dα| = δα
µ∂µ, D̄α̇| = δα̇µ̇∂̄

µ̇ . (B.5)

This gauge leads to the useful identities

Ea
m| = ea

m , Ea
µ| =

1

2
ψa

βδβ
µ , Ωa

bc| = ωa
bc , Φa| = ϕa . (B.6)

In what follows, we will adopt gauge (B.5).

Naturally, we are interested in determining the residual gauge transformations which

preserve the conditions (B.5). These must satisfy the identity

(δK + δΣ)Dα| = 0 . (B.7)

The K gauge transformations act on the components of the connection by the rules:

δKEA
M = ξBTBA

CEC
M − (DAξ

B)EB
M +KA

BEB
M + iρwA

BEB
M , (B.8a)

δKΩA
cd = ξBTBA

EΩE
cd + ξBRBA

cd − (DAξ
B)ΩB

cd +KA
BΩB

cd −DAK
cd

+iρwA
BΩB

cd , (B.8b)

δKΦA = ξBTBA
CΦC + ξBFBA − (DAξ

B)ΦB +KA
BΦB + iρwA

BΦB −DAρ . (B.8c)

Where we have introduced

KA
B =



Ka

b 0 0

0 Kα
β 0

0 0 −K̄α̇
β̇


 , wA

B =




0 0 0

0 −δα
β 0

0 0 δα̇β̇


 . (B.9)
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By making use of (2.12), we extract the super-Weyl transformation laws for the connections:

δΣEα
M =

Σ

2
Eα

M , (B.10a)

δΣΩα
cd =

Σ

2
Ωα

cd + 2(σcd)αβD
βΣ , (B.10b)

δΣΦα =
Σ

2
Φα −

3i

2
DαΣ , (B.10c)

δΣEa
M = ΣEa

M −
i

2
(σ̃a)

α̇αDαΣĒα̇
M −

i

2
(σ̃a)

α̇αD̄α̇ΣEα
M , (B.10d)

δΣΩa
cd = ΣΩa

cd −
i

2
(σ̃a)

α̇αDαΣΩ̄α̇
cd −

i

2
(σ̃a)

α̇αD̄α̇ΣΩα
cd + δa

[cDd]Σ

+
1

4
εa

bcd(σ̃b)
α̇α[Dα, D̄α̇]Σ , (B.10e)

δΣΦa = ΣΦa −
i

2
(σ̃a)

α̇αDαΣΦ̄α̇ −
i

2
(σ̃a)

α̇αD̄α̇ΣΦα +
3

8
(σ̃a)

α̇α[Dα, D̄α̇]Σ . (B.10f)

Thus, (B.7) takes the form

Dαξ
β | = ξCTCα

β |+Kα
β | − iδα

βρ|+
1

2
δα

βΣ| , (B.11a)

Dαξ̄β̇ | = ξCTCα,β̇ | , (B.11b)

Dαξ
b| = ξCTCα

b| , (B.11c)

DαK
cd| = ξBRBα

cd| − 2(σcd)α
βDβΣ| , (B.11d)

Dαρ| = ξBFBα| −
3i

2
DαΣ| . (B.11e)

Note that these are equivalent to the bar projection of the conformal Killing condi-

tions (3.4). These place severe restrictions on the transformations which preserve this

gauge. In particular only the following gauge parameters remain unconstrained

va := ξa| , ǫα := ξα| , kab := Kab| , ̺ := ρ| , (B.12)

which correspond to general coordinate, local Q-supersymmetry, Lorentz and U(1)R trans-

formations respectively.

B.2 Component field strengths

The (charged) spacetime covariant derivative introduced in (B.4) obeys the following com-

mutation relations

[Da,Db] = Tab
cDc +

1

2
Rab

cdMcd + iFabA , (B.13)

where Tab
c is the torsion, Rab

cd is the Lorentz curvature and Fab is the U(1)R field strength.

By making use of (B.3) and the bar projection of (2.8e) it is possible to read off the field

strengths.

The simplest field strength to compute is the torsion

Tabc = −
i

2

(
ψaσcψ̄b − ψbσcψ̄a

)
− εabcdG

d| . (B.14)
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This result allows us to decompose the Lorentz connection in terms of a torsionless (spin)

connection and the torsion

ωabc = ωabc(e) +
1

2
(Tabc − Tbca + Tcab) . (B.15)

It is also convenient to introduce the gravitino field strength

Ψab
γ := Daψb,

γ −Dbψa,
γ − Tab

cψc,
γ , (B.16)

which can be computed to be

Ψab
γ = −iψ[a

α(σb])αα̇G
α̇γ | − iψ̄[a,α̇(σ̃b])

α̇γR|

−
i

2
(σ̃ab)

α̇β̇ψαα̇,
γGα

β̇ | −
i

2
(σab)

αβψαλ̇,
γGβ

λ̇|+ (σab)
αβWαβ

γ |

+
1

6
(σab)

γαXα|+
1

2
(σab)

γαDαR|+
1

2
(σ̃ab)

α̇β̇D̄(α̇G
γ
β̇)| . (B.17)

Next, the U(1)R field strength is given by

Fab =
1

8
(σab)

αβ
(
iD(αXβ)|+ ψ̄(αα̇,

α̇Xβ)| − ψ(αα̇,β)X̄
α̇|
)
+ c.c. . (B.18)

Finally, we compute the Lorentz curvature

Rabcd =
1

2

(
iηdeηc[a − iηceηd[a + εcde[a

)
ψb],

α(σe)αα̇D̄
α̇R̄| −

i

2
(σ̃[a)

α̇αψb],α(σcd)
γδDγGδα̇|

+i(σ̃[a)
α̇αψ̄b],α̇(σcd)

βγWαβγ |+
1

12

(
iηdeηc[a − iηceηd[a + εcde[a

)
ψ̄b],α̇(σ̃

e)α̇α̇Xα|

+
1

16
(ηacηbd − ηadηbc + iεabcd)

(
D̄2R̄| − 8R|R̄|

)
+ ψaσcdψbR̄|

−
1

4
(σ̃ab)

α̇β̇(σcd)
αβD̄α̇DαGββ̇ |+

1

2
(σab)

αβ(σcd)
γδDαWβγδ|

+
1

48

(
ηdeηc[a − ηceηd[a + iεcde[a

)
(σb]σ̃

e)αβDαXβ | + c.c. , (B.19)

When working at the component level, it is often necessary to understand the relationship

between the irreducible components of these field strengths and the component structure

of the torsion superfields and their derivatives.

We begin with an analysis of the gravitino field strength Ψab
γ , which yields

DαR|+
1

3
Xα| = −

4

3
Ψα

β
,β + 6iψβα̇

,(αGβ)α̇| − 9iψ̄α
α̇
,α̇R| , (B.20a)

Wαβγ | = Ψ(αβ,γ) − iψ(α
α̇
,βGγ)α̇| , (B.20b)

D̄(α̇Gββ̇)| = −2Ψα̇β̇,β − iψβ(α̇,
αGαβ̇)|+ iψ̄β(α̇,β̇)R| . (B.20c)

Moving on to the U(1)R field strength Fab, we have a single irreducible component

D(αXβ)| = −8iFαβ + 8iψ̄(αα̇,
α̇Xβ)| − 8iψ(αα̇,β)X̄

α̇| . (B.21)
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The remaining relations arise from the Lorentz curvature Rabcd

D2R| =
2

3

(
R(e, ψ)−

i

2
εabcdR

abcd

)
+ 2iψ̄αα̇

,α̇DαR|+
2i

3
ψ̄αα̇,β̇D̄(α̇Gαβ̇)|

−3iψαα̇
,αX̄α̇|+

2

3
ψ̄αα̇

,(α̇ψ̄α
β̇
,β̇)R|+ 8R|R̄| −

1

3
DX| , (B.22a)

D̄(α̇D(αGβ)β̇)| = 2Eαβ,α̇β̇ + iψγ
(α̇,γD(αGβ)β̇)| − 2iψ̄γ

(α̇,β̇)Wαβγ |+
i

3
ψ̄(α(α̇,β̇)Xβ)|

−ψγ
(α̇,(αψγβ̇),β)R̄|+ 2iψ(α(α̇,β)D̄β̇)R̄| , (B.22b)

D(αWβγδ)| = Cαβγδ + iψ(αα̇,βΨ̄γδ),
α̇ + iψ̄(αα̇,

α̇Ψβγδ) − ψ̄(αα̇,
α̇ψββ̇,γGδ)

β̇ |

−2ψ̄(αα̇,β̇ψβ
α̇
,γGδ)

β̇ | . (B.22c)

Where we have defined

R(e, ψ) = ηacηbdRabcd , Eαβ,α̇β̇ =
1

2
Rγ

(α̇,γβ̇),αβ , Cαβγδ =
1

2
R(α

α̇
,βα̇,γδ) . (B.23)

It is well known that Cαβγδ is the spinor form of the anti-self-dual part of the usual Weyl

tensor and as a result Wαβγ is often referred to as the ‘super Weyl tensor’. Similarly,

Eαβ,α̇β̇ coincides with the traceless component of the Ricci tensor and so we say that Gαα̇

is its supersymmetric extension.

C The Weyl multiplet gauge

It is often advantageous to adopt a gauge which partially fixes the super-Weyl free-

dom (2.12) in exchange for gauging several (component) fields to zero. We recall that

in U(1) superspace this freedom is parametrised by a real scalar superfield Σ (2.12), thus

it contains six independent component fields in its multiplet.

The component fields σ := Σ| and ηα := DαΣ| parametrise Weyl and S-supersymmetry

transformations, respectively. Recalling equations (2.13), we observe that by making use of

our freedom in the D2Σ| and
[
Dα, D̄α̇

]
Σ| component fields, it is possible to adopt a gauge

where R| = R̄| = 0 and Gαα̇| = 0. Further, by a routine calculation one can derive

δΣ (DαR) =
3

2
ΣDαR+ 4DαΣR+

1

2
DαD̄

2Σ , (C.1a)

δΣ
(
D2R

)
= 2ΣD2R+ 4D2ΣR+ 4DαΣDαR+

1

2
D2D̄2Σ , (C.1b)

δΣ
(
D2R+ D̄2R̄

)
= 2Σ

(
D2R+ D̄2R̄

)
+ 4D̄2ΣR̄+ 4D2ΣR

+4DαΣDαR+ 4D̄α̇ΣD̄
α̇R̄+

1

2
{D2, D̄2}Σ . (C.1c)

By making use of the R| = 0 gauge condition, it is possible to use the freedom in

DαD̄
2Σ| to fix DαR| = 0. Finally, we can further extend the gauge by using {D2, D̄2}Σ| to

set D2R|+ D̄2R̄| = 0. This completes our gauge fixing procedure.
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We must also determine the residual combined gauge (2.6) and super-Weyl transfor-

mations which preserve this gauge. A routine computation leads to the conditions

D2Σ| = 0 , (C.2a)
[
Dα, D̄α̇

]
Σ| = −(ξBDBGαα̇)| , (C.2b)

DαD̄
2Σ| = −2(ξBDBDαR)| , (C.2c)

{D2, D̄2}Σ| = (ξαα̇Dαα̇(D
2R+ D̄2R̄))|+ 8i(ξ̄α̇Dαα̇D

αR)|

+8i(ξαDαα̇D̄
α̇R̄)| . (C.2d)

In summary, adopting the Weyl multiplet gauge has allowed us to fix

R| = 0 , Gαα̇| = 0 , DαR| = 0 , D2R|+ D̄2R̄| = 0 , (C.3)

while retaining unbroken Weyl σ and S-supersymmetry transformations ηα .

Now, we return to our discussion of the field strengths (B.14), (B.17), (B.18)

and (B.19). By imposing (C.3), we find that these take the simplified form

Tabc = −
i

2

(
ψaσcψ̄b − ψbσcψ̄a

)
, (C.4a)

Ψab,
γ = (σab)

αβWαβ
γ |+

1

6
(σab)

γαXα|+
1

2
(σ̃ab)

α̇β̇D̄α̇G
γ
β̇ | , (C.4b)

Rabcd = −
i

2
(σ̃[a)

α̇αψb],α(σcd)
γδDγGδα̇|+ i(σ̃[a)

α̇αψ̄b],α̇(σcd)
βγWαβγ |

+
1

12

(
iηdeηc[a − iηceηd[a + εcde[a

)
ψ̄b],α̇(σ̃

e)α̇αXα|+
i

16
εabcdD̄

2R̄|

−
1

4
(σ̃ab)

α̇β̇(σcd)
αβD̄α̇DαGββ̇ |+

1

2
(σab)

αβ(σcd)
γδDαWβγδ|

+
1

48

(
ηdeηc[a − ηceηd[a + iεcde[a

)
(σb]σ̃

e)αβDαXβ | + c.c. , (C.4c)

Fab =
1

8
(σab)

αβ
(
iD(αXβ)|+ ψ̄αα̇,

α̇Xβ | − ψαγ̇,βX̄
γ̇ |
)
+ c.c. . (C.4d)

Another advantageous property of this choice of gauge is that the relations (B.20), (B.21)

and (B.22) are greatly simplified. We read off

Xα| = −4Ψα
β
,β , Wαβγ | = Ψ(αβ,γ) , D̄(α̇Gββ̇)| = −2Ψα̇β̇,β , (C.5a)

D(αXβ)| = −8iFαβ + 32iψ̄(α
α̇
,α̇Ψβ)γ,

γ − 32iψ(α
α̇
,β)Ψ̄α̇

β̇
,β̇ , (C.5b)

DX| = 2R(e, ψ) +
(
18iψαα̇

,αΨ̄α̇
β̇
,β̇ − 2iψαα̇,βΨ̄αβ,α̇ + c.c.

)
, (C.5c)

D2R| = −
i

3
εabcdRabcd + i

(
6ψαα̇

,αΨ̄α̇
β̇
,β̇ +

2

3
ψαα̇,βΨ̄αβ,α̇ + c.c.

)
, (C.5d)

D(α̇D(αGβ)β̇)| = 2Eαβ,α̇β̇ − 2iψγ
(α̇,γΨ̄αβ,β̇) − 2iψ̄γ

(α̇,β̇)Ψ(αβ,γ) −
4

3
iψ̄(α(α̇,β)Ψβ)

γ
γ , (C.5e)

D(αWβγδ)| = Cαβγδ + iψ̄(αα̇,
α̇Ψβγ,δ) + iψ(αα̇,βΨ̄γδ),

α̇ . (C.5f)

When combined with the algebra (2.8) and Bianchi identites (2.11), these relations

allow us to express all component fields of the torsion superfields in terms of the (compo-

nent) field strengths. The main implication of this is that the only remaining independent
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component fields are the spacetime vielbein em
a, the gravitino ψm

α (and its conjugate)

and the U(1)R gauge field ϕm, which are known to comprise the Weyl multiplet.

The approach described in this appendix is analogous to the one used for 3D N = 2

supergravity [23].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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