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ABSTRACT: In four spacetime dimensions, all N’ = 1 supergravity-matter systems can be
formulated in the so-called U(1) superspace proposed by Howe in 1981. This paper is
devoted to the study of those geometric structures which characterise a background U(1)
superspace and are important in the context of supersymmetric field theory in curved
space. We introduce (conformal) Killing tensor superfields £, . .a,,)(a1...d,), With m and n
non-negative integers, m+mn > 0, and elaborate on their significance in the following cases:
(i)m=n=1; (ii) m—1=mn=0; and (iii) m = n > 1. The (conformal) Killing vector
superfields £, generate the (conformal) isometries of curved superspace, which are sym-
metries of every (conformal) supersymmetric field theory. The (conformal) Killing spinor
superfields ¢, generate extended (conformal) supersymmetry transformations. The (con-
formal) Killing tensor superfields with m = n > 1 prove to generate all higher symmetries

of the (massless) massive Wess-Zumino operator.
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1 Introduction

In order to construct and study supersymmetric field theories in the presence of background
supergravity fields, a formalism is required to determine (conformal) isometries of the
corresponding curved superspace.! Such a formalism was developed long ago [3] within the
framework of the Grimm-Wess-Zumino (GWZ) geometry [4, 5], which underlies the Wess-
Zumino (WZ) formulation for old minimal supergravity [6] (see [7] for a review) discovered
independently in [8-13]. The key outcomes of the analysis given in [3] may be summarised
as follows:

e Rigid symmetries of every superconformal field theory on a curved superspace M*4
are generated by conformal Killing supervector fields on M4, ¢4 = (€96 &4), with
€% = £, The defining property of €4 is that the first-order operator £4D4 maps the
space of covariantly chiral scalars into itself,

Dyp=0 = Dy("Dag) =0, (1.1)

where D = (D,, Dy, DY) are the superspace covariant derivatives. These conditions
imply that the spinor component { is determined in terms of the vector component
£%as €4 = —é@gﬁo"g, and the latter obeys the superconformal Killing equation

'D(ﬁfa)d =0 <= @(Bgad) =0. (1.2)

e Rigid symmetries of every supersymmetric field theory on M4 are associated with
those conformal Killing supervector fields €4 which preserve the volume of the chiral
subspace of M4, This condition is equivalent to

DaDsé® = 4Gaa€™ = D" =0, (1.3)
where G, is the superspace analogue of the Ricci tensor.

Every solution of the equations (1.2) and (1.3) is called a Killing supervector field.
If M*4 is chosen to be Minkowski superspace, the general solution of the equation (1.2)
corresponds to the ordinary superconformal transformations which span SU(2, 2|1) [14-17].

! An important example of a curved superspace is the four-dimensional (4D) A = 1 anti-de Sitter (AdS)
superspace [1, 2], AdS*,



In the case of supersymmetric curved backgrounds in old minimal supergravity, the equa-
tions (1.2) and (1.3) allow one to obtain all the results described in an influential work
of Festuccia and Seiberg [18] and related publications (see e.g. [19, 20]) in the component
setting, as was demonstrated in [21] (see also [22] for a review).

The approach presented in [3] is universal, for in principle it may be generalised to
curved backgrounds associated with any supergravity theory formulated in superspace, see
the discussion in [22]. In particular, it has been properly generalised to study supersym-
metric backgrounds in 3D N = 2 supergravity [23], 4D N = 2 supergravity [24], 5D N =1
supergravity [25] and 6D N = (1,0) supergravity [26]. It should also be mentioned that
this approach has been used to construct general rigid supersymmetric field theories in 5D
N =1[27], 4D N =2 [28-31] and 3D (p, q) [32-34] anti-de Sitter superspaces.

The present paper is aimed, in part, at extending the analysis given in section 6.4 of [3]
to the so-called U(1) superspace geometry proposed by Howe in 1981 [35, 36] and soon after
reviewed and further developed in [37].2 It is called ‘U(1) superspace’ since its structure
group SL(2,C) x U(1) g contains the R-symmetry factor U(1) g that is absent in the case of
the GWZ geometry [4, 5]. The U(1) superspace is a powerful setting to formulate N' = 1
supergravity-matter systems for two reasons. Firstly, it allows us to describe conformal
supergravity by including the super-Weyl transformations in the supergravity gauge group.
Secondly, every off-shell formulation for AV = 1 supergravity can be realised as a super-
Weyl invariant coupling of conformal supergravity to a compensating supermultiplet =.
In fact, similar properties also hold in the case of the GWZ geometry. One may then
ask a natural question: what is the point of introducing U(1) superspace if the GWZ
geometry allows one to achieve the same goals? There are at least three answers to this
question. Firstly, the GWZ geometry is a gauge-fixed version of U(1) superspace in the
sense that the former is obtained from the latter by partially fixing the super-Weyl gauge
symmetry. Secondly, since the super-Weyl and local U(1) transformations are described
by unconstrained real parameters in U(1) superspace, these local symmetries may be used
to gauge away any compensating scalar supermultiplet = by imposing the condition = =
In the case of the GWZ geometry, such a gauge fixing is possible only in the case of
old minimal supergravity. Thirdly, U(1) superspace is more useful for describing the new
minimal formulation of N = 1 supergravity [38, 39].3

Along with the (conformal) Killing vector superfields £,q, which generate the (con-
formal) isometries of a curved superspace M*4, in this paper (sections 4 and 5) we will
analyse the structure of (conformal) Killing tensor superfields £,(m)a(n) = £(ay...am)(G1...6m)s
with m and n non-negative integers, m + n > 0. Some of the motivations to study these
supersymmetric extensions of the (conformal) Killing tensor fields are similar to those that

20ne of the most important original developments presented in [37] is the complete solution of the
torsion constraints, which characterise the U(1) superspace geometry, in terms of unconstrained superfield
prepotentials.

3There exists an alternative formulation for conformal supergravity, the so-called conformal superspace
approach [40], which is more general than U(1) superspace in the sense that the latter is obtained from the
former by partially fixing the gauge freedom. When studying the symmetries of supergravity backgrounds,
however, U(1) superspace is more economical for applications to deal with.



have been pursued in the non-supersymmetric case, which are: (i) higher-order integrals of
motion, see e.g. [41]; (ii) new conserved currents from old ones, see e.g. [42]; and (iii) higher
symmetries of relativistic wave equations, see e.g. [43-48|. There are also conceptually new
motivations. In particular, if a curved superspace M** possesses a (conformal) Killing
spinor superfield £, extended supersymmetric field theories may be constructed, including
superconformal nonlinear g-models on hyperkéhler cones, see section 4.4.

The concept of a Killing tensor superfield o ()an) = Eoc(n)d(n) was introduced in
1997 [49] in the framework of N/ = 1 AdS supersymmetry. There are two types of con-

straints obeyed by £ (,)4(n), Which are:
14 =0, (1.4a)

=0.  (L4b)

’D(alf y = 0 — T)(

=0 — DODBy

ag...0p41)a(n a1ta(n)ag...n41)

’DB’DIBE/BOq---an713d1---dn71 Bai...an—18d...0m—1
These differential constraints have a natural origin in the context of the two dually equiv-
alent gauge models for the massless superspin-(n + %) multiplet in AdS** which were
proposed in [50]. The dynamical variables of these models consist of a gauge superfield
and a compensating supermultiplet. In both models the gauge superfield is the same, that
is a real unconstrained superconformal prepotential H(p)q(n), While the compensators are
different. In one model the compensator is a transverse linear superfield I'y(n—2)4(n—2)s
and in the other is it a longitudinal linear superfield Ga(n_Q)d(n_z).4 The corresponding

constraints are
_ ﬁﬁra(n—Q)Bd(n—3) =0, (1.5a)
D, Gan—2)az...in—1) = 0 - (1.5b)

Equation (1.4a) means that the gauge variation of Ho(n)a(n) 18 equal to zero if the gauge
parameter is chosen to be {q(n)4(n—1)- In addition, requiring the gauge variation of the
compensator (either the transverse or the longitudinal one) to vanish leads to the equa-
tion (1.4b). It was shown in [49] that the space of Killing tensor superfields £q(n)a(n) can
be endowed with the structure of a superalgebra, which is one of the higher-spin super-
algebras constructed by Fradkin and Vasiliev [52-54] (see also [55, 56]), with respect to
the bracket (4.63) restricted to AdS**. A conformal Killing tensor superfield Lam)atn)
in AdS** is obtained by removing the condition (1.4b) which is not compatible with the
superconformal symmetry (this aspect was not discussed explicitly in [49]).

In 2016, Howe and Lindstrém [57] generalised the notion of a conformal Killing tensor

° In the case of 4D N = 1 AdS supersymmetry,

to superspace in diverse dimensions.
their definition is equivalent to imposing the condition (1.4a). Our definition of conformal
Killing tensor superfields in curved superspace differs from the one given in [57], however
they prove to be equivalent.

This paper is organised as follows. Section 2 is devoted to a brief review of U(1)
superspace. The conformal isometries of a supergravity background are studied in sec-

tion 3. We also describe the action principle for superconformal field theories in a curved

“The terminology follows [50, 51].
5See also [58, 59] for related work in which they discussed the relation of superconformal Killing tensors
to higher dimensional supercurrents, superconformal Killing-Yano tensors, super-Laplacians etc.



superspace and give an example of such dynamical systems — a superconformal nonlinear
o-model. Section 4 is devoted to a systematic study of conformal Killing tensor super-
fields £ (m)a(n) in curved superspace. We demonstrate the significance of different types
of conformal Killing tensor superfields for various superconformal field theories in curved
superspace. The isometries of a supergravity background are studied in section 5. We also
introduce Killing spinor £, and tensor £, (,)4(n) superfields and demonstrate their signifi-
cance for several supersymmetric field theories in curved superspace. The symmetries of
bosonic supergravity backgrounds are studied in section 6. Concluding comments are given
in section 7. The main body of the paper is accompanied by several technical appendices.
Appendix A is devoted to the closed super 4-form which describes the chiral action princi-
ple. Appendix B concerns various aspects of the component reduction. The Weyl multiplet
gauge is introduced in appendix C.

2 The ABC of U(1) superspace

In this section we review the structure of U(1) superspace [35-37]. Our presentation is
analogous to [60].

2.1 The geometry of U(1) superspace

We consider a curved N/ = 1 superspace M** parametrised by local coordinates zM =

(z™,0",0;). Its structure group is chosen to be SL(2,C) x U(1)g and so the covariant
derivatives Dy = (Da, Da, ﬁd‘) have the form

Dy=FEas+Q4 +1D4A . (2.1)

Here E4 denotes the frame field, Eq4 = E4aM 0y, with EqM being the inverse vielbein. The
Lorentz connection €24 can be written in two different forms,

1 _h.
Qg = §QAbchc = Q4P Mg, + QA'BVMB',W (2.2)

depending on whether the Lorentz generators with vector (M. = —My,) or spinor (Mg, =
M., 5 and M by = ]\Zfﬂ.y 5-) indices are used. The Lorentz generators act on vectors and Weyl
spinors as follows:

MapVe = 20eaVe),  Mapthy = eya¥p) s Mapthy = e5a¥s) - (2.3)

The last term in (2.1) is the U(1)g connection, with the R-symmetry generator A being
normalised by

[A,Da] =-D,, [A, 'Dd] = —i—’Dd . (2.4)
The supergravity gauge freedom includes local -transformations of the form

5kDa=[K.Dal ,  K=€"Dp+ K Mg, + K¥V My, +iph . (2.5)



Here the gauge parameter K incorporates several parameters describing the general coor-
dinate (¢7), local Lorentz (K#Y and K”Y) and local chiral (p) transformations. Given a
tensor superfield U (with suppressed indices), its K-transformation law is

oxU = KU . (2.6)
The covariant derivatives obey graded commutation relations

[Da, D} = Tas“De + Rap™ Mys + 7@13751\_@5 +1FaBA, (2.7)

where Tag€ is the torsion, Rap?® and its conjugate RAB% constitute the Lorentz cur-
vature, and F4p is the U(1)g field strength. To describe conformal supergravity, the
covariant derivatives have to obey certain constraints [35, 36]. Their solution is given by
the relations

{Do,Dg} = —4RM,p, {Ds, Dy} = 4RM 5, (2.8a)
{D,, Ds} = —2iDas (2.8b)
[Das Dyy] = icas(RD + G 3Dy — (DVGP 5) My + 2W, N )
DR Mas — seas XN+ 220sXsh (2.80)
[DaDyy] = —ieas (RDs + G5 7Dy — (DG N5 + 20" M)
—i(DgR)M, 3 + %s a5 X " Myp + %gdBXﬁA , (2.8d)
which lead to
[Dad,Dﬁﬁ-} = eagl/;d[}-, +e45%aB (2.8e)

o 1 1 o
@baﬁ = _1G(a7’DB)"y + ip(aRD,B) + §D(aGﬁ)’yD"¥ + WO&BWD’Y

1 1 _
+-X(aDp) + ~(D* — 8R)RMus + D (o, W)’ My

6 4
—%D(a)mwﬁ)7 - %D(aﬁmﬁfﬂw - iD(aXB)A, (2.8f)
Uas = 16D,y — 5 DaRDy) — DG 5Dy — W, 51D
_éx(d% + i(@? ~ SR)RIM, ;, — D W, 1
+ DX, + DDy My — DaXph . (289)

The torsion and curvature tensors are expressed in terms of the real vector G, and the
complex superfields R, X, and Wag, = W43, which have the U(1)g charges

AR =2R, AX, = X,, AWopy = Wagy . (2.9)
and are covariantly chiral,

DyR =0, DsXa =0, DeWapy = 0. (2.10)



These superfields obey the following Bianchi identities:

Xo = DoR — DGy, (2.11a)
DX, = DaX?, (2.11b)

. 1
D’YWaﬁ,y = ID(Q’YGB),Y — gD(OZX,B) . (2110)

Equation (2.11b) means that X, is the chiral field strength of an Abelian vector multiplet.
In what follows we will use the notation (./\/l4|4, D) for the superspace MU endowed
with the geometry described.

2.2 Super-Weyl transformations

In order for the above superspace geometry to describe conformal supergravity, the super-
gravity gauge group should include super-Weyl transformations, with the corresponding
parameter Y being a real unconstrained scalar superfield. The defining property of these
local rescalings is that they preserve the structure of the algebra of covariant derivatives.
In the infinitesimal case, the super-Weyl transformation is

1 3

05Do = 53 Da + 2DPY My, + 5 DA, (2.12a)
55D = %E@d + 2D S, — gﬁdm, (2.12b)
0sDai = EDag +1DaXDs + iDa XDy + iDa D’ S Mg,
R 3, _
+D, DO TN, — 11 [Pa: Da] ZA, (2.12¢)

and the corresponding variations of the torsion and curvature superfields are

1_
6sR = YR+ §D22, (2.13a)
02Gas = Gaa + [Da, DalX (2.13b)
(52Wa57 = gZWag,y, (2.13c)
6xXo = ;EXQ - g(@ﬂ —4R)D,Y. . (2.13d)

In appendix C we demonstrate that the gauge transformations (2.5) and (2.12) allow us to
choose a Wess-Zumino gauge in which the remaining fields constitute the Weyl multiplet
of conformal supergravity.

Consider a tensor superfield U of U(1)g charge qp,

AU =quU . (2.14)
It is called primary if its super-Weyl transformation has the form

SxU = AySU, (2.15)



for some parameter Ay called the dimension of U. Given a primary superfield ¥, o, =
V(ay...an)> Which is covariantly chiral, ﬁg\l’m...an = 0, its dimensions and U(1)g charge are
related to each other by

2
qu = gA\D . (2.16)

For completeness, we also provide the finite super-Weyl transformation. It is

3
D!, = 2% <Da +2DPY Mg, + 2%21&) : (2.17a)
= 1 — — 4 3 =
D, = e3> (Dd +2DPNN;, — Qde> : (2.17b)

D= eE (Daa +iDo XDy 4+ 1Da XDy + i (@dpﬂz + 2D 2D? z) Mg,
+i (DaD’x + 2D, =D7) I,
1 _ _
—31(4 (Do, D] &+ D@D@) A) : (2.17c)

The corresponding transformation laws for the torsion and curvature superfields are

1. _

R =¢&” (R + §D22 — (D2)2> : (2.18a)
Ghg = € (Gad + [Da, Da + 2Da215a2) ; (2.18b)
(;ﬁ'y = e%EWaﬁvu (218C)
X! = 3% <Xa - g(ﬁ - 4R)Da2> . (2.184)

The super-Weyl tensor W, 3, and its conjugate Wd 4, are the only torsion superfields which
transform homogeneously under the super-Weyl group.

2.3 From U(1) superspace to the Grimm-Wess-Zumino geometry

As pointed out above, the covariantly chiral spinor X, is the field strength of an Abelian
vector multiplet. It follows from (2.18d) that the super-Weyl gauge freedom allows us to
choose the gauge

Xo=0. (2.19)

In this gauge the U(1)r curvature vanishes, in accordance with (2.8), and therefore the
U(1)g connection may be gauged away,

Dy=0. (2.20)

As a result, the algebra of covariant derivatives reduces (2.8) reduces to that describing
the GWZ geometry [4, 5].



Equation (2.18d) tells us that imposing the condition X, = 0 does not fix completely
the super-Weyl freedom. The residual transformations are generated by parameters of
the form

Y=-(0+06), Dao=0. (2.21)

| =

However, in order to preserve the U(1)r gauge ®4 = 0, every residual super-Weyl trans-
formation (2.21) must be accompanied by a compensating U(1) g transformation with

p= Zi(a —0). (2.22)

This leads to the transformation [61, 62]

1

06Da = <a— - 20—) Dy + (Do) Myg, (2.23a)
_ 1 _ .
06D = (a - 25) Dy + (Do) My, (2.23b)
1 i = i _
60'Dad = 5(0' + 5-)Dad + 5(@@5’)@& + §(DaU)Do’¢
+H(DP50) Mg + (Da’5) My, . (2.23¢)
The torsion tensors transform as follows:
1 -5 B

0sR = 20R + Z(D —4R)o , (2.24a)

1
06Gaa = 5(0 + 5)Gad + iDad(U — 5) , (2.24b)

3
(50Wa57 = §O'Wa5,y . (2.24C)

3 Conformal isometries of curved superspace

Let (M** D) be a background superspace. A real supervector field ¢ = ¢8Ep is called
conformal Killing if

(0k +05)Dy =0 (3.1)

for some Lorentz (K?7), chiral (p) and super-Weyl (¥) parameters. Every solution to (3.1)
defines a superconformal transformation of the superspace (./\/l4|4, D).
3.1 Implications of the superconformal Killing equation

Equation (3.1) contains nontrivial information. Choosing A = « in (3.1) and making use of
the definition (2.5) and (2.12) in conjunction with the graded commutation relations (2.8),



we derive

(6x+05) Do = (Kaﬁ — Dot - %fagGﬁB —16."p + ;aaﬁz) Dy
. i . _ o = i .
+ (Dagﬁ - anﬁR) Dy +2i (gﬁaaﬁ - 4Da555> Dy
_ <DQK5’Y + 4Rs,Bem) — %5a(6§7)ﬁ{)’.¥_§_ %fadp(ﬂgv)d_ 250[(6@7)2) Mg,

- (Dakm +i€aa WO 4 éga(ﬁjﬁ)> My,

1 _. 3
i <Dap + f6aa X%+ ;Daz) A (3.2)

Setting this to zero, we can read off the necessary conditions on our gauge and super-Weyl
parameters for £ to be conformal Killing. These conditions can be split into two types.
The first type provides expressions for the transformation parameters in terms of £

£ = —é@aﬁaé‘, (3.32)
Koslt] = Diaks) ~ 5" Gpa (3.3b)
plé] = —i (Do — Dal®) — iG“dfaa, (3.3¢)
Sl = — (D6 + Dad) (3.34)

The second type yields expressions for the spinor covariant derivatives of the parameters
in terms of the original parameters and D[], including the following:

i . 1 i .
Do = €ap <;GW§W +ip[€] - 2E[§]> + Kopl€] + %g(aaGg)d, (3.4a)
Dagg = *%faﬁ'R, (34b)
Dabgy = 4icapy, (3.4c)

Do KP[€] = 26,PDV5[¢] — 46, PV R + %50[(/3@)&@ R

+%£mD("G”d ; (3.4d)

DaKP1[e] = ~i€aaW™ - 2 UXY, (3.4¢)
1. o, 3i

DO&p[é] = _ZgadX - 52)&2[5] . (34f)

The relations (3.3) tell us that all the parameters are completely determined in terms of
&% and its covariant derivatives. As will be shown below, the relations (3.4) imply that the
the superalgebra of conformal Killing supervector fields is finite dimensional.

The above analysis shows that & = £4E is a conformal Killing supervector field if it
has the form

¢ = (5“,—;@35“5,—;73555@) ; (3.5a)



where £ obeys the equation
D(aﬁg)g =0 <= D(dgﬁﬁ) =0, (3.5b)

in accordance with (3.4c). Provided the equation (3.5b) and definitions (3.3) hold, one
may check that all the conditions (3.4) are satisfied. Equation (3.5b) also implies that &2
is covariantly linear,

(D*+2R) ¢ =0, (3.6)

as well as the ordinary conformal Killing equation

1 C
Dabp) = 1maD€ == Da(adpp =0 (3.7)

Due to the relation {D,, Dg} = —2iDag, the equation (3.1) with A = a is automatically
satisfied once (3.1) with A = o holds. Still the implications of the equation (3.1) with A = a
prove to be very useful for computations, and we spell them out here:

Dosé? = ~i€aGP 4 — 16,74 R — iga%(daﬁ 5t ia(aﬁgvdm)R
%gmwaf + %%ﬁx,y)g’yd +i6,"DsX[¢] (3.8a)
Daaf™ = 0676 GPs) +1000°€74G) T — 207 Kalg] — 20, K]
—25,254 5[], (3.8b)
Dac KME] = 16, DVPGY s +16, PV DR + %5(1(55@)&) — 218, Wo

1. 5= 1 _ 1
+Zfa59(a9(ﬂG7)5) 4+ géa(ﬁé%(Dz’ —SR)R+ §fAdD(aWA)BW

1 e
—158 a0 "Dy X7 +i6. DDV (3.8¢)
1. | U
Dadp[g] = §§o'ch - iﬁaXa + gfa’BD(dXﬁ') -+ ggﬁdD(aX/j)
3 _
—Pa: DalXle] - (3.8d)

We emphasise once more that these identities may be derived by making use of (3.4).

3.2 The superconformal algebra

It follows from (3.1) that commuting two superconformal transformations of (M**% D)
results in another transformation of the same type,

[0Kciea) + Oxfea]s Okcle] + Oxfer]] Pa = (Okies) + Osjes) Pa =0, (3.9a)
Kls] = [Klga), Kléa] - (3.9)

This means that the set of all conformal Killing supervector fields forms a Lie superalgebra,
the superconformal algebra of (M*4, D).

~10 -



It is of interest to derive the explicit expressions for ¥[€3] and &5 in terms of £f and
£5. A routine calculation gives

[K[&3], Dal + [Kl&2], Osie,1Da] — [KlE1], Osje,)Da) =0 . (3.10)
Specialising here to the A = a case and extracting the super-Weyl parameter, we find
S[es] = &'DaS[e] — &' DaS[Es] - (3.11)

For the vector component £ we obtain
. 1 aa . i A
6% = —56 Dyl — 1D DeE " + 56176 Gy — (1002) . (312)

One may check that §§“j‘ obeys the superconformal Killing equation (3.5b).

The superconformal algebra of (M4|4,D) turns out to be finite dimensional, and its
dimension does not exceed that of the ' = 1 superconformal group SU(2,2|1). In order
to prove this claim, we introduce the following set of parameters:

= = {e4, K*[g), RY[¢), ple), Slel, Dasle] ). (3.13)

It is not difficult to demonstrate that D= is a linear combination of the elements of (3.13).
Actually, it suffices to show that D, = satisfies this property, as the general case immediately
follows. Due to the relations (3.4) and (3.8), we only need to analyse D,DpX[£]. Direct
calculations give

D,DsY[¢] = %5Q5D22 = —€a8 ((2[5] —2ipl¢]) R + £°DeR + 5151?) : (3.14a)
DuD;SlE] = D, lE] + 58Dy — 2ED1G

1 . 1 . 1 .
=28 DV 3Gy + 1€ 5D Goyy + 18 DGy

1 1 . 1
—5 B E]G 5 — S KT E]Gay — 5 G 52IE] (3.14b)

DaDgsX[E] = eap [(;5%2[5] + l%é%p[f] + 112Kd3[§]> (X4 +3DaR) +iRD,3[¢]

1 1 4= S Ti-
—5G7iDElE] — € DX + 5, €DX ~

i
8

i 1o = o1 ) i
—gE D05+ DD Xy — 25D Xy — D, (DR XB)}

_ . 3 _
2
EDR+ G 4R

1 1 . i _.
+ [6 (;50452[5] + 1—5@5./)[5] + 112K&B[§]>D(“G5)é‘ 4 iK(Oév[ﬂDB)GVB

i i _
— Kaglé] (DsR— X5) = SEDaDuGrys — 1(a (D* +2) Gy 5

2
1 1 U
158G X" = 158@alp) " Xy — 1€ D’YdD(aGB)B] (3.14c)

Thus, we have demonstrated that the superconformal algebra is finite dimensional.
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3.3 Conformally related superspaces

Let (M*4,D) and (M4 D) be two supergravity backgrounds. We say that the two
superspaces are conformally related if their covariant derivatives D4 and Dy are related to
each other by a finite super-Weyl transformation (2.17),

D, = 03 (Da + 2D52Mﬁa + ;DQEA> , (3.15a)
~ _ o 3 _

Dy = e2” <pd +2DP5 M, — 2Dd2A> , (3.15D)
N 1.~ =2
Daa = §{Da,Dd} : (3.15¢)

These superspaces prove to have the same conformal Killing supervector fields,
E=E"Ey =B, (3.16)
where the components éA are given by
fod = e Bgad . fo =3 <§a + ;ga%ﬁz) : (3.17)

The transformed supervector field €4 also satisfies (3.5) (in the new basis), thus it is a
conformal Killing vector

. o LA 20s i A PN
5A=<§f®D¢ﬂFED%M>, Diasyp =0 - (3.18)

One can relate the remaining parameters generating conformal isometries in each geometry

in a simple way

€] = Ble] - ¢'Dasle], (3.19a)
Koplé] = Kapl€] + 2D, S¢g) + %15@2?(&255)@, (3.19D)
plé] = ple] + %D“Eéa - %25@25"‘ — %[Da,@d]zgm : (3.19¢)

It then follows that the gauge transformation is identical in these two geometries K[¢] =

A~

K[]; it is a super-Weyl invariant operator.

3.4 Superconformal field theory

Let ¢ be the dynamical superfield variables describing a matter system coupled to con-
formal supergravity. The matter action is required to be invariant under the super-Weyl
transformations (2.12) accompanied by certain transformations of the matter superfields
of the form

S’ = Ay’ (3.20)

where A(;) denotes the dimension of ©'. In general, the matter action includes two terms

S = /d4xd29d2§E£+ {/d4xd205’ﬁc +c.c.} ., E7'=Ber(EsM), (3.21)
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with £ being the so-called chiral density. Here the full superspace Lagrangian £ is a primary
real scalar superfield of dimension +2, while L. is a primary covariantly chiral superfield,
DaLe = 0, of dimension +3,

SyL=2%L,  Ogle = 35Le . (3.22)

It should be pointed out that the full superspace measure E and the chiral density £ have
the following super-Weyl transformation laws

5xE = —25F,  0x€ = —3%E. (3.23)

The chiral density can be naturally defined using the prepotential solution of the
supergravity constraints given in [37]. It can also be obtained using the general formalism
of integrating out fermionic dimensions, which was developed in [63]. Probably the simplest
definition of the chiral action

Se. = / d*zd*0 € L., (3.24)

is described in appendix A. The full superspace action can be represented as an integral
over the chiral subspace,

/d4xd20d29E£ = —% /d4xd205 (D* —4R)L . (3.25)

In the case of a fixed supergravity background, the matter action (3.21) is invariant

under superconformal transformations of the form

e’ = K[Ele' + A ZlE)y (3.26)

where €4 is an arbitrary conformal Killing supervector field of the background curved
superspace (M*4 D).

An important example of a superconformal field theory in curved superspace is the
massless Wess-Zumino model

_ o A _
Slg, p| = /d4xd29d29E¢¢ + {3' /d4xd295¢3 + c.c.} , Dap =0, (3.27)
with A a coupling constant. Here the chiral scalar ¢ is primary and of dimension +1.

3.5 Superconformal sigma models

A nontrivial example of a superconformal field theory on (./\/l4|4, D) is a nonlinear sigma
model. The target spaces of superconformal sigma models are Kéhler cones [64]. Let us
recall what this means. Consider a Kéhler manifold (N, g, J#,,), where p,v =1,...,2n,
and introduce local complex coordinates ¢’ and their conjugates 455, in which the complex
structure J#, is diagonal. It is called a Kéhler cone [64] if it possesses a homothetic
conformal Killing vector

L i L= L (3.28)
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with the following properties:
V=6t = V=4, VX' =0 =0, (3.29)

which show, in particular, that x is holomorphic. In terms of the scalar field K := g,; Xi)zj
on the target space, these properties imply that

Xi=95% =K,  g;=00K, (3.30)
and therefore
X' (0)0:K(¢,0) = K(¢,9) . (3.31)

The real function K (¢, ¢) is a globally defined Kéhler potential. Associated with y is the
U(1) Killing vector field

VE=Jr XY, V4V, =0 (3.32)

Local complex coordinates ¢ can always be chosen such that xi(¢) = ¢'.
Consider the following nonlinear o-model

S = / d*zd®0d*0 E K (¢,9) , Dyd' =0, (3.33)
where the action of the U(1) generator on ¢’ is defined as
Ad = 2x(6) (334)
The action is invariant under super-Weyl transformations
Ing’ = X' (9) . (3.35)

In the case of a fixed supergravity background, the matter action (3.21) is invariant under
superconformal transformations of the form

ded' = K[E)o' + S[E]x(9) (3.36)
where ¢4 is an arbitrary conformal Killing supervector field of the background curved

superspace (M4 D).

4 Conformal Killing tensor superfields

As discussed in section 3, every conformal Killing supervector field £¢# of the background
curved superspace (./\/l4|4, D) is determined by its vector component £, which is real and
constrained by

Diép =0 = Dags =0. (4.1)
It follows from (3.17) that &4 has the super-Weyl transformation law
526&@ = 726&(5&7 (42)

which is uniquely determined by requiring equations (4.1) to be super-Weyl invariant. This
construction admits nontrivial generalisations.
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4.1 Definitions

Let m and n be non-negative integers. A primary tensor superfield £ (;;)4(n) 00 (M4 D)
is called conformal Killing if it obeys the constraints®

?(aleag...am+1)d(n) =0 — (D_2 + QWR)Ea(m)a(n) =0, (4.3a)
Do Lam) y=0 = (D*+2nR)la(myam) =0 - (4.3b)

GGyl

These conditions imply the following transformation properties:

1

0sla(m)a(n) = —§<m +1)E Lomyan) » (4.4a)
1

Magmyam) = =3 (M = 1)la(ma() - (4.4b)

If m = n, then £,(,)4(n) is neutral with respect to the R-symmetry group U(1)g, and
therefore it is consistent to restrict £y(,)a(n) to be real. Another special choice is n = 0, in
which case £(,) is covariantly chiral, Dl () = 0.

The constraints (4.3) provide a natural generalisation of the concept of a conformal
Killing tensor field Le(m)q(n) on a curved spacetime M? [65].7 By definition, L (m)a(n) i
a primary field which obeys the equation

Vi (@1, ba-bntn) — () (4.5)

ag...am+1)

where V4 is the torsion-free Lorentz-covariant derivative. The condition that Lg(m)a(n)
is primary means that it changes homogeneously under a Weyl transformation

6sVe =0Vy — Vo My, (4.6)

with o(z) the Weyl parameter. The unique Weyl transformation law of L (m)a(n), Which
is compatible with the constraint (4.5), is

1
0o Lamya(n) = =5 (m +1)0Lama(n) - (4.7)

Given two conformal Killing tensor superfields £, (n)a(n) and £o(p)a(q) On (M4‘4,D),
their symmetric product

Ea(m+p)o’z(n+q) = E(al.,.am(o'zl.A.dngoszrl...am+p)dn+1...o'zn+q) ) (48)

is also conformal Killing. This operation allows one to generate new conformal Killing
tensor superfields from given ones.

Constraints (4.3) naturally occur in the framework of conformal higher-spin gauge
supermultiplets [66, 67]. For m > n > 0 such a supermultiplet is described by an uncon-

strained primary prepotential T ()4(n) defined modulo gauge transformations

6A,CTa(m)d(n) = D(oq Cag...ozm)dl...dn + T)(dlAal...amdg...dn) ) (4'9)

5These constraints can be naturally lifted to the conformal superspace of [40].
"Penrose and Rindler [65] called Lo (mya(n) a Killing spinor.
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with unconstrained primary gauge parameters Cu(m—1)a(n) ad Aq(m)a(n—1)- In the m >
n = 0 case, the conformal gauge supermultiplet is described by an unconstrained primary
prepotential T ,,) defined modulo gauge transformations

3¢ A Y a(m) = DinCaseom) T Aam) s Dgraim) =0 (4.10)

Now, if we look for special gauge parameters (q(;m—1)a(n) a0d Ag(m)a(n—1) Such that the vari-
ation (4.9) vanishes, 0z ¢ La(m)am) = 0, then Loimyam) = DiarCas...am)di..a, 18 @ solution
to the constraints (4.3).

A higher-spin interpretation exists also for the conformal Killing tensors (4.5). We
recall that a conformal higher-spin gauge field hq(n41)4(nt1) 18 @ primary field defined
modulo gauge transformations [68]

5/\ho¢(m+1)d(n+l) = v(al(dl )‘ag...am+1)d2...dn+1) ) (411)

where the gauge parameter Ay ()4 (n) is also primary. The conformal Killing tensors (4.5)
correspond to those values of the gauge parameter Ay (mn)q(n) Which leave the gauge field
invariant, 6Lha(m+1)d(n+1) =0.

The importance of the conformal Killing superfields £ (,)4(n) introduced is that they
generate symmetries of dynamical systems on (M4‘4,D). We have seen that the NV =1
superconformal transformations are described by £,4. In the next subsection, we introduce
various important conformal supercurrents and describe their interplay with conformal
Killing tensor superfields. Following this, in sections 4.3 and 4.4 we show that extended
superconformal transformations are formulated in terms of ¢, and its conjugate. Then in
section 4.5, it will be demonstrated that higher-rank analogues of £,4, the conformal Killing
tensor superfields £,(,)4(n), generate symmetries of the massless Wess-Zumino operator.

4.2 Conserved current supermultiplets

When considering conformal field theories on R4, a well-known procedure exists to gen-
erate conserved conformal currents by making use of a symmetric, traceless and conserved
energy-momentum tensor T

7% = b T =0, T =0, (4.12)
with 714 the Minkowski metric. Given a conformal Killing vector field £ = £%0,,
0061+ 00 = et (113)
the following vector field

§4€] = T, (4.14)

is conserved, 0,j* = 0. The construction is naturally generalised to a curved space. It also
has a higher-spin extension [42]. Here we will present supersymmetric extensions of these
constructions building, in part, on the earlier work [69].
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Let m and n be positive integers. A primary tensor superfield J*(™&(m) on (./\/l4|4, D)
is called a conformal supercurrent of valence (m,n) if it obeys the constraints

DgpJPam=Dam) — o —  (D? - 2(m +2)R)Jem) =9, (4.15a)
Dyl — o —  (D®—2(n+2)R)JUMIM =0 (4.15b)

These conditions imply the following superconformal transformation properties:

o4 — (35 L) e, (1160)
Ajelm)a(n) _ é(m ) Jelmitn) (4.16b)

If m = n, then J*™%™ is neutral with respect to the R-symmetry group U(1)g, and

therefore it is consistent to restrict J*(™&™) to be real. The m = n = 1 case corresponds

to the ordinary conformal supercurrent [70]. The case m = n > 1 was first described in

Minkowski superspace in [71] (see also [58, 66]) and extended to AdS superspace in [72].
In the case m > n = 0, the constraints (4.15) should be replaced with

DgJfm=D) =0 — (D2 —2m+2)R)J*™ =0, (4.17a)
(D? —4R)J™ = . (4.17Db)

The superconformal transformation properties of J™) are obtained from (4.16) by set-
ting n = 0. The case n = 1 was first considered in [73], where it was shown that the
spinor supercurrent J¢ naturally originates from the reduction of the conformal N = 2
supercurrent [74] to N = 1 superspace.

Finally, for m = 0 the constraints (4.17) should be replaced with

(D?* —4R)J =0, (4.18a)
(D* —4R)J = 0. (4.18b)

This is the flavour current supermultiplet [75].

Let Jom)&(n) he g conformal supercurrent of valence (m,n), and La(p)a(q) @ conformal

q)
Killing tensor superfield of valence (p,q), with m > p and n > ¢q. Then the following

composite object

gom=p)a(n=—a)[g] .= Ja(mfp)b’(p)d(nfq)ﬁ(q)gﬁ(p)g(q) (4.19)

proves to be a conformal supercurrent of valence (m — p,n — q).

4.3 Conformal Killing spinor superfields and hypermultiplet

A free superconformal hypermultiplet may be described by two primary superfields of
dimension +1, a chiral scalar ¢ and a complex linear scalar T,

(D> —4R)I =0, Al = —gr . (4.20)
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The corresponding action
Shypermultiplet = /d4$d29d2§E {$¢ - fr} ) (421)

is super-Weyl invariant.®
A comment is required regarding the U(1)z charge assignment in (4.20). In general,
given a primary complex linear superfield I' of dimension Ar and U(1)g charge qr,

(D* —4R)T =0, AT =qrT, (4.22)

its charge and dimension are related to each other as

2 4
=-Ar—- 4.23
qr 3 I 3 ) ( )
as a consequence of the identity
05(D? — 4R) = £(D? — 4R) — 4(Ds)D* + 4(D*S)DP M, 5 — 3(Ds %) DA
S (D25)A — 2(D2) . (4.24)

2
The above properties and relations are similar to those derived in [82] in the case of three-
dimensional N' = 2 supergravity. The U(1)g charge of I' was fixed in (4.20) in order for
the action (4.21) to be super-Weyl invariant.
Given a conformal Killing spinor superfield ¢, constrained according to (4.3),

Dlsy =0,  Dalg=0, (4.25)

we associate with it the following transformation

8¢ = L4 DT + %(ﬁdid)r, (4.26a)
5T = —1°Doh — %(Do‘éa)qﬁ . (4.26D)

It may be checked that Dsd¢ = 0 and (D? — 4R)0T = 0. It may also be verified that
d0¢ and 6I' are primary superfields. A routine calculation shows that the hypermultiplet
action (4.21) is invariant under the transformation (4.26), which is a curved superspace
extension of that given in [79].

The massless hypermultiplet model (4.21) has a dual formulation realised in terms of
two primary dimension-1 chiral scalars ¢ and . The dual action

(dual) _ 4..120127 yy 0
Shypermultiplet - d*zd*0d°0 E ¢¢+ quz) ) (427)
8A chiral scalar ¢ and a complex linear scalar I' are the physical N' = 1 superfields of the arctic

hypermultiplet [76, 77] realised in A/ = 1 Minkowski superspace. In addition to ¢ and T, this off-shell
hypermultiplet includes an infinite tail of auxiliary ' = 1 superfields which are complex unconstrained and
vanish on-shell. The superconformal arctic hypermultiplets were formulated in [78, 79]. General couplings
of arctic hypermultiplets to 5D N =1 and 4D N = 2 conformal supergravities were presented in [80, 81].
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is obviously super-Weyl invariant. In this dual formulation, the rigid symmetry (4.26)
turns into

DN |

56 =
5y =

(D* —4R) (&) , (4.28a)

_% (D* — 4R) (79) . (4.28b)

Here /¢ is the complex conjugate of a prepotential ¢ defined by

2
la=Dal, Al=L. (4.29)

Equation (4.25) guarantees the existence of the prepotential ¢, which is is defined modulo
arbitrary shifts

0 — L+X, DA=0. (4.30)
The scalar ¢ is primary and of dimension —1.

4.4 Conformal Killing spinor superfields and nonlinear o-models

Now let us return to the nonlinear o-model (3.33) and assume that its target space is a
hyperkéhler cone [83]. This means that (i) it is a hyperkéhler manifold (N, g, (Ja)"y),
where p,v = 1,...,4n and A = 1,2,3; and (ii) it is a Kéhler cone with respect to each
complex structure. We pick one of the complex structures, say Js, and introduce complex
coordinates ¢’ compatible with it. In these coordinates, J3 has the form

167 0
Jg = J - . 4.31
’ ( 0 —15’]-) (431)

Two other complex structures, J; and J2, become

ik~ __ o ik
J1 = ;ko g wk] ) Jo = . ?k i wk] ) (432)
9" Wi 0 —1g"wg; 0

where g;5(¢, ¢) is the Kihler metric, and w;;(¢) = —wji(¢) is the holomorphic symplectic
two-form.

It may be shown that the o-model action (3.33) is invariant under the transformation

5o = %(152 —ar){twiy, } . (4.33)

The proof is analogous to that given in [84] in the case of Minkowski superspace.? If we
replace in the right-hand side of (4.33) £ — £+ ), with X chiral, then the A-dependent part
of the transformation a trivial symmetry (i.e., it vanishes on-shell) of the model.

9See also the seminal paper [85] for the non-superconformal case.
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4.5 Symmetries of the massless Wess-Zumino operator

Higher symmetries of relativistic wave equations have been studied over several decades.
In particular, it was shown by Shapovalov and Shirokov [45] and, a decade later, by East-
wood [47] that the symmetry algebra of the d’Alembertian on RP4, with p + ¢ > 3, is iso-
morphic to (a quotient of) the universal enveloping algebra of the Lie algebra of conformal
motions that span SO(p+ 1, ¢+ 1). Such infinite-dimensional algebras and their supersym-
metric extensions play a fundamental role in higher-spin gauge theory [86]. Time has come
to understand the higher symmetries of supersymmetric extensions of the d’Alembertian.
To the best of our knowledge, so far there has appeared only one work on the topic, written
by Howe and Lindstrom [58], where the symmetries of such operators are studied in flat
superspaces in diverse dimensions.

In our discussion of superconformal field theories we re-derived the well-known re-
sult that conformal Killing supervector fields generate symmetries of the theories in ques-
tion (3.26). In this section our analysis will be restricted to the free, massless theory
obtained from (3.27) by setting A = 0,

S[o, ¢] = / d*zd%0d%0 E ¢¢ . (4.34)

This model proves to have higher symmetries. The corresponding super-Weyl invariant
equation of motion for ¢ is

I =0, I:= —2(92—4}‘2) . (4.35)

We will refer to II and its conjugate IT = —i(ly — 4R) as the (massless) Wess-Zumino
operators. These operators are examples of super-Laplacians discussed in [58].

Here we will study symmetries of the Wess-Zumino operator 1I. A scalar differential
operator £ will be called a symmetry operator of II if it obeys the two conditions

DO = 0, (4.36a)
D¢ = 0, (4.36Db)

for every on-shell chiral scalar ¢, (4.35). Similar to the non-supersymmetric case [47], two
symmetry operators £ and £ are said to be equivalent, 9 ~ 9, if

OD-O0=FD+Hl — O~9, (4.37)

for some operators §4 and .
Since ¢ is a primary superfield of dimension +1, we will impose one more condition on
£, which is

35(D¢) = £0¢ . (4.38)

In other words, we require O to be a conformally invariant operator. In what follows, we
will use bold-face capital letters, e.g. O, to denote symmetry operators which only satisfy
conditions (4.36a) and (4.36b).
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Given a positive integer n, we look for an nth-order symmetry operator
n
on) — Z CA1...Ak'DAk ...Day (4.39a)
k=0

where the coefficients may be chosen to be graded symmetric
CAIAZA'L+1Ak — (71)€Ai€Ai+1 <A1A1+1A1Ak , 1 S Z S k . 1 . (439b)
Modulo the equivalence (4.37), O may be brought to a canonical form given by

n n—1
O =3 "¢oWMD, o Dagay, + Y COFOD, o Dayay Dayyy - (440)
k=0 k=0

Now, imposing the condition (4.36a) proves to lead to a number of constraints on the
coefficients in (4.40), including the following

D¢emam) = _gjcom(@r-dnr gin) . (4.41)
which is equivalent to

D(a, Ca(n)iz.ing1) = 0, (4.42a)

et = T __pcaman-1)s (4.42b)

2(n+1)

We see that (o(n)a(n—1) i determined in terms of (y(n)a(n), and the latter is longitudinal
linear. In fact, imposing the condition (4.36a) also leads to the equation

@B_Ca(n)a(n—l) _ in(a(")ﬁ'd(n_l)R 7 (4.43)

which automatically holds as a consequence of (4.42b).
Requiring the fulfilment of (4.38), a routine calculation allows us to express
Ca(n—1)a(n—1) in terms of the top component (,(n)a(n) as follows:

2 : (02 :
Ca(n—1)a(n—1) = ﬁ”ﬁ "Catn-1patn-1) ~ I T 11?(2,1 552 D san-nydan-)
mGﬁgcﬁa(n—l)Bd(n—l) . (4.44)
It should be remarked that the general solution to the constraint (4.42a) is
Cama(m) = D@Vam)as.dn)»  AVa(nya(n-1) = ~Va(n)a(n—1) » (4.45)
where the prepotential vq(n)4(n—1) is defined modulo arbitrary shifts of the form
Va(n)a(n—1) = Va(m)aln-1) T Tamam-1)s  D(a Ta(m)ag..n) = 0 - (4.46)

Prepotential solution (4.45) will be important for our subsequent analysis.

- 21 —



Suppose we have satisfied (4.36a). Then imposing the condition (4.36b) leads to new
constraints on the coefficients in (4.40), including the following

D(a1Ca2...an+1)d(n) =0. (447)

Equations (4.42a) and (4.47) tell us that the top component (y(n)a(n) in (4.40) obeys
the same constraints (4.3) which are imposed on the conformal Killing tensor superfield
La(n)a(n)- These constraints are consistent with the reality condition C_a(n)a(n) = Ca(n)a(n)
which will be assumed in what follows.

So far we have not attempted to find a general solution of the constrains (4.36) for
O Such a solution is easy to work out in the case of Minkowski superspace for which a
consistent ansatz for an irreducible operator O g given by

O = cemamy, o 8y, 4 MDY o Da a1 Day s (4.48)

where Dy = (04, Do, DY) are the flat superspace covariant derivatives. In this case the
constraints (4.36) are equivalent to the relations
D(d1Ca(n)d2...dn+1) =0, D(algaz...oan+1)d(n) =0, (4'493)
i .
Calmatn—1) = —Wil)m%mam—lw : (4.49b)
We emphasise that (4.48) is a flat-superspace solution of the constrains (4.36). If the
equation (4.38) is also required, then certain lower-order terms must be added to (4.48),
as follows from from eq. (4.44) and also from the explicit expressions for OW and O@
given below.

The explicit structure of the flat-superspace symmetry (4.48) tells us that it is always
possible to construct a solution for the coefficients ¢*(*)&(k) and ¢ak+Dak) of 4]l operators
in (4.40) of order n — 1,...,0 which are proportional to certain components of the torsion
tensor and their covariant derivatives.

The above consideration can be extended to anti-de Sitter superspace, AdS4‘4, which
is characterised by the following algebra of covariant derivatives [3]

{Du,Ds} = —2iDag,, (4.50a)
{Da.Dg} = —4ji Myg, {Ds, Dy} = 4p My, (4.50Db)
[Da, Dysl = iﬁsagﬁg, [/DO'”/DﬁB] = —ipe,Dg, (4.50c¢)
[Dac Dyl = =2 (eapMyg + €55Map) (4.50d)

with g # 0 being a complex parameter (the scalar curvature of AdSy is equal to —12|u|?).
One can show that the following irreducible operator is a consistent ansatz for o)

O = cametp o Dy s + MDD Dy 4 Dy (4.51a)

n *
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Here, the constraints (4.36) are equivalent to

ﬁ(a1<a(n)oc2an+1) = 0’ D(Oc1Co¢2...an+1)o'z(n) = 07 (451b)
in _ .

Ca(n)é(n—1) = _mpﬁca(n)d(n,l)g, (4.51c)

DiCa(myatn-1) = MiCo(myain_1yj - (4.51d)

We again emphasise that (4.51) is an AdS-superspace solution of the constraints (4.36).
We now determine O and 9 in U(1) superspace. Setting n =1 in (4.40) gives

OW¢ = (¢*Dag + (*Da +¢) ¢ - (4.52)
Requiring OW ¢ to be chiral allows us to obtain
Da¢ = =56 Xa - (4.53)

Additionally, the property that the transformed field remains primary with dimension +1
leads to the following super-Weyl transformation laws for the parameters

09Cas = —XCaq (4.54a)
o = — 2 Co— 1D* S (4.54b)
53¢ = —2D"TCq — Do + 5D, DYS¢ac - (4.54c)

A solution to (4.53) which is consistent with (4.54c) is given by

¢ = —5v"Xa+ 15 (D — 4R) Da, (4.55)
with the prepotential v, being defined according to (4.45).

It should be emphasised that the second (chiral) term in (4.55) is not determined by the
condition (4.36a) which only constrains ( to satisfy (4.53). However, this term is uniquely
fixed if we further require the condition (4.38) to hold. Making use of the identity

[D%, Do) = ~4(Gag — iDag) D* + 4RDy — 4D4Go M5 + 8Wo Mg,
4
—gxﬁMaﬁ —2X,A, (4.56)

one may obtain from (4.55) a different expression for ¢ given by

¢= (ipaa + %Gad - 214[%,1?@0@““ ; (4.57)
which reveals that all parameters of the operator O™ are expressible in terms of the vector
¢**. This is in agreement with the results of the top-down approach (3.3).

Once the background superspace (M4‘4,D) possesses first-order symmetry operators
Dg), . ,DSL),, we can generate a higher-order symmetry operator, 55(”), defined by

oM .=ol o =23 . (4.58)
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By construction, it satisfies the conditions (4.36) and (4.38). Of course, it does not have
the canonical form (4.40), however it may be brought to such a form by factoring out a
contribution of the type (4.37).

Next, we consider the n = 2 case

O®¢ = <Ca5d59aa7355 + (Do Dp + (**Dag + Dy + C) b . (4.59)

Requiring the conditions (4.36) leads to the integrability conditions

> 1 L
Dalgp = 214366 + 21CY 4 sWapy —1C% 545 <DaR + 3Xa> ~ ("6 D46

—C“paGap) (4.60a)
_ . i 1 . : .
Disla = iGaaR + 5 s (DBR + 3Xﬂ> +1Ca”a Dy R =i s Wapy

—CaBaBG/;B ) (4.60b)

i i 1 s i as
Dal = 5¢%aXa + 50 aPaXp + 3¢5 XaGys — 3¢ DysXa . (4.60c)

So far we have not taken into account the condition (4.38); the transformed field,
O@ ¢, retains the property of being primary and of dimension +1. This condition fixes
the super-Weyl transformation laws for the parameters

02Capap = 280044 (4.61a)
S5Caps = —;zgwd + 2195, 54, (4.61D)
05Cas = —XCaa — 495‘32(&5@5 + i[Dﬁ,f?B]Egaﬁdﬁ- —4DP% 4 (4.61c)
I5Ca = —%2@ DD 51— 2DPPTC 5 + 1DV SCas, (4.61d)

1 fe%e’ S feY 3 i a G
bu( = 5D (D7, D15, 545 — 2D DS, 45 + 5% D%5Cas
—2DS (o — D Slag — DUDITC 50 - (4.61e)

The requirement that (4.36) and (4.38) are satisfied leads to the unique solution

Cad = gpﬁﬁcaﬁaﬁ - %5[7)6’ Dapes + %CaﬁdBGﬁB ) (4.62a)
Co = —%@%ﬁﬁ'g&ﬁdﬁ- - %gaﬁdgﬁdcﬁﬁ' + %@%QWGBB, (4.62b)
¢ = %DadDﬁBCaﬂaB B (;TJDM D7, @B]Caﬁo'cﬁ + %Dadcaﬁaﬁ'c’%
+%[Da,f>d]<aﬁdﬁcﬁﬁ' + %Dagaﬂdﬁ-@daﬁﬁ' - g@dgaﬁdﬁ-paeﬂﬁ'
F 2 Cpag DG gD DG — 200G (462)

Thus, this transformation is completely determined by the conformal Killing tensor Caﬁ’j‘B .
It is crucial to note that if we relax condition (4.38), the solution ceases to be uniquely
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defined and may be constructed in such a way that the coefficients (ng, (o and ¢ vanish
in the flat (or AdS) superspace limit.

In the case of a symmetry operator (4.40) of arbitrary order, we expect that our
conceptual results for O and D) generalise; all components are uniquely determined in
terms of (,(n)a(n) and a suitable flat (or AdS) superspace limit may be constructed.

4.6 Supersymmetric even Schouten-Nijenhuis bracket
In analogy with the space of conformal Killing supervector fields, we wish to endow our
construction with an additional structure allowing us to combine two conformal Killing

2
m)c&(m) and Coz(n)o'c(n)'
then be shown that the following bracket (an implicit symmetrisation over all a-indices

tensors and produce a third. Consider two such tensors COI[( It can

and, independently, all a-indices is assumed below)

[Cla C2]a(m+n71)d(m+n71) =
_mcl B BD (2 _|_§C2 B BD .gl
5 Satm=-1)"a(m-1)" Pglamam) T 5%m-1)" an-1)" Paglammaim)

N L 5.cl B, 2 B P2 B N
4(m + 1)(n + 1) (Dﬁca(m) a(m—l)DﬁCQ(n—l) a(n) Dﬁ(@(n) a(n—l)DﬁCa(m—l) a(m))
mn (. be2 B2 bel 8 .

+= (a(m)a(mq) Ca(n—1)" a(n-1) ~ Ca(m)a(n-1)" Sa(m-1) a(m—l)) Gy (4.63)

also satisfies these conditions and hence is a new conformal Killing tensor superfield. Hence,
for a given supergravity background, the set of conformal Killing tensor superfields (q(n)a(n)
is a superalgebra with respect to the above bracket.

The G 5 B—dependent terms in (4.63) can be removed by redefining the vector covariant
derivative by the rule

~ i -
Doe — Daa = Do + 5 (G’BdMaﬁ — GaﬁMdﬁ')) (4.64&)
or, equivalently,
~ 1 bared
D, — D,+ ZgadeG M . (4.64b)
The specific feature of the covariant derivatives 15,4 = (5a,Da,@d) is the torsion-free

condition fabc = 0. In terms of the covariant derivatives D A, the bracket (4.63) coincides
with the one proposed in [57] where it was called the “supersymmetric even Schouten-
Nijenhuis bracket.”

In the case of N'=1 AdS superspace, the bracket (4.63) coincides with the one given
in [49] for Killing tensor superfields.

5 Isometries of curved superspace

As is well known, every off-shell formulation for N' = 1 supergravity is obtained by cou-
pling conformal supergravity to a compensating supermultiplet. Different supergravity
theories correspond to different compensators, see, e.g., [37, 87-89]. For a given theory,
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the compensator Z is a nowhere vanishing primary scalar superfield, which obeys certain
constraints and has a non-zero dimension, Az # 0, and some U(1)g charge ¢=. In the case
of new minimal supergravity, g= = 0 and the compensator is real. For the old minimal and
non-minimal formulations, ¢g= is non-zero. Once = is specified, supergravity background is
a triple (M** D, =),

5.1 Off-shell supergravity and Killing vector superfields
Let ¢ = €BEpR be a conformal Killing supervector field on (M4|4, D),

(Oxcie) + Ox1¢))Pa = 0. (5.1a)
It is called a Killing supervector field if it leaves the compensator = invariant,
(kg + A=X[E))E=0. (5.1b)
The latter condition can be rewritten in the form
¢PDE + (A=X[¢] +ig=pl)E =0 . (5.2)

The set of all Killing supervector fields on (M*4, D, Z) is a Lie superalgebra.

The Killing equations (5.1) are super-Weyl invariant in the sense that they hold for all
conformally related supergravity backgrounds. In the presence of a compensator, the notion
of conformally related superspaces given in section 3.3 should be generalised as follows. Two
supergravity backgrounds (M*4, D, Z) and (M4, D, ) are said to be conformally related
provided the covariant derivatives D4 and Dy are related to each other according to (3.15),
and the same super-Weyl parameter ¥ relates the compensators,

A~
—_
—
—

= ef=¥m (5.3)

Applying a super-Weyl transformation allows us to choose the gauge

[11
[1]

=1, (5.4)
and then (5.2) reduces to
Y[E]=0 <= DU +Dsf¥=0 = DiE*=0. (5.5)
In this gauge the Killing equations (5.1) take the simplified form
oxigPa = [K[(], Da] =0 . (5.6)

Once X[¢] = 0 the left-hand side of each relation in (3.14) is equal to zero, and therefore
the right-hand side must vanish as well. It is an instructive exercise to demonstrate, with
the aid of the relations (3.4) and (3.8), that this is indeed the case.

For ¢z # 0 it is always possible to impose a stronger gauge condition than (5.4).
Indeed, applying a combined super-Weyl and local U(1)r transformation allows us to set

[1]

~1, (5.7)
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and then the Killing condition (5.2) turns into
Sg=0, ep+plg=0. (5:8)

When studying the symmetries of bosonic supergravity backgrounds, we will keep
some of the components of = alive and, instead, impose the so-called Weyl multiplet gauge
described in appendix C.

5.2 Conformal compensators

In this subsection we briefly review the structure of the compensating supermultiplets
which correspond to the old minimal [6, 12, 13] and new minimal [38, 39] formulations
for N/ = 1 supergravity. The non-minimal formulations for Poincaré [87, 90, 91] and AdS
supergravity [60] will not be discussed here.

In the old minimal formulation, the compensator is a nowhere vanishing primary chiral
scalar Sy with the superconformal properties

_ 2
DQ',S(] = 0, ASO = 1, 4s, = § . (59)
The supergravity action is
3 _
SsGold = -— / d*2d%0d%0 E SySy + {:2 / d*zd?0 £ S3 + c.c.} , (5.10)

where x is the gravitational coupling constant, and p is a complex parameter related to
the cosmological constant. Making use of the super-Weyl and local U(1) i transformations,
the chiral compensator can be gauged away resulting with

So=1 = ®4=0 = X,=0. (5.11)

In the new minimal formulation, the compensator is a nowhere vanishing primary
scalar L constrained by’

L=L, (D*-4RL=0 = Ap=2. (5.12)
The supergravity action is

3 4120120 L
new — o ELln—— s 1
Ssa, 5 / d'sd*0d*0 B L (5.13)

where the chiral scalar Sy, eq. (5.9) is a pure gauge degree of freedom. The super-Weyl
invariance allows one to choose the gauge

L=1 = R=0. (5.14)

9The linear compensator (5.12) was introduced in [88]. It is a tensor multiplet [92] such that its field
strength L is nowhere vanishing.
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5.3 Killing spinor superfields and massive hypermultiplet

To describe a massive hypermultiplet, we consider the following generalisation of (4.27)
sﬁ’;ﬁermumpm = / d'zd*0d*0 E {q‘s¢ + Jw} + {mi / d*zd®0 € Soyp + c.c.} , (5.15)

where m is a real mass parameter. When analysing this model, we will adopt the super-
Weyl gauge Sy = 1, and therefore the U(1)g connection is equal to zero, 4 = 0.

Through a direct computation, we find that the transformation (4.28) is also a sym-
metry of the massive theory only if ¢ is constrained to be real,

(=0 = TDual=0, (5.16a)
where we have used the relations (4.25) and (4.29), which imply
DDl =0 . (5.16b)
These conditions may be shown to have the following non-trivial implication:
Dy (D? — 4R) £ = —4D*(Gaul) (5.17)
Now, in conjunction with the identity Dy (752 — 4R) £ = 0, we observe that
Goo =0 = (252 —4R) { = const . (5.18)

The condition G4 = 0 means that the background under consideration is Einstein, i.e. it
is a solution of supergravity equations of motion.

To realise a second supersymmetry transformation in N' = 1 AdS superspace,
refs. [49, 93] made use of a background scalar superfield e subject to the constraints

E=¢, DyDyc =0, (D?* —4u)e =0 . (5.19)

The parameter € naturally originates within the A/ = 2 AdS superspace approach [28].
The Killing superfield ¢ introduced above contains two additional scalar parameters as
compared with .

5.4 Symmetries of the massive Wess-Zumino operator

A massive scalar supermultiplet in curved superspace is described by the action
Slo, d] = / d*zd?0d*0 E ¢ + {’;L / d4zd?0 € Syp® + c.c.} , Dad =0, (5.20)

with m = m a mass parameter. In what follows we will work in the super-Weyl gauge
Sy = 1. Then the equations of motion are

o\ _ m 1II 1 _
Hm<¢>—0, Hm_(nm>’ H.——Z(D2—4R). (5.21)
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We now wish to understand what additional conditions must be imposed upon the
nth-order operator (4.40) so that we obtain a symmetry of this theory. Since it has been
shown that all coefficients are expressed in terms of the top component, we expect that
this condition may be written as a closed form equation in (o (n)a(n)-

In the massive case, the requirement that the symmetry operator O preserves the
equation of motion

IOMe + m(DMe) =0, (5.22)

leads to new conditions which arise from setting the contributions proportional to the
derivatives of ¢ to zero. The most fundamental of these is

B0 ) _ JeJe] .
DD Cgatn-1)gam—1) = 20+ DG (a0 1yga(n-1)

2i(n+1 _
+(n) (Can-1a(n-1) = Catn-1)a(n-1)) - (5.23)

It is more useful to work with an expression only in terms of the top component.
Substituting (4.44) into (5.23) yields the Killing condition

Dﬁ@ﬁgﬁa(n—l)ﬂd(n—l) = 2n(n + 1)Gﬁﬁ<6a(n—l)3d(n—l) ) (524)

which implies

PP Cn1)pitn-1) = 0 - (5.25)

Fixing n = 1, we obtain the well-known Killing condition for supervector fields (1.3).

In the case of AdS superspace AdS**, G = 0 and the Killing condition (5.24) reduces
to (1.4b) originally described in [49]. Given two Killing tensor superfields Cé(m)
Ci(n)d(n) in AdS**, the bracket (4.63) coincides with the one presented in [49)].

&(m) and

6 Bosonic backgrounds

Similar to general relativity, of special interest are supergravity backgrounds which support
unbroken symmetries. In the context of supersymmetric field theory we are primarily
interested in those backgrounds which possess some amount of unbroken supersymmetry.
This naturally leads us to restrict our attention to so-called bosonic backgrounds. By
definition such a supergravity background has no covariant fermionic fields,

DaR| =0, DQGBB| =0, Waﬁﬂ =0, Xa| =0, (6.1)

where the bar projection is defined as in eq. (B.1). These conditions imply that the gravitino
can be gauged away. In the remainder of this section we will assume that the gravitino is
absent. We will also make use of the Weyl multiplet gauge described in appendix C.

Since there are no background fermionic fields, it follows from the equations (3.4) that
every conformal Killing supervector field can uniquely be written as a sum of even and odd
ones. A conformal Killing supervector field £ is called even if

(@) = € £0, € =0. (6.2)
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A conformal Killing supervector field £4 is called odd provided

=0,  €(x):=¢£"#0. (6.3)

All information about the even and odd conformal Killing supervector fields is encoded in
the vector v* and spinor €® fields, respectively.

6.1 Conformal isometries

In this section we make extensive use of the component field formalism reviewed in ap-
pendix B and work within the Weyl multiplet gauge constructed in appendix C. Since the
gravitino has been gauged away, which is possible due to (6.1), the component torsion ten-
sor (C.4b) vanishes, which leaves us with a torsionless Lorentz connection. The component
covariant derivative is

1
Dy| = D, (D4, D] = 5RabchCd +iFpA . (6.4)

where the Lorentz curvature and U(1)p field strength take the form

1 . 1 ah im
Raped = =(0ap)* (0ca) " Do W5y — §(Jab) 5(Ucd)759(dW5&5)|

2
Lo 3 «a aB(~ &3 M
+Z ((Uab)aﬂ(o-cd) p + (Uab) ﬂ(o-cd) B>D(QD(QG5)B)|
1 e
91 (Uc[aﬁb]d - ﬁd[anb]c>D Xal, (6.5a)
i P
Fab - g(aab)aBDaXﬁ’ — g(Uab) BDQXB| . (65b)

When working with a U(1) g neutral field (), it holds that ©,1 = V41, where
Vo =94 — ip A (6.6)

is the torsion-free Lorentz-covariant derivative.

In section 3, we derived the necessary conditions on the transformation parameters
E, eq. (3.13), associated with a conformal Killing supervector field ¢4, Here, we wish
to extract from these conditions all the restrictions on even and odd conformal Killing
supervector fields. These are readily derivable by bar projecting the results for D,=.

Let €4 be an even conformal Killing supervector field. Making use of the defini-
tions (B.12) and bar projecting eq. (3.8b) leads to

Vap = kap[v] + napo[v], (6.7)
which implies
1
kap[v] = Viquy) olv] = Zvava . (6.8)

We see that v® is a conformal Killing vector field,

1
V(avb) = Znabvcvc . (6.9)
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Further, one may show that every conformal Killing vector field on M* may be lifted to a
unique even conformal Killing supervector field on M4 Tt should be remarked that the
U(1)r parameter p[v] is given by

Vao[v] = —Fyo’ . (6.10)
Let €4 be an odd conformal Killing supervector field, eq. (6.3). Then the bar projection
of (3.8a) yields the conformal Killing spinor equation
Daa€p = —ieapnale], (6.11)
where we have defined 7, := Dy 3|. The equivalent form of this equation is
Diaatp) =0 (6.12)
6.2 Isometries of old minimal supergravity backgrounds

Let ¢ = ¢8Ep be a conformal Killing supervector field on (M**, D), eq. (5.1a). We recall
that the transformation dx ¢ + dxj¢ is said to be an isometry if the conformal compensator
is left invariant, eq. (5.1b). In general, this requirement leads to severe restrictions on the
symmetry parameters. Here, we will investigate the case of old minimal supergravity.

By making use of the Weyl, local U(1)z and S-supersymmetry transformations we are
able to adopt the gauge

Sol =1,  DaSo| =0. (6.13)

This leaves us with a single component field which cannot be gauged away

1
M = —ZDQSO] : (6.14)

As we have fixed the local U(1)g invariance in this gauge, it is more convenient to work
with the Lorentz-covariant derivative (6.6).

We find that in the case of an even symmetry, equation (5.1b) is equivalent to the
conditions

olv] =0, o[v] =v%a, V'V M =0. (6.15)
As a result, (6.7) reduces to
Vavp = kab[v] = v(avb) =0, (616)

and therefore v? is a Killing vector field.
If we instead consider odd symmetries, we obtain

9 .
Nale] = —Meq — geﬂnpad : (6.17)

Thus, we are able to obtain from (6.11) the Killing spinor equation
. . —_ 1
Vad65 = 1P(aa€p) + 1€0p <M€d + GQO,WGV) s (6.18)

which was originally given in [18].
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6.3 Isometries of new minimal supergravity backgrounds

In the case of new minimal supergravity, the conformal compensator L is a linear multiplet,
eq. (5.12). Associated with L is the real vector descendant

1 _
Lag = —5 [Da,Da| L+ Gaa L (6.19)
with the important property

DL = % (X4 + 3D4R) DL — % (X + 3D°R) Do L . (6.20)

Working in the Weyl multiplet gauge, the freedom to perform the Weyl and S-
supersymmetry transformations allows us to impose the additional gauge conditions

Ll =1, DL =0. (6.21)

Owing to the reality of L, we stay with unbroken U(1)g transformations. The only re-
maining component field of L is

Hus = Loa | - (6.22)
Making use of (6.20), we arrive at the constraint
VeH,=0. (6.23)
Considering the case of an even symmetry, equation (5.1b) leads to
o] =0,  W*VyH,=0. (6.24)
As a result, the Killing vector equation is given by
Vavp = kaplv] = V(up =0. (6.25)
In the case of odd symmetries, we deduce the charged Killing spinor equation
Nal€] = —%HQBEB =  Daaeg = %Eagﬂvde'y, (6.26)
which is equivalent to the one originally derived in [18].

6.4 Components of the (conformal) Killing tensor superfields

Given a primary tensor field {,(,)q(q) On a curved spacetime, we say that it is conformal

p)éx(
Killing if it satisfies

an'ctoz(p)d(q) =0. (6.27)
Further, it is said to be Killing if
D%

Ba(p—1)Ba(g—1) (6.28)
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Consider a conformal Killing tensor superfield £,(;)a(n) on MU with m > 1 and
n > 1. It obeys the constraints (4.3a) and (4.3b). At the component level it contains four
independent fields:

Kagmam) = Lamam)| (6.292)
Mam-1)am) = D lgaim-1)am)] (6.29b)
No(m)a(n-1) = Dﬁga(m)/j’d(nqﬂ ) (6.29¢)

La(m—l)d(n—l) = [D67@6]£Ba(m_1)6d(n_l)| . (6.29(1)

By a straightforward calculation, we find that each component field defines a conformal
Killing tensor field on the background in the sense of (6.27). In the special case where
La(m)a(n) 1s Killing, it is easily shown that these component fields also satisfy the Killing
condition (6.28).

6.5 Components of conformal supercurrents

A primary tensor field t*P)%@) on a curved spacetime will be called a conserved current if
it satisfies the divergenceless condition

D 2D — g (6.30)

Given a conformal supercurrent Jom&(n)  eq. (4.15), it contains four independent
component fields, which can be chosen as follows (an implicit symmetrisation over all a-
indices and, independently, all ¢-indices is assumed)

ja(m)d(n) — Ja(m)d(")|’ (6.31a)
Qem+Da(m) . po jalm)a(m)| (6.31b)
gema(n+l) . Hé ja(mi(n)| (6.31c)
Tem+Da(n+l) . (pe e jelman)| (6.31d)

It is easily verified that jo(ma®) Qalm+a(n) gpq galm)a(n+1) define conserved currents
satisfying eq. (6.30) for an arbitrary background. This is true for 7o(m+D&n+1) only in the
special case where m=n=1. Let us elaborate on the current (6.31d) in some more detail.

In the case of AdS and Minkowski superspace backgrounds, 7@(m+Da(n+1) yay always
be improved,

malm+Dé(n+l) . pa(mtl)da(n+l) 2i(m —n) :Dadjoz(m)o'z(n) : (6.32)
m+n+2

to give a conserved current, BBTBO‘("L)B@(") = 0, for arbitrary positive integers m and
n. Since the supercurrent JmMa®) ig 4 primary superfield, it should be always possible
to improve (6.31d) to a conserved current in a conformally flat background, Cypeq = 0.
However, if the background Weyl tensor is non-vanishing, Cype.q # 0, it is not possible

m+1)é(n+1)

to improve T to a conserved current provided m > 1 and/or n > 1. This

conclusion is analogous to a recent result of Beccaria and Tseytlin [94] who demonstrated
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that for a conformal scalar field in curved space there is no way to construct a conserved
traceless symmetric spin-3 current 7 if the background Weyl tensor is non-vanishing.

Next, we consider conformal supercurrents of the form J*(™) (4.17). At the component
level, it contains two possible candidates for conserved currents:

jamé . pe jam)| (6.33a)
Tem+é _ (pe P galm)| (6.33b)

A routine calculation reveals that ™% does indeed constitute a conserved current. In
the context of AdS and Minkowski superspaces, it is always possible to extend 7% to
a conserved current by setting m = 0 in (6.32), however this fails in the general case.

The final case of interest is that of a scalar conformal supercurrent J (4.18a). It
contains a single current at the component level,

T°% .= [D*, DYJ|,  DaaT* =0, (6.34)
which is conserved for any curved background.

6.6 Maximally supersymmetric backgrounds

There exist only five maximally supersymmetric backgrounds in off-shell 4D N = 1 super-
gravity, as was first demonstrated by Festuccia and Seiberg [18] in the component setting.
There is a remarkably simple superspace derivation of this classification [95, 96] which we
review here. Unlike the previous analysis in this section, which has relied on the Weyl
multiplet gauge, this derivation makes use of the gauge condition (5.7).

We start by recalling an important theorem concerning the maximally supersymmetric
backgrounds [22, 25]. For any supergravity theory in D dimensions formulated in super-
space, all maximally supersymmetric spacetimes correspond to those supergravity back-
grounds which are characterised by the following properties: (i) all Grassmann-odd com-
ponents of the superspace torsion and curvature tensors vanish; and (ii) all Grassmann-even
components of the torsion and curvature tensors are annihilated by the spinor derivatives.

In the case of 4D N = 1 supergravity, the above theorem means the following:

X, =0, (6.35a)

Waﬂv =0, (635b)

DoR=0 => DyR=0, (6.35¢)
'DQGBB =0 = DAG,BB =0. (6.35(1)

Equation (6.35a) tells us that all maximally supersymmetric backgrounds are realised in
terms of the GWZ geometry [4, 5|. Equation (6.35b) tells us that all maximally super-
symmetric backgrounds are conformally flat. Equations (6.35c) and (6.35d) restrict R
and G g5 to be covariantly constant. Equation (6.35d) has an integrability condition that
follows from

0= {Z_)d, Z_)B}G-y;y = 4R8,-y(dG,YB) s (6.36)
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and therefore we obtain the constraint
RGnLy =0. (6.37)

There is an alternative way to arrive at this constraint. Relation (6.35d) tells us that
G5 satisfies the superconformal Killing equation (3.5b), and therefore the condition (3.6)
holds. Since G g is covariantly constant, (3.6) reduces to (6.37).

The simplest solution to (6.37) is R = 0 and G44 = 0, which corresponds to Minkowski
superspace. Another solution is described by G4 = 0 and R = p # 0, which corresponds to
the AdS superspace (4.50). The three remaining superspaces are characterised by formally
identical anti-commutation relations

{D.,Dg} =0, {Ds, Dy} =0, {Da, Dy} = 2D, (6.38a)
[Da, Dﬁ,ﬁ] = igaﬁG’yBDW ; [Dd, DBIB] = _igdBGﬂ’yD”Y y (638b)
(Do, Dygsl = —ie43G5" Do + i€apG 5Drar (6.38¢c)

where G} is covariantly constant, D4Gp, = 0. The difference between these superspaces is
encoded in the Lorentzian type of G,. Since G2 = G°G,, is constant, the geometry (6.38)
describes three different superspaces, M;{l{ Miwlzl and M?\lfl, which correspond to the choices
G? <0, G? > 0 and G? = 0, respectively. The Lorentzian manifolds, which are the bosonic
bodies of the superspaces M4TI4, MflgM and M?J;L, are R x 53, AdSs x R and a pp-wave
spacetime, respectively. The latter spacetime is isometric to the so-called Nappi-Witten
group [97], as shown in [98].

Each superspace (6.38) is maximally supersymmetric solution of R? supergravity [96].

7 Conclusion

To conclude this paper we summarise the main results obtained and list several interesting
open problems. The main outcomes of this work include the following.

e We described the general structure of (conformal) isometries of supergravity back-
grounds within the U(1) superspace setting. Using the formalism developed, it is
trivial to read off the known (conformal) Killing spinor equations for unbroken su-
persymmetry transformations. What is more important is that our formalism makes
it possible to reconstruct, starting from a given (conformal) Killing spinor field, a
unique (conformal) Killing supervector field which generates the corresponding su-
persymmetry transformation on M4/4.

e It was shown that the infinitesimal (conformal) isometry transformations form a
closed algebra for any supergravity background.

e We introduced the (conformal) Killing tensor superfields £q(,m)(4(n), Where m and n
non-negative integers, m+n > 0, and demonstrated their significance in the following
cases: (i) m = n, with the choice n = 1 corresponding to the (conformal) isometries;
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and (ii) m — 1 = n = 0. In particular, we showed that extended (conformal) super-
symmetry transformations are formulated in terms of the (conformal) Killing spinor
superfields /.. It was proved that the conformal Killing tensor superfields with m = n
generate all (non-trivial) symmetries of the massless Wess-Zumino operator and form
a superalgebra with respect to the bracket (4.63). In the case of conformally flat su-
perspaces this leads to a geometric realisation of the A/ = 1 conformal higher-spin
superalgebra [99, 100].1!

e We introduced the conformal supercurrents J*(™%") of arbitrary valence (m,n) in
a supergravity background and analysed their component structure.

Interesting open problems include the following.

e We believe that all coefficients of the symmetry operator O™, eq. (4.40), can be
expressed in terms of the top component ¢*(™&(™) We have been able to prove this
for the lowest cases n = 1,2. It would be interesting to extend the proof to greater
values of n. In the case of Minkowski superspace, this was proved in [58].

e We expect that the component field defined by (6.31d) can be improved to a conserved
current Te(m+1)a(n+1) (m,n > 0), on any conformally flat bosonic background. A
proof of this result would be important. Perhaps the best approach to address this
problem is to make use of conformal superspace [40].12

e It would be interesting to extend the analysis of section 4 to off-shell supergravity
backgrounds in diverse dimensions. In particular, it is an interesting problem to
describe the higher symmetries of a massless hypermultiplet in 4D A = 2 conformal
supergravity backgrounds.

e It would be interesting to make use of the techniques developed in our paper to iden-
tify supersymmetric models whose symmetries are generated by the superconformal
Killing-Yano tensor introduced by Howe and Lindstrém [59].

e As an extension of Eastwood’s influential work [47], there have appeared several
publications on higher symmetries of the conformal powers of the Laplacian includ-
ing [102-105].13 It would be interesting to carry out a similar analysis for the V' = 1
and N = 2 superconformal extensions of 02 proposed in [109, 110].

e General non-conformal deformations of the conformal supercurrents J*™&™) and
Jo+1)a(n) feq. (4.15), were described in [72, 111, 112] for the cases of Minkowski and
AdS backgrounds. Various aspects of such non-conformal higher-spin supercurrents

A1l conformal higher-spin superalgebras in four dimensions were classified in [101]. These results were
extended to higher dimensions in [48].

2While proof-reading the manuscript, we were able to prove this claim by deriving a closed form expres-
sion for the divergence of this improved component field as a function of the background Weyl tensor and

the lower spin current j*(™%(™ A complete proof will be described elsewhere.
13The symmetry algebras for higher-derivative equations such as O™ were actually introduced in the bulk

language in [106]. See also [107, 108] for further developments.
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in Minkowski superspace were studied in [113-115]. It would be interesting to study
consistent non-conformal deformations of other conformal supercurrents introduced
in section 4.2.
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A Chiral action

There is an alternative way to define the chiral action (3.24) that follows from the superform
approach to the construction of supersymmetric invariants [116-120]. It is based on the
use of the following super four-form

EalLe] = 20E; A By A EY A E“Gap) " Lo+ %eabch(; A EC A Eb A E2(59Ds L,

1 _
—%5adeEd ANE°ANE°NE*(D? —12R) L., (A.1)

which was constructed by Binétruy et al. [121] and independently by Gates et al. [120].'4
Here we have made use of the superspace vielbein

EA = (E* E® E;) = d&z2MEy" . (A.2)

These super one-forms constitute the dual basis to Eq = (Eq, Eq, E‘j‘) = Fy = E4M9,,.
The super four-form (A.1) is closed,

dZ4[L] = 0. (A.3)

The chiral action (3.24) can be recast as an integral of Z4[L.] over a spacetime M*,
Se = / AR (A4)
M4

where M?* is the bosonic body of the curved superspace M** obtained by switching off
the Grassmann variables. The representation (A.4) provides the simplest way to reduce
the action from superfields to components.

Making use of the super-Weyl transformation laws

1 1= :
GpE" = —TE",  0pBE" = —SNE*— SDsE"(5,)", (A.5)

it may be shown that the super four-form (A.1) is super-Weyl invariant. This result extends
the analysis given in [123] where the GWZ geometry was used. In conformal superspace [40]
the superform (A.1) was described in [124].

1A simple derivation of (A.1), based on the use of an on-shell vector multiplet, was given in [122].
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B Component reduction

To study supergravity-matter theories at the component level, it is necessary to make use
of the technique of bar projection. Given a superfield Z(z) defined on MU we define

El(z) == E(2,0,0)lgu_g, o - (B.1)

Thus, Z| is a field defined on the background spacetime M?*. In the same way, we may define
the bar projection of a covariant derivative by bar projecting the connection superfields

1
Dal| := EaM |0y + §QAbC|Mbc +id4|A . (B.2)
In particular, the bar projected vector covariant derivative takes the form
1 1- -5
Da| =D+ 5v0"Dgl + 50, 5D (B.3)

where we have introduced both the gravitino ¢a,’8 and the charged spacetime covariant

derivative
1
Dy =eq + 5wabCMbc +ipaA . (B.4)

B.1 Wess-Zumino gauge

By making use of the K gauge freedom (2.5), we are able to fix a Wess-Zumino gauge on
the spinor covariant derivatives

Dy| = 0a"0,, D% =3%,0". (B.5)
This gauge leads to the useful identities
E.™ m m 1 Bs 1 be be
ol =e", Ea’:§¢a o', Q| =wa™, Pu|=pa . (B.6)

In what follows, we will adopt gauge (B.5).
Naturally, we are interested in determining the residual gauge transformations which
preserve the conditions (B.5). These must satisfy the identity

(6 + 05) Da| = 0. (B.7)

The K gauge transformations act on the components of the connection by the rules:

5KEAM = fBTBACECM — ('DAfB)EBM + KABEBM + iprBEBM , (B.Sa)
oA = BT Qp ™ + EBRpA“ — (DaP)Qp + KaPQp — DyK™
+ipwaPQped, (B.8b)

ox®a = EBTpAC0c + B Fpa — (DatB)0p + KAPOp +ipwaP®p — Dap . (B.8c)

Where we have introduced

K, 0 0 0 0 0
K.s8=1 0 K, 0 , waP=10-6," 0 | . (B.9)
0 0 —K% 0 0 5645
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By making use of (2.12), we extract the super-Weyl transformation laws for the connections:

S B M = %EQM, (B.10a)

5504 = %Qa“l +2(0°) s D’%, (B.10b)

Sy — %@a - %Daz, (B.10c)

osEM = nwEM — %(&a)é‘O‘DQEE@M — %(&G)dabdzEaM , (B.10d)
550, = 20, — %(@)dapamdcd - %(&a)daﬁdzga“l + 0,°DU%

%sabcd(&b)m [Da, Da]%, (B.10e)

ox®, = b, — %(&a)dapazéd — %(&a)da@dz% + g(&a)m[pa,ﬁd]z . (B.10f)

Thus, (B.7) takes the form

Dat?| = €9T0.° | + KoP| —i6.°p| + %sz, (B.11a)
Dadsl = €T 4l (B.11b)
Do’ = £9Tca"] (B.11c)
Do K| = ¢PRpa™| — 2(0°)a" D3 , (B.11d)
Dpl = €° Fpal — 2D, . (B.1le)

2
Note that these are equivalent to the bar projection of the conformal Killing condi-
tions (3.4). These place severe restrictions on the transformations which preserve this
gauge. In particular only the following gauge parameters remain unconstrained

% = £a|7 e = £a|7 kab = Kab‘7 0= p|a (B12)

which correspond to general coordinate, local @Q-supersymmetry, Lorentz and U(1) g trans-
formations respectively.

B.2 Component field strengths

The (charged) spacetime covariant derivative introduced in (B.4) obeys the following com-
mutation relations

1
(D4, D8] = Tup™D, + §Rabchcd +iFA, (B.13)

where T, is the torsion, R, is the Lorentz curvature and Fl is the U(1)g field strength.
By making use of (B.3) and the bar projection of (2.8e) it is possible to read off the field
strengths.

The simplest field strength to compute is the torsion

i _ _
Tape = _5 (%Uc% - 1/%%%) - gabchd’ . (B14)
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This result allows us to decompose the Lorentz connection in terms of a torsionless (spin)

connection and the torsion
1
Wabe = wabc(e) + 5 (Tabc - Tbca + Tcab) . (B]-B)

It is also convenient to introduce the gravitino field strength
Uap” :=Dathp,” — Doptha,” — Tap“te,”, (B.16)

which can be computed to be

Va? = =it (04)aa G| — (0,0 (54) 7 R
T o i a ) a
——(Gap) ﬂdjad,vg 4l - 5(Uab) Bwa).\’VGB)\’ + (oap) 5Wa57’

2
1 1 1 e
+6(aab)’vaxa\ + 5(aab)wmm + 5(&@)&%(@@ ol (B.17)

Next, the U(1)p field strength is given by

1 : O o
Fab = g(o-ab)aﬁ (ID(QXB)| + ¢(o<o'z, Xﬂ)’ - ¢(ad,ﬂ)X ‘) +c.c.. (B]-S)

Finally, we compute the Lorentz curvature

1. . af, e N D L~ \ea
Rapea = § (177de77c[a — 1MceMd[a + 6ccle[a) Qbb]7 (U )adD R’ - i(a[a) wb],a(acd)ﬂy(st')/G(Sd’

i O L. : " ~e\Qd
+1(J ) ¢b] (Ucd) aﬁ’y| + 1o (lndenc[a — 1Mcelld[a + Ecde[a) %},a(a ) XOé|

1
*t16 (Machbd — NadMbe + 1abed) (DQR’ — 8R|R|) + a0 cathn R

1 B 1 o

— (ab 0¥ (0ca) "DsDaC g3 + 5(@ab) P (0ca) " Da Wl

1 : ~e\a
+@ (ndenc[a — Neelld[a + 1Ecde[a) (Ub]a ) BDaXB| + c.c., (Blg)

When working at the component level, it is often necessary to understand the relationship
between the irreducible components of these field strengths and the component structure
of the torsion superfields and their derivatives.

We begin with an analysis of the gravitino field strength ¥,;7, which yields

1 4 : .
DoR|+ 3Xa| = —gwaﬁ,ﬂ + 6% (,Gayal — 9’ 4R, (B.20a)
Wapsl = Y(ap) — 1Wa” 5Gral (B.20b)
DGopl = =295 5 — W5, G oyl + 1054 5 R - (B.20c)

Moving on to the U(1)p field strength F,;, we have a single irreducible component

Do Xp)| = —8iFus + 8ith(aa,* X )| — 8ith(aa,m X | - (B.21)
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The remaining relations arise from the Lorentz curvature Rgpeq

D?R| = % <R(e,w) — ;gabcdRade> + 2i)°Y Do R| + %d}ad,ﬁ'@(dgam’
=31y o Xa| + %&“d,(d&aﬁﬁ-)m +8R|R| - 1ny (B.22a)
D DGy pl = 2E,5 445 107 (0nD pl— QW Wagy| + w a5 X8)l
~7 (6 (0¥, 5.9 Bl +21w @Dy Ry (B.22b)
DiaWays)| = Capys + ¥ac 58105 + Was. W gs) — Plas, V551G
—21/;(ad,51/1/3d,7G5)’3\ : (B.22c)

Where we have defined
ac, bd 1 y 1 &
R(e, ) = 00" Raped , Eaﬁ,dﬁ = §R (&B),a8 Caprs = §R(a Béyd) - (B.23)

It is well known that Cyg+s is the spinor form of the anti-self-dual part of the usual Weyl
tensor and as a result W,g, is often referred to as the ‘super Weyl tensor’. Similarly,
E, 864 coincides with the traceless component of the Ricci tensor and so we say that G,e
is its supersymmetric extension.

C The Weyl multiplet gauge

It is often advantageous to adopt a gauge which partially fixes the super-Weyl free-
dom (2.12) in exchange for gauging several (component) fields to zero. We recall that
in U(1) superspace this freedom is parametrised by a real scalar superfield ¥ (2.12), thus
it contains six independent component fields in its multiplet.

The component fields o := X| and 7, := D, X| parametrise Weyl and S-supersymmetry
transformations, respectively. Recalling equations (2.13), we observe that by making use of
our freedom in the D?¥%| and [Da, D, ] Y| component fields, it is possible to adopt a gauge
where R| = R| = 0 and Go4| = 0. Further, by a routine calculation one can derive

1 _
5s (DaR) = gEDaR + 4D, YR + 5%2)22 : (C.1a)
ds (D*R) = 25D?R + 4D°SR + 4D*SD, R + %Dzﬁz : (C.1b)

5y (D’R+ D*R) = 2% (D°R + D°R) + 4D’SR + 4D*SR
_ _._ 1 _
+4D*YDy R + 4Dy XD R + 5{D?, DAy . (C.1c)
By making use of the R| = 0 gauge condition, it is possible to use the freedom in

D,D?3| to fix Do R| = 0. Finally, we can further extend the gauge by using {D? D?}¥| to
set D2R| + D?R| = 0. This completes our gauge fixing procedure.
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We must also determine the residual combined gauge (2.6) and super-Weyl transfor-
mations which preserve this gauge. A routine computation leads to the conditions

D% =0, (C.2a)

[Da, Da) B = —(£°DpGaa)l, (C.2b)

D,D*Y| = —2(6PDpD,R)|, (C.2c)
(D%, D*}3| = (£%“Doa(D*R + D?R))| + 8i(£%Dua D R)|

+81(£YDaa DYR)| (C.2d)

In summary, adopting the Weyl multiplet gauge has allowed us to fix
R| =0, Gaal=0, D.R|=0, D?R|+D*R|=0, (C.3)

while retaining unbroken Weyl ¢ and S-supersymmetry transformations 7, .
Now, we return to our discussion of the field strengths (B.14), (B.17), (B.18)
and (B.19). By imposing (C.3), we find that these take the simplified form

Tabe = _% (wao'c@zb - ¢b0c1/;a) ) (043‘)

1 1, . B
Wap,” = (0a5) Was| + £ (0a) " Xal + 5 (Far) "DaG (C.4b)

1~ \aa N oSN
Raped = _§(U[a) U0 (0cd) Dy Gl +1(5710) Py (0ca) Was, |
1

+E (lndenc[a — Weeld[a + Ecde[a) wb},d (O_E)Ococh‘ + EgabcdDQR‘

1, _ 1
_7(Gab)a6(acd)a6DdDaGgﬁ'| + i(aab)aﬁ(o-cd)fygpawﬁ’yd

4

1 . -
+Z8 (ndenc[a — NeceNda + 15cde[a) (Ub]ae)aBDaX,6’| + c.c., (C'4C)

1 , - .
Fop = g(%b)aﬁ (iIDXp)| + Yac, “Xpl = oy sX7]) + c.c. . (C.4d)

Another advantageous property of this choice of gauge is that the relations (B.20), (B.21)
and (B.22) are greatly simplified. We read off

Xol = =400 5, Wapl = Viasqys DaGapl = —2%454, (C.5a)
DaXp)| = —8iFag + 321" a¥s),” — 321" 5 0s” 5, (C.5b)
DX| = 2R(e, ) + (18@0‘@,&%% — 24O g+ c.c.) : (C.5¢)

i N ST
D2R| = —ggadeRabcd +i <6¢0‘a,a\11d5,5 + gwo‘“vﬁwaﬁ,d + c.c.> , (C.5d)

. . - 4
DaPaGaypl = 2E0p.45 = 207 (01 Yag g) — 287 (4,8 Y(0s) — 3% a@n ¥ 'y, (C.5e)
D Ways)| = Capys + W0,  ¥sr.5) + Wac,sVre)," - (C.5f)

When combined with the algebra (2.8) and Bianchi identites (2.11), these relations
allow us to express all component fields of the torsion superfields in terms of the (compo-
nent) field strengths. The main implication of this is that the only remaining independent
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component fields are the spacetime vielbein e,,%, the gravitino ,,* (and its conjugate)
and the U(1)r gauge field ¢,,, which are known to comprise the Weyl multiplet.

The approach described in this appendix is analogous to the one used for 3D N = 2
supergravity [23].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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