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We start a systematic investigation of possible isometries of the asymptotically de

Sitter solutions to Einstein equations. We reformulate the Killing equation as con-

formal equations for the initial data at I+. This allows for partial classification of

possible symmetry algebras. In particular, if they are not maximal, they may be at

most 4-dimensional. We provide several examples. As a simple collorary it is shown

that the only spacetime in which the Killing horizon intersects I+ (after a conformal

completion) is locally the de Sitter universe.

I. INTRODUCTION

It is quite well-established nowadays that we live in the universe with a positive cosmological
constant [1]. Despite that, we are still lacking the universal framework for the description
of the gravitational radiation and different astrophysical phenomena when Λ > 0. Not
surprisingly, the last few years witnessed a growing interest in the topic – many different
approaches, definitions and solutions were presented (see for example [2–15]. The funda-
mental reason for the difficulty of the task lies within the nature of the null infinity I+.
When Λ > 0, the null infinity is spacelike and thus there is no notion of the asymptotic time
translation and subsequently of the positive-definite hamiltonian. Moreover, I+ carries no
natural structure besides that of a smooth manifold which leads to the conclusion that all
diffeomorphisms of I+ are asymptotic symmetries which renders the notion rather useless.
We do not plan to offer solution to those hard and important issues. The scope of this note
is far more modest. We aim to begin a systematic investigations of the isometries of the
asymptotically de Sitter spacetimes. Of course, metrics with many symmetries are rather
rare and cannot properly describe physical processes like e.g. merger of two black holes.
Nevertheless, they may be quite useful, for example as a starting point for the perturbation
theory.
In this work we will be concerned with the vacuum asymptotically de Sitter spacetimes. We
will show that they may admit (locally) 10-dimensional algebras of symmetries (in which
case it is locally de Sitter) or the algebra is 4, 3, 2, 1-dimensional in which case it can be
chosen to act by isometries on the boundary data. Moreover, we will classify all maximally
symmetric and almost maximally symmetric solutions with I+ = S3 – they corresponds to
the de Sitter and Taub-NUT-de Sitter spacetimes, respectively. Although we do not have a
full classification of all possible 3d algebras, such classification seem to be feasible (although
rather long - in particular, all Bianchi algebras would appear as special cases).
Most approaches to the asymptotically de Sitter spacetimes rely heavily nomen omen on the
asymptotic behavior of the fields and on the existence of the null infinity I+. We are going
to use this structure to our benefit as well. However, let us mention a different paradigm. In
[16] it was proposed that one could use (certain generalization of) the cosmological horizon
as a local null infinity. Further progress in this direction was presented in [17, 18] where the
BMS-like symmetry group of such horizons were identified and used to calculate physical
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quantities (multipole moments, charges and their fluxed) within the perturbation theory.
In the context of our current investigations it is rather natural to ask about the Killing
horizons associated with the symmetries described in the previous paragraph. One striking
property of the de Sitter spacetime is the fact that each Killing horizon can be identified
with a lightcone emanating from a point on I+ in a conformally completed spacetime. The
question that arises is how common is the presence of a Killing horizon intersecting I+ in
the asymptotically de Sitter spacetimes. This is the next issue we address in this paper and
find its precise solution – this property is unique to the de Sitter spacetime. Of course, it
does not mean that different solutions do not have Killing horizons (the simplest example
being the Schwarzschild-de Sitter black hole) but rather, using a picturesque language, that
’point of intersection’ lies at the ’infinity of I+. This is heavily tied with the topological
properties of I+ for different solutions, as analyzed in many examples in [7].
Incidentally, both questions can be analyzed in the same language - by the extensive usage
of the conformal properties of the Cauchy data. In fact, we will start with the latter problem
simply because it is easier and it naturally sets up the stage for the classification.

II. KILLING VECTOR FIELDS AT I+

A prerequisite for a Killing horizon to exist is the existence of a Killing vector field (KVF)
itself. Thus, we will start by showing how they can be read off from the initial value
formulation in the spirit of Friedrich [19]. Asymptotically de Sitter spacetimes can be put
into the Fefferman-Graham gauge:

g = −ℓ2dρ2

ρ2
+

ℓ2qabdx
adxb

ρ2
, (2.1)

where qab = qab(ρ, x
c) is smooth and ℓ =

√

3
Λ
. The null infinity I+ corresponds to ρ = 0.

Let us denote

q
(n)
ab =

1

n!

∂n

∂ρn
qab|ρ=0. (2.2)

From the vacuum Einstein equations,

Rαβ = Λgαβ, Λ =
3

ℓ2
(2.3)

the following constraints follow

q
(1)
ab = 0 (2.4)

q
(2)
ab = R̊ab −

1

4
R̊q

(0)
ab (2.5)

q(0)abq
(3)
ab = 0 (2.6)

Daq
(3)
ab = 0, (2.7)

where R̊ab and R̊ are Ricci tensor and scalar (respectively) of q(0) and D is its covariant

derivative. All q
(n)
n>3 are recursively given as functions of q(0) and q(3). One can easily notice

that q(2) is twice the Schouten tensor of q(0). Notice that since qab is merely smooth, it is only
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an asymptotic expansion and not necessary a convergent series. Nevertheless, it follows from
[19] that the proper initial data at I+ are classes [(q(0), q(3))], where two pairs are equivalent
if they are connected by a (non-singular) conformal transformation:

(q(0), q(3)) ∼ (ω2q(0), ω−1q(3)). (2.8)

One can easily checked that the constraints for q(3) are conformally covariant. To agree with
a standard notation, we will introduce a holographic energy-momentum tensor

Tab =

√
3Λ

16πG
q
(3)
ab . (2.9)

Since we are mainly interested in the behavior at ρ = 0, it is convenient to introduce an
unphysical metric

ĝ = ℓ−2ρ2g, (2.10)

which is smooth at all values of ρ.
We are looking for the KVFs X :

LXgab = 0. (2.11)

This equation can be rewritten in a more convenient way as

LX ĝab =
2LXρ

ρ
ĝab. (2.12)

Let us evaluate first its ρρ component:

Xρ
ρ = ρ−1Xρ. (2.13)

The solution is immediate:
Xρ = ρX̊ρ, (2.14)

where X̊ρ
,ρ = 0. Thus, it follows that a KVF must be tangent to I+. Let ξ ∈ Γ(TI+)

denotes restriction of X to I+. We will now solve the remaining equations perturbatively
in ρ. Evaluating ab components of (2.12) at ρ = 0 gives

Lξq
(0)
ab = 2X̊ρq

(0)
ab . (2.15)

Thus, we see that ξ is a conformal Killing vector field (CKVF) of q(0) and

X̊ρ =
1

3
Daξ

a. (2.16)

ρa components of (2.12) gives
Xb

ρqab −Xρ
,a = 0, (2.17)

which can be immediately solved

Xb = ξb +

∫ ρ

0

ρ′qab(ρ′, xc)dρ′ (Dmξ
m),a . (2.18)

Thus, every KVF is uniquely defined by its restriction to I+:

X =
1

3
ρDmξ

m∂ρ +

(

ξb +

∫ ρ

0

ρ′qab(ρ′, xc)dρ′ (Dmξ
m),a

)

∂b. (2.19)
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Of course, even when ξ is a CKVF of q(0), (2.19) is not necessarily going to be a KVF of g.
To make sure that it is so, we need to evaluate (2.12) in higher orders of ρ – to this end we
will differentiate it with respect to ρ. The first derivative of both sides automatically vanish
since q(1) = 0. The second one reads:

Lξq
(2)
ab = −1

3
D(aDb)Dmξ

m (2.20)

which is just a geometrical identity whenever q(2) satisfies (2.5). Notice that Xa
,ρ|ρ=0 =

Xa
,ρρρ|ρ=0 = 0 due to the form (2.19) and (2.4). Thanks to that, the third derivative of (2.12)

is extremely simple, and it reads

LξTab = −1

3
Dmξ

mTab. (2.21)

This should not be a surprise since (qab, Tab) are defined up to a common conformal trans-
formation. One can show that if ξ satisfies conditions derived above, then an associated X
given by (2.19) is truly the KVF of g.
Indeed, let us consider one parameter family of the local initial data

(ω2
sφ

∗
sq

(0), ω−1
s φ∗

sq
(3)), ω0 = 1, φ0 = id (2.22)

for some conformal factors ωs and local diffeomorphisms φs. Uniqueness results of [19]
show that there exists one parameter family of diffeomorphisms Φs of the spacetime which
transform the development of the data at s into the one for s = 0. Suppose that X = dφs

ds

is CKVFs symmetry of the initial data. We can locally integrate it and choose a conformal
factor such that (ω2

sφ
∗
sq

(0), ω−1
s φ∗

sq
(3)) is independent of s. In this situation, the derivative

dΦs

ds
defines the corresponding KVF of the spacetime.

We have thus reformulated the problem of finding isometries to the problem of identifying
conformal symmetries of the initial data:

Lξqab = 2ωqab

LξTab = −ωTab.
(2.23)

We will use those equations extensively in the following sections.

III. KILLING HORIZONS

Thus far, we have only focused on the existence of KVFs for themselves. However, our main
object of interest is a Killing horizon H , it means such a null hypersurface that X is its null
normal. Moreover, we assume that after a conformal completion, an intersection of H and
I+ is non-empty, just as it has place in the de Sitter spacetime. Since X is tangent to I+,
it is spacelike and its length (say, in ĝ metric) is nonnegative. On the other hand, its length
on H vanishes. Thus, at the (non-empty) intersection, X must vanish.
All Killing horizons are nonexpanding, it means all cross-sections of H have the same
area1. In particular, we can take ρ = const. cross-sections and their area (in g metric)

1 We assume that H has a product topology R × K, where K is a compact surface, and thus it makes

sense to talk about a cross-section’s area. An example of a situation in which it does not hold and one

has well-defined I+ can be given by the Kerr-Taub-NUT-de Sitter. Then, the horizon is topologically S
3.

Nevertheless, even in this example the horizon is separated from from I+ [20].
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is ρ-independent. On the other hand, their area in ĝ decreases as ρ2. In particular, it van-
ishes on I+. Thus, H ∩ I+ cannot be a 2-surface, so it is either a curve or a point2. As we
will show, in a moment, the first case is excluded.
Let us first assume that ξ is a KVF of q(0). Then, it follows from (2.19) that

X = ξa∂a, (3.1)

and so it is spacelike everywhere (or vanishing) in the domain in which coordinates (ρ, xc)
are well-defined. In particular, it cannot have a horizon. As a next step, let us assume that
it is not a KVF, but there exists a positive function ω on a neighborhood of H ∩ I+ such
that

Lξω
2q(0) = 0. (3.2)

Using terminology from [21] we introduce a definition:

Definition III.1. Conformal vector field ξ is called non-essential if there exists nonzero ω
satisfying (3.2). Otherwise, it is called essential.

We will also use local version of these definitions. Vector field is essential at x if it is
essential for every neighborhood of x.
Such ξ are called non-essentials CKVF. If ξ is non-essential, we can consider a spacetime

(M ′, g′) with an initial data (ω2q
(0)
ab , ω

−1Tab) which is diffeomorphic to the one we considered
so far. It follows that ξ is spacelike on (M ′, g′) and so also on (M, g). Thus, if ξ is a non-
essential CKVF of q(0), it does not have a Killing horizon intersecting with I+ and we are
left only with an essential case. Fortunately, if a Riemannian manifold possess an essential
CKVF for the point x0, it is locally conformally flat around this point [21]. Without loss

of generality, we may assume that q
(0)
ab = δab. One can easily check that if ξ is an essential

CKVF on every neighborhood of a given point, then this point is an isolated zero of ξ. Thus,
as promised, it follows that (each connected component of) H ∩ I+ is a point.

A. Holographic energy–momentum tensor

Thus far, we were able to establish that q(0) is conformally flat. We assumed without loss of
generality that it is simply flat around H ∩ I+. The only remaining part of the initial data
is thus Tab.
It is easier to deal with scalars rather than tensors, so let us introduce

χ = q(0)acq(0)bdTabTcd

(

q
(0)
ij ξiξj

)3

. (3.3)

It is easy to notice that χ is a smooth function satisfying

Lξχ = 0. (3.4)

Thus, it is constant along the integral lines of ξ. As we already emphasized, we are interested
in local symmetries and so let us assume that (3.4) holds in a ball of radius ǫ > 0 around
the fixed point of ξ. The following useful lemma holds:

2 Our considerations are local on I+, and so we can focus only on one connected component of the inter-

section. From that point, we will assume without loss of generality H ∩ I+ to be connected
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Lemma III.1. Let x0 be a fixed point of the CKVF ξ. For any open neighborhood x0 ∈
U , there exists an open subset x0 ∈ O ⊂ U such that for any x ∈ O either the integral
line of ξ starting at x or the integral line ending at this point is fully contained in O.
Moreover, if ξ is an essential CKVF, the same starting or ending line approaches the fixed
point asymptotically.

Proof. If the metric is not conformally flat, then the point x0 is not essential and there exists
a metric q(1) which is preserved by ξ. The ball B(x0, ǫ) is preserved by the flow of the Killing
vector field. We will now focus on the conformally flat case.
Let us introduce cartesian coordinates centered around x0. Since we know the form of q(0),
we know its CKVFs as well:

ξ =
(

pi + rijx
j + Sxi + 2Kjx

jxi − xjx
jKi

)

∂xi , (3.5)

where pi, rij , S,K
i are covariantly constant and rij is antisymmetric. Since 0 is a zero of

ξ, we put pi = 0. Moreover, we can always put ξ into one of the following three standard
forms:

1. ξ =
(

rijx
j + 2Kjx

jxi − xjx
jKi

)

∂xi where rijKi = 0 and the vector K 6= 0

2. ξ =
(

rijx
j + Sxi

)

∂xi , where S 6= 0

3. ξ = rijx
j∂xi.

We can restrict attention to vectors in these standard forms. If ξ = rijx
j∂xi then it is not

essential since it preserves q(0). Its integral line are circle around x0 and thus are surely
contained in a small ball. For the two remaining vector fields, we can show that the thesis
of the lemma holds for |x| ≤ ǫ for any ǫ > 0. In order to show this, we apply inversion.
We then need to show that either the forward or the backward flow for a given ξ′ preserves
|x| > ǫ−1 and converges to infinity.

1. For the vector field ξ′ =
(

rijx
j + Sxi

)

∂xi , we have Lξ|x| = S thus |x| → ∞ for either

the forward flow (S > 0) or the backward flow (S < 0). Moreover the space |x| > ǫ−1

is preserved.

2. In case of the vector field ξ′ =
(

Ki + rijx
j
)

∂xi then

LξK · x = |K|2 > 0, Lξ|x|2 = 2K · x. (3.6)

The space K · x ≥ 0 and |x| > ǫ−1 is preserved by the forward flow and moreover
|x| → ∞. Similarly, for the space K · x ≤ 0 and |x| > ǫ−1.

Since χ vanishes at the fixed point and is constant along every integral line, it vanishes in
the whole ball and so does Tab (since that fixed point is an isolated zero of ξ). Thus, there
is a neighborhood of the fixed point, on which the initial data are those of the de Sitter
spacetime. Since the Cauchy problem is well-posed, its past development is isometric to the
de Sitter spacetime. Let us formulate this result as a theorem:



7

Theorem III.2. Let H be a Killing horizon which intersects the scri I+ defined by ρ = 0
in a (conformal completion) of a spacetime endowed with a physical metric tensor (2.1)
that satisfies the vacuum Einstein equations (2.3). Then, there is a neighborhood of that
intersection in which the physical metric is isometric to the de Sitter one.

Our proof that Tab vanishes can be easily generalized to show that there is no tensor Sab

satisfying

LξSab =
s

3
Dmξ

mSab (3.7)

when s < 2. To this end, we just need to consider the following function:

χ = SabSab

(

δijξ
iξj

)2−s
(3.8)

which is (at least) continuous at the origin, smooth everywhere else, and is constant along
the integral lines of ξ.

IV. LOCAL SYMMETRIES

We will now extend the characterization of the essential conformal structures to the case
with tensor Tab. Let V be the algebra of CKVF symmetries of the neighborhood of x ∈ I+,
that is ∀ξ ∈ V

Lξq
(0)
ab = 2αξq

(0)
ab (4.1)

LξTab = −αξTab, (4.2)

We introduce

Definition IV.1. Algebra of symmetries V is non-essential at x if there exists an open
neighborhood of x and a conformal factor ω2 such that

Lξω
2q

(0)
ab = 0, Lξω

−1Tab = 0 (4.3)

Otherwise, we call it essential.

Our goal is to extend a result of [21]. Namely,

Proposition IV.1. Suppose V is essential at x. Then, there exists X ∈ V which is essential
at x.

Let us remark, that it is not obvious that essentiality could in principle follows from prop-
erties of the whole algebra. Our proof of Proposition IV.1 will be based on the following
result:

Lemma IV.2. Let V be an subalgebra of conformal vector fields. Denote by Vx a stabilizer
of x (a subalgebra of vectors vanishing at x). If Vx is non-essential then it is also true for
V.

Remark: It is a local version of property of the proper action (see [22]).
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Proof. Let G̃ be a universal group generated by the algebra V with a subgroup K̃ generated
by Vx. There exists a representative g0 in a conformal class, which is preserved by Vx. We
can consider a ball in this metric B(x, η1) for small enough η1 such that it is inside normal
coordinates chart around x. As x is a fixed point, it is preserved by Vx. We can integrate
the action of the algebra Vx to the action of a group K̃. Let H be a subgroup of K̃ which
acts trivially on this ball. Let us notice that H also acts trivially on V and thus it is normal
as it belongs to the center of G̃. We may consider

G = G̃/H, K = K̃/H. (4.4)

We notice that K is a compact group (by an injective homomorphism K → End(TxM) we
can identify it with a subgroup of SO(3)). We will consider local action of G. Let L be a
complementary subspace to Vx in V. We equip it with an auxiliary norm.

1. There exists ǫ1 > 0 such that

{l ∈ L : |l| < ǫ1} ×K ∋ (l, k) → exp l · k ∈ G (4.5)

is injective. This is thanks to the compactness of K. We denote the pull-back of the
left Haar measure by dµ.

2. There exists 0 < ǫ2 ≤ ǫ1 such that (exp l)x ∈ B(x, η1) for all l ∈ L such that |l| < ǫ2.

3. As no nonzero vector in L vanishes in x, there exists ǫ3 < 1
2
ǫ2 and η2 < η1 such that

d((exp l)x, x) > η2 for l ∈ L satisfying ǫ3/2 < |l| < 2ǫ3.

From continuity of the action there exists ǫ4 < ǫ3 and η3 < η2 such that for all k ∈ K and
l ∈ L satisfying ǫ4/2 < |l| < 2ǫ4 it holds

exp l · k(B(x, η3)) ∩B(x, η3) = ∅ (4.6)

Let us define

g1ab(y) = f

(

d(x, y)

η3

)

g0ab(y) (4.7)

where f is a smooth function which is one in zero and vanishes for all argument bigger equal
than 1 (and nowhere else). This is a K invariant metric in B(x, η3). We define a metric by
integration

g2ab =

∫

l∈L : |l|≤ǫ4

∫

K

dµ (exp l · k)∗ g1ab (4.8)

This metric is invariant under V in some small neighborhood of x. In fact the integral
changes under the action of the algebra only by boundary terms (due to invariance of
the Haar measure). However, the boundary does not contribute to the tensor in small
neighbourhood of x. Thus V is non-essential.

Proof of IV.1. From Lemma IV.2 we know that Vx is essential. However, then by Theorem
7.1 from [21], the neighborhood of x is conformally flat. If every X ∈ VX is non-essential
then after applying inversion X ′ is an element of Euclidean-Poincare transformation and it
has a fixed point. From Lemma 7.2 of [21] we then know that there is a common fixed point
for all vectors. Applying inversion with respect to this point we see that we transformed all
vector fields in V into Euclidean-Poincare vector fields.
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The main result can be summarized as follows:

Theorem IV.3. Let V be an algebra of local conformal symmetries at x of the data (qab, Tab).
Then

1. either there exists a choice of non-vanishing ω in some neighborhood of x such that

Lξω
2qab = 0, Lξω

−1Tab = 0, ∀ξ ∈ V (4.9)

2. or the metric is conformally flat and Tab = 0 in the neighborhood of x and at least one
of the vectors in the algebra is essential at x.

In the second case we will say that the data is locally de Sitter.

Proof. Either V is non-essential at x and then the case 1 holds or there is an essential vector
field in V and then by Lemma III.1 and the text below we are in the case 2.

V. GLOBAL SYMMETRIES

In this section, we will use our just gained knowledge of the initial data and their symmetries
to classify what are possible isometries of the asymptotically de Sitter spacetime. To be more
precise, we will show that the group of isometries of the asymptotically de Sitter spacetime
can be only 0, 1, 2, 3 and 4-dimensional, unless the spacetime is locally isomorphic to the de
Sitter universe.
Let us start with some properties of the algebra of symmetries:

Lemma V.1. Suppose that the algebra of conformal symmetries V is at least 4 dimensional
and non-essential at x. Then the dimension of V is either 4 or 6 and the algebra acts locally
transitively around x. In the case of dimension 6 the data is locally de Sitter around x.

Proof. As the algebra is non-essential we can assume it consists of Killing vector fields. We
can identify the stabilizer Vx ⊂ so(3). As a Lie subalgebra, it can be either 3 (full so(3)) or
1 dimensional.
In the first case, it acts transitively on TxM . However, it preserves the space

Y = {X(x) : X ∈ V}, (5.1)

which is nontrivial as dimension of V is at least 4. This means that Y = TxM . Counting
dimensions shows that dimV = 6. However, this means that the metric is maximally
symmetric and conformally flat. Additionally, Tab = cqab and as it is traceless Tab = 0. This
is the case of locally de Sitter.

On the other hand, if Vx is one-dimensional then Y = TxM , the dimension of V is 4 and
the algebra acts locally transitively.

Theorem V.2. If the spacetime is not everywhere locally de Sitter, then one of the following
holds:

1. The connected group of symmetries is 4-dimensional. It acts transitively on I+ and
there is a choice of conformal class of the metric for which the action is by isometries.



10

2. The group of symmetries is at most 3-dimensional.

Proof. We consider the connected component of the symmetry group and its Lie algebra V.
Let us introduce the following scalar:

χ = TabT
ab + CabcC

abc, (5.2)

where Cabc is a Cotton tensor of q(0). Since the Cotton tensor is a conformal invariant, it
follows that χ has a conformal weight −6. If χ vanishes in a neighborhood of a point x ,
then the data is locally de Sitter around this point (the metric is conformally flat and Tab

vanishes). Suppose now that the point x is non-essential and χ(x) = 0. Then by Lemma
V.1 the action of algebra is locally transitive and thus χ = 0 in the whole neighborhood of
x. The same is true if x is an essential point and so the set {χ = 0} is open. As both open
and closed it needs to be either an empty set or the whole I+.

1. If {χ = 0} = I+ then the space is everywhere locally de Sitter.

2. If χ 6= 0 everywhere, then we can introduce equivalent data:

q′ab = χ
1

3 qab, T ′
ab = χ− 1

6Tab, (5.3)

which satisfy for every ξ ∈ V:

Lξq
′
ab = 0, LξT

′
ab = 0 (5.4)

and thus ξ must be KVF of q′. From Lemma V.1 the orbits of every point is the whole
I+ (both orbit and its complement is an open set).

Thus the metric q′ab is preserved by the connected component of the symmetry group.

VI. EXAMPLES

Thus far, we have shown that the possible dimensions of the isometry group are d = 4, 3, 2, 1,
assuming that the spacetime is not locally de Sitter. Of course, that does not prove that all
of those cases are actually realized. What is left is to construct examples for each of those
values. We will divide our discussion into different topologies of I+ which are commonly
encountered. With the exception of d = 4, we do not claim any sort of completeness.

A. Sphere S3

Obviously, the first example that comes to one’s mind is the global de Sitter spacetime. It
is maximally symmetric and thus d = 10. We already learned that when d = 4, symmetries
act transitively on I+ and (in an appropriate conformal frame) are isometries. Thus, I+

with a metric q(0) must be a homogeneous space. Fortunately, all homogeneous metrics on
a simply connected 3-spaces are classified [23]. On S3 they are simply given by squashed
spheres:

q(0) = λ1σ
2
1 + λ2σ

2
2 + λ3σ

2
3 , (6.1)

where σi are standard left invariant one-forms on S3. When all λ are different, this metric
has SU(2) symmetry (d = 3). When two of them coincide, the symmetry is enlarged to
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U(1)×SU(2) = U(2) (d = 4). Let us focus for a moment on the latter, we can take λ1 = λ2.
The only holographic energy–momentum tensor consistent with the symmetry is

T = α
(

λ−1
1 σ2

1 + λ−1
1 σ2

2 − 2λ−1
3 σ2

3

)

. (6.2)

This is a two parameter family of initial data parameterized by λ1

λ3
and α√

λ1

. It describes

Taub-NUT-de Sitter and the two parameters correspond to the NUT parameter l and mass
parameter m, respectively. Notice, that m is not a physical mass – since I+ is topologically
a sphere, any conserved charge

Qξ[C] =

∮

C

Tabn
aξb

√
hd2x (6.3)

associated with a symmetry generator ξ and a surface C must vanish identically. Moreover,
notice that the Killing horizon in the Killing horizon in this solution is in fact a Cauchy
horizon and so it is a breakdown of the unique evolution. Notice that if we allow λ1 6= λ2

the possible Tab are

Tabdx
adxb =

3
∑

i,j=1

hijσiσj (6.4)

subject to the usual constraints. They all correspond to Bianchi IX universes.

B. R
3

Let us start with a metric q(0) which is not conformally flat. It follows than that (in an
appropriate conformal frame) all symmetries acts as isometries. It is well-known that a non-
maximally symmetric metric can be at most 4-dimensional. Thus, one can generate plenty
of examples even with Tab = 0. In particular, all homogeneous metrics (up to accidental
additional symmetries) on R

3 could be used and they are already classified [23].

1. Euclidean space

Let us now discuss the case when the metric induced on I+ is flat. Then, our starting
point is 7-dimensional group3 of R3. We want to break symmetry explicitly through the
introduction of a non-trivial Tab. All complete CKVFs on R

3 are of the form:

ξ =
(

pi + rijx
j + Sxi

)

∂i. (6.5)

As follows from our previous discussions, we must put S = 0 – otherwise Tab would have to
vanish. We are left only with Killing vectors of the flat metric. Thus, we are now looking
for Tab such that

LξTab = 0, (6.6)

where ξ is in a proper subalgebra of the Euclidean algebra. That subalgebra cannot be 6
dimensional, since then Tab would be proportional to δab and hence vanishing. Moreover,

3 Notice that since we discuss the group, we must exlude the special conformal transformations since they

move the point at infinity
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there are no 5-dimensional subalgebras. Thus, the smallest possible one is 4-dimensional
and there is only one (up to an isomorphism). It is generated by ∂x, ∂y, ∂z, x∂y − y∂z. The
most general Tab it preserves is of the form

T = adx2 + ady2 − 2adz2, (6.7)

where a is an arbitrary constant. Such initial data correspond to the Bianchi I cosmology
with an additional axial symmetry.
There are several 3-dimensional subalgebras. We obviously have an algebra of translations
(isomorphic to R

3). Clearly it preserves Tab of the form

T = hijdx
idxj , (6.8)

where hxx + hyy + hzz = 0 and all hij are constant. Such initial data corresponds to (now
more general) Bianchi I universes.
Different 3 dimensional algebras are so(3), an euclidean algebra of a plane (spanned by ∂x, ∂y
and x∂y − y∂x) and a helical algebra ((spanned by ∂x, ∂y and α∂z + x∂y − y∂x). It is easy to
see that the only Tab preserved by these symmetries (and no other) is simply zero.
It is also easy to construct examples with lower symmetry. In particular, an algebra R

2

spanned by ∂x, ∂y can be obtained by a choice

T = hij(z)dx
idxj , (6.9)

where hxx + hyy + hzz = 0 and hiz are constants. It is not clear to us whether such solutions
occur in any physically interesting scenarios.

C. Cylinder R× S2

Yet another possible topology of I+ is a cylinder R×S2. This should describe BH spacetimes.
Let us take q(0) to be conformally flat and given by

q(0) = du2 + ℓ2dθ2 + ℓ2 sin2 θdφ2. (6.10)

Among all CKVFs, only 4-dimensional subalgebra is complete in this case and is generated
by ∂u and rotations. Thus, there are no solutions with more than 4d isometries. The most
general form of Tab consistent with those symmetries is

T = a
(

2du2 − ℓ−2dθ2 − ℓ−2 sin2 θdφ2
)

, (6.11)

where a is an arbitrary constant. It clearly corresponds to the Schwarzschild–de Sitter space-
time. The only three dimensional subalgebra is so(3) and again Schwarschild–de Sitter is
the only example (as stated by the Birkhoff theorem). The only two dimensional subalgebra
is spanned by ∂u and ∂φ. If we consider a one-dimensional algebra spanned by ∂u, we can
write down the most general form of Tab:

T = ℓ−2(∆̊ + 2)Φdu2 + 2ǫABD̊
BχdxA + (D̊AD̊B − (∆̊ + 1)̊γAB)Φdx

AdxB, (6.12)

where Φ and χ are arbitrary (u-independent) functions on S2. If they are additionally axially
symmetric we are back to the previous case. Notice that Kerr-de Sitter can be put in this
form [15].
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VII. DISCUSSION

In this paper we considered asymptotically de Sitter spacetimes that satisfied the vacuum
Einstein equations in a neighborhood of the null infinity I+. We assumed an existence of
KVFs in that neighborhood and studied their properties. The key elements of our analysis
were the initial Cauchy problem at I+ and the Fefferman–Graham expansion.
The first result is Theorem III.2. It states that if there is a Killing horizon that intersects
I+ (after a conformal completion), then in a neighborhood of the intersection point, the
spacetime is isometric to the de Sitter spacetime. We explain now, why the theorem is true.
To begin with, every KVF X admitted by a neighborhood of I+ turns out to be tangent
to I+. Conversely, a vector field ξ tangent to I+ is a restriction of a KVF defined in a
neighborhood of I+ if and only it is a symmetry of the data that determines a solution of
Einstein’s equations in the neighborhood. The data is a pair: the induced metric tensor q(0)

and holographic stress-energy tensor T defined up to the conformal transformations (2.8).
Next, it turns out that the intersection of the Killing horizon with I+ is an isolated point, a
zero of the vector field ξ. That follows from the properties of essential CKVF of 3 dimensional
conformal geometries. On the other hand, if ξ were a non-essential CKVF, then the solution
X of the Killing equation that is determined in the neighborhood would be spacelike (hence,
without a Killing horizon). The last step of the reasoning is the construction of the scalar

q(0)acq(0)bdTabTcd

(

q
(0)
ij ξiξj

)3

that is shown to be zero on a neighborhood of the zero of the

symmetry ξ.
We have systematically investigated possible symmetries of the initial data. In particular,
we have proven that they exhibit the gap phenomenon with the submaximal symmetry
being only 4-dimensional. We have also shown that this case reduces to the homogeneous
geometry on I+ and as such is much easier to understand. In particular, if the null infinity
is topologically a sphere, then the solution is necessarily Taub-NUT-de Sitter. We have also
provided a lot of examples in other situations. Hopefully they can be useful as a starting
point for the perturbative treatment of the gravitational radiation.
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