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SYMMETRIZABLE FINITE DIFFERENCE OPERATORS

BRUCE A. WADE

Abstract. We introduce the notion of a symmetrizable finite difference oper-
ator and prove that such operators are stable. We then present some sufficient
conditions for symmetrizability. One of these extends H.-O. Kreiss' theorem on
dissipative difference schemes for hyperbolic equations to a more general case
with full (jc , invariable coefficients.

1. Introduction

The problem of finding useful sufficient conditions for the stability of linear,
variable-coefficient finite difference operators (for hyperbolic problems) has not
yet been satisfactorily resolved since existing results make significant limiting
assumptions on the symbol of the operator. In this work we extend and unify the
various sufficient conditions for stability, e.g., those of Kreiss [4] (also Parlett
[9]), Lax and Nirenberg [6], Michelson [7, Theorem 1.2], Shintani and Tomoeda
[11], and Strikwerda and Wade [12]. In the process, we simplify the proof of
stability for variable-coefficient operators. We consider multistep systems of
finite difference equations with (x, t)-variable coefficients and only minimal
assumptions on the symbol.

Primarily, the results of this paper center around the works of Kreiss [4] and
Michelson [7, §6]. In [4], stability is proved under some very restrictive assump-
tions, namely, that there is no i-dependence in the operator and that both the
differential and difference operators have Hermitian coefficients. We eliminate
these restrictions, and so address the conjecture in [4, p. 337], in which it is
stated that properties of the eigenvalues could possibly replace the special as-
sumptions made there. Michelson's theorem for the pure Cauchy problem [7,
Theorem 1.2], concerning finite difference equations for strictly hyperbolic par-
tial differential equations, is a special case of our theory; however, we simplify

O
the proof of stability by using only the weak Garding inequality, in which the

o
symbol is positive definite, instead of the sharp Garding inequality. Since the
weak Garding inequality is much easier to prove, we thus obtain a more general
result with less machinery.
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526 B. A. WADE

Strikwerda and Wade [12] have recently introduced a condition in the Kreiss
Matrix Theorem, called a symmetrizer condition, and have shown that the sym-
metrizer condition ([N] in [12]) implies stability for variable-coefficient prob-
lems in a certain norm involving the Laplace transform in the ¿-variable. The
symmetrizer condition of [ 12] is a direct extension of the Lax-Nirenberg non-
negative real part condition arising in [6, Corollary 1.2], where the symmetrizer
matrix happens to be the identity.

In [12] it is proven that conditions [H] and [N] in the Kreiss Matrix The-
orem are equivalent, and that the matrix N can always be taken equal to the
matrix H. However, the converse is not true; in §4 we give an example of a
family of matrices which satisfies condition [N] with the identity as N, even
though the matrix H cannot be taken to be the identity. To conclude [H]
from [N], one would have to go completely around the circle of conditions in
the Kreiss Matrix Theorem. For variable-coefficient problems this creates a dif-
ficulty because the construction of the matrix H in the Kreiss Matrix Theorem
(which we would like to use as a model), cf. [10], does not produce a smooth
H as a function of the elements of the family of matrices, and smoothness is
essential for our pseudodifference operator machinery to go through. There-
fore, condition [H] seems to be somehow stronger than [N]. For this reason
we adopt here a variation of Kreiss' condition [H] in [4] for our definition
of a symmetrizable finite difference operator, rather than the condition [N],
which was called a symmetrizer condition in [12]. Through the weak Garding
inequality (and condition [H] as a model) we are able to now prove the same

_ o
results as those which came out of the sharp Garding inequality and condition
[N] in [12]. The difference arises only in the variable-coefficient case.

Some work is still needed to answer the natural question of whether the
stability estimate resulting from condition [N] in [ 12] is equivalent to that from
this paper (Theorem 3.1). So far, we can only assert that there is equivalence in
the constant-coefficient case, and that the result from [ 12] may be weaker than
that in this work.

The novelty of our method for proving stability consists in the notion of a
symmetrizable finite difference operator (one which parallels the already estab-
lished theory for pseudodifferential operators, cf. [2 or 14]), in our method of
proving stability, and also in our method of constructing the symmetrizer. The
symmetrizer property given in §3 is basically the same as Kreiss' condition [H]
in [4], but differs in specific details relating to the pseudodifference operator
symbol class. Our method of proving stability does not rely on the operator
H as simply a means of changing the norm to obtain a family of contractions,
which does not help in the /-dependent case because the same norm, (H-, •),
cannot work for all time levels; rather, we utilize the operator H in the spirit
of a Lyapunov function to allow an energy method to go through for the full
(x, ^-variable coefficient case. We separate out the question of proving sta-
bility and the actual construction of the symmetrizer; this approach allows a
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SYMMETRIZABLE FINITE DIFFERENCE OPERATORS 527

unification of the various existing conditions for stability as special cases of our
theory.

We have organized this work as follows. Section 2 contains a brief description
of the pseudodifference operator theory. Section 3 contains the first mention
of the type of finite difference operators to be considered, a definition of sym-
metrizability, and a proof that symmetrizable operators are stable. Section 4
is devoted to the question of constructing a symmetrizer for various classes of
finite difference operators, which is the most difficult part. We present two the-
orems on the existence of a symmetrizer, one of which is related to the Kreiss
condition of dissipation and accuracy in [4]. Each of these has hypotheses which
are useful in practice.

2. Pseudodifference operators

We now briefly discuss the theory of pseudodifference operators, but we omit
proofs since we consider only a careful description of the symbol class and
the relevant results to be necessary. The reader should consult [1 or 7, §4] for
rigorous details.

We take M to be the collection of complex-valued, m x m matrices with
norm induced by (x, y) :- y * x for x, y G Cm . If a G Nd is a multi-
index, we let |a| := X)a; •  We assume given a grid parameter h G (0, h0),

for some fixed /<0 > 0, and we have a quasi-uniform grid Rh defined to be
{x GRd: X. G hi), where the A. satisfy c~lh<h}< ch for 1 < j < d and
all h G (0, h0), with c > 1 fixed. If œ g Rd , wh will denote the element of
E   with components wi.. We define

Th := {(DEI: hj\o}j\ < n}
and

1/2

Ah(co) i+EV \l-e -iWjhj.2

7=1

Our discrete function spaces are built around

r-K
The discrete Fourier transform is

-d/2,d

£m:h"Y. \<P(x)\   <oc
xeK

> ■

tp(œ) := (2n)    ' h   ^ e    'w(p(x),        o)GYh,
x€R.

and the inversion formula is

<p(x) :- (2n)~      /   exwtp(w)do3,
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528 B. A. WADE

cf. [7, 15, or 16]. We shall utilize the following discrete Sobolev spaces:

Hh>tt:={<p:K-*Cm-\\KñL^h)<oo}.
For pseudodifference operators we follow [7, §4], except that we do not have

a particular variable singled out via a Laplace transform. (One simply takes the
real part of the Laplace transform dual variable to be zero.) For each /¡eu
and h G (0, h0) we define the symbol class of pseudodifference operators with
order p. G R to be S%, taken to be the collection of ph G C°°(Rd xTh, M)
which satisfy

\\(l + \x\)ydax(ph(x,to)-p(cx>,co))\\<cay   VveE¿,  o)GYh,

where ph(oo, •) e C°°(rA , M), and also

||(l + M)'a;ô^(*,ca)||

where y G N, a, ß G N , and all constants are independent of h . (Note that
we require ph(oo, œ) to also satisfy (2.1).)

We shall also need a special subclass of pseudodifference operator symbols
with a slightly different property relative to the parameter h . Essentially, this
class arises from symbols which are bounded functions of £, - coh, whereby
differentiating with respect to œ yields successively higher powers of h instead
of lower powers of Ah(-). For instance, a cutoff function in the £, variable
satisfies the conditions of this special class of symbols.

For each /ieR and h g (0, h0) we define the symbol class S% to be the
collection of ph G S^ satisfying

(22) \\(l + \x\Ydaxdiph(x,co)\\

<caJjyhlßlAßh(a))   yxGRdU{œ}, ojgTh.

For ph G S£ we define the corresponding pseudodifference operator Ph :

Ph<P(x):=(2n)~dl2 /  p.(x,œ)e'x'co0(œ)dœ,

and we let o(Ph) :— ph be the symbol of Ph . We take OPS^ to be the collection
of such operators. (That Ph : Hh —> Hh 0 is actually proved in [7, Theorem
4.1].)

We now state the relevant results on pseudodifference operators, without giv-
ing proofs. We assume that the reader is familiar with [7, §4].
Proposition 2.1. For each Ph G OPSßh and vel there is c > 0, independent
of h, such that

\\Pl0\\l     < c|M|, V» € H.Il   h T Uh,v —    iirMh ,p+u     "y *- A±n ,ß+f

We denote by P*h the Hh 0-adjoint and by P{h*} the operator whose symbol
is o(Ph)* (the matrix adjoint).
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SYMMETRIZABLE FINITE DIFFERENCE OPERATORS 529

Proposition 2.2. Let Ph G OPS% and Qh G OPSuh , and let Rh be the pseudo-
difference operator whose symbol is o(Ph)a(Qh). Then

(i) PkoQk.R„e OPSr,
(Ü) PhoQh-RhGOPSr~l,
(iii) />;-/»<*> eopsr1-

Proposition 2.3. Let Ph G OPSßh and Qh G OPSvh, and let Rh be the operator
whose symbol is a(Ph)a(Qh). Then there are Ah G OPS^+v and Bh g OPSßh
such that PhoQh-Rh = hAh and P*h - P(h*] = hBh .

Proposition 2.3 is the same as [7, Theorem 4.2a, 4.3a or 6, Lemma 1.1].
Comments on how to easily modify the standard proof of Proposition 2.2 to
the case with symbols in S^ are contained in [7, p. 32]. Intuitively, the only
difference between Propositions 2.2 and 2.3 is that OPS^ provides a different
meaning to the phrase 'lower-order terms'.

o
Next, we give a special case of the weak Garding inequality involving oper-

ators in the restricted class OPSh . This version is all that we will need in the
next section.

Proposition 2.4. Suppose Ph G OPS® and there is c0 > 0 such that Retr(Ph)(-)
> c0I ; then there is cx > 0, independent of h, such that

Rt(Phtp,<p)hi/>(\c,-cxh)\\(pthv   V<pGHhi/.

We note that the conclusion of Proposition 2.4 is essentially the same as that
of [6, Theorem 1.1], except that our assumption Ph g OPSh greatly simplifies

O
the proof because the standard derivation of the weak Garding inequality, cf.
[7], goes through.

3. Symmetrizability and stability

In this section we introduce our class of finite difference equations, define
the concept of a symmetrizable finite difference operator, and prove that such
operators are stable.

We consider finite difference equations of the following general type:

g(t,h,x,Tx,Tt)vh(t,x) = fh(t,x)   V(t,x)GNkxR¡,
vh(ak,x) = gh a(x),        0<ff<(70-l,

where
CT0

q(t,h,x, Tx,Tt) := £<?„(/, h, x, Tx)T?.
o=0

We have used Tx and Tt to indicate the forward translation operators, k = Xh
for some fixed A > 0 and Nk := kN. The following assumptions are made:
k~lq0(t,h,x, Tx)-{ g OPS¡, {qn(t, -)}?=0 c c'(R+, S») for some ß > 0,
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530 B. A. WADE

and {q0 l(t, -)qa(t, ■)}l°=0 C C'(E+, S°h), where q0 \t, ■) denotes the symbol
of the inverse of q0(t, h, x, Tx).

These assumptions are certainly not very restrictive—they include as special
cases any of the finite difference equations of [4; 6; 7, Theorem 1.2; 9; or 11].
We require only that fn and {gh a}°a~0 be grid functions, and we have no
differential equation in sight. The conditions on the inverse of the operator
q0(t, h , x, Tx) are somewhat troublesome because they are not easy to check,
unless one has a constant-coefficient operator. However, we need the invert-
ibility of q0(t, h, x, Tx) even to know that there exists a solution to (3.1),
but we do not desire here to deal with the problem of finding conditions on
the symbol of q0(t, h, x, e'w ) which guarantee the invertibility of the opera-
tor. Also, these assumptions implicitly force a relationship between k and the
qa(-), which is the natural one for hyperbolic problems.

We now fix our definition of stability, which is the usual one.

Definition 3.1. The finite difference operator q(t,h,x, Tx, Tt) in (3.1) is said
to be stable if for every T > 0 there exist h0, c > 0 such that any solution
satisfies

(3.2) K(i)llî.0<MEllft.JÏ.o + *     £     II/aMIÉ.o\^ Il f t-rWl2

t€[0,;

for t G [0, T] n N,  and h G (0, h0).

For our stability proof to go through, we need to reduce the multistep oper-
ator in (3.1) to a single-step canonical form—called the reduced operator—by
employing the standard method, cf. [10, Chapter 7]. We go over to capital
letters. Let Vh be the vector of size ma0, defined in terms of ct0 blocks of
length m, as follows:

where the square brackets indicate an w-block. Similarly, let

[Gh]j:=ghi0o_j,        l<j<o0,

and
VqVI,   It ,   -A. ,    ±x) Jh

l*J',_ 10. else.
Finally, we define a block matrix of operators consisting of a aQ x a0 matrix of
mx m blocks as follows:

[Qh
' q0(t, h,x, Tx)~lqj(t, h , x , Tx),    1 = 1;

/, i > 1, j = i - 1
0, else,

for 1 < /, j < o0. Our assumptions from (3.1) imply that Q G OPS°h and that
II^IU-^ll/A.o-
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SYMMETRIZABLE FINITE DIFFERENCE OPERATORS 531

The resulting reduced equation, equivalent to (3.1), is
(Tt-Q(t,h,x,Tx))Vh(t,x) = kFh(t,x),

(3 3)
Vh(0,x) = Gh(x)   V(t,x)GNkxRdh.

Stability for the reduced equation becomes: for every T > 0 there are h0,
c > 0 such that any solution satisfies

(3-4) Wh(t)\\l0<c[\\Gh\\lo + k     E     IIWIIÍ.0
\ re[0,í]nNA.

for t G [0, T] n Nk and A G (0, A0).
We now introduce the notion of a symmetrizable finite difference operator,

one which parallels that for pseudodifferential operators, cf. [14].

Definition 3.2. The reduced finite difference operator is said to be symmetrizable
if for every T > 0 there are A0 , t]0 , c > 0 and a family of Hermitian matrices
H(t, •) G C'([0, T], S°h) satisfying c~lI < H(-) < ci, dtH(t, ■) < ci, and

(3.5) Q*(t, h, x, eiwh)H(t, h, x, to)Q(t, h, x, eiwh) < e%kH(t, h, x, co),

for A G (0, A0) and (r, x, œ) G [0, T] x Rdh x Yh .

The difference between this definition and Kreiss' condition [4, Theorem 1,
#4] is the requirement of smoothness and that H(t, •) must be in the special
class of pseudodifference operator symbols SJ). We postpone the question of
actually constructing the symmetrizer until the next section.

We shall need a convenient form of the Gronwall lemma. Suppose tp,
yi: Nk -> R+ satisfy ô_<p(t) - ctp(t) < y/(t), for teNk, where S_ := k~l(l-
T~ ). Then there is A0 > 0 such that

(3.6) ^(í)</í(^(0) + 2*    J2    e~"¥{r)\,
\ te(0,i)nNt J

for A G (0, A0) and teNk.
,-i

To prove (3.6), we introduce the summation factor I(x) := (1 - ck)T     ,
where A0 is chosen small enough to insure that ck < 1. Since ô_(I(r)y>(r)) =
/(t - k)ô_tp(x) - cl(t - k)tp(r), we see that ô_(I(x)tp(z)) < I(x - k)y/(r).
Summation and the telescoping property yield

I(t)tp(t) -l(0)tp(0)<k    Yl    Hr-kMx),
r€(o,t]nnk

which gives (3.6) after a simple computation.

Theorem 3.1. If the reduced finite difference operator is symmetrizable, then it is
stable.
Proof. Given the symbol H(-), let Hh denote the corresponding pseudodiffer-
ence operator. We will compute S_{Hh(t)Vh(t), Vh(t))h 0, dropping the sub-
scripts for convenience.
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But first we change variables by letting Vh(t) :- e~nlVh(t), where n > 0 is
to be fixed later. The reduced equation, (3.3), then goes over to

(Tt - e-"kQ(t,h ,x,Tx, Tt))Vh(t, x) = k?h(t, x),

Vh(0,x) = Gh(x).

However, we now drop the tildes (for simplicity), keeping in mind that the new
reduced operator is actually e~'' Q(t, A, x, Tx).

Our first step consists in adding and subtracting

k~X(H(t-k)V(t),V(t))

to obtain

S_(H(t)V(t), V(t)) = k~\H(t - k)V(t), V(t))
-k~l(H(t-k)V(t-k), V(t-k))
+ {(ô_H(t))V(t),V(t)).

Now we use the reduced equation, above, to find that this equals

k~le'2"k(H(t - k)Q(t - k)V(t - k), Q't - k)V(t - k))
-k~[(H(t-k)V(t-k), V(t-k))
+ (H(t - k)F(t - k), V(t)) + e~"k(H(t - k)Q(t - k)V(t - k), F(t - k))
+ ((6_H(t))V(t),V(t)).

Using the Cauchy-Schwarz inequality and the fact that H(-), ô_H(-), Q(-) G
OPSh , we arrive at the upper bound

*"' ((e~2nkQ*(t - k)H(t - k)Q(t - k) - H(t - k))V(t - k), V(t - k))

+ c(\\V(t-k)\f + \\V(t)\f + \\F(t-k)\?),
where c > 0 is independent of the parameters.

The symmetrizer property, (3.5), H(-) G OPSh , and Proposition 2.3 yield

ô_(H(t)V(t), V(t)) <c(K-V2("~"o)/i - 1)+ D\\V(t-k)f

+ c\\V(t)\\2 + c\\F(t-k)\\2,

where  n0  comes from Definition 3.2.    Choosing  n  large enough to make
e-2(n-%)k _ j < 0 and using the pr0perty c~xI < H(-) < CI, we find that

ÔJH(t)V(t), V(t)) < c(H(t - k)V(t - k), V(t - k))

+ c(H(t)V(t),V(t)) + c\\F(t-k)\\2.

The discrete Gronwall inequality (3.6) applied to

<p(t) := (H(t)V(t), V(t)),        w(t) := \\F(t - k)\\2,
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SYMMETRIZABLE FINITE DIFFERENCE OPERATORS 533

then gives

(H(t)V(t), V(t))<ect l(H(0)V(0), V(0)) + 2k     £     0|F(t)||2] ,
\ re[0,r]nNt /

where now V(t) represents the original solution, and the //-dependence is im-
plicit in the constant c.

By choosing A0 sufficiently small and applying the weak Garding inequality,
we find that

l4c0\\V(t)\\2 < (ICo -ClA)||F(f)||2 < (H(t)V(t), V(t))

<ceal\\V(0)\\2 + k     J2     II^WH2) .
Y re[0,;]nt\ J

for some fixed c > 0 (depending on T), where c0 and c, come from Propo-
sition 2.4. This completes the proof.   D

4. Construction of a symmetrizer

There remains the problem of actually constructing the symmetrizer, which is
nontrivial. In this section we present two theorems on the constructibility of a
symmetrizer matrix, each based on 'easily verifiable' sufficient conditions. Then
we finish up with a few comments about remaining difficulties in this theory.

Our method utilizes eigenprojection and total projection operators derived
from integrating the resolvent over certain specially chosen contours in the
complex plane. This method, which is based on [8], relies on the resolvent
condition of the Kreiss Matrix Theorem and a certain uniformity property of
the eigenvalues. No differential equation appears at first.

Our second result extends the Kreiss theory of [4] concerning accurate and
dissipative difference schemes. This well-known theory requires the orders of
accuracy and dissipation to match, and applies only to an unnaturally restricted
class of finite difference schemes, mainly because of the method of proof. We
prove in this section that one can eliminate the restriction in [4] to the case
of Hermitian coefficients without i-dependence. For simplicity we consider in
Theorem 4.2 only explicit, single-step schemes, but the method obviously gener-
alizes in the same way as in Widlund's work [ 17] to the multistep case, provided
extra assumptions are added to control the spurious eigenvalues arising from the
multistep nature. Michelson's theorem [7, Theorem 1.2] concerning dissipative
difference schemes for strictly hyperbolic partial differential equations is also a
special case of our first theorem of this section.

In the constant-coefficient case there would be no trouble constructing a sym-
metrizer, by condition [H] in the Kreiss Matrix Theorem, because one would
not need the pseudodifference operator theory, hence no smoothness properties,
and Theorem 3.1 would go through directly. In the variable-coefficient case this
method breaks down because all known proofs of the Kreiss Matrix Theorem
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534 B. A. WADE

utilize the eigenvalues explicitly, and these could be at most continuous func-
tions of the parameters; therefore, the pseudodifference operator results would
not apply. Essentially, the problem at hand is to construct the symmetrizer to
satisfy (3.5) while still being in S°h .

We are given the operator symbol Q(t, h, x, e'wh), which we denote by
A(t,h,x,£), Ç := coh, for notational convenience. We need to construct a
symmetrizer H(t, h, x ,£) to be a symbol of order zero; in particular, it must
be C in t, C°° in (x, Ç), and its derivatives must have the right behavior to
be in Sh . For convenience of notation we let X := E+ x (0, A0) x E x [-n, n],
the resolvent of A is RZ(A) :- (zl - A)~x , and we take Be(x0) to mean the
e-ball about x0 intersected with X .

From the Kreiss Matrix Theorem, cf. [10], we recall the resolvent condition
for this situation: there is c > 0 such that for \z\ > 1 and yel

(4.1) i|JRz(^a))n<c(izi-ir1.
Although it is not necessarily easy to check in practice, we assume until the
completion of Theorem 4.1 that the resolvent condition holds. This amounts
to a pointwise condition on the symbol. It is easy to see that the resolvent
condition implies that all eigenvalues of A(-) have modulus less than or equal
to one, and those on the unit circle are simple poles of R2(A). Difficulties
in constructing the symmetrizer arise because the resolvent condition does not
necessarily restrict the eigenvalues near the unit circle to be smooth.

Following [3, Chapter 1], we consider the eigenprojections as follows. Let
X(-) e a(A(-)), the spectrum of A(-), and let T be any unit-index, rectifiable
contour in C containing at least X out of the spectrum and not intersecting it.
The corresponding eigenprojection operator is

Pr:=(2ni)~X Í Rz(A)dz.

Consulting [3], we see that P^2 = Pr and Pr Pr =0 if T^ and Yu contain no
common element of the spectrum. We say that X is simple if dim(Pr <Cm) =
1 whenever TÁ contains only X out of the spectrum, and we say that X is
semisimple if (A - XI)Pr = 0.

We now present an estimate on the resolvent, along certain contours, which
will be useful in the proofs of Theorems 4.1 and 4.2. Miller's method from
[8] is basically the means for the following estimate. Suppose X G a (A) with
\X\ < 1 and let T be any unit-index contour in C containing at least X out
of the spectrum, not intersecting the spectrum, and contained inside the circle
centered at X with radius 1 - \X\. Set X := (2 - \X\)X, i.e., the reflection over
the unit circle U, and let Y be obtained in the same manner.

Consider the matrix polynomial of degree at most m - 1   (A is m x m)

q(z):=R2(A)   H  (z - p).
neo(A)
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SYMMETRIZABLE FINITE DIFFERENCE OPERATORS 535

This yields
m— 1 „

q(z)=¿T(z-X)J(2ni)-1 ¡q(Q(C -XfU+l) di,

which is straightforward to verify, and therefore

(4.2) Rz(A) = (2nifl J„tp(Ç, z)Rr(A)dÇ,

where

From (4.2), for z G Y,

ll/?zM)ll<c|r|sup{|^(c,2)|(|ci-i)-1},

where |T| is the length of Y and c depends only on the resolvent constant.
Therefore, for z G Y,

\\Rz(A)\\<c\r\disX(r,U)-ls\xp{\<p(C,z)\}.

The following inequalities can easily be verified for z gY , Ç g Y, and p. G
a(A):

IC-Äf1 < distfT, A)-1,
\z - X\\C - X\~l < 3dist(T, X)~\l - \X\),

IC -n\\z -p\-] < dist(r, p)-l(4(\ - \x\) + dist(r, p)).
We therefore obtain

suv\\Rz(A)\\<c\Y\dist(Y,U)-\l-\X\)m-1
(4.3) ¿er

x dist(r, X)~m(l + (1 - |A|)dist(r, o(A))~x)m ,

where c depends on m and the resolvent constant.
In (4.3) we have a delicate balance between the various expressions which

depend on Y and a (A) ; we will utilize this estimate in our next theorems.
Our symmetrizer matrix must be in Sh, and we will need some additional

assumptions on the family {A(-)}x to be able to construct such an object.
For our first theorem we simply assume a certain uniformity property on the
eigenvalues, which we now describe.

Fix x0 e X ; let A denote the set of unit-modulus eigenvalues of A(x0)
and let G := a(A(x0))\A. Let p := (1 + max{|//|: p g G})/2 and ô :=
min{|/i - v\, 1 - p}/2, taken over p, ugA.. By continuity, there is e(^0) > 0
so that on Be(x0) all eigenvalues of A(-) remain strictly inside, and never on,
one of the  {rA}AeA  or ro, where ro  is the positively oriented circle with
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radius p centered at the origin and YÁ is the positively oriented circle centered
at X G A with radius ô . We call the set of eigenvalues {p(-)}B ( > which satisfy
\p-X\<ô on BE(x0) the A-group.

Now we get more specialized. Suppose that we could find a finite number of
points {Xj}¡ej c X such that the above e¡ have the property that (J/ Be (X¡) =
X and for each X g A (unit-modulus eigenvalues of A(x •)) the A-group is
semisimple; then we say that the family {A(-)}x is uniformly semisimple at the
unit circle. This situation would occur for instance (by a continuity argument)
if A(t, h,x,£) were independent of A and constant in (t, x) outside some
large ball, a common situation.

To fix notation, then, we have a finite set J and {x,}¡eJ c X such that
\JjBAXi) = X, and a collection of unit-modulus eigenvalues A,  for eachJ fcy J J

j G J. Further, for each X e A we have a contour Yk . of radius ¿ , and
also we have p ■ G (0, 1) and a contour Y. of radius Pj. These expressions
are utilized in the proof of our next theorem.

Theorem 4.1. Suppose the resolvent condition holds and the family {A(-)}x is
uniformly semisimple at the unit circle. Then there exists a symmetrizer.
Proof. We shall construct the symmetrizer locally, and then use a partition of
unity subordinate to the finite cover {ß, (y.)}.,,. For each j g J and X G A,.,
let

Aj(-):=(2ni)-1 j zRz(A(-))dz,

and
P'(.):= (2JCI)"1 /    R,(A(-))dz,

defined on Be (x¡). The symmetrizer can be constructed as

#(•):=!>,■(•)#/•),

where the tp   are cutoff functions and the //.•(■) are defined next. The functions
<Pj depend on £, - coh rather than a>, and this is crucial to H(-) being in Sh .
We define

oo

(4.4) Hj{-) := / + 5»(-))V/-))" + E Piji')pxj{').

where

n=l A6A;

íí" = (2jci)   ' Í znRz(A)dz.

Clearly, H(-) > I and //(•) is Hermitian. It is easy to verify that \\A"(-)\\ <
p"+l supzgr ||ÄZ(0|| < cp"j + l > with c independent of all parameters (depend-
ing only on the resolvent constant).   Therefore, the infinite series in (4.4) is
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uniformly and absolutely convergent on BE (y ), and likewise, so is each ap-
propriate derivative.

Next, we consider any particular J G J and X G A., and we want to estimate
the smooth function P,  .(•), on B(x,), and also its derivatives. To do this,A , J CjJ

we shall need to classify the A-group eigenvalues into clusters, in the same
manner as in [8]. For each p g A-group with \p\ - 1 we define the cluster
C := {p}. Of the remaining elements of the A-group, choose any one with
largest modulus, say v i\v\ < 1). We define the cluster Cv successively by
the following procedure. First, put into Cv the eigenvalues v and any p G X-
group with \p\ < 1 and \p - v\ < (1 - \v\)/2m. Next, put into Cv any
remaining A-group eigenvalues r\ with \r\\ < 1 and \r\ - p\ < (1 - \v\)/2m for
any p already in Cv , and continue. Eventually, we would exhaust the A-group
with a collection of clusters {C;}/£/ each built around some pl G A-group with
|/¿(.| < 1 and {Ck}k€K, each built around the singleton {pk} with \pk\ = 1.
(This introduces the index sets / and K, which are disjoint.) This detailed
classification of the A-group allows us to apply the estimate (4.3).

As a reminder, at this point we have a fixed j G J and A e A , and the
above clusters depend on these j implicitly. We define the contours {yk}keK
to be any positively oriented circles centered at pk and containing only pk
out of the spectrum. Next, it is clear that we can find unit-index contours,
{7/},6/ > each surrounding only Ci out of the spectrum, respectively, and such
that dist(y,, a (A)) > (1 - \pi\)/4m , dist(y, ,p¡) = (l- \p!\)/4m , |y.| <l-\p,\,
and dist(y;, U) > (I - |/i(-|)/2, where U is the unit circle.

The operator Px .(■) is smooth on Be(xj) since it is defined over a fixed■> J j       J

contour Yk .. However, on B£ (xf), this contour integral can be written in the

form Pl,/(-) = E,6/u*ß/(-), where ß,(-) := (2ni)~l ¡yRz(A(.))dz. We will
estimate the Q¡(-) separately.

First, if i g K, then the fact that RZ(A) has a simple pole at p{ yields
11(2,11 = ||lim 0+ nR,x+ ,„(-4)|| < c, where c is the resolvent constant. For
i G I we utilize (4.3) and a straightforward computation to conclude that
110,11 < \y,\ suPr£7 ll^z(^)ll < c > where c depends on m , e , and the resolvent
constant. Thus Pk .(•) is uniformly bounded on B£ (xß . Clearly, appropriate
derivatives of Px (•) can also be estimated by the same method. One would
only have to differentiate under the integral over the fixed contour Yx and
then split the integral over the separate contours {7,}/6/u/f •

We have therefore shown that there is c > 0 such that / < H(-) < ci,
dtH(t ,-)<d, and also that H(t, •) G S°h .

It only remains to prove (3.5). We shall prove that H(-) satisfies (3.5) by
proving that each Hj(-) from (4.4) does. On Be (xf) we can represent A(-) by

A(.) = AJ(.)+^XPXJ(.),
A€A,
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because of the semisimplicity at the unit circle. This last property is crucial to
our proof. Thus, on Be(Xj),

A*H]A = U + £ XP;\ Hj [Aj + £ XpA

oo

= EK)V/ + Ei^V,,,
n=\ XeAj

oo
<i+Z(Aj)n(Aj)n+zp;,Aj=Hj-

n=\ leKi

The proof is now complete.   D

The preceding construction of the symmetrizer could be applied in cases
where there is no differential equation in sight. However, in most situations
we are interested in finite difference approximations for well-posed partial dif-
ferential equations, in particular hyperbolic equations. The work of Kreiss [4]
shows that stability follows from a match between the orders of accuracy and
dissipation, under restrictions on the types of equations.

Michelson, in [7, Theorem 1.2], then showed that no match is needed be-
tween the accuracy and dissipation if the differential equation is strictly hyper-
bolic, i.e., possesses uniformly distinct (hence simple) eigenvalues. The result of
Michelson is already a special case of Theorem 4.1. This is easy to see because
the strict hyperbolicity forces the eigenvalues to be distinct near the unit circle.

If one would trace through the proof of Theorem 1.2 in [7], one would find
techniques which are quite similar to ours, though definitely not the same. How-

O
ever, we have replaced the sharp Garding inequality with the weak version and
have also framed the whole result in such a way as to include much more general
types of hyperbolic equations.

We now prove that Kreiss' condition can be utilized to construct the pseu-
dodifference operator symmetrizer, even in our more general setting, thereby
extending the original result to the full (x, ^-variable coefficient case and al-
lowing (general) hyperbolic partial differential equations instead of only sym-
metric hyperbolic ones. Our method relies on properties of the eigenvalues of
the amplification matrix and so could be extended to the multistep case simply
by adding assumptions on the spurious eigenvalues in the same manner as in
[17]. We prefer now to simplify the form of the finite difference operator in
order to allow our proof to be more comprehensible to the reader. The con-
struction of the symmetrizer given next differs from that in [4], although it is
conjectured in [4, p. 337] that one could possibly attack the problem this way.

We now consider the following partial differential equation:

(dt-p(t,x,dx))u(t,x) = f(t,x)   V(t,x)GR+xRd,
u(t,x) = g(x),
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where dx := (dx¡,..., dx)1 and p(t,x,dx) := £w<p>aeN«Pa(r, x)dax .  We

assume that the symbol p(t, •) G C (R+ , S ), where S represents the symbol
class of pseudodifferential operators, say, from [14, Chapter 2]. However, we
shall need to have the behavior as |jc| —► oo of symbols in S to be consistent
with that of our symbols Sh (no specific asymptotic behavior is assumed in
[14]). We let the reader fill in this small detail, and we shall not dwell on this
point.

We assume that p(t,x,dx) is hyperbolic in the following sense: there is
T(t,-)gC1(R+, S°) such that T~x(t, •) G CX(R+, S°) and

Re(T(t, x, oj)p(t, x, iœ)T'X(t, x, œ)) = 0   V(r, x, œ) G R+ x Rd x Rd .

The finite difference operator q(t,h, x, Tx, Tt) of (3.1) is said to be dis-
sipative with order p > 0 if there are a, cQ > 0 such that each root (in z),
say A(-) where A depends on the parameters, of q(t, A, x, e , z) — 0 satisfies
|A(-)| < eak(l - c0\c;\p), for all (t, A, x, {) 6 E+ x (0, A0) xRd x [-n, n]d .

The finite difference operator q(t, A, x,Tx,Tt) of (3.1 ) is said to be accu-
rate with order p > 0 if

(4.6)  \\sk - kp(t, x, ico) - kq(t ,h,x, e'wh , ek)\\ < c(t)(\œh\p+x + \sk\p+x),

for s G C with Res > 0 and (t, h, x, co) G E+ x (0, A0) x Rd x Yh. We note
that the variable 5 represents the Laplace transform dual variable with respect
to t, as in [12], although we are not here transforming in t.

Our definitions of accuracy and dissipation are insensitive to whether q is
multi- or single-step, and generally, the order of dissipation is even.

To ease the details, we now assume, as in [4], that the finite difference op-
erator q(t,h, x ,Tx,Tt) is single-step and equals k~xTt + qx(t, h, x, Tf), in
which case A(t,h,x,c\)~ -kqx(t,h,x,e). We are interested in the ques-
tion of whether the matching condition between accuracy and dissipation could
yield a symmetrizer. It seems that in general the answer is no; there are many
possibilities for pathological behavior of the eigenvalues of A(-) near c; = 0.
To get around these problems, we now assume that none of the eigenvalues of
^(•)li=o are exceptional points, that is (cf. [3, 2.1.1]), a point of X where the
number of eigenvalues changes (i.e., collisions at the unit circle). This assump-
tion allows us to define smooth eigenprojection and eigennilpotent operators.
One could most likely modify the next theorem to allow for exceptional points
with more work, but we choose not to pursue that line because the results would
be quite specialized.

Theorem 4.2. Suppose the single-step finite difference operator is accurate with
order p-l, dissipative with order p, p > 0, and there are no exceptional points
at the unit circle. Then there exists a symmetrizer.
Proof. The family {A(-)}x is no longer uniformly semisimple at the unit circle,
so we cannot utilize the decomposition of A(-) given at the end of the proof of
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Theorem 4.1. We will modify the construction of //(•) for Ç near 0 in a manner
inspired by [8]. Accuracy and dissipation allow us to break up the set X into
two pieces, one being XE := {(t, A, x, Q G E+ x (0, A0) x Rd x Be(0)} and the
other being X\Xe, for e > 0 arbitrarily small. There is no problem constructing
the local symmetrizer on X\Xe, by the dissipation assumption and the previous
method for handling eigenvalues bounded away from the unit circle. In fact, the
match between accuracy and dissipation allows enough control over the location
of the eigenvalues so that the finite partition Xe and X/XE can be applied. We
only need to construct the local symmetrizer on X£.

From (4.6), using the flexibility of the choice of s there, we see that the
eigenvalues of A(-) on X (e sufficiently small) must be contained in the region
C?(£) := {z G C: \z - l\ < cx\$\p and \z\ < 1 - cQ\t\p}, for some c0, cx > 0.
For each A(-) G o(A(-)), let Tx be the positively oriented circle centered at A
and containing only A out of the spectrum. We define the local symmetrizer
on X, to be£

//(•):=    £    Hx,        //,:=P;P,+ ]>>;)"(£/,
i.eo(A(')) n=\

where Pk := (2ni)~x /r Rz(A)dz and

Dk:=(2ni)~X(l-\X\)~X f (z-X)Rz(A)dz.

We must first check that H is well defined. The assumption of no exceptional
points means that these operators are smooth functions of x € X£, cf. [3, 2.1].
We need to classify a (A) on Xe by the cluster method and then utilize (4.3).
First we note that the accuracy and dissipation assumptions guarantee that the
resolvent condition holds (pointwise); this was shown in [9, Theorem 1 or 4,
Theorem 4], and amounts to using the hyperbolicity of symbol p(t, x, ico)
together with 5 = 0 in (4.6). The resolvent condition is all that is needed for
the estimate (4.3) to go through.

For each x € Xe we can change our chain [}lea,AW) Yx to a certain chain
of contours by using the cluster method of the last theorem. It is easy to see
that we can divide the spectrum a(A(x)) into clusters {C } eM,x), for some
set M(x) C a(A(x)), such that there are unit-index contours {yß}ße,M<x) which
satisfy supze \z - A|(l - |A|)_1 < 1/2, for A e Cß . Therefore, by changing the
chain of contours, we have

E »1= E E^n
X€a(A(X)) ß&M(X)l£Cl,

=    ]T  (2ni)-X f  Y,(z-X)n(l-\X\TnRz(A)dz.
ßeM(x) Jyf iecu
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We obtain from (4.3)

E HI
ueM(x) Aec„

/

< E
peM{x)

V
v-llsup{|z-A|(l-|A|)-'}

. zey"
<^(l/2)"

Thus, the series defining H are uniformly convergent.
The only property of Definition 3.2 which is not completely straightforward

to check is (3.5). The family can be decomposed as

A= E t^ + a-iw-
3Lea{A)

We have:

A*HA =   £ &P1 + 0 - IW WA + (1 - |A|)Z)A)
A€<r(/I)

<   £  |A|2^ + 2Re(Â^(l-|A|)DA) + (l-|A|)2/fl.
k&o(A)

Since 0 < (A|A|_IPA - Dk)*Hx(X\X\'x Pk - Df) and D^H^D^ <Hk,we immedi-
ately obtain 2Re(XHx(l - \X\)DX) < 2|A|(1 - \X\)Hk . This implies

A*HA<   ¿2 (\M + l-\M)2Hk = H,
keo(A)

and completes the proof.   D

We conclude with some comments. The problem of constructing a sym-
metrizer has not been completely solved here because there is a need for exam-
ples in which a smooth symmetrizer cannot be constructed in order to sharpen
our understanding of stability theory for general types of equations. Our ma-
chinery provides only sufficient conditions, which are practical, but it seems
that there is the possibility for rather pathological behavior of the eigenvalues
of A(-) even in the presence of matching dissipation and accuracy.

Regarding condition [N] from [12], it seems that it may not be the case
that H can always be constructed to be smooth, even if the matrix N could
be. This dilemma stems both from the fact that the resolvent condition in the
Kreiss Matrix Theorem does not necessarily imply the existence of a smooth
symmetrizer H (condition [S] causes trouble, cf. [10]), and also from the
following (quite elementary) example. Let

A:= 1/2      1
0      1/2

then A satisfies condition [N] of [12] with the matrix N taken to be the
identity.   However, the 2-norm of A is strictly greater than one, and so H
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must be different from the identity matrix. One can prove these claims by
noting that the numerical radius of A equals the spectral radius of its real part,
a fact which follows from the nonnegativity of the entries of A ; details are
in [16]. Since the spectral radius of Re A is one, it is easy to check that the
matrix N from [12] can be taken as the identity (it is convenient here to first
use Tadmor's condition, cf. [13]). However, ||^|| > 1, so H cannot be the
identity.

So there is a curious question before us: For variable coefficients, are the
conditions [H] of Definition 3.2 and [N] of [12] (suitably modified for the
variable-coefficient context) equivalent?
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