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ABSTRACT

We derive sharp Sobolev inequalities for Sobolev spaces on metric spaces. In

particular, we obtain new sharp Sobolev embeddings and Faber-Krahn estimates

for Hörmander vector fields.
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1. Introduction

Recently, a rich theory of Sobolev spaces on metric spaces has been developed (see
[6,8], and the references therein). In particular, this has led to the unification of some
aspects of the classical theory of Sobolev spaces with the theory of Sobolev spaces
of vector fields satisfying Hörmander’s condition. At the root of these developments
are suitable forms of Poincaré inequalities which, in fact, can be used to provide a
natural method to define the notion of a gradient in the setting of metric spaces. In
the theory of Hörmander vector fields, the relevant Poincaré inequalities had been
obtained much earlier by Jerison [9]:

(

1

|B|

∫

B

|f − fB|2 dx

)1/2

≤ Cr(B)

(

1

|B|

∫

B

|Xf |2 dx

)1/2

,

where X = (X1, . . . , Xm) is a family of C∞ Hörmander vector fields,

|Xf | =
(

∑

|Xif |
2
)1/2

,
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dx is the Lebesgue measure, B is a ball of radius r(B) with respect to the Carnot-
Carathéodory metric. For more on the connection between the theory of Sobolev
spaces on metric spaces and Sobolev spaces on Carnot groups we refer to the Appendix
below and [6].

The purpose of this paper is to prove sharp forms of the classical Sobolev inequali-
ties in the context of metric spaces. In fact, we develop an approach to symmetrization
in the metric setting which has applications to other problems as well. In particular,
we will show some functional forms of the Faber-Krahn inequalities which are new
even in the classical setting.

Let us briefly describe our plan of attack. A well-known, and very natural, ap-
proach to the Sobolev inequalities is through the use of the isoperimetric inequality
and related rearrangement inequalities (for an account see [24]). For example, a good
deal of the classical inequalities can be in fact derived from (see [2,11], and also [15])

1

t

∫ t

0

[f∗(s) − f∗(t)]ds ≤ ct1/n

(

1

t

∫ t

0

|∇f |
∗

(s)ds

)

, (1)

where t > 0 and f ∈ C∞
0 (Rn). For example, in [2] and [19] it is shown how, starting

from (1), one can derive Sobolev inequalities which are sharp, including the borderline
cases, within the class of Sobolev spaces based on rearrangement invariant spaces.
Therefore, it seemed natural to us to try to extend (1) to the metric setting. At the
outset one obstacle is that the usual methods to prove (1) are not available for metric
spaces (see [2, 15]) . However, we noticed that, in the Euclidean setting, (1) is the
rearranged version of a Poincaré inequality. More specifically, suppose that f and g
are functions such that, for any cube Q ⊂ R

n with sides parallel to the coordinate
axes, we have

1

|Q|

∫

Q

|f(x) − fQ|dx ≤ c
|Q|

1/n

|Q|

∫

Q

g(x)dx. (2)

Then the following version of (1) holds,

1

t

∫ t

0

[f∗(s) − f∗(t)]ds ≤ ct1/n

(

1

t

∫ t

0

g∗(s)ds

)

. (3)

By Poincaré’s inequality, (2) holds with g = |∇f | and therefore the implication (2) ⇒
(3) provides us with a proof of (1). This is somewhat surprising since the usual

proofs of (1) depend on a suitable representation of f in terms of ∇f . Since, in the
context of metric spaces, the gradient is defined through the validity of (2), this is a
crucial point for our development of the symmetrization method in this setting.

Since the mechanism involved in transforming (2) into (3) plays an important role
in our approach, it is instructive to present it here in the somewhat simpler, but
central, Euclidean case. The first step is to reformulate (2) as an inequality between
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maximal operators

f#
1/n(x) := sup

Q�x

1

|Q|
1+1/n

∫

Q

|f(x) − fQ| dx

≤ c sup
Q�x

1

|Q|

∫

Q

g(x)dx = cMg(x), (4)

where M is the non-centered maximal operator of Hardy-Littlewood. The expression
on the left-hand side is a modification of the well-known sharp maximal operator of
Fefferman-Stein (see [4]). At this point, taking rearrangements on both sides of (4)
leads to

(f#
1/n)∗(t) ≤ cMg∗(t) ≤ cg∗∗(t). (5)

Here the estimate for the maximal operator of Hardy-Littlewood is a well-known, and
easy, consequence of the fact that M is weak type (1, 1) and strong type (∞,∞).
Moreover, by a simple variant of an inequality of Bennett-DeVore-Sharpley [3, Theo-
rem V.7.3], we have

(f∗∗(t) − f∗(t)) t−1/n ≤ c(f#
1/n)∗(t). (6)

Combining (5) and (6), we see that if (2) holds then (3) holds.

The method of proof outlined above can be developed in more general settings
as long as suitable variants of the classical covering lemmas, which are needed to
estimate the underlying maximal operators, are available. In the context of metric
spaces the covering lemmas we need were obtained in [13] (see also [10]). Once the
rearrangement inequalities are at hand we can use standard machinery to derive
suitable Sobolev inequalities (see Section 3).

To give a more precise description of the contents of this paper we now recall
the definition of a (p, q)-Poincaré inequality. In what follows (X, µ) is a homogenous
metric space with a doubling Borel measure µ of dimension s (see Definition 2.1
below).

Definition 1.1. (see [6, 8]) Let Ω be a measurable subset of X, and let f and g be
measurable functions defined on Ω, with g ≥ 0. Let p, q ≥ 1. We shall say that f and
g satisfy a (p, q)-Poincaré inequality, if for some constants cP > 0, σ ≥ 1,

(

1

µ(B)

∫

B

|f(x) − fB|pdµ(x)

)1/p

≤ cP r(B)

(

1

µ(σB)

∫

σB

gq(x)dµ(x)

)1/q

holds for every ball B such that σB ⊂ Ω, where fB = (µ(B))−1 ∫

B
f(x)dµ(x). We

may then refer to f as a (p − q−) Sobolev function and to g as its gradient.

We can now state our main results. We start with the following extension of (1).
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Theorem 1.2. (see Theorem 2.9 below) Let B0 ⊂ X be a ball, and suppose that f
and g satisfy a (p, q)-Poincaré inequality on 4σB0. Then there exist constants c1 > 0,
0 < c2 ≤ 1, independent of B0, f and g, such that

t−
1
s

(

1

t

∫ t

0

([fχB0
]∗(s) − [fχB0

]∗(t))
p
ds

)1/p

≤ c1[(gq)∗∗(t)]1/q, (7)

for 0 < t < c2µ(B0).

Following [19], given a rearrangement invariant space Y, we introduce the spaces
Y p(∞, s) (see Section 2 below) that contain all the functions for which the Y -norm
of the expression on the left-hand side of (7) is finite. The following sharp Sobolev
embedding theorem then follows immediately.

Theorem 1.3. (see Theorem 3.1 below) Let B0 ⊂ X be a ball, and let Y (X) be an
r.i. space. Suppose that the operator Pmax{p,q} (see (10) below) is bounded on Y (X).
Then, if f and g satisfy a (p, q)-Poincaré inequality on 4σB0 with constant cP , there
exists a constant c = c(B0, cP , p, q, Y ) > 0 such that

‖fχB0
‖Y p(∞,s) ≤ c(‖g‖Y + ‖f‖Y ).

We also provide a new application of our rearrangement inequality (7) to the study
of the so called functional forms of the Faber-Krahn inequalities in metric spaces (see
Section 4 below). We now illustrate these ideas in the classical Euclidean case. For
example, using

∫∞

f∗(t)
λf (u) = t(f∗∗(t) − f∗(t)), where λf denotes the distribution

function of f , and Hölder’s inequality, we see that (1) implies

∫ ∞

f∗(t)

λf (u) � t1/n

∫ t

0

|∇f |
∗

(u)du

� t1/n

(
∫ t

0

|∇f |
∗

(u)pdu

)1/p

t1/p′

,

where ≈ denotes equivalence modulo constants, and � denotes smaller or equal mod-
ulo constants. Now let t = ‖f‖0 = |supp(f)| , and observe that then f∗(t) = 0, and
∫∞

f∗(t) λf (u) = ‖f‖1 . We have thus obtained the following Faber-Krahn inequality

‖f‖1 � ‖f‖
1/n+1−1/p
0 ‖∇f‖p .

More generally, if a (p, q)-Poincaré inequality holds then we can use (7) and a similar
argument to prove

Theorem 1.4 (see Theorem 3.4 below). Let B0 ⊂ X be a ball, and let f be a function
with supp(f) ⊂ B0. Let Z(X) be an r.i. space and let φZ′ denote the fundamental
function of its associate space Z ′(X).
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(i) Let f be a p−q−Sobolev function and let g be a gradient of f . If ‖f‖0 < c2µ(B0),
where c2 is the constant of Theorem 2.9, then

‖f‖Lp(X) ≤ c
[

‖gq‖Z(X)φZ′ (‖f‖0)
]1/q

‖f‖
s+p
sp

− 1
q

0 .

(ii) Let f be a 1 − q−Sobolev function, q > s, and let g be a gradient of f . If
‖f‖0 < c2µ(B0), where c2 is the constant of Theorem 2.9, then

‖f‖L∞(X) ≤ c
[

‖gq‖Z(X)φZ′(‖f‖0)
]1/q

‖f‖
1/s−1/q
0 .

2. The basic symmetrization inequality in metric spaces

We start with some definitions.

Definition 2.1. A homogeneous space consists of a metric space X and a Borel
measure µ on X, such that 0 < µ(B(x, r)) < ∞, for all x ∈ X, r > 0, and, moreover,
the measure µ satisfies a doubling condition:

µ(B(x, 2r)) ≤ cdµ(B(x, r)), (8)

for all x ∈ X and r > 0. If cd is the smallest constant in (8) then the number
s = log2 cd is called the doubling order, the dimension or homogeneous dimension of
µ.

Remark 2.2. Note that if we fix a ball ÜB ⊂ X , then by iterating (8) (see Lemma 14.6

in [8]) we can find a positive constant c (possibly depending on ÜB) such that for every

ball B ⊂ ÜB we have

µ(B) ≥ cr(B)s. (9)

In what follows, given a ball B = B(x, r), ̺B will denote the ball concentric with
B, whose radius is ̺r.

A rearrangement invariant (r.i.) space Y = Y (X) is a Banach function space of
µ−measurable functions on X endowed with a norm ‖ · ‖Y such that if f ∈ Y , g is
a µ−measurable function and for distribution functions of f and g we have λf = λg

then g ∈ Y and ‖g‖Y = ‖f‖Y . The fundamental function φY of Y is defined for t in
the range of µ by

φY (t) = ‖χE‖Y ,

where E is any subset of X with µ(E) = t. The associate space Y ′ is defined as the
space of all µ−measurable functions on X endowed with a norm

‖f‖Y ′ = sup
g∈Y,‖g‖Y ≤1

∫

X

|fg|.
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For any f ∈ Y , its non-increasing rearrangement is defined as

f∗(t) = inf{u > 0 : λf (u) ≤ t},

for t > 0. Recall that any resonant r.i. space Y has a representation as a function
space Y ˆ(0,∞) such that (see [4, Theorem II.4.10])

‖f‖Y (X) = ‖f∗‖Y ˆ(0,∞) .

Since the measure space will be always clear from the context, it is convenient to
“drop the hat” and use the same letter Y to indicate the different versions of the
space Y that we use.

Let P denote the usual Hardy operator P : f(t) 7→ t−1
∫ t

0
f∗(s)ds. The operators

Pp, p ≥ 1, are defined by

(Ppf)(t) = [P ((f∗)p)(t)]1/p. (10)

The following space will play a crucial role in our theory.

Definition 2.3. Let Y be a r.i. space, and let p ≥ 1 and r > 0. Then space
Y p(∞, r)(X) is defined as a set of all f ∈ Y (X) such that

‖f‖Y p(∞,r)(X) =

∥

∥

∥

∥

∥

t−1/r

(

1

t

∫ t

0

[f∗(s) − f∗(t)]pds

)1/p
∥

∥

∥

∥

∥

Y

< ∞.

Remark 2.4. When it is clear from the context, we will simply write Y p(∞, r) instead
of Y p(∞, r)(X).

Remark 2.5. Under suitable assumptions the expression defining the “norm” of the
Y p(∞, r) spaces can be simplified (see [22]). For example, suppose that p and r are
such that

1 ≤ p <
pY r

pY − r
, (11)

where pY is the lower Boyd index pY of Y, and suppose, moreover (see [19]),

∫ ∞

1

s1/rdY

(

1

s

)

ds

s
< ∞, (12)

where dY (s) is the norm of the dilation operator Ds : f(·) 7→ f(·s). Then, for f with
f∗∗(∞) = 0, we have

‖f‖Y p(∞,r) ≈ ‖f‖Y 1(∞,r).

Proof. From (12) it follows that, for f∗∗(∞) = 0, we have (see [19, Lemma 2.6]),

‖t−1/r(f∗∗(t) − f∗(t))‖Y ≈ ‖t−1/rf∗∗(t)‖Y . (13)
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On the other hand, since ‖Da[f(t)t−1/r]‖Y = a−1/r‖[Daf(t)]t−1/r‖Y , we have

‖Da[f(t)t−1/r]‖Y ≤ ca−1/p‖f(t)t−1/r‖Y ,

if and only if
‖Da[f(t)]t−1/r‖Y ≤ ca−1/p+1/r‖f(t)t−1/r‖Y .

Consequently, if we let Y (t−1/r) be the space defined by the norm ‖f(t)t−1/r‖Y then
the lower Boyd index of Y (t−1/r) is equal to pY r/(pY − r), where pY is the lower
Boyd index of Y . Now, in view of (11) it follows from [20, Theorem 2 (i)], that the
operator Pp is continuous on Y (t−1/r). Thus,

∥

∥

∥

∥

∥

(

1

t

∫ t

0

[f∗(s)]pds

)1/p

t−1/r‖Y ≤ c‖f∗(t)t−1/r

∥

∥

∥

∥

∥

Y

≤ ‖f∗∗(t)t−1/r‖Y .

Combining the last inequality with (13) we obtain,

‖f‖Y p(∞,r) . ‖f‖Y 1(∞,r).

The reverse inequality follows readily from Hölder’s inequality.

In our approach, the following operator will naturally come up (see the left-
hand side of (4)). It is a modification of the well-known sharp maximal operator
of Fefferman-Stein (see [4]) and is defined for f ∈ L1

loc(B0), B0 ⊂ X a ball, and
p, q ≥ 1 by

f#
B0,p,q(x) = sup

x∈B⊂B0 a ball

(

1

µ(B)q

∫

B

|f(y) − fB|pdµ(y)

)1/p

,

for x ∈ B0.
For the proof of our symmetrization inequality we need the following version of a

covering lemma from [13].

Lemma 2.6. There exist positive constants c, λ, with λ < 1, such that for any ball
B, and any open set E ⊂ B with µ(E) ≤ λµ(B), there is a countable family of balls
{Bi}

∞
i=1 such that

(i) Bi ⊂ 4B, for i = 1, 2, . . .

(ii) E ⊂
⋃∞

i=1 Bi.

(iii)
∑

i µ(Bi) ≤ cµ(E).

(iv) 0 < µ(Bi ∩ E) ≤ (1/2)µ(Bi ∩ B), for i = 1, 2, . . .

Proof. Follows readily from the proof of [13, Lemma 3.1].
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Theorem 2.7. There exist positive constants c1, c2, such that, for any ball B0 ⊂ X,
p, q ≥ 1, and for all f ∈ L1

loc
, 0 < t < c2µ(B0), we have

t−q/p

(
∫ t

0

([fχB0
]∗(s) − [fχB0

]∗(t))pds

)1/p

≤ c1(f#
4B0,p,q)∗(t). (14)

Proof. Follows along the lines of the corresponding proof in [4, Theorem V.7.3].
It suffices to establish (14) for nonnegative functions. Let λ be given by Lemma

2.6 and fix 0 < t < λ
3 µ(B0). Let

E = {x ∈ B0 : f(x) > [fχB0
]∗(t)}

and
F = {x ∈ B0 : f#

4B0,p,q(x) > [f#
4B0,p,qχB0

]∗(t)}.

There exists an open set Ω ⊃ E∪F with measure at most 3t ≤ λµ(B0). Consequently,
we can apply Lemma 2.6 to obtain a family of balls, {Bj}j , such that all the conditions
of this Lemma are verified. Define disjoint sets by letting M1 = B1 and Mk =
Bk \

⋃k−1
i=1 Bi for k = 2, . . . We have

∫ t

0

([fχB0
]∗(s) − [fχB0

]∗(t))pds =

∫

E

{f(x) − [fχB0
]∗(t)}pdµ(x)

=

∞
∑

j=1

∫

E∩Mj

{f(x) − [fχB0
]∗(t)}pdµ(x)

≤ c

∞
∑

j=1

∫

Bj

|f − fBj
|pdµ(x)

+ c
∞
∑

j=1

µ(E ∩ Mj){fBj
− [fχB0

]∗(t)}p
+

= c(α + β), say.

Now

β ≤
∑

{j:fBj
>[fχB0

]∗(t)}

µ(E ∩ Bj){fBj
− [fχB0

]∗(t)}p

≤
∑

{j:fBj
>[fχB0

]∗(t)}

µ(B0 ∩ Bj \ E){fBj
− [fχB0

]∗(t)}p

≤
∑

{j:fBj
>[fχB0

]∗(t)}

∫

B0∩Bj\E

{fBj
− f(x)}pdµ(x)

≤

∞
∑

j=1

∫

Bj

|f − fBj
|pdµ(x) = α,
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with the second inequality by (iv) of Lemma 2.6.
Combining the previous estimates, we obtain

∫ t

0

([fχB0
]∗(s) − [fχB0

]∗(t))pds ≤ 2cα = 2c
∑

j

µ(Bj)q 1

µ(Bj)q

∫

Bj

|f − fBj
|pdµ(x).

By (iv) of Lemma 2.6, the set B0 ∩ Bj \ F is nonempty and, therefore, we can find a
point xj ∈ B0 ∩ Bj \ F . It follows that

∫ t

0

([fχB0
]∗(s) − [fχB0

]∗(t))pds ≤ 2c
∑

j

µ(Bj)q[f#
4B0,p,qχB0

(xj)]p

≤ ctq[(f#
4B0,p,q)∗(t)]p.

Corollary 2.8. (see [23, page 228]) Suppose that µ(X) = ∞ and let c1 be the constant
of Theorem 2.7. Then

t−q/p

(
∫ t

0

(f∗(s) − f∗(t))pds

)1/p

≤ c1(f#
X,p,q)∗(t), (15)

for all f ∈ L1
loc

(X), t > 0.

Proof. Let t > 0 and let c2 be as in Theorem 2.7. Fix an arbitrary x0 ∈ X, since
µ(X) = ∞, we can find a positive integer n0 such that, for n ≥ n0, and Bn := B(x0, n),
we have t < c2µ(Bn). Therefore, by (14),

t−q/p

(
∫ t

0

([fχBn
]∗(s) − [fχBn

]∗(t))pds

)1/p

≤ c1(f#
4Bn,p,q)∗(t),

and, consequently,

t−q/p

(
∫ t

0

([fχBn
]∗(s) − f∗(t))p

+ds

)1/p

≤ c1(f#
X,p,q)∗(t).

Letting n → ∞ and using Fatou’s lemma, we see that

t−q/p

(
∫ t

0

(f∗(s) − f∗(t))pds

)1/p

≤ c1(f#
X,p,q)∗(t).

Once the inequality (14) is available then it can be combined with the Poincaré
inequality, as described in the introduction, to obtain the symmetrization inequality.
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Theorem 2.9. Let B0 ⊂ X be a ball, and suppose that f and g satisfy a (p, q)-
Poincaré inequality on 4σB0 (with constant cP ). Then there exist positive constants
c1 = c1(B0, cP ) and 1 ≥ c2 = c2(X), such that, for 0 < t < c2µ(B0),

t−
1
s

(

1

t

∫ t

0

([fχB0
]∗(s) − [fχB0

]∗(t))pds

)1/p

≤ c1[(gq)∗∗(t)]1/q. (16)

Proof. From the underlying Poincaré inequality and (9) (with ÜB = 4B0), we get

(

1

(µ(B))1+p/s

∫

B

|f − fB|pdµ

)1/p

≤ c

(

1

µ(σB)

∫

σB

gqdµ

)1/q

,

for every ball B with B ⊂ 4B0.

Fix an arbitrary point x ∈ B0. Taking a supremum over all balls containing x on
the right hand side, and over all balls B ⊂ 4B0 containing x on the left hand side, we
arrive at

f#
4B0,p,1+p/s(x) ≤ c (Mgq(x))

1/q
,

where M is the maximal operator of Hardy-Littlewood. After passing to rearrange-
ments, and, using (recall that the underlying measure is doubling)

(Mh)∗(t) ≤ ch∗∗(t),

combined with Theorem 2.7, we obtain positive constants c1, c2 such that

t−
1
s

(

1

t

∫ t

0

([fχB0
]∗(s) − [fχB0

]∗(t))pds

)1/p

≤ c1[(gq)∗∗(t)]1/q,

for 0 < t < c2µ(B0).

Remark 2.10. It may not be possible to extend the inequality (16) to all 0 < t < µ(B0).
This can be seen from the following counterexample for p = q = 1.

Let fk(x) = 1 if x ∈ [−1, 1]2 \ B1/k(0) and fk(x) = k|x| for x ∈ B1/k(0). Now,

|∇fk|
∗(t) = kχ(0, π

k2 ](t) and |∇fk|
∗∗(t) = kχ(0, π

k2 ](t) + π
k

1
t χ[ π

k2 ,∞)(t). If (16) were true

for 0 < t < 4, then taking the limit as t → 4 in (16) would give us

‖fk‖L1(Q) ≤ c
π

4

1

k
.

But while the right-hand side → 0 as k → ∞ the left-hand side ≈ 4 . One possible
way to overcome this problem is to consider functions with zero average, by means of
replacing f by f − fQ (see [15]).

Revista Matemática Complutense

2009: vol. 22, num. 2, pags. 499–515 508
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Remark 2.11. Suppose that the following global growth condition holds for every ball
B ⊂ X,

µ(B) ≥ cr(B)s. (17)

Then using the proof of Theorem 2.9 together with (15) yields

t−
1
s

(

1

t

∫ t

0

(f∗(s) − f∗(t))pds

)1/p

≤ c1[(gq)∗∗(t)]1/q ,

for t > 0.

3. Applications

First we consider the Sobolev embedding theorem for metric spaces.

Theorem 3.1. Let B0 ⊂ X be a ball and let Y = Y (X) be an r.i. space. Suppose
that the operator Pmax{p,q} is bounded on Y, and let f and g satisfy a (p, q)-Poincaré
inequality on 4σB0. Then there exists a constant c > 0, independent of f and g, such
that

‖fχB0
‖Y p(∞,s) ≤ c(‖g‖Y + ‖fχB0

‖Y ).

Proof. By Theorem 2.9 there are constants c1, c2 such that, for 0 < t < c2µ(B0),

t−
1
s

(

1

t

∫ t

0

([fχB0
]∗(s) − [fχB0

]∗(t))pds

)1/p

≤ c1[(gq)∗∗(t)]1/q.

If t ≥ c2µ(B0), we have

t−
1
s

(

1

t

∫ t

0

([fχB0
]∗(s) − [fχB0

]∗(t))pds

)1/p

≤ (c2µB0))−
1
s

(

1

t

∫ t

0

([fχB0
]∗(s))pds

)1/p

.

Therefore,

t−
1
s

(

1

t

∫ t

0

([fχB0
]∗(s) − [fχB0

]∗(t))pds

)1/p

≤ c [Pq(g)(t) + Pp(fχB0
)(t)] ,

for all t > 0. In view of our assumption on Pmax{p,q} it follows, upon applying the Y
norm to both sides of the previous inequality, that

‖t−
1
s

(

1

t

∫ t

0

([fχB0
]∗(s) − [fχB0

]∗(t))pds

)1/p

‖Y ≤ c [‖g‖Y + ‖fχB0
‖Y ] ,

as we wished to show.
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Remark 3.2. Arguing as in Remark 2.11, we conclude that, if the global growth
condition (17) holds for all balls B ⊂ X, then, for all f and g as in Theorem 3.1, we
have

‖f‖Y p(∞,s) ≤ c‖g‖Y .

Remark 3.3. The assumption that the modified Hardy operator Pmax{p,q} is bounded
on the space Y , excludes the space L1 from our theory. But as we now rather briefly
indicate, in some cases, it is possible to remove this restriction using a variant of the
truncation method originally due to Maz’ya [18] (see also [7] for further references),
and futher refined in [17]. Moreover, the results of [17] were extended to the metric
setting in [10]. The only price we pay is an additional assumption: the Poincaré
inequality needs to hold also for any truncated pair (note that this condition is auto-
matically satisfied in the Euclidean space). Let us recall that for a positive function
f and t1 < t2, we let

f t2
t1 (x) =







t2 − t1 if f(x) ≥ t2,
f(x) − t1 if t1 < f(x) < t2,
0 if f(x) ≤ t1.

Then (see [10]):
Let f, g be measurable functions defined on X , f∗∗(∞) = 0, g ∈ L1(X), f, g ≥ 0

and σ > 1. Suppose that Y is a r.i. space with lower Boyd index iY > 0. Consider
the following statements:

(A) For any t1 < t2

sup
t>0

tµ({x ∈ X : |f t2
t1 (x)| > t})1−1/σ ≤ C

∫

{x∈X:t1<f(x)≤t2}

g(x)dµ(x).

(B) For all t > 0,
∫ t

0

s−1/σ[f∗∗(s) − f∗(s)]ds ≤ c

∫ t

0

g∗(s)ds.

(C)

‖s−1/σ(f∗∗(s) − f∗(s))‖Y ≤ C‖g‖Y .

Then (A) ⇒ (B) ⇒ (C). We refer to [10] where the analysis follows the one given
in [17].

We now apply our symmetrization inequality to derive functional forms of Faber-
Krahn inequalities (see [1] for a brief introduction to inequalities of this type). In the
following we denote

‖f‖0 := µ(supp(f)).

We will also assume that µ is nonatomic.
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Theorem 3.4. Let B0 ⊂ X be a ball and let f be a function with {f 6= 0} ⊂ B0. Let
Z(X) be an r.i. space and let φZ′ denote the fundamental function of its associate
space Z ′(X).

(i) Let f be a p−q−Sobolev function and let g be a gradient of f . If ‖f‖0 < c2µ(B0),
where c2 is the constant of Theorem 2.9, then

‖f‖Lp(X) ≤ c
[

‖gq‖Z(X)φZ′ (‖f‖0)
]1/q

‖f‖
s+p
sp

− 1
q

0 .

(ii) Let f be a 1 − q−Sobolev function, q > s, and let g be a gradient of f . If
‖f‖0 < c2µ(B0), where c2 is the constant of Theorem 2.9, then

‖f‖L∞(X) ≤ c
[

‖gq‖Z(X)φZ′(‖f‖0)
]1/q

‖f‖
1/s−1/q
0 .

Proof. (i) By Theorem 2.9 we have, for 0 < t < c2µ(B0),

t−
s+p

sp

(
∫ t

0

[f∗(s) − f∗(t)]pds

)1/p

≤ c1[(gq)∗∗(t)]1/q.

Now, since ‖f‖0 < c2µ(B0), using right-continuity of the non-increasing rearrange-
ment we can substitute t = ‖f‖0 in (3). Thus,

‖f‖
− s+p

sp

0 ‖f‖Lp ≤ c1

[

1

‖f‖0

∫ ‖f‖0

0

(gq)∗(s)ds

]1/q

.

Applying Hölder’s inequality we finally obtain

‖f‖Lp ≤ c1 [‖gq‖ZφZ′ (‖f‖0)]1/q ‖f‖
s+p

sp
− 1

q

0 .

(ii) We first observe that − d
dtf

∗∗(t) = [f∗∗(t) − f∗(t)]/t. Thus, by Theorem 2.9, we
have

−
d

dt
f∗∗(t) ≤ c1t

1/s−1

(

1

t

∫ t

0

(gq)∗(s)ds

)1/q

.

Integrating over (0, ‖f‖0) yields

‖f‖L∞(X) − f∗∗(‖f‖0) ≤ c1

∫ ‖f‖0

0

t1/s−1−1/q

(
∫ t

0

(gq)∗(s)ds

)1/q

dt.

Thus, estimating the inner integral using Hölder’s inequality,

‖f‖L∞(X) ≤ c1 [‖gq‖ZφZ′ (‖f‖0)]
1/q
∫ ‖f‖0

0

t1/s−1−1/qdt + f∗∗(‖f‖0)

= c1 [‖gq‖ZφZ′ (‖f‖0)]
1/q 1

1/s− 1/q
‖f‖

1/s−1/q
0 +

‖f‖L1(X)

‖f‖0

≤ c [‖gq‖ZφZ′(‖f‖0)]
1/q

‖f‖
1/s−1/q
0 ,

where in the last line we used the result obtained in the first half of the theorem.
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Finally, for a different connection between Poincaré inequalities and symmetriza-
tion, with other interesting applications, we refer to [16] (see also [12] for the relevant
family of Poincaré inequalities). It would be of interest to extend the results of these
papers to the metric setting.

4. Appendix: Vector fields satisfying Hörmander’s condition

We present a concrete application of our embedding theorem. But first let us briefly
review some relevant definitions and facts.

Let X1, . . . , Xm be a collection of C∞ vector fields defined in a neighborhood Ω
of the closure of the unit ball in R

n. For a multiindex α = (i1, . . . , ik), denote by Xα

the commutator [Xi1 , [Xi2 , . . . , [Xik−1
, Xik

]] . . .] of length |α| = k. We shall assume
that X1, . . . , Xm satisfy Hörmander’s condition: there exists an integer d such that
the family of commutators, up to order d, {Xα}|α|≤d, spans the tangent space R

n

at each point of Ω. A metric on Ω is defined using the following construction. A
Lipschitz curve γ : [a, b] → Ω is called an admissible path, if there exist functions
ci(t), a ≤ t ≤ b, satisfying

∑m
i=1 c2

i (t) ≤ 1, and

γ′(t) =

m
∑

i=1

ci(t)Xi(γ(t)),

for a.e. t ∈ [a, b]. A natural metric (the so-called Carnot-Carathéodory metric) on Ω
associated to X1, . . . , Xm, is defined by

̺(ξ, ν) = min{b ≥ 0 : there is an admissible path γ : [0, b] → Ω

such that γ(0) = ξ and γ(b) = ν}.

By Nagel et al. [21, §3 and Theorem 4], there exist C > 0 and R0 > 0 such that
for all x ∈ B(0, 1) and 0 < R ≤ R0 we have

|B(x, 2R)| ≤ C|B(x, R)|,

where | · | indicates Lebesgue measure. In the following s = log2 C is the homogeneous
dimension of | · | with respect to Carnot-Carathéodory metric ̺ (see Definition 2.1).

In this setting Capogna et al. [5] proved the following theorem.

Theorem 4.1 ([5, Theorem 1]). There exist C > 0 and R0 > 0 such that for any
x ∈ B(0, 1), BR = B(x, R), with 0 < R ≤ R0, and every f ∈ C∞

0 (BR) one has

(

1

|BR|

∫

BR

|f |kdx

)1/k

≤ CR

(

1

|BR|

∫

BR

[

m
∑

i=1

|Xif(x)|

]

dx

)

,

for any 1 ≤ k ≤ s/(s − 1).
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Using our theory we can extend this result to the setting of r.i. spaces. We start by
recalling the Poincaré inequality by Jerison [9]. Jerison’s original proof was done for
the exponent p = 2 but using the same method we can easily obtain a 1−1−Poincaré
inequality (see notes in Haj lasz [8], pages 70, 71).

Theorem 4.2 ([9, Theorem 2.1]). There exist a constant C > 0, and a radius R0,
such that, for every x from the unit ball and every R, 0 < R ≤ R0, for which
BR = B(x, R) ⊂ Ω, we have

∫

BR

|f(x) − fBR
|dx ≤ CR

∫

BR

m
∑

i=1

|Xif(x)|dx,

for all f ∈ C∞(BR), where the integration is with respect to Lebesgue measure.

Now we are ready to prove our embedding theorem for vector fields satisfying
Hörmander condition:

Theorem 4.3. There exist a constant C > 0, and a radius R0, such that, for every
x from the unit ball and every R, 0 < R ≤ R0, for which BR = B(x, R) ⊂ Ω, we have

‖f‖Y 1(∞,s)(BR) ≤ C‖

m
∑

i=1

|Xif |‖Y (BR), (18)

for all f ∈ C∞
0 (BR), where the integration is with respect to the Lebesgue measure.

Proof. We will show that

f∗∗(t) − f∗(t) ≤ Ct1/s|Xf |∗∗(t), (19)

|Xf | =
∑m

i=1 |Xif |, for any t > 0. Then (18) follows readily by applying the Y -norm
to both sides of the inequality.

Using Theorem 2.9 we obtain a constant 0 < λ ≤ 1 such that, for 0 < t < λ|BR|,

f∗∗(t) − f∗(t) ≤ Ct1/s|Xf |∗∗(t),

where |Xf | =
∑m

i=1 |Xif |. For λ|BR| ≤ t ≤ |BR| we have

f∗∗(t) − f∗(t) ≤ f∗∗(t) =
1

t

∫ t

0

f∗(s)ds ≤
1

λ|BR|
‖f‖L1(BR).

By Theorem 4.1 with k = 1

1

λ|BR|
‖f‖L1(BR) ≤

1

λ
CR

1

|BR|

∫

BR

|Xf |dx

≤
1

λ
CR|Xf |∗∗(|BR|)

≤
1

λ
C|BR|

1/s|Xf |∗∗(|BR|)

. t1/s|Xf |∗∗(t),
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we used (9) and in the last inequality the fact that |Xf |∗∗ is non-increasing and the
assumption |BR| . t. Finally, for t > |BR|, inequality (19) is a mere reformulation of

‖f‖L1 ≤ C‖|Xf |‖L1,

the validity of which follows again from Theorem 4.1 with k = 1.

Acknowledgement. We are grateful to the referee for useful suggestions to improve
the quality of the paper.
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x+101.

[9] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke
Math. J. 53 (1986), no. 2, 503–523.

[10] J. Kalis, Sobolev Inequalities, Ph.D. Thesis, Florida Atlantic University, 2007.

[11] V. I. Kolyada, Rearrangements of functions, and embedding theorems, Uspekhi Mat. Nauk 44

(1989), no. 5(269), 61–95 (Russian); English transl., Russian Math. Surveys 44 (1989), no. 5,
73–117.

[12] M. Ledoux, On improved Sobolev embedding theorems, Math. Res. Lett. 10 (2003), no. 5-6,
659–669.
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