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1. Introiluction

A pair (A , C) of sets in euclidean z-space R. , m 2 2 , is called a
condenser if A is open and C is a compact non-empty subset of A .

A eondenser (A,C) is called ringli,lce if 1\C:{re AlreC} is
connected and its complement in R" has exactly two components, where
R" : R" U { *} is the one point compactification of .8" .

A function u:R' -+.81 is called absolutely continuous on lines, ab-
breviated ACL, if z is continuous and, if for every closed cube Q C R. , w
is absolutely continuous on almost, all lines in Q parallel to the coordi-
nate axes. An ACL function a has a gradient [z almost everywhere
in Rn.

f'or every
of (A,C) to

(1.1)

be the real number

iYulodm,

where lV(4, C) is the set of all ACL functions u: R" -+.81 such that
0{u(r){L for re R^,u(r):0 for reC, and the closure of
{re R"i0<u(r) < f} isacompactsubset of. A. n'or p:n,cap^(A,C)
is the conformal capacity of the condenser (A , C) 16, p. 24).

Bymmetrizati,oms are geometric transformations usually defined for
open and closcd sets in -8". They were first introduced by J. Steiner and
were subsequently studied by others, especially Polya and Szegö [9]. Let
Sym be some symmetrization in -8" and let Sym (.4) denote the sym-
metrization of A C R" under Sym . Given a condenser (A , C) and
p > 0 we will consider the validity of the foilowing capaci,ty i,nequalitg

whenever (Sym (- ) , Sym (C)) is also a condenser. This capacity inequa-
lity has ma,ny important applications in classical potential and function
theory and has recently been used in the theory of spatial quasiconformal
and quasiregular mappings. tr'or p : n it has been proved in the following
cases: Hayman [4] for spherical symmetrizations in .82, Gehring [2] for
spherical and point symmetrizations in Rr, Mostow [7] for spherical

inf f
uew(A,Q J l?n'

(1.2)
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symmetrizations in -E', Anderson [1] for one and two dimensional Steiner
symmetrizations in At, and Pfaltzgraff [8] for radial symmetrizations
in -8". In fact, all these proofs can be easily modified for the more general

case p 21. Since cilPp(A,C):0 for 0 <p < t (see Lemma 5.ti).

this case has no interest for us.

Hayman's proof involves only elementary methods and Pfaltzgraff
uses a similar technique for radial symmetrizations in "8". Anderson's
and Mostow's proofs are modifications of Gehring's proof which uses the

Brunn-Minko'rvski inequalities and the co-area formula of X'ederer and
Young, both of rvhich are rather deep results.

The above symmetrizations, except the radial one, belong to trvo
categories of symmetrizations in R': the k-dimensional Steiner sym-
metrizations, k:L,2,...,%, and the /c-dimensional cap symmetri-
zations, k:\,2,...,%-L. In this paper we consider only Steiner
and cap symmetrizations and our main result is:

Let Sym be any Ste'iner or aap symmetri,zat'ion, and (A , C) a condenser.

# Sy- 'i,s a Steiner symmetrizat'ion, we also assu,me A is bou,ncletl'. Then

(Sym (.4) , Sym (C)) 'is also a cond,enser ancl the capacity i,neqwility (L.2)

is aalid, for eaerA p > 0. If , in ad,cl,ition, (A , C) is ri,nglike, /äez (Svrn (r{) '
SSzm (C)) 'i,s al,so ri,ngl,ilce.

This result is obtained in the following way. First rl,'e stucly Steiner
and cap symmetrizations in detail and establish the follo'wing restrlts;

X'or k 2 2 in R", % 2 3, every ft-dimensional Steiner or cap symmetri-
zation can be approximated by successive (k - I)-dimensional symmetri-
zations of the same type (Theorems 4.29 and 4.32). X'urthermore, in 8",
n 2 2, every l-dimensional Steiner symmetrization can be approximated by
l-dimensional cap symmetrizations (Lemma 4.19). Then we prove ('Iheorem
6.f 2) that every t-dimensional cap symmetrization satisfies the capacity
inequality (1.2). We do this by generalizing to R" the methocls used hy
Hayman [a]. See also Pfaltzgraff [8]. Finallv, using only the above apProx-
imation results, we prove by induction that everp' Steiner ancl cap §]-Ir)-

metrization satisfies the capacity inequality (1.2) (Theorem 7,ö)'

Thus using elementary methods \re pro\.e ihe capacit;- inequality for
Steiner and cap symmetrizations in a unified fashion. In particular, we

do not need the co-ere& formula of Federer and Young nor do \ve as§ume

the Brunn-Ifinkowski inequalities; in fact, v'e get the latter as a eorollarr-
from our geometric considerations, see Remark 4.34.

L.3. I{otati,on and, termi,nology. Let -81 denote the real number sys-

temand R",% )2,euclidean ??,-space. For reR" we write cc--
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fift *. . . + froe., where aL, . ., en are the unit coordinate vectors of R",

X'or a ,y eR* le:, r. y:ir; i denote the scalar product of. r and. g
a': I

and lul:ix.nltlz thenorm of r. Also,fornon-zero r,geR" let

angte (r , y) :&rc cos (=r"rr)€ [0 , z] denote the angle between the

vectors r, and y.
n'or -4 c R" let, CA , clA : Ä , int',4 and OA denote the comple-

ment, the closure, the interior and the boundary of A, all taken with
respect to R". Also, lef d,(A) denote the diameter of. A .

X'or /. , B c R" let d,(A, -B) be the distance bet'ween A and B , let
A + B : {a *b laeA,b eB} and, for r€.81, let 14 : {rn lx eA).

For r€-8" and r)0 wedefine B"(r,r) tobetheopenball {AeR"l
ir - yl ( r) and §"-'(, , r) : OB"(x, r) . We will also use the notation
B"(r1: B"(0,r) and B": B"(0, I) .

A domain in -8" is an open connected non-empty set.
Let V denote the collection of non-empty compact, sets in ,8" .

We write m"(A) or m(A) for the Lebesgue mea,sure of a measurable
set .4 c R" . The measure mo is also defined for sets in an za-dimensional
linear submanifold or in an n -dimensional sphere ir R"' ,m'7 n. tr'or
the Lebesgue integral of a function / over a set' A c .8" rve write

f dm" f(*) dm(r)

Let .l[ denote the set of positive integers.
If a, , . . . , ak are linearly independent r.ectors in .8" , then Eo(o, ,

..,a*) denotes the linear subspace of R" generated by ort...t(rk.
We call the linear submanifolds of -8" plames. So a k-dimensional

plane T through a point r e R" ,l 1k 4n , is always of the form
T:{r}*E'"(ar,...,ilh) for some }inearly independent vectors ar,
...t&h in R". Wealsocallapoint re&" a0-dimensionalplane
tlrroughr. Closedhalf-planesof aplane T arelhe sets {y e f l(y -n)'e>0) where neT and e isaunit,vectorsothat rc*eeT.

We say that two planes f c R" and L c R" are perpend,icular to each
otherif, forany a,re T ard b,Ae L we have (a -r)'(b-A):0.
Similarly, a vector r e R" is perpendicular to the plane 7 if, for any
a,U€T,n'(a-y):0.

1.4. Hausd,offi metri,c. We define the function dq: V y 7 ---> Rt by
setting du(A,-B):inf{r> 01,4 CB+ rB",BcA -'rrB") for all

*!f
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A , B e7 . It is not difficult to prove tlnat dH is a metric on 7 ,

[3, p. 151-2]. This metric is often called Lhe Hausd,offimetri,c. W'e define,
by the metric d,*, t'he convergerlce of a sequence of sets {-E;} c7 to
a set .E' eZ by lim -Fi : I if and only if lim d*(Et ,I) : 0 .

ii
In this paper we consider the convergence of a sequence of sets onl-v in
the above sense. The following lemma is easy to prove [3, p. 152].

1.5. Lem,mA. Tor eaery se{luence {.F,,} C 7 su,ch tltat E, ) F, )
ttf I,: 

?O,.

Furthermore, see [3, p. Lla];

1.6. Theorem. Let {X;} be a sequence i,n V and, A c R" a bo'und,ed

set such that eaery Xi c A . Then there erists a subsequ,ence {Iv} and

n eV such that lim I;,: ! .

i

1.7. Corollary. Let {X;) be a sequence in ? and, A c R" ct bou.nded

set such, that ?ic A for eaery 'i e N . Il euerY conuergent sub'sequence of

{Ii} conaerges to a fdred, set X e7 , then lim -F', : fl .

2. Set transtormations. Steiner anil cap symmetrizations

In this ehapter we first introduce the concept of a set transformation
and then list some of its properties which will be used rvhen s;-mmetri-

zations are considered as set transformations. We then define Steiner and

cap symmetrizations and derive some of their elementarl" properties.
Throughout the rest of this paper a symmetrization mealls a Steiner or

cap symmetrization.

2.L. Set transformat'ions. A function f : 9t. --- ?i is called a set trcttts'

formati,on if ?e is the collection of all subsets of -8" and .:{ is some non-

empty subcollection of 7 . trVe lvrite Drni (/) for :/{ and fm ff) for
the family of image sets /(A),Aed. If f :d -+?i is a set trans-
formation such that Im (/) C Dcm (/) , then /2 denotes the composition

!"f and,, ingeneral, /'+r isdefined by,f'*t:f "f',i':2,3,....
The set transformation f : d --- ?i is called monotone if f(A) cf@)

whenever A,Bes{ and AcB. We say f :d">ai" is open, closed,

compact or f preserues bourtil'eil sets, if /(.4) is open, closed, compacb or
bounded whenever A e d and A is of the same kind, respectivelv'
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We call f : §l -->'tr{ conti,nuous from the insi,il,e if for every increasing
sequence {G;} of open sets in s( such that U G; is in .g(, we have

/(U G,)-- U 71G).
N"O

outs'ide if for eYerr,'

that ['l -F', is in
i

Finally, \1'e call
and. for e\rer\r r >
f /(r') * rB" .

9"3. Lemma. Iret f : .4 -->.t/i
tund ,snLoothiug. If , for euery opet?,

,tf G e,re iruclu,d,ecl, in, ,:y'{ , tluen

Similarly, we call f , d -> ?L continuous from the

decreasing sequence {f r} of closed" sets in sq such
d , \4,e have /(? 7t,): n f @)

f : ;Å -> 41. smoothing, if for every closed set I e :;{
0 such that F+rB"e d, s,o have f(?*rB")

Clearly every function g:A->R",AcR", induces a set trans-
formation g : d ->'7i such that 0@) : g(B) for every B e d,
: {C C R" I C C A} . We often make no notational difference between
the function and the induced set transformation.

2.2. Erampl,e. Let g : R^ ---> R" be a continuous function and let
h:47-->'7.. be the set transformation defined by h(A): g-r(A) for
every .{ c R" . Then /a is monotone, open, closed and continuous from
the inside and from the outside. fn addition, ä is smoothing if and only
if lg@)-s@)lSlr-gl for all r,ge R".

Proof. Let G e:;( be open tvith f(G) # fr . Choose an increasing
sequence {G;} of open bounded sets such that C : U G; and G, C G .

By the continuitv from the inside, f (G) : ,71G,) . Choose e: e f @) .

Then there exists a G; and an r > 0 such that ref(G) and G,
+rB"cG. The smoothing propertSr and monotonicity of / imply
71e7 = 71G, -r rE") = f @,) + rB" = {r} L, rB" . Thus f(G) is open.

:2"4. Lemma. Let f u,??,d, f, , ,i - I , 2 ,. .

t,hmt J c Dcrn (/) n Dom (f,),d- I ,2,. c .

f,(E) €7, f(F)e'i ilnfl,tf f'tP)-f(Y).
t,s grutoothing " ll'hen .f i 7 r,s snxaothirug.

be m,onoto?te, oontirulton,s from the in*ide
set G e :4 cilll ope% a,rbd aonlpa,ct subsets

f z,s open.

, be set transformati,ons such

, a?Ltl, fr, 0,ll T e7, euery

Suppose rilso that euerA f ,

Proof. Let -F eZ and r > 0. Since I * rB" eJ ,limf{E * rB"1:
!(I{rB"). On the other hand, f,(E)irB"cfr(X+rB"), hence

f(F)+rB": lim(s("r') +rB") climfi(,r +rB"):f(F +rB").

tl
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2.5. Stei,ner sgrnmetri,zat'iotts. 'Ihese symmetrizations are set transfor-
mations defined in the farnily of all bounded open and closed sets in -8" .

Every (n - k)-dimensional plane T C R", I { lc { n . defines a k-d,i'

mens,i,onal Stei,ner symmetri,zati,on Syrri. as follows. Let A be a bounded

open or closed set in .8" . Tor every r e T let .L(r) denote the ft-dimen-

sional plane through r and perpendicular to T . Norv if mh(A n L@))
: 0 , then Sym (,4) n L@) is empty or the point {"1 according as

An L@) is empty or non-empty. If rnp(Afl I(r)) > 0. then

Sy* (A) fi L(x)-_ , r) n L@) , if A is open.

, r) n L@), if A is closecl.

where r> 0 is defined by ,n*(B"(x,r) n L@)) _- rut,*(AnL('r))

The plane f is called the sgmmetrg plane, of Syrn and the plaues

L@),re T , the symmetri,z'i,ng planes of 5;'6. Some authors call onl.r'

l-dimensional symmetrizations of the above t1-pe Steiner s1-mmetriza-

tions, while the (n - I) and ra-dimensional ones are called Schrrarz and

point symmetrizat'ions, respectivell'.

2.6. Bphereand,dtscap.§or evervsphere §"-1(r ,r),re R". t';0 anti

every (kf I)-dimensional plane TCR" through r.I{Å'Srt-1-
we call the intersection K : S-r(x , r) i T a k-climensionrtl spltere in
.8" withcentre r and.radius r. For every Ae K, theopettcctpsol li
with centre A are sets of the form B"(y , r') 11 K for some r' > 0 ' and

the closed caps wilh the centre A e K are the closures o{ tiie corresponcling

open caps and also the point {Y}.

2.7. Cap symmetrizcttiorzs. Every cap s)-nuretrization is a set transfor-
mation defined in the famil;'' of all open atld closecl sets itr -R" . The tle-

finition of the cap s).mmetrization is analogous to that of the Steiner svm-

metrizaLior-, but instead of s1'mmetrizing planes \\'e 11c,1\- u"qs -spheres.

Consider an (rz - ft)-dimensional plane T c R". I ( /.' { n' - L .

and a closed half-plane T" of ? . The half-plane 7, riefines a l;-dimert-

sional cap symmetr'i,zat,ion, Sym, as follou's. Let "I lre the llottnclarv of 7."

withrespectto T andforeYerY z€J and r20 rvedefine

(2"8) K(z,r): if r__0.
(* , ,) fi M(z) otherwise.

where M(z) is the (k f t)-dimensional plane through the point e and

perpendicular to the plane J . Nou' for eYery open or closed A c R"

we define Sym (,4) by the conditions:

I a"@

I E"(*

l{*},
I s"-'
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I((z , r) n S),* (A) -
anrl trtheruise K(z,r) O Sym (,4) is the cap of the sphere K(z,r) srch
that

(i) the centre of the cap is the point K(z , r) fl T, ,

(ii) mplK(2, r) O Sym (/)l : mulK(z , r) fi Al and
(iii) the cap K(z,r)nSym(-4) is open or closed according as ,4

is open or closed.

We call the plane T the symmetry plane of Sym and the (za - k - 1)-

dimensional plane J the symmetrizi,ng ari,s. The spheres (2.8.) are callecl
th,e syrnmetri,z'i,ru9 spheres of Sym. An (n - I)-dimensional cap symmetri-
zation in .8" is often called a spherical symmetrization.

2.9. Let Sym be a Steiner or cap symmetrization and 7 the sym-
metr.y plane of Sym and ,4 a set in Dorn(Sym) . Clearly Sym (-4) is
symmetric in the plane 7 . i.e. if r € Syrn (.4) and a' is the orthogonal
projection of r ontheplane 7, then rx' - (r - ru') e Sym (-4). Laterwe
shall prove that symmet'rizations are open and closed set transformations.
Then Sym (.a) is measurable and, in particular, m(A) : n (Sym (-4)) ,

lhich is easily verified by integrating along the symmetrizing planes or
-spheres and using Fubini's theorem. Clearly Sym is monotone and pre-
ser\res bounded sets. Further, Sym (,4) : 0 if and only if A : A .

2.ltf. Lemma. Stei,tler and, cap sym,rnetrizutions «re cont,inuous from the

insid,r- u,nd. from the outs'id,e.

Pror'J'. fret S-v* be a k-dimensional cap symmetrization, I < k
'< ii - l. . and let G : [:, G; wJrere {G;} is an increasing sequence of

oper) sets. Then Sy* tÖ G;) : U Svm (Gr) , i{'

lO if and onlyif K(r,r)nA: fr,
lK@,r) if andonlyif K(z,r)cA,

(2.11) K n Sf'r, (U

for er.er)' s;'mmetrizing sphere Ji of Sym . trYe may assume rhat K 11 G

+O ancl K+G. Hence, -KOSym (G) + ff isanopen cap and every
J( fl Svrn (G;) is a concentric open subcap. Thus 

" 
n tU Sym (G;)l

is also arl open concentric subcap .K O Sym (G) . Moreover.

mr,(K f.1§yur (G)) : m*(K n G) : limrnl"(K O G;) : limrn*(K flSym(G;)) :
: m*lK o (§ Sym (G,))l .
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Thus we get (2.1f ). Arguing similarly, we see that Sym is also continuous
from the outside. We prove the lemma for Steiner symmetrizations in the
same way by considering srrmmetrizing planes instead of s5rrnmetrizing
spheres.

2.L2. lor every set transformation f : d -->?7 we define the com-
plement transformation f":g{'-->'71" by the formula

f"(A) : CIGA) for every A e -4' : {cB I B e {4.
Observe the following useful property of cap symmetrizations: ff S1.m

is a ft-dimensional ca,p sJrmmetrizatiott, I <k !n - l,T the svnmetry
plane of Sym and T" the half-plane that defines Sym, then the [.-
dimensional cap symmetrization Sym, defined b5r the half-plane ?i:
cr(f\"") is the complement transformation of Sy* , or in other rrords.

(2. 13)

for every A € Dom (Sym) .

metrization of Sy* . Ilsing
2.I0 and 2.3:

2.L4. Lemma. If for some

zep symmetrizat'iotts 'i,n R" a,re

Sy* (A) - CSym, (CA)

We also call Sy*, the complemerlt s]-m-
(2.13) we immediately get from Lemmas

keÅ',1§k1n I
smoothing, theyr, they (Lre

, all k-dinuensiort al
also ope% a?td clo.-secl .

Next u,e consider the preserving of connectedness under a svmmetri-
zation.

2.15. Lemma. Let Sym be a Steiner or cap symmetrizcttion, ccnd,

.4 € Dom (Sy*) . Il A or -E\.4. is connected, fäeru S1'rn (J) o1' E"\
Sym(/) is connected,, respectiaely.

Proof. Let Sy'm be a cap s5rmmetrization defined b1- the half-plane 'I" .

For every 'x e, E" Iet K(r) denote the symmetrizing sphere of Sy*
through r , and denote by 

"f 
: R" --> I, the continuous mapping for rrhich

{f(n)} : K(*)iT" for every re&". Put §" :lK(a) O S1"m (A))Uf(A)
for every a e A . Assume now that r{ is connected. Then /(J) is con-
nected, which implies that §" is also connected, since 1((n,) fl S.vn (.4)
is connected and [K(a) n Sym (.4)] n f@) : {f (")} + g . Nol- S1-m (J)
: U & is connected, since it, is the union of connected sets rr'hose

aea

intersection fi&:y1A; is not empty.
a€A

Next, assume that E\/ is connected. \Me first observe that

,E'\Syrn {A) ** { oc} U CSy-m (.4) __ { oo} U Sy*, (CA) ,
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where Syrn, is the complement symmetrization of Sym. Let T', be the
half-plane defining §ym" and lef K@) for u e .8" be defined as above.

We define a mapping f": E" ---,8" by setting

!t^\ _ fthe point K@)nT',, if re R",
.l"t*/-loo, If r:q,.

Clearly f" is continuous, whence /,(E\,4) : { oo} U f"(CAl is con-

neeted. Hence, we get

,E\Sym (,4) :,y"j;,

rvhere S: : lK(a) fl Sym" (C.4)l U /.(fi\1) for every ae C A . Now,
arguing as above, rre verify the connectedness of ,E\Sym (.a) .

Next rve &ssume that Sym is a Steiner s;rmmet'rization with the spn-
metry plane f . For every u e. R" lef 'L@) denote the symmetrizing
plane of Sym through fi . If .4 is connected, we verify the connectedness

of Sym (.4) just as we did in the case of a cap syrnmetrizat'ion; v'e need

only replace T, and K(r) by T and, L(u).
On the other hand, -E"\Sym (/) is always connected whenever

,{ € Dom (Sy*) . To prove this, we first observe that Sym (.4) is bounded

and thus, for every r e R" the set V(u) : ll(r) U { "o}l \ lL@) n
Svm (,4)l is connected. Then -E\Sym (.a) is connecbed because

E"\Sym (A):.l)*V(r) t"U 
,[], 

V(x): {a) * A,

and the proof of the lemma is complete.

3. Convergent set transtormations

3.1. We call a set transformation f : d'-->?l regular, if / is mono-

tone, 7U{A}cd,f!)cl and f(CI):4. A regular set transfor-
mation f :d-->'X is called conrsergent, if lim/'(.F) exists for every
IeV.

In this chapter we first give sufficient conditions for a regular set

transforrnation to be convergent. trtrre then prove that if Sym is a k-di-
mensional ca,p or Steiner symmetrization, k > 2, \1'e can choose two
(k - I)-dimensional symmetrizations Symi, i : | ,2 , of the same

t5rpe, such that 'Sym, 
o Symr is convergent and, in addition,

Sy* (.F') - lip (Sy*, o Syml)'(f')

I5

(3.2)

for every I eV. This result will be proved under the a;sumption that
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symmetrizations are regular and smoothing, which we shall shov to be
true in chapter 4.

The result (3.2) shows that, every k-dimensional symmetrization, k > 2 .

can be approximated in V by succesive (k - t)-dimensional symmetri-
zations of the same type. This result is essential for our inductive method.

3.3. Let 'M be a non-empty subcollection of V arrd d.Tå: {A c R" i

A C B for some B e'M\. Let §, d,trA->7 U {A) be the set trans-
formation

p(A) :^.\rf , for A e dqa\ { CI} , and §(CI) - g(3.4)

(3.6)

tohere B* :

(3.7)

Observe that A c §@) for every A e d*, and P(B) : B for er.erv

B e'% C d.M. We callthe collection % continuous if p I d?6 --->:i U {A}
in continuous from the outside and §(.dn6\{0}) c?6.

A regular set transformation t: d ---> 'X is called rounding t'ith re-
spect to a collection .B c7 if the following trvo conditions hold:

(i) I@)cB for every Be '8, and
(ii) if 1€7,IcB and f +B for some Be'fr, then there

exist a€If and B'e'il such that f'(F)cB'cB,B'+8.

3.5. Lemma. Let f be a regul,ar set transformati,on which'is continuous

from the outsid,e and round,'i,ng with respect to a aonti,nuous collect'ion ')å c J .

If f e7 i,s such that X c B for some B €'tr6 , then

ruf f,V): fi* ,

n PU'(-F')] e'\A and § is clefined by 1å es 'irt, (3.4).

If , i,n add,i,tion, B belongs to some k-dimensiottctl plune or spltere P in
R" , nxk(I(A) n P) : m*(An P) for eaery A 6J , «ncl f is smoothing.then

Proof. Put -F;:f'(X) forevery ?€J. Then -Fi:f'(I)cft(B)cB
for every i e N . Hence to prove (3.6) s'e need, b1- Ccrollarv 1.7, onlv
to show that every convergent subsequence of {-Fr} converges to -Bx .

fn fact, assume that a subsequence {I,;} converges b A e ? . The
sequence &: §(I): P(f'@)),'i,eN, is decreasing, since / is mono-

tone, f(Bi)cBr by the rounding property of / and f'(I)c&e1?;
for every ?€-nir. Thus flf.4:fiB;:B* and limB;,:OB,t



Jur<xe Sanvrs, Symmetrization of condensers in ?r-space L7

It A * B* , then by the rounding property of / with respect to 'Vå

there exist i,' e N and B' e .iE such that

(3.9) f,'(A) c B', c B* , B', + B*

Since lim -F;, - A we can find, for any rn e -nrr ,

by Lemma 1.5. So Ä - tip Urij'

other hand, B* e 'M, since 
t 

B*:
the continuity of the collection "M .

QBt,:B*- On the
l

§(8,) - §(Fl B,) e 76 bv
i

ani

cf"

I we call the system (P*, ?eo), e e I, a, cont,i,yr,uous

is a collection of disjoint closed sets in R" and
a non-empty continuous collection for everv * e I ,,

C lim.Bi :
J

['] B,- n
IT,

nu)

outsi

3n f" *'" (F) - ft' (f r,,)

c n[r,'((, + *w)
s continuous from the

8,..6+*B') nB
I
-Bn'1,

Cw

3nce

K '1,

+

I{o

wh

lor

he

ilel

I
A

\

e)

d

(

I

l

id

ch

") n

SUC

-Bn

cx)
t/i)

,f"

that

rBl .

t'

is a,

also

he

)l(

I

T}

l/')

df

and thus .Bx c slf" +i" (

continuous collection anr

has this property, and we get

,. .^öf lr" ((, * 
!*r"). ,)] : pff" (A)) c B' .

This contradicts (3.8). So ,4. : B*, which proves (3.6).
We still must show that, under the additional assumptions of the

lemma, (3.7) holds.
Because B* - (1Br,BL)Bz)...,f'(I1cB; forevery d €-trfl, and

f is mpmea,sure preserving with respect to sets in P , we get

m*(r): Itf m* (f'(r)) S li,rn m*(B) : mr(B*) .

On the other hand, for ever;, e ) 0 there exists d e N such that B*
cft@)*r8". Since / is smoothing, so is /i, and we get B*C$t@l
+ eB")nPcft@ + eB")nP, and thus, by the assumptions of the
lemma

m*(B*) { m*(ft(I + ,8") n P) : m*((I + ,8") n P) .

Letting e -> 0 we get m*(B*) { mr(E n P) : m*(I) . The lemma,
follows.

tr'or an index set
partit'ion of R" if

( i) {P"lxeI}
AAocJ is



Ann. Acad. Sci. Fennicre A. I. 522

3.9. Lemma. Let f be a regular set transformation which'is continuous

from the outside and, l,et the sgstem (P*,1A),ae I, be a continuous par-
ti,ti,on of R" such that

(i) loreuerg Ie7 and, a€I,f@nPo):f(nnPo,anil
( ii) f i,s round,ing with respeot to eaerg 'tr6o , u € I .

Then f ,is conaergent and, for eaery I eV ,

ushere B§ -

[im f'(F): U Bf e7 ,

i cr€f

A,o, A,o - P*lf'(.F,) n f": , and B: e ')åo. tLllless B: == O

( ii) fJn - gr" , Po: ,y#_ for every

(iii) for everJtr tr' eV the set U p"@ n
cx€f

is the set transformation defined by

ee I, and

P *) is in V , where p.

tlå 
o as in (3.4).

Hence, ft(-F) CA; for eYerY i €iT

%*),xeI, is a ccrltinuous parti-
Ar) b3cans3 §*lf'(f) fl P,l f
e I . Henee n Ai - lirn -{; lr)-

lr)- (3.10). On the other

that

cE*r8".

@

n
i:1

Proaf. Put Ai: yr^io,i € Äi.

and Ai is ccmpacb hecause (P o ,

tion of Rn . tr'urthermore, At )
p*ll'*'(F) fl /'ol for all ,i e N , x

Since every f'i @) C Arj , we get E C F*
hand, choose any B:,ee I If -f n Po:
If E n Po + g , then hy Lemma 3.5, ,tT f'@
for any r ) 0 we can find an index i' such

Lemma 1.5.

Since AiocPo forall d€-Ar,ue I, and Po,u€I, are mutualll-
disjoint, we have 11A,: | (IJr,4'") : g(? A,n) : 

Hrrf 
. Hence

(3.10) UBI:Iim&e7.
d€f i

Now assume that {f i(l)) is any convergent subsequence of {/r(-P)}
and lim/i1f'; : E . P:ut .F'* : UBI . To prove that lim/r(F) : 7t* .

ioeti
we need, by Corollarv 1.7, only to show that E : 1* , since er-ery l'@) ,

i e N , is included in the compact set At .

B:cf"(/'n P)+rB" and f"(E)
Ilence by the monotonicity of f ,

BJ cf"(r'n P*) * rB" cf"(F) * rB" c@ + rB") + rB" ,

18
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u,hichimp1iesB§CE,sineer>0waSarbitrary.Thus,E*
C fr , which proves the lemma.

U
ote,I

B:

3.I1. Let Sym be a fr-dimensional cap symmetrization in R",2 <
k{n-1, andlet T denotethesymmetryplaneof Sym,"I thesym-
metrizing axis and T, lhe half-plane which defines Sy- . We associate
ra.ith Sym two (k - l)-dimensional cap symmetrizations Sy*,,'i,: L,2 ,

as follows. Choose two mutually orthogonal unit vectors ar , az perpen-
dicularto T. Put

Tr" : T, * t'(at), Tr" : T { {tarl, > 0},

and let Sym; denote the (k - l)-dimensional cap symmetrization defined
hy Ta,i:1,2.

For the following lemma let K(r) denote the symmeLizing sphere

of Sym through r for all r e 7,, Let '%* denote the ccllecbion of all
closed caps of J((r) with centre r, and if K(r): {r}, let {{r}} :'16,.

3.12. Lemma.
f-SY*roSYmr
as roun d,ing u)itll

(3.13)

If S),*, a;nd Sy*, c{re closed set transformutions, then

as tr regular set transfor?natiov?,, (t'rLd fo, eaer7 x e T, , f
re.spect to t)A * c;nd

f (F) n /((r) - f(F n K@)) ,

(3. 14)

Put {rlr: (''\:t,I"\' t

{,1(t)

{,r{t)

Proof. The set transformations Sym, and Svm, are regular because
they are closed and symmetrizations. Therefore, / is also regular.

To prove the other parts of the lemma let uo 1 o,s 1&4 , . . . t clh be unit
vectors such that astaltaz,...,ak are mut,ually orthogonal and per-
pendicular to J, where ct1 ,a,2 ä,te the unit vectors in 3.11, and no is
fixed by the condition 7":J +{tarlt 

=0}. 
Further, let Ti be the

svmmetr.v plane of Sy*, , ,i, : | ,2 .

I{ou. choose r € 7, and let K : K(r) be the symmetrizing sphere
of Sym through r . \[e can assume thab K + {x\ ,for the case 1( : {*)
is trivinl. Then there exists z e J and r ) 0 such that

Ä' =: ({ri ';* Ek*'(o, , aL, , c{x)) n §" -t (= , ,)

€ l-_-r,r7
::-: {, -t- te,} + Eo(crs t fiz, &8,. ., fir,) )

=- {a I ta} * E*(ar, il2, . . ., ctn) :

l7ttt) ,- t,,(t) n,S"-'(*,r),i ---:-: I ,2,
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whence K;(f) is a symmetrizing sphere of Sym; and, in particular,

(3.15) *: 
,.!,,,ru;(t),i,: 

r,2.

Ilence from (3.15) we deduce that (3.f3) is valid, and b-v Fubini's
theorem we see that (3.I5) implies (3.14).

It remains to prove fhat f is rounding with respect to the collection
'M*. Clearly by (3.t5) f(B): B for every B e"B,. Let ? e7 be

suchthat IcB,E *B forsome -8€t"il*. Thus, wemustshowthat
there exists z €.1[ such Llnat ft(?) c B' for some B' e 'fr*, B' c B , B'
+ B . Observe that B cannot, be the point r.

Let H be the boundary of B with respect, to K . Then by the posi-
tion of Sym, it is easy to see that for every compact set A C B, and
for every t e l-r ,rl , the following result is valid:

(3.16) If. Kt(t)n(B\,4) +0, then KLQ)0äcII\Symr(/),

Nowsince f *B
B\f'. Put ?' :
f€(-r,r), then
Hence w'e see that

(3.17)

, there exists an open cap V of K such that Ti c
B\V=E.If lfr(r) nVnH*fr forsome Kr(t),
(3.16) implies fr + ä\Sy*, (E') c ä'....S)'*, (f )

f1\S).*, "fg) + g

If Kt(t)nfnH:A for eyerv I{L(t),tel-r,rf , then clearlv
-B\Sym, (?') is an open cap of K. and further B\/(f ') is an open

cap 7', whose centre is in Trnf C1( nrl(O) :1i1(0) . Thus. either
f,(0) nV'iH+0 or H:4. If 1{1(0) nY'nH*A. then
arguing as above rve find that (3.17) is again valid.

Tf H: A , t},en B: K and B\Symr"f(X') is an open cap V" of
K , and the centre of Y" is the point' 1{r(0) n (7i\7r") : K n (7\?") ,

whence Sym1./(?") : B\7" : B' e '16 , which implies fz(I)Clz(I')
C B' C B , B' + B , and there is nothing more to prove. So v,e can
suppose that (3.f 7) is valid, and H t' A.

To prove the rounding propert-v of / it is sufficient to shorv that

ä\/(F)- H for some j€F(3. I 8)

Since H I A , it is a (fr - l)-dimensional sphere so that for sorne

tr€(-r,r)
H - [{, r- tuea} + E*(ar, ct, , «o)] n S" -'(= , ,') :

\{'hence especiallv, H - Kr(tu) . Nor,l- \trre write for everv A C H

zlAl- u Kr(t)nH
Kr(t)nA -* O
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Then if U is an open cap of H with the centre y , {A) : Rz(tÅ l1

(7r'17r") , so

(3.19) mo-r(ZlU)) 2 2mo-r(U), unless ZlUl: P .

On the other hand, if I\Symr,l'(I) * 0 for some ti € N, then

ä\f'+11-f; : U; is an open cap of 11 with the centre y , since 11 -
Kr(t*\. Hence (3.16) implies

ZlUl c \Sym, o/'*'(.F) ,

whence by the definition of Sym, the inequalit5r (3.19) f ields

(3.20) mx-r(U,+t) 2 2mn-r([);) , unless Ui4: H .

Norv I\SImr ,"f(/) + A by (3.17), whence rve get from (3.20), m*-r(Ui+r)
22imn-r(U1) for every d €If , unless Ui+r: H . Thus, (3.18) must,

he valid for some j e If , which proves the lemma.

3.21. Lemma. Let Sy* be a lc-d,imensi,onal cap sYnxnxetri,zati,on i,n,

R",z=lc {n-L, and, l,et Sym, and, Sy*, be two (h-L)-di,men'
sional, cap synxnxetrizati,ons assoc'iated, w'ith Sy* as in Lem,m.a 3.12. If
Sym, arad Sym, are cl,osed, and, smooth'ing, then

Sym (-E') : lim (Sym, " S5zmr)'(l')

foreuery Fe7.

Proof . Let J , "I1 and J, be the s;,,mmetrizing axes of Sym , Symt
and Sy*r, respectively, and let f " be the half-plane l'hich defines

Sym. n'or every n e 7, let K(e) and ?ä, be as in Lemrna 3.12 ancl

put/:SymzoSymr.
Choose F e7. To prove the existence of lirn/i(/) t-e applS' Lemma

3.9 for which we put I:I",{Poixe I}:{.K(r) tr4- f"}, and')äo:
"16^ u'henever P*: K(x). Consider the r-aliditl' of the assumptions of
Lemma 3.9. X'irst / is regular and b;r Lemma 2.10, continuous from the
outside. ft is easy to see that the s1'stem (K(.») ,'B*) ,fr eT", is a

continuous partition of R" . The assurnptions (i) and (ii) of 3.9 are

valid by Lemma 3.12. X'urthermore. b.v 3.12

(3.2u i m*(f(E) n ,K(r)) -- 'mx(F n Ä(r)) ,

Hetrre. if ff e '7 , then lim f'(P) == U B:
xeT s

,): €

ll1.

T" , F €'J .

Lemma 3.9. urhere
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B: :- ft
l,!,

if K(*)f\ E-9,
p"$'@ n K@))) e ?ä* orherwise.

Thus, Sy* (,F,') -: lim f'@), if

(3.23) B: : Sy* (.F') fi K(x) , for e\rery r e T,

If K@)nn:4, then Sym(-E)nK@)-A, and (3.23) holds.
Assume K@)nn +A. Then B:e.M", and in addition, since ;f is
smoothing and (3.22) is valid, we get by Lemma 3.5, m*(B!) : mr(X n -if(r))
: zar(Sym @) n K@)), whence, by the definition of Sym , the equa-
tion (3.23) is again valid, and this proves the lemma.

3.24. To prove a similar corollary for Steiner srl-mmetrizatir.ins. 'n'e

need the following lemma.

3.25. Lemma. Let two straight lines L, and, L, in R'2 irdersect r,uelt

othersatapoi,nt n ,imo,nangle y> 0 suchthat yln ,i,sirr«,tion«1. If r > {-t

and, ,f c /S : St(r ,r) ,is an open arc anil gi: R2 --> R2 ct reflectiori. irr.

Li ,,i - I ,2 . then for some m' e §

ii (n,,er)-(I) : §.

Proof. We use complex notation with ;: {j as the imaginarv
rrnit. We ma)' assume that § : {s'e i E € t0 ,2n)} ,.L, is the real axis
and Lr:{teiv lr€-81}, Hence for eyerJr e'reB,gt(e'*)-q-iQ irnrl
gr(er*) : ei(2v-c), lr'hence

(3.2 6) \gz o !lt).'(n'r) -- ,i\2mY'rv) , nt € ,.Y

Let the centre of the arc I be the point e'i . To prove tlte lenrrna it
suffices to show that the set -B: {(gzo gr)^@'d):,m e}-} is clense iu "q.
No'w- B - {ei(z*r+§) 

t,m eN} accorcling to (3.26), and. thus rre neerl onlv
show that the set B' : {ei2^t j zr e .}I} is dense in S .

Now if l,me-ly' ancl l,>nt. then ei2t',' / ei2-t' because r,,ther.x-ise
2l,y:2p,{kln, for some k:0,tI,+.2,..., rvhich irnplies

kyln: 
A _ rn), and this contradicts the irrationality of yin. 'Ihen B'

is an infinite set and it has at least one accumalation point in § , r'hicir
implies that every point, of § is an accumalation point of B' . sincc
B' ) {z* | m, e N) for everv z e B' . The lemma follows.
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3.27. Let Sym be a fr-dimensional Steiner sSrmmetrization in Ro ,

2 1lc 4n , arrd T its symmetry plane. We associate with Sym two
(/c - l)-dimensional Steiner symmetrizations Symi, d : 1, 2, as follows.

Choose two unit vectors å,, ä, such that they are perpendicular to T ,

angle (ö1 ,br) : y ) 0 and yln is irrational Let S)'m; be the (k - l)-
dimensional Steiner symmetrization defined by the plane T + Et(b) , i
:L,2. For the following lemma let L(r),re T, denote the sym-
metrizingplane of Sym through fr, and let '16*C? denote the collec-

tion {.L(n) l1 B"1u , r) 1r > 0} U {r} .

:J.28. Lemma. If Sym; , t, : I ,2
is a, reg'ula,r set transformati,on whi,ch

euery 'fier, and

(3.2e) f(E) n L@) - f(F n L(r)) ,

(3.30) rnx(f(E) n L(r)) - mh(.F n L@)) , fr, €u-ar'! r e 7

Proof. The set transformations Syml and Sym, are regular because

they are closed, and thus / is also regular.
To prove the other assertions let, a, t . . , t QIo be mutually or:thogonal

unitvectorssuchthatever) o; is perpend.icular to T arrd are E2(br,br)
for i : 1,2, and.let b!, and,b!, b: unit vecbors in Ez (br, ör) such thaf bi

is orthogonal to ä, for i : 1,2. If r eT,then,t(r) : {*} i E*(q
a*) , and for everv f €.81

Lr(t) : {r -r- tbr} + Er-'(b, , u,s t

Lz(t) - {r * tbr) + EV-'(UL , &B ,

are the symmetrizing planes of Sym, and Symr, respectivelv. !'urther-
mofe,

L(r) - Lt(t),d- I ,2

, are closed.,, theru f - S)'*, o SYmr

'is round,'ing with respect to o-71) * fo,

, Ctn) ,

, tlt)

(3.31) U
r€I?t

Now (3.31) clearly implies (3.29). By Fubini's theorem (3.i30) follows

from (3.31).
We must still prove that / is rounding u'ith respect to 'Jä* . Clearlv,

by(3.31), l@): B forevery B e'720*. Let I € -r be such that F CB,
n + B for some B e'M*. Then we have to shou' that t'here exist d € N
and B'e'tr6* such that ft@)cB'cB,B'*8. Obviousll' B c&n-

not be the point r .

Let H be the boundary of -B with respect to L(*). We neerl only
proye that for some i € -nf , ä\/r(.F') - H . Let C : H n M, where

M : {r} + Ez(bL , bz) . By t'he position of the symmetrizations Sym.
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and Sym. we see that for every compact set, A C B and for every Li(t) .

t e RL ,,i : L ,2 , the following holds:

(3.32) if Lt(t) n (B\.4) + 0, t]nen L;(t)n H c \Sym; (,4) .

LeL g; : M --> M be the reflection in the 2-plane M with respect to the
straight line {r} t EL(b),,i,:L,2. ff we define for every AcC,

''(o) 
:""'Pn*'L'(t) n H' d : !' 2'

then clearly Z[A]: ZilA U g{A)1, i, : L ,2 .

Norv since 1' + B, there exists a,n open ball B"(y,r),U e B,r > 0,
such that B"(y , r) n -B C B\n' . Hence there exists au open arc 1 of
C suchthatif LrQ)nI+A, rhen LL(t)n(B\f') +O. Butthis
implies b), (3.32) that I U gr(I) c Z{Il c }I\Svm, (1') , s'hence
also by (3.32)

ä\/(r) ) ZzlI U sr!)l - ZrV U srg)U sr(I U s,(/))l =
ZzlI U gz. 7tQ)) .

Continuing in a similar $'ay we get

(3.33) /\/'(r) ) Z,IIU U (s, " gr)i(I)l. I : 1,2,
j:1

But no\I' 1:)'J,emma 3.25 there exists ?n € J'

wlrence 1:1- (3.33) . ä\ f*(F) ) Zzlcl: H

suchthat C -ö (gz,g)i Q).
j:1

. u'hich l)roves the lemma.

3.34. Lemma. ,Lef Sym be a k-d,i,memsiorlal Steiner syrttmetrizatiott, itt.
R",2<k{n, and let Sym,,Sym, be the tro 1l;-l)-dintension,ql
Btei,ruer symm.etri,zati,ons associated, wi,th Sym cs in Lentnr« 3.28. // Svm,
and, Svm, are closed, and, smooth,i,ng, then

Sy* (/) .* li3 (§yrn, * Slrml)'(f) J'n, et)errt F € 1(3.35)

ProoJ. Let T be the symmetry plane of Sym andlet, for every r e T .

L(r) and .il* be as in Lemma 3.28. Put /: S),ms o Symr and choose
I e?. To prove (3.35) we apply Lemma 3.9 to f , where I : T ,

{P*ln€1}: {L(") lr eT}, and 13,:'ilo, whenever L(r) : po.
Hence, arguing as in Lemma 3.21, we see that Lemmas 3.9 and 3.5 with
the preceding Lemma 3.28 vield (3.35).

24
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4. Further properties of cap anil §teiner symmetrizations

In this chapter we prove that every symmetrization is open, closed,

and smoothing. We first show that l-dimensional cap symmetrizations

have these properties. We then show that l-dimensional Steiner symmetri-
zations have these properties by establishing a connection between l-di-
mensional Steiner and cap symmetrizations. FinaIIy, using the results

3.21 ancl 3.34 we prove by induction that all symmetrizations have these

propertie.c.

4.1. Er.ery l-cl.imensional cap symmetrization in -8" has, by defini-
tion, an (z - f )-dimensional symmetr5' plane and l-dimensional sym-

melÅzing spheres. To treat these symmetrizations in detail we consider

§ome geometrical properties of an arbitrarv l-dimensional sphere K c R"

v'ith centre co and radius r > 0 .

n'or every n 1-me&surable set A c K rre define the angl,e n'teq'sllre

I
E@)b-ytheformula q(A):T*r@). Forevery 0<0<z and ACK

*'e eall the set

Paro (/) : U
zeÅ

{y e K I angle (y ns 7z no) 
= 

0](4.? )

tlre pu,ralle,l set of A in K with the raclius A

+. 3. Lemma . (l - d,i,mensi,onal B runn- M inkotL'ski in equality i,n sTfi eri,cal

geometry)Let AcK beaclosed,setand' Iu aclosedarcof K suchthat
q(Al: CVa). Then

rpfpar,, (.1)l > 9 [paru (1.r)] ,

for etery A,0<01=t.

Proo{.lf A: J(. the lemma is trivial. If A + .K, then 1\/ con-

sists of cotrntabl.v manl' disjoint open arcs Ir. , Ir, . . . . Tf 9Q;) < 20

for e'rer],- 1; , then par, (A) : K and the lemma holds. Tf EQt) > 20

fbr some Ii, then q(A):VU,t)<2n-20, and qlpare@)TZV@)
* Z0 : f [paro Q")] .

4.+. Theorem. Eaery1 l-d,imensi,onal cap sym,metr'i,zati,on is ogten, closeil,,

und smoothing.

Proof. By Lemma 2.14 we need only proYe the smoothing property.
Let §ym be a l-dimensional cap symmett:ization, -E a closed set in -8"

and q > 0. We must prove that
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(4.5) Sym (-F + qB"):r Sym (E) * qB" .

Let J be the symmetrizing axis of Sym . Choose any ro € Sym (l')
and let K(zo , ro) denote the symmetrizing sphere of Sym through r.o

with zo€J and rr20, and put

A : K(zo , rr) i I and .4* : K(zo, ro) O Sym (-E) .

Hence, to prove (4.5), we need only show that

(4.6) A* + qB" c Sym (/ + qB") .

Clearly we c&n suppose that ro) 0. Let zeJ,r 2 0, and let K(2,r)
be the corresponding symmetrizing sphere. We write

I : K(z,r) fl Sym (A * qB") and -I* : K(z,r)n (A* + qB").

Then to establish (4.6) it suffices to show lhat I* q.I , or equivalenrlv,

(4.7) vg*) = vQ),
since .f and .I* are either simultaneously empty- or ttvo concentric, pos-
sibly degenerate, arcs in K(z,r). We can supllose that ', - ro',, +
lr-rol'Sq', for otherwise I:I*:b, and that r)[) , for the
case t:0 is trivial. Dsfine a mapping p:K(zo,ro)-Ii(z.rl bv
setting

p(r) : 
" + : @ - zi, r e K(zr, ro),

'tg

and consider, in the spheres K(2, , r) and K(z , r). the parallel sets
defined by the formula (a.2) with the fixed radius 0 : $qlK1z , r) n
B"@o , q)f . ft is not difficult to verify the follot-ing result,c: frrr er-ery
rzq-measurable set D gK(zo,ro)

(4.8) K(z , r) n (D + qB") : par, ip(D)l ,

(4.9) parrlp(D)l:10 [par6 (D)] , rr,nd

(4.10) Elp@)l: q(D) .

Now applying first, the definition of the t-dirnensional cap s\-nrnretriz;r.-
tion and then the formulas (4.8-4.10) we get

(4.r1) qg): vlK(2, r) O Sszm (A + ,tB"»: ,plK(t. r) n (,4. - q8"11:

s {pare le@)l) : E {p [par, (/)]] : q [paro (,4)] .

Similarly, we get

(4.t2) EQ*) : V lK(z , r) O (A* + qB")) -- q lpar,, (A*)l .
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By the definition of Sym the set ,4* is a closed arc and q(A): V(A*) .

Ilence, equations (4.11), (4.L2), and Lemma 4.3 imply the inequality (4.7),

and the proof is complete.

4.13. The connection between L-d,imensi,onal, Ste'i,ner symmetri,zations and,

L-d,imensional calt symmetrizat'i,ons. Let' Sym be a l-dimensional Steiner
symmetrization defined by an (za - I)-dimensional plane T C R" . We
associate with Sym a l-dimensional cap symmetrization § and a homeo-
morphism g : G ---> G' , G and G' domains in -8" , such that,

(+.L4) Sym (.4):9o§.9-1(A)

for every -.4 € Dcm (S"vm) n {B c R" I B c G'} .

Clroose an (rz - 2)-dimensional subplane J of T and two mutually
orthogonal unit vectors a,b such that a is perpendicular to T and b

is perpendicular to J . Let § denote the l-dimensional cap symmetri-
zat,ion defined by the half-plane T":J+{tbltZ}}cT. Hence,

"I is the s;rmmetrizing axis of B and 7 is the common symmetry plane
of § and Sy*.

X'or every r € -B\,/ let z@) e J and r(r) > 0 be such that n

is in the symmetrizing sphere K(z(r) , r(r)) of § . Put P(r) : sign

l(r - z(x)) 'al angle (r - z(r),b), and let p(r) be the point K(z(ru),
r(r)) i T" . Further, put G : .R\ cI (\7") and G' : {r € A\"r 

I

lE(r)l < arctanz), where 0 < arctan n 1n12, and define the mapping

(4.15) g : G --> G', g(x) - p(n) + V@)r(r)a, n e G

Clearly g is a homeomorphism and by the construction of g we see that
(4.la) holds.

IJsing the above notation, we represent Sym (,4) , for every / €

Dom (Sym) , in terms of § . D-.fine, for er-er;' 'i e N , the translation

(4.16) ti: R"'-->R",t;(r) - r { ib,r €R".

Nowfor every A €Dom(Syrn) rveget Sym(.4) -tr'" Symoh(A),i
:L,2,..., and, since A is bounded there exists iAt4N such that
tt(A) qG' for every d 2 d,E, whence by (4.14)

(4.17) Sym(.4) -tr'" 9o§o g-L"tt(A), fcr'i2d.q.

Consider now the mappings g : G --> G' and g-L : G' '--> G . By a

straightforward calculation we easily see that, for every s ) 0 and

e ) 0 there exists d, € I[ such that g(r) , g-'(r) e B"(x , e) for every
re fi(B"(z,s)) ,dlio and ze J. Usingthisresult andthe abovenota-
tion, we easily get:
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4.18. Lemma. If 0<e(§, then there eri,sts do€-nf such that i,f
d 2 do, then t;(8"(2, s)) c G' for ang z e J and' for euery compact set

Act1(B"(z,s))

(i ) s(A)cAleB",
(ii) g-r(A)sAleB",
(iii) Acg(A+"8") and,

(iv) Acg-'(A+rB").
Using the above lemma we now prove:

4.I9. Lemma. Let Sym be a l-d,i,memsi,onal Stei,ner symmetr'ization,

S the l-d,imens'i,onal, calt symmetr'i,zat'i,on associateil, wi,th Sym as aboue and,

ti:ft'--s&",d,eM, the translat'i,ons'i,n (4.16). Then, for any oompant set

lCR" anÅ r)0, there en'i,sts d,€I'r suahthatfor al,l, d2io
(4.20)

(4.2L)

Proof . Let f be a

zing axis of § , z e J ,

s and r-;, choose 'io

4"18 hold. Hence, t{E)

and (iv) of 4.18 we get

Sy*(f') ctt 1o,S,ti(? + rB") and

tr' " § o tt(F) c Sym (f' + r B")

compact set and

and choose i, r

sYmmetri-

. Then, for

of Lemma

for all i € lv' , and b.1r (ii)

(+.22) we get

,§)) for all

€ .nr

r
t_-1- 

2

for

such that

B" ctr(B"(e, s))

every i 2 io

rrf TB",

r> 0. Let J bethe

sothat EcB"(r,;)

the conditions (i)- (iv)

E") .

.Bv
ti(B" (z

,(o +;8") +;
§))) - t;(8"(2, §))

§og-1 .fi(f) c

s-: , tt(E) +;8"

(1.22) g-t"t{I)cti(f')

(4.22) h(r) c s-L(,,,o, +;

t4.24) ,,(, + Lr")cf (t

Since z e J , we get §(f; (8"(z ,

g-L " t;(E) C ti(8"(2, s)) , and so

i 2 io. Hence by (i) of 4.18

\
B" ) and

(1.25) g(,Sog-L,t{F)) c§o for i, ä r,o
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(iii )Similarly we find that § o f;(f') Cti(8"(2, §)) ,? Z'in, and then
of 4.18

(4.26) s",,(F).r(, "h(r)*ir),i2i,.
To prove (4.20) we fix d 2 io and observe that t/X) q G' . Then

using (4.17), (4.25), the smoothing property of § proved in Theorem 4.4,

and finally (4.22) we get

Sym(.F') :tr',9o§o g-r.t{F).r,-'(, o9-Lofr(-E') + Zr").

r,-r o§ (o-'.r,{u) *ir")c r,'or(,,1u1 +;8" *iu"):
l,-' o ,S o 1,(X I rB") ,

which proves (4.20). To prove (a.21) we again fix d 2 io and observe

that h(E + rB") ct;(8"(2, s)) q G'. Then using (4.24), the smoothing
property of § and (4.26) we get

Sym (-F' + rB") - tr' og o § o g-t " ti(I * rB"1 :

t,', so,s o s-1(,,(, * ; r) * i u") ) t;'\ o, " r(,, F . ;rr) :
/ r-\ I r-\

tl' " g. s(,,,(r') + tB")] tlr.r\§. t,{r') - rB")) t;' o§. r;(F),

which proves (4.21).

4.27. Theorem. Euery l-d,imensional Stei,ner symmetri'zatoon is opem,

closeil,, and, smoothing.

Proof. We employ the same notation as above. If A e Dom (Sym) ,

then by (4.I7) there exists ? € }- such that tt(A) sG' and" Sym (^4')

- tr' o g o B o g-L. tt(A). Since g and f; are homeomorphisms and §
pre§erves open and closed sets, sym (.4) is open or closed according

as .4 is open or closed.

To prove the smoothing property of Sym we use Lemma 4.19. Let E
beacompactsetand r) 0. Thenwehaveto showthat Sym (F +rB")
= Sy'm (I) ! r B" . tr'or this, it suffices to show that

(4.28) Sym (-E + rB") = SYm (F) | r'8"

for every r' ,0 I r' < r. To prove (a.28) put r" : tV - r') . By Lemma
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4.19 we can choose rl € -l[ so that Sy* t(X * (r' * ,")B\ { r'B"l=
f,-'o,S " ti(I * (r' l r")8") and f,-1 .8. f;(.F + r" 8") = Sym (7) . These

relations and the smoothing property of B yield

Sym (-F + rB"): Sym t(X + (r' I r")8") | r"8"1)
fI', §.tt(X * (r' {r")8") - trt " S(rr(f + r"8") + r'8"))
fi I o §' " tl? * r" B") + r' B" )Sy* (r) * r' 8",

which proves (4.28).

trYe nov- are readlr to establish the main properties of symmet'rizations.

4.29. Theorem. Eaery cap symmetrizati,on i,n R" ,i,s open, closed, and,

smoothin,gJ. nurther, r;/ S;rm is a k-d,imensi,omal, cap symmetrizati,on, 2 < k
{ n - L , then there erist (k - l)-d,imensional cap sym.m.etrizations Syrm,
and, Sym, such that

(4.30) Sy* (F) :-:: lim

fo, e'u*a? tl compa,ct ?Lo%-evtlpty set 
' 

U

(S"vmz " S)'mr)'(;r)

CR".

Proof. We proceed by induction. By Tlieorem 4.4every l-dimensional
cap symmetriza+,ion is open, closed, and smoothing. Let 2 < k 4n - | ,

and assume that every (k - I)-dimensional cap symmetrization is closed

and smoothing. Let Sym be a tr;-dimensional cap symmetrization. Then
by Lemma 3.21 we can choose two (ä - I)-dimensional cap syinmetri-
zations Sy*,, i:\,2, such that (a.30) is valid. To prove that Sym
is smoothing weobserve that by (a.30) and Lemma 2.4 for everv -F € 7

Sy* (.P + rB") ) Sy* (-E') * rB" ,(1.31)

since Sym; ,,i : L, 2 , is smoothing. Let J be the symmetrizing axis of
Syrt . If A is any closed set in .8" , then ,4 : U .F'r , u,here Er:
AiB'12,i,),i,eN, and zeJ. Hence, sy*ial :.1]sym1r,1 .

If r > 0, we get by (4.3I)

Srar(-4 +rB*): Sym tö ff, + rB"))= [ S;.* (X1arB"1=
i:L i:l

o@

U (Syin (.[',) * rB"1 : ( U Sym (.E'r)) * rB" :Sym (.4) + rB",
i:1 ri: I

and thus Sym is smoothing. Hence, by Lemma 2.14, Sym is open and
closed, and the proof of the theorem is complete.
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4.32. Theorem. Eaery Stei,ner symmetri,zatioru iru R" i,s opem, cl,osed, anil
smooth,i,ng. nurther, if Sy* i,s a lo-d,i,ru,ensi,onal Stei,ner symmetrizati,on,
2 { k 4n , them there eri,st (k - l)-d,imensi,onal Ste'iner symm,etrizat'ioms

Sym, anil Sym, such that

(4.33) Sym (.8') : lim (Symr. Symr)r(-E)

for eaery comgtact non-empty set n C R" .

Proof. Proceeding by induction, similarly as in the previous theorem,
we see that the theorem follows from Theorem 4.27 and Lemmas 3.34,

2.4, 2.10 and 2.3.

4.34. Remark. In the preceding theorems we used the I-dimensional
Brunn-Minkowski inequality to establish the smoothing property of l-
dimensional cap symmetrizations and, from this, rre derived the smoothing
property of all symmetrizations.

On the other hand, the general Brunn-]{inkorvski inequalities can be

easily proved by the smoothing property of Sbeiner and cap s-vmmet'ri-

zations. These inequalities are the following:

(4.35) (k-d,i,mensi,onal Brunn-Mi,nkowslci i,nequality i,n spherical geometry,

see [10]) If K is a k-dimensional sphere in R",L <lc{n-1,
A a closed set in K and 0 <01n, then m*lparo (,4)] >
m*lparr(l")f , where -I7 is some closed cap of K v'ith mu(I"a)
:mn(A) and parr(B) -Hr{O €K iangle (A -rn,r -**s) <0}

for every BcK, where ro is the centre of K.

(4.36) (Brunn-Minlcowsld, i,nequali,ty'i,n, eu,clidean geometry, see [3, p. L74-
1751) If .4 is a compact set in -8" and B a closed ball such that
m(A) : m(B) and r ) O, theu nr(J ; rB") >- rn(B + rB") .

fn fact, to prove (a.35) let K , A ,Ia ard 0 be as in (4.35), and let
Sym be a k-dimensional cap s;rmmetrization rrith ff as a symmetrizing
sphere and Ia: Sym (/) . Clearly r > 0 can be chosen so that par, (.4)
: (A + rB"1n -K and par, (1r) : Vn + ,8") O ,I( . Now Sym (C + rB")
I Sym (A) + rBo : Io a rB", since Sy* is smoothing. Then

mr"lparr(A)1 : rn*l(A + rB") n 1(l : nrr [Sym 1.1 = rB"1n /(] >
rzr [(Sym (A) + rB"1n Kf : rno [parn (.I7)] ,

which proves (4.35). Similarly (4.36) can be proved. using the smoot'hing
property of ra-dimensional Sbeiner symmetrizations.
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The idea of proving (4.35) and (a.36) by symmetrizations is well-known
and was used by Schmidt [10] and by Hadwiger [3]. Hadwiger, however,
uses Steiner symmetrizations in a different way than we, and Schmidt's
symmetrizations are not cap symmetrizations as we define them.

5. Condensers and p-capacity

In t,he first chapter we defined a condenser in -Il" and its p-capaeity
for p ) 0 . In this chapter we give further results concerning these con-
cepts and, in particular, an equivalent defirition of the p-capacity.

ö.1. Lemma. # Syr" is a cap or Steiner symmetrizctti,on and, (A,C)
a condenser such that / € Dom (Sym) . then (S;'m (.4) . S1'm (C)) , the

sgmmetrization of (A,C) under Svm, is al,so ct coruclenser. If, in. additi,on.
(A , C) is ri,nglilce, then (Sym (,4) , Sym (C)) is also ringlike.

Proof. Since symmetrizations are open. monotone, and preserre com-
pact sets, (Sym (.4) , Sym (C)) is a condenser. If (A , C) is ringlike.
then b1' definition .4\C, E\,-4 and C are connected. Then ,4 and
fi\C are also connected, since CCA. Hence, by Lemma 2.1ö.
Sy", (l) , Sl'm (C) , E\Sym (A) and -E\Sym (C) are connected. Thus
the components of -E\(Sym (,a)\Sym (C)) &re Sym (C) ancl E"f.
Sym (.4) . Since Svrn (,4) is open, S"vm (C) is closed, Sym (C) c S1:m (,4)
and both Svm (*4) and E\Sym (C) are connected, the Phragrnen-
Broura,er theorem [5, p. 359] implies that, Sym (- )\.Sym (C) is a domain.
Hence (Sym (.4) , Sym (C)) is ringlike. and the proof is complete.

5.2. The condenser (A' , C') is said to separate the conclenser (,{ , fi)
,4' q .4. a.nd (t c C" . If (A' . C') separates (J . C:1 . then for all 1o >

capp (l , C,:\ :< calip (Å' , Ct')

if
()

(5.3 )

(5.4)

since therr ttr(A' , C') c ll-lA . C) . see (i.l).
We call f :R".-->R" orthoglorrul if f is linear aucl "f(.r').: rr for all

r e R" . If f : R" --> -R" is an or:thogonal mapping or a translation. then
for everv condenser (r{, C) and 7r > 0

capp (/ , C) : caPp U'(A) , f (C)) ,

since l;i(ec "/)(r)l : iVu(f (r))i whenever u e lY(A , C) and Yu(f(r))
exists. fn other words, the p-capacity is invariant under translations and
orthogonal mappings.

We sav that a condenser (A , C) is bound,ed, if ,4 is bounded.
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5.5.Lemma.If (A,C) i,sacond,enser, p)0 and, e)0, then'there

erists am r > 0 and, a bound,ed, conilemser (A' ,C') such that Ä' 1rB"
c A.C 1- rB" cC' o,nd capo(A, C) + e 2 capo (A' ,C').

prooJ. choose 0 ( o ( 1 such that (#' (capr(a, c) l a) t

cap, (,4 .C) + ", and choose u eW(A ,C) such that I W"f U*
Rfu

{capr(A.C)ta. Put B:{t€.8"101u(r)<l}, whence B is

a compaci subset of A by the definition of W(A,C) ' Let r -
*rrB.rr), where rr: d(B,cA)>0 and rz:d(C,{r e,R* la !

u(r)\)> t). If we no$'put' A': B f rB" and C':C +r8", then

(Ai',C') is a bounded. condenser such that Ä' + rB" cA and C +
rB" cC'. Furthermore,ifwedefine u:Ro->fi' by setting

0, if 0{u(x) 5n.
u(ru) - n,

, --: if [t"1u(r),
lct

tlrerr t: € \4r(Ä' , C') , ancl thus

caPp (r4' . (-", * { 
':\:iu'P d,m 

==

/ I \n
(.r--o/ (ca'Po(;{,c) + a) 

=caPP(/,c) 
+ t'

u'hich 1)I'ti\-es the lemma

u(r) -

(r-r) '(; :vu,'o*)=

For the sake of completeness, we have defined the p-capacity of a con-

denser for all p> (). fn fact, the follori'ing lemma shows that the only

interesting ease is P2l.
5.6.Lemma. .I/ 0<p(1, then capo(A,C):0 for eoerY co'n-

ilenser {A . C) .

ProoJ'.. choose a compact polyhedron P so that P is a finite union

of closerlcubesin -8" and CCPC,4. Then capr(A,C)<capo(A,P)
by the separation inequality (5.3). Let 0 < r < min{I ,d(P , C'4)} and

I r -ldefine u'.R"-->Rt bv tr,(t): minit,id(*,P)ifor x€R" ' Then

ueWlA.P) and
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lYu(r)l
I
r

0

:{

t

for almost eyery r e (P + ,B")\int P

for m e C((P * rB")\int P) .

I
-'t rP'

Then

(5.7)

cap, (A , C)
-J 

I v ' J vP--.--:
Rn {p+ril\\int p

k rdm,
å J ,, sk(d+

Qi+rän

where Qt, . . , Qo are the (2, - l)-dimensional cubes which forrn äP"
and d,: max {d(Qr) , , , , d(Qo)). Letting r tend to zero in (ö.7), we
obtain the lemma.

5.8. fn the definition (1.1) of the p-capacity of a condenser (.A , C)
the set W(A , C) can be replaced by several of its subsets rvithout ehanging
the value of capo (A , C). Next we define such a subset of a verl- special
kind; it will be used, modifying an idea due to Anderson [I], in t]re proof
of the capacity inequality for l-dimensional cap symmetrizations.

By a proper polyhed,ron P in -8" we mean a compact set u.hich is
a finite union of z-dimensional simplices. A triangulation ? of a proper
polyhedron P is a finite collection of n -dimensional simplices such that
P:UA and, for any A',A"eT, the intersection 

^,n7\,, 
is

A€T
either empty or a (k - l)-dimensional side or edge common to the sim-
plices A' and \" , where L 4k S n . A mapping u: R" --+ R* is
said to be simplicial rrith respect to the triangulation, T , if the re,ctriction
ul\ is affine for every AeT.

5.9. Deiinition. Xor a cottd,enser (A , C) a fu,rtctiott u € l[r,(Å . (i) tl
anl, onlg i,f u eW(A ,C) ancl, there erist o, proper pol.yhedron, p g Jr.C
and, i,ts tri,angulation T such that

( i) u i,s id,enti,cally equal to 0 or L in, euery contponent o! Cp ,

( ii) u is si,mpl,i,ci,al wi,th respect to T , ancl

(iii) if o, , az, . . . , a,k o,re the aalues assumeil by u at the urti,ces of
tlre si,mpl,i,ces i,n T, then for euery o € (0, I)\{ar, . . . . ttkl the
pre,i,mage u-r{o} consists of finitely many (n - L)-d,imensi,onal sim-
pl,ices whose normals are not perpend,,icular to the gtlane E2(e-,,_, . e*) .
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(5.11) t lvu lPd,m{ capo (A , C)+ :
J 

lvr,!L/rrv -"'*-YP\-*r"l 
t 

2.
l?n

5.10. Lemma. Por eaery eondenser (A ,G) anil p 
= 

I

capo (A , O) - inf t lvulrdm .

,ews(A,C) J
I?n

f tsalPd,m *

Using Gehring's technique 12, p. 502, Remark 5 and p. 504, section 7]

of truncating, smoothing by integral averages, and triangulation of func-
tions, we can form a piecewise linear approximation w of o such that
weW(A,C),

{5.L2) ;= [ tvutodm,
R4 lin

and for a, prop3r pclyhedron P' c.4\C and for its triangulation f'

(5.I3) to is identically equal to 0 or I in every component of CP' ,

arrd w is simplicial with respect, to T'

Now let et , . . . , a1" be the values assumed by w at the vertices of
the simplices in 7' . If A e T' and ar | [ is not constant, then w I L
is an affine mapping and its level surfaces are parallel (m, - I)-dimensional
simplices. Then if o € (0, I)\{ar, . . ., au}, the set w-'{a} consists of
(z - l)-dimensional simplices whose normals belong to a finite fixed set

of vectors, say {pr,,..,g*\, which is uniquely determined by f'
and u. Ccmbining finitely many suitably chosen rotations of -8" with
respect to different 3-dimensional linear subspaces, we can construct an
orthogonal mapping f : R" -->.8" rvith the properties:

(5.I4)

(5.15)

Finally lve

f , then ae

f(pr) is not perpendicular to E'(n*-t , €o) for

lf@ - nl < d(P' , C(.4\C)) for every n e P' .

put r!, ': r/) o f-L. By (5.15) and the orthogona,lity of

W(A, C) and f lwulod,m : 
I lvrr:lod,m. Hence by

J 
IY

I?n Itn

and (5.12) ,

(5.1 1)
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(5. 16)

(6.2)

capp (A , A) + ivulPdm

eaery a e RL

{.r e R" I u*(*) { a) - Sym (F") anil

,=l
Rn

Furthermore, ueW,(A,C).n'orif we put P:fP'and T:{[n,,
L eT'\, then clearly (i) and (ii) of 5.9 are valid for z. On the other
hand, z assumes the values &t , . . . , a6 a,t the vertices of the simplices
of T, and if o € (0, 1)\{4r, . . ., cr*} the preimage u-t{a) : flw-L{a}l
consists of finitely many (z - I)-dimensional simplices whose normals
belong to the set {/(1or) , . . . ,f(p^)}, and so none of them is perpendic-
ular to E'("*_r, eo) . Ilence (iii) of 5.9 is also valid. Thus u e Tlt,(A , C) c
W(A,C), which, together rvith (5.16) proves the lemma.

6. The capaeity inequality tor 1-dimensional cap symmetrizations

6.L. Cap symmetri,zation of functi,ons. Let u: R" -+.81 be a continuous
function and let Sym be a cap symmetrization. For every a e Rt define
I,:{re R"lu(r)<al and G,:{r€R"lu(r) <a}. Then for everi-
xeR"

{ae RLl,reSy*(f'")} *O
X'or, if we write K(r) for the symmetÅzing sphere through r € -8" and
a(r):stpuK(x)(@, then for every re R" we get *e K@):
Sym (1((r)) c Sym (I,6,) , rvhich implies (6.2). trVe define %* i Rn -->- RL

by setting u*(r): inf{a€ RLlxeSym(-8.)},re R". The function 21*

is called t}ae symmetri,zation of u und,er Sym and, we write, n* : Sym (u) .

The following holds for ux :

6.3. Lemma. For

(6.4)

(6.5)

usltence, 'in pa,rticular ,

Proof . Fix ct e RL and put lt,I. : {r e R" 
i

finition of %* , Sy* (F ") C F: . Assurle a) e F:

br7 brt and lim b; :--: (t , we get, by tlle

side of Sy* , see 2. 10,

u* (r) ! o\ . B;' the de-
. Then u,* (r) ! c, , alld"

seqtlence {b,} C El wit}r
corltinuity from the orit-

Sy* (F,)(n
L

,r€n
i

Eo)-



Hence -Ej 6 Sym (.F',) and (6.4) holds'

get, by the continuity from the inside of Sym and by (6'4)'

Sym (G,) : SYm (U Gr,) : 
Y 

ar,,' (Gu,) : 
Y 

tr* (14,; :

V {" e R" I u*(x) 
=bt} 

: {x € R" 1u*(r) I a} 
'

which proves (6.5).

6'6.Inparticular,theabovelemmaandthecontinuityofzimplies
lhat u* is also continuous, and because u*-'{a}: Sym (I.)\Sym (G'),

we easily see that uK : u*K fot eYery symmetrizing sphere -K of Sym '
x'urther, the function u* is symmetric 'w.ith respect to the symmetry

plane of Sy*.
Next we show that the symmetrization of a Lipschitz function is also

Lipschitzian.

6.7. Lemma.If u:R"-->Rr sati'sfi'es, for son't'e lI > 0 antl' for eaery

A! , Az e R" , the corud'i'ti'on

(6.8) lu(yr) -u(gz)l1M lgt-uzl,

them u* : Sym (z) sati,sjies the cond'ition

(6.9) lu*(xr) -u*(rz)\<Mt&r- rrl

for euery fir,fire R", uhere Sym i's a crtp symmetrizat'ion'

Proof. L-.t 11, frz € -8" arld assume zr'x(or) 2 t+*(rr) : a '

Henc: we have to Prove that

(6.10) u*(rz) { a * Md, rvhere d' : lrr- rzl> 0'

Norv {xIu(r){a*Md,}={r\tt(e:){«}!dB" by (6'8)' Then 1'}

(6.4) and the smoothing property of S5'm

{rlu*(r) 1a * Md}: Sym{r la("u) < a{ M'1}=

Sym [{r i u(r) 5 a} { d,B"]= Svm {r I tt'(x) I a} | d'8" :

f{r I u*(r) < a,} + d B")1 rr.

So rr€{r ]u*(r) 1a I Md,}, which implies (6'f0), and the lemma is

proved.
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6.11. Lemma. If ueW,(A,C) for a condenser (A,C), them u*:
Sym (z) e IT(Sy,m (.4) , Sym (C)) for euery cap sAnxnxetrization Syrn.

Proof.Clearly 0{u*(r) (l forevery ueR" because 01u(r)<1.
Since z e W"(A , C) , it is Lipschitzian, and so by (6.7) ,rF is also
Lipschitzian and thus ACL. Since C c {n I u(r) { 0} , Sym (C) q
Sym {r lu@) a 0} : {z lu*(r) < 0} by (6.a). And finally, cl {r lu*(r) < t)
isacompactsubsetof Sym (A), for {rlux(r) { l}: Sym{r lu(r) <l}
c Sym lcl, {x I u(r) 1l}l c Sym (-4) , where Sym [cZ {r I u(r) < t}] is
compact,. Hence zx € l4r(Sym (.4) , Sym (C)) .

6.t2. Theorem. # (A , C) ,i,s a cond,enserin R* and, Sym is a l-il,imen-
sional, cctp sym,metrizati,on, then,

(6.13) capr(A,C)> capr(Sym(.4),Sym (C)), for euery p2t.

ProaJ. By Lemmas 5.10 and 6.tl we need only show that for any
ueW"(A,C)

(6.14)

(6.15)

= 
['tYtt*,Pcl?n,,

rr
I((zo,rr)nD; K(zo,r)nD!

I ivulod,*,
Itn

where z* : Sym (z) . Bocause the orthogonal mappings and the trans-
lations of R" do not change tlte p-capacity of a condenser, 1\'e may assume
that S;'m is defined by the half-plane {r € -8" j r"_, }- 0 , no :0} . Then
we c&n identify the symmetuizing axis J of Sym lr-ith -8"-2 and use
in R^ the cylindrical coordinates (r,g,z), u-here ze R-2,r:
(r'"-, * x2,!rtz urrU ? € [0 , 2n) is such that fin-t : r . cos V t rt-n : r ' sin g .

Henceeverysymmefuizing sphere K(z,r) of Sy*, zeJ,r20, is
the set {(r , V , z) I q el} ,2n)} .

Since a e W"(A,C), there exists a polyhedron P and its triangula-
tion T such that z is simplicial with respect to T , and u I CP is iden-
tically equal to 0 or I in every component of CP . LeN u assume the

and define Di : u-L(ai-r,ei) and Df : u*-l(cti_r, ai),i : L, 2,. .,ffi .

Then to establish (6.f 4) we need, by Bubini's theorem, onlr- to shorv that for
fixed i, e N,0 qi {m, and for zz,_r-almost every (ro,zd€{r €.81 

]

rä0)xPu-2

for it is not difficult to see lhat \ux: 0 almost ever5rwhere in the sets
u*-{ot},i:0rL,.,.,ffi. tr'urthermore, we can assume in (6.Ib) that
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ro ) 0 , the s;rllpetrizing sphei:e I{ : K(zo , r) does not intersect, anv
(rz - 2)-dimensional side of any simplex in 7, and K n D * g .

Since u € W"(A , C) , the sphere K intersects every level surface
u-'{a} , a € (ar-, , ai) , in at most finitely man} points. Ilence by the
piecer'vise linearity of u, we can divide Dtn Ii into arcs Hr,..., H,
such that at the interior points of er.erv Hi,'u is strictlvmonotonewith

0u
respect to g and 

* 
iscontinuous andnotzero. Let t, ltz{... <t,

be the values of zr assumed at the end point's of all the Hi. Hence,
for a fixed k, I <k 1L' ,

(6. 16) qrt(tr, 
,

11) '

tov
Oonsider the

that Ii : {(ro ,

afitlura§,

t*+r) n K consists of &n even nulnber of open ärcs, se)'

, Irr, , such that 2L is strictly i]lollotone Ti,ith respect,

0u
in eyery Ii and 

AV * 0 at e\,-ery ltoint, in Ii .

arcs Ij
9,za)l

0u

ap oo

in (6.16). \\re ma)- as-qltrIxe that thel' arje chosen so

On the other hand, the function %* is svmmetric with respect to

{reR" Ir,:0}, and u*(r,g,z) isincreasingrvit}rrespectto r;, for
01g1n and decreasing for n!g<2n. Hence tt*-l(tp,tk+)nK
consists of two symmetric arcs 1* and -f*' . Furtherrnore. ru* is st,rictly
monotone with respects to g in ,[* and ,Ix' , since mrlK n ,rx-l{l}]
:mtlKn?c-1{r}l:0 for every te (tt,tn-). Let I*:{(ra,f ,:o) I

a 1E < p\, where 0'<u < 0 {n.
Ifence to prove (6.15), we need onll- shos' tirat

(6.17) (- 1)i+t

(6. 18)

p

G(v),tv 
= 

, I G'r(q,)rts,,
,i

j:1

0j

f
aj

and similarly for G*(d in terms of LL*.

I{ext, we express the conr}ection bet'w,een LL ancl
rj i (oi , §) * (tu , tn+r) be the homeomorphism
xilp<§i, and" put Vj:rj':(tr,,tr,+r) +@i,§i)
'Sirnilarly, define r* : (u , P) * (t* , t*+r) , *(V) --_ u*(ra

L(#)', 
-_ *W=*X H',)',"

lL* explicitly. Let
ti@)- zc(ro,g,zo),

, 9 , zo) , a 1V < § '
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by the indexing in (6.17) we get
By the definition of %* and

t rl ry \(6.re) e*(t): omr(u-Lfo ,iln K): z\2" -) t- t)iEi(t)),

and then by (6.17)

I au l-1(6.20) e'1(t):Lur,rr,vi(t),"r)) : (- t1i+t 1e',1t11 10,

I Au* l-1 I 2ltt
(6.2I) e*'(t):Lu, tr,E*Q),"dl :,Ä1-r1i+tel(t) > 0.

Using the functions qi,LSj<21t, and q* to make a change
of variables in the integrals of (6.18) we get

(6.22)

iti tn+t

ä, { G@)dv - f (ä G@i(t)) rvi(,) r) dt,

(6.23)

ai tP

1t t*+t

f G*(v)d,p - I G*(q-*(,)) ls*'(t)l d,t .

Hence ,o n.orrJ (6.Is) it i. .åi"i"nt to show that for every I e gh , th+r\

(6.24)

where f(q: > G(Ei(t» lp'i(t)l and -f*(r) : G*(q*(t))'v*'(t)|. Wej:r
fix t e $k , th+r) . By an elementary geometric consideration, equation
(6.19), for fixed t, cart be extended smoothlyinto a small neighbourhood
of (ro, zr) . This mearls that there exists an s > 0 such that C1 : u-,{t)
flB"(pi,s),gi: (ro, Vi(t),2d, j: I,2,...,2M , is an (rz - l)-di-
mensional open ball, and

tl 2M \(6.25) @*(r , z) : i1r" -: (- t)i fi (r , z) 
)

for l(r,z) - (ro, ao)l ( s, where @*(r,z) is the g-coordinate of the
point K(z,r)nu*-t{t}O{r€R"ln">0} and @i(r,z) is the q-co-
ordinate of the point K(z,r)l'u-1{t}l10i. Hence for j:1,2,...,
ztr[ ,

(6.26) r,c(r , @i? , z) , z) - tc*(r , (D*(r , z) , z) : t



for lQ,z) - (ro,zo)l < s. Furthermore, @i(rs,zo\ - qi(t),i : 1,2,. .,
2M , and @*(ro,z): 9*Q). Partial differentiation of (6.26) with re-

spectto A,,r:0,1,..,fr-2, yieldsexpressions nr! u,,a {,' oU, oU,

0(v{n-2, where Ao:T ättd g,:2, for l{rr<n-2. Sub-
stituting these expressions into both sides of (6.2a) we get by (6.20), (6.21)

and (6.25)

(6.27) r@:.'y,r{lr.§4"'(a,)-,}ä; and

(6 28) r*(f) : å"{l' . i,G:t,(- r1'*,,,)']*(*) 
l:zr

where E:{r€-81 la}0}--+,81 is defined by ?(t):tP,t20, and

ai,:ro(#)@o,eiD),zo),r =i =2M 
,o {r, {L- 2,

bi : ro lgl(t)l : ro(- r)i+,vli?),L 
=j 

< zM .

X'or p } I the function -E is convex, that is, -E(;&r;) <2.k8@ when

Il,:l,k>o and f;ä0.
Ilence by the Minkowski inequality

[, 
* å, (;;:å, - ,)i+'Ia-]')', =iiä(, * i,",)'''

Since .E' is convex and increasing, the former inequality yields

zr*(t)=, 
{ H(' *>,,,r"'] ( ia)-'} i,, =

är{(, * ) 4" ,ur-lbi: rQ),

which prove§ (6.24), and thus the proof of the entire theorem is complete.
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7. The main theorem

'We say that a set transformation / satisfies the capaai,ty i,neqtnl'ity, if
(7.1) cap, (-d , C) > cap, (t(A) ,lQ», for all p ) O ,
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for every condenser {A,C) such that A,C e Dom(/) and (/(.4) ,f(C))
is a condenser. In the previous chapterwe proved that l-dimensional
cap symmetrizations satisfy the capacity inequality. In this chapter rve

derive from this result that all symmetrizations satisfy the capacit), ine-
quality. Because for 0 < p < I the inequalit;' (7.1) is trivially valid
by Lemma 5.6, u'e neecl only consider the case p 2 | .

7.2. Lemma. Srytpose that
(i) f is an opem and, regular set transformat'iott, (cf 3.1),

(ii) {/r} ,t, a sequence of regu,lar, (7.I) satisfuing set transformo,tions
such that Dcnr (fr) 'inclu,cl,es open bounrleil, sets,

(iii) for etsery E eV and, r > 0 there eri,sts jo € ff such the,t

(7.3) l@) cfiQa -y rB"),rnd /(1' + rB"))fi@),for j 2jo.
Then f satisfi,es the capac'ity i,nequali,ty. In particu,lct'l', (iii) is tr'u,e, f Dom (/)
i,nclud,es opem boumd,ed, sets, euery fi is stnootling cr'rtcl

(7.4) lian f,tP) -- f(F) Jo, dl r € I
i

Proof . Consider a condensc'r (A . C) such that ,4 € Dom (/) , and
p 2 L. Choose e ) t) . Rv Lenmtl 5.5 there exists a bourrded con-

denser (A',C') ancl r)0 srrch tir;ri Ä'-yrB"cA,CarE"gC'
arrd capo (A , C) * e ) cap, (A' , C') . The:r by (iii) rve can fincl fr' such
that /(C) cfig + rB")cfilC') and /(,4) )l(Ä' + rB")=fi(Ä'))flÅ').
Because fr satisfies the capa,citv inequalil.v v-e get by the separtr.tion ine-
aqulity (5.3)

än.[ f(F) cfi{F) J- sB" forS 2 jo Tirert li(} ) cf(f) --- B" cfg'+ rB\ 1

§8" cfitl- --l- §8")end" thc s?rlcotliiarg properi.,)r af fi yielcLs fg) c fi€ ) +
cfiiY * r8.7. So condiLron (7,3) i* YeLd.

Lettirrg e iend to zeut, lve see tliat / srr.iisfies the ctlpacity inec4ralitv.
To prove l,he second part of the lernrna. rve ciroose F ei trncl r ) 0.

Tlren rl - d(l@),Gf{tr + rB\) > 0 l)i...i1uie / is L)peii rrncl reguitlr. Let
td I _

s : ruin 
lZ ,rl. By (7.a) we carl ciroost io € S siic,h thiit fi@) c f (F) + sB"

d

7

7.5. The mein theorem. Let S;rrn

G,?Ld {A , O} n colvde}?,ser. If Syin 'is tt

A as bouvtd,ecl. Tluert (S)rtn (A) , Sym

be, Lz'ity Stei,ruer or cup symm,etr"i,zctt'iott,

Staitt er sywL?tt, etr i,ztt t'iott, we &lso (t Isuni€
(C)) r,s nlso d conde?Ller clnd
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capP (A , C)

If , 'in add'it'ion, (A ,

l'ilte.
C) ts ringl'ike, then (Sy* (A), Syrn (C)) 'is ctlso ring-

Proof . By Lemma 5.1 symmetrizations preserve condensers and rings.
Hence we need only prove that symmetrizations satisfy the capacity ine-
quality. We first, consider cap sJrmmetrizations and proceed by induction.
3y Theorem 6.12 every l-dimensional cap symmetrizalion satisfies the
cap inequality. Now let 2 {lc {n - I and assume that every (f - 1)-

dimensional cap symmetrization satisfies the capacity inequality. Let
Sym be a k-dimensional cap symmet'rization. Ifence, by Theorem 4.29,
there are trvo (k - I)-dimensional cap symmetrizations Sy-, , 'i, : | ,2 ,

such that S5rm (-E) : ,rf (Sym, " Symr)'(.X') for every non-empty com-

pact -F c R" . Thus, by the inductioir assumption and Lemma 7.2, Sym
satisfies the capacity inequality.

Next we consider Steiner symmetrizations and again proceed by in-
duction. Let Sym be a l-dimensional St'einer symmetrization. By Lemma
4.19 there exists a l-dimensional cap symmetrization B and a sequence
of translations ti: R^ ---> R' ,'i e N , such that the set transformations
fi:t;t o§ofi,'i,e N, satisfy condition (7.3) of Lemma 7.2. Thus, by
Lemma 7.2, Sym satisfies the capacity inequality, since every translation
l; preseryes the p-capacity of a condenser and the symmetrization /S

satisfies the capacity inequality. Now let 2 ! k 3 n and assume that
every (k - l)-dimensional Steiner s;/mmetrization satisfies the capacity
inequality. Let Sym be a fr-dimensional Steiner symrnetrization. Hence
Theorem 4.32 and Lemma 7.2 imply that S),* satisfies the capacity
inequality.

University of Helsinki
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