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Abstract. The duality model for convex programming studied recently by
E. L. Peterson is analyzed from the viewpoint of perturbational duality
theory. Relationships with the traditional Lagrangian model for ordinary
programming are explored in detail, with particular emphasis placed on the
respective dual problems, Kuhn-Tucker vectors, and extremality conditions.
The case of homogeneous constraints is discussed by way of illustration.
The Slater existence criterion for optimal Lagrange multipliers in ordinary
programming is sharpened for the case in which some of the functions are
polyhedral. The analysis generally covers nonclosed functions on general
spaces and includes refinements to exploit polyhedrality in the finite-
dimensional case. Underlying the whole development are basic technical
facts which are developed concerning the Fenchel conjugate and preconju-
gate of the indicator function of an epigraph set.

1. Introduction. One of the most useful model problems for convex optimi-
zation is the ordinary convex programming problem, in which a convex
function is minimized subject to finitely many convex inequality constraints.
The traditional dual approach to this problem involves the so-called
Lagrangian duality model, in which solving the dual problem amounts to
finding the optimal Lagrange multipliers. In 1972, E. L. Peterson [7] outlined
an alternate duality theory for this problem, and various aspects of this model
have been developed in a series of related papers [8]-[15]. Peterson's model
provides a dual problem having more variables than the Lagrangian dual, but
in a sense requiring no suboptimization for the dual objective function
evaluations. The model is somewhat more general, too, in that its primal
problem has additional structure built in which acts to force the dual to have
the same form. That is, it is a "symmetric" duality model for ordinary convex
programming. Additive separability plays a large role in the model, at least in
a formal way.
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2 L. MCLINDEN

In this paper Peterson's model is analyzed from the viewpoint of R. T.
Rockafellar's perturbational duality theory (see, e.g. [19] or [21]). The setting
is extended from R" to general spaces, the lower semicontinuity requirements
on the functions involved are relaxed, and the extremality or optimality
conditions are sharpened. Particular emphasis is placed on comparing the
"symmetrized" dual with the usual, Lagrangian dual, and it is shown in a
precise way that the entire symmetrized duality model projects onto the
traditional Lagrangian duality model. Enroute to this comparison, the stan-
dard facts about the Lagrangian model are developed here in a setting slightly
more general than previously available in the literature. The case of homo-
geneous constraint functions is discussed as an illustration, with the present
treatment extending recent work of C. R. Glassey [2] on explicit duality for
such problems. As a technical byproduct of the present framework, a new
existence criterion is established for optimal Lagrange multipliers in the case
of R". Namely, it is shown essentially that it suffices to have a Slater point for
which the polyhedral constraint inequalities are satisfied only weakly; this
sharpens slightly Rockafellar's theorem [19, Theorem 28.2], which already
handled the important case in which the polyhedral functions are actually
affine.

The plan of the paper is as follows. In §2 we establish notation, state the
primal, dual and saddlepoint problems associated with the duality model
under study, and indicate some of the technical issues treated later concer-
ning the "symmetrized" dual and the Lagrangian dual. In §3 we derive
certain technical facts on which the entire development rests. These concern
formulas for the Fenchel conjugate and "preconjugate" of the indicator
function of an epigraph set, together with the associated subdifferential
formulas. The preconjugate result is somewhat novel technically, in that it
requires the reverse of the common proof technique of dualizing a result; it is
a "predual" type of result. In §4 Peterson's model is derived in broad outline
form from a notationally streamlined cone-constrained model. Appeal is
freely made here to the various facts concerning Rockafellar's perturbational
duality approach. This viewpoint provides the basis for distinguishing quite
clearly in §5 between the symmetrized duality model and the Lagrangian
duality model. There, a detailed comparison of the two models is made. The
focus is on a comparison of the respective dual problems, Kuhn-Tucker
vectors, and extremality conditions. This section can be viewed as extending
somewhat, to the case of general convex functions, certain ideas introduced
by Rockafellar in 1964 [18] and later developed by him for the case in which
the functions involved are faithfully convex [20]. In §6 certain projection
phenomena noted in §5 are examined further, and it is shown the precise
sense in which the entire symmetrized model (consisting of primal, dual and
associated saddlepoint problems) projects onto the ordinary duality model.
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SYMMETRIZED SEPARABLE CONVEX PROGRAMMING 3

Throughout, we use rather freely the general definitions and background
material concerning convexity which is found in [19], [21].

2. Notation and statement of model. The model we shall study is heavily
dependent upon additive separability, which may either be already available
naturally or else be induced artificially. In either case it is therefore necessary
for us to consider, at least in a formal way, a number of distinct spaces. Thus,
let there be given convex functions f0, f¡, f¡ defined on spaces A'q, X¡, Xp where
the indices / and j range over finite (possibly empty) index sets / and /. The
spaces may in general be any real linear spaces equipped with locally convex
Hausdorff topologies. In particular, they might all be R", or Hilbert spaces,
or reflexive Banach spaces under the norm topologies. Let the functions take
values in (— oo, +oo] without being identically -f-oo, and assume each
function has lower semicontinuous hull somewhere finite. (The latter is
fulfilled automatically in the case of Rn.)

Throughout, when referring to product spaces we use a convenient and
transparent notational abbreviation. Namely, the product space X {X¡\i £
/} will be denoted simply by X1; its elements, the ordered |/|-tuples (x¡)¡e,
where x¡ e Xi for each /' G /, will be denoted simply by x'. Similarly for XJ
and xJ, R1 and £7, RJ and £y. It is convenient also to let X denote the
product space

X = X0X X1 X XJ X R' X RJ.

When 7=0, for example, as is the case in (2.5) below, we agree to interpret
XJ and RJ as the degenerate vector space consisting of just the zero vector.
Such trivial "factor" spaces can clearly be carried along at no cost, and are
effectively suppressed when the general model is specialized, such as in §§5, 6
for instance.

Now to each/ associate a function \p¡ on X¡ X R defined by

«*«-{° ««. + *<» (2..)I + oo     otherwise,
and to each/ associate a function a, onXj X R defined by

\fjij){xj)      if c > 0,
■(fjO+)(xj)    if 1-0, (2.2)

-f-oo if I < 0.

To within a minus sign, \p¡ is just the indicator of the epigraph of /■, and as
such carries a complete description of/. In the definition of a,, the terms/£,
are the right scalar multiples of/, defined by
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4 L. MCLINDEN

The term /O+ is the recession function of/, defined by

(fjO+)(xj) = sup{/(x,' + Xj) - fj(x;)\x; E dorn/}.

It serves to describe the growth properties or asymptotic nature of/. Clearly
Oj carries a complete description of /. Less obvious is the fact that Oj is
positively homogeneous and convex in {xJf £,) jointly. The afs will be seen to
play a role dual to that of the uV's. Finally, define on X an additively
separable function/by the formula

f(x)=f(x0,xI,xJAIAJ)

= /o(*o) + 2 *,(** 6') + 2 Oj{xj, %). (2.3)/ j
The primal problem of the duality model studied in this paper can now be

stated:

min{/(jc)|jcGÄ'}, (P)

where/is given by (2.3) and K is a convex cone of the form

K = P X Q,   P CX0XX'XXJ,    Q= {(£', £')!«' = 0},     (2.4)
for some given nonempty convex cone P. In other words, (P) is the problem

minimizef0(x0) + 2 <M*,> £,) + 2 Oj(xJt §)
i j

subject to (x0, x', xJ) G P,   £' « 0, ^y e i?y,

where the ;//, and a, are as in (2.1) and (2.2). Essentially this problem was
introduced by Peterson [7] in 1972, and various technical aspects of it are
treated in [8]-[15].

Notice that the only way in which the variables in (P) can be coupled, or
made dependent on one another, is by means of the cone P. This high degree
of formal additive separability makes possible some technical simplifications
in deriving certain required formulas and also in carrying out some of the
proofs. To illustrate how coupling of variables can be achieved, consider what
is probably the most important case, that in which

J =0   and   P = {(x0, x')\x0 = x„ Vi E / ). (2.5)

It is immediate from (2.3), (2.1) and (2.4) that (P) is then just the ordinary
convex program

min{/0(x0)|/.(*0) < 0, Vi E / }, (P0)

provided we ignore the presence of the trivial variables |,, which must be zero,
and also the fact that there are really 1 + |/| copies of the variable x0. Other
special cases of problem (P) are described in [8].

The problem dual to (P) in the symmetrized model involves the Fenchel
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SYMMETRIZED SEPARABLE CONVEX PROGRAMMING 5

conjugate of/,

/*(>>) = sup «*,y>-/(*)}.
X

Due to additive separability, cf. (2.3), this can be expressed in terms of the
conjugates of the individual terms/,,/,/ making up/:

r(y)=r(y0,y',yJ,vI,vJ)

= JS (y0) + 2 V Ofc nd + 2 */ {yP *)• (2.6)
Here the variables y,y0,y¡, y', r\I, etc., range over the spaces Y, Yq, Y¡, Y1,
R', etc., which are dual to the original spaces (or more generally, which are
paired in duality with them [1], [3]). The value of a continuous linear
functional v E Y at a vector ïElis denoted by (x, y>, etc. In particular, in
the case of R" this bracket notation simply means the usual dot product of
two vectors.

The problem dual to (P) can now be stated:

- mm{f*(y)\y E K*}, (D)
where K* is the cone dual to K (i.e. the negative polar of K). According to
(2.4), we have

K* = P*X Q;    Q* = {(tj', r,J)\i,J = 0}, (2.7)
and so by (2.6) this problem is therefore of the form

- minimize fg (y0) + 2 #*(><, V¡) + S »/Cty Vj)
i j

subject to (yo,y',yJ) Ei",   -q1 e R1, r]J = 0.

It is not fully apparent from this that (D) really has the same form as (P). It
follows, however, from the facts that the functions conjugate to i//, and a, are
given by

^U-»1»/) =
(fTvdiyd     if Tj, > 0,
(/*0+)(v,)    ifT,, = 0, (2.8)
+ 00 if TJ,  < 0,

and

„/(,„,).. (°        f£W + %«* (2.9)
l + oo     otherwise,

respectively. This shows that (D) is formed from convex functions fg, /*, /*
together with finite index sets /, / and convex cones P*, Q* in essentially the
same manner as was (P), by just interchanging the roles of / and J.

For the important case (2.5), in which (P) becomes essentially the ordinary
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6 L. MCLINDEN

convex program (P0), we have

^-•{(*>/)|j'o + 2 *-<>}. (2.10)

This means that (D) assumes the form

max{ -JS(y0) - 2Off^X**)!* + 2 y, = Oandr,7 > o},    (2.11)

provided the terms /"tj, are interpreted as /*0+ whenever tj, = 0. We shall
present in §5 a mild condition under which this problem can be simplified
significantly, namely by interpreting the terms/"tj, as xp^ whenever tj, = 0.
On the other hand, the dual problem associated to (P0) by the ordinary, i.e.
Lagrangian, model is

max     inf      /„(*„) + 2 vJ¡(x0)   I, (Do)
T,'>0   [ *o£C    { j )   j

where C = dom/0 n D /dorn/. It will be shown, among other things, that the
optimal values in problems (D) and (D0) always satisfy val(D) < val(D0),
where (D) here is understood to be the problem (2.11). Under relatively weak
assumptions which vary slightly with the situation being treated, this
inequality is actually an equality, and furthermore a vector tj ' solves (D0) if
and only if there exist vectors y0, y' such that (y0, y1, tj7) solves (D), i.e.
(2.11). In other words, under mild conditions the ordinary dual (D0) is the
image of the "symmetrized" dual (2.11) under the projection transformation
(y0, y1, tj7) -> tj7. Peterson [14] has also observed essentially this connection
between the two duals. The connection was also indicated earlier by Rocka-
fellar rather implicitly in [19, p. 322] and explicitly in [20], where it forms a
key element in the computational approach suggested there.

In 1964 Rockafellar [18, p. 88, Theorem 5] established a strong duality
theorem relating (P0) to problem (2.11). He invoked a Slater-type constraint
qualitication and worked with constraint functions which were continuous
and everywhere finite; a refinement to cover affine constraints was included.
Also, in [19, pp. 322-323] and [20] Rockafellar generated essentially problem
(2.11) as a dual to (P0) via the general perturbational duality theory. This
involved equipping (P0) with a certain rather full class of perturbations. In the
development below we exploit the perturbational duality approach fully in
deriving the symmetrized model. By this means it will be clear that the
present, symmetrized model stems from the same, full class of perturbations,
but with the added elements of separability and symmetry built in as well.

Underpinning the entire symmetrized model are the conjugacy and
subdifferential formulas for the functions uV and a, defined in (2.1) and (2.2).
The conjugacy formulas, (2.8) and (2.9), have already been invoked in stating

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SYMMETRIZED SEPARABLE CONVEX PROGRAMMING 7

the dual problem, and the subdifferential formulas will be essential in
developing the model's extremality conditions. We turn now to the task of
deriving the specific facts which will be needed.

3. The indicator of an epigraph: its preconjugate and conjugate. To a large
extent, the material in this section builds on facts and techniques concerning
recession vectors contained in [17], [19]. Proposition 2 is somewhat novel in
that it amounts to a "predual" version of Proposition 1, as opposed to the
usual dual type of result. The reader can skip over the proofs in this section
on first reading.

Lemma 1. If f is a proper convex function with lsc / somewhere finite, then
fô>m/ = /*0+.

Proof. For/actually closed, this was established in [17, Corollary 3C(d)],
while for / not necessarily closed but the underlying space Euclidean, the
result was established in [19, Theorem 13.3]. The latter proof really carries
over to the general situation, as we now demonstrate. Since/* is by definition
the pointwise supremum of the family of continuous affine functions of the
form h(y) = (x, y> — |, where (x, £) E epi/, it follows that epi/* is the
(nonempty) intersection of the corresponding closed half spaces epi h. Hence,
epi(/*0+) = 0+(epi/*) is the recession cone of this intersection. By [17,
Theorem 2A(b)], it follows that

0+ n {epi h\(x, ¿) E epi/} = n {0+epi h\(x, ¿) E epi/}.
Now for /i(y) = <x,.y> - £ it is clear that

0+epi h = epi /i0+ = epi<x, • >.

Combining these facts, we obtain

epi(/*0+) = n {epi<x, • }\(x, £) E epi/}

= epi(sup«x, • }\x E dom/}) = epi(t//*om/),

which completes the proof.
We now deal with the functions of type \¡/¡, given in (2.1). Our first result

establishes formula (2.8) and more.

Proposition 1. Let f be a proper convex function with lsc / somewhere finite,
and write E = {(x, Q\f(x) + £ < 0}. Then cl \pE is the indicator function of
{(x,0\(c\f)(x) + £<0},and

(rv)(y)     ifv > 0,
^(v,tj)=    CT0+)(y)     //tj = 0,

+ 00 iff] < 0.
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8 L. MCLINDEN

Hence, one has the inequality

(f*v)(y) > <*,y> + to   wheneverf(x) + £ < 0 < tj,
where f*r\ is interpreted as f*0+ when tj = 0. Moreover, equality occurs in this
inequality  if and only  if (y, tj) GtyE(x, £), and this  is equivalent  to the
conditions

yE3(Tj/)(x),   /(*) + £< 0<tj,    (/(*) + Í) ■ r, = 0,
where i\f is interpreted as \¡/domf when tj = 0. (Note: 8 (tj/)(x) = tjo/(x) when
TJ>0.)

Proof. First, el \pE ~ \pclE. Since cl(epi/) = epi(cl/), it follows that cl E
has the form asserted. Next, we compute $E(y, tj). If tj < 0, then using any
{x, ï) E E we obtain

^(j'.l) >sup{<x,y> + £r)} = +00.
í<í

If tj = 0, we have
>|*(y,0) = sup{<x,y>|(x,!)E£}

= sup«*,y}\x E dorn/} = (/*0+)(y),

where the last equality is by Lemma 1. If tj > 0, we have

të{y, tj) = sup«*, y> + £tj|/(x) + | < 0} = sup «x, y> - ti/(x)}
X

= T, • sup «x, Tj-y> - f{x)} = (/»(y).

This establishes the conjugacy formula. Using it, Fenchel's inequality

tE(x,£) + te(y,r,)> <*,y> + £r,
for the function \pE reduces to the inequality asserted. Moreover, we know
that the case of equality is characterized by the condition (y, tj) e9^/£(x, £)
on the variables involved. By the particular form of \¡/E and \pE, this is
equivalent to having either

/(*) + £ <0<tj   and   (/-Tj)(y) = <*,>>> + & (a)

or else
/(*) + £ <0 = tj   and   (f*0+)(y) = <*, y>. (b)

Now we claim that (a) is equivalent to
/(x) + £ = 0<tj    and   y E a (tj/)(x), (a')

and (b) is equivalent to
/(*) + £ <0=tj   and   y e^om/(x). (b')

Indeed, suppose (a) holds. Since tj > 0, the easy identity (tj/)* = /"tj holds.
From this and the definition of (Tj/)*(y) follows <x, y> - r¡f(x) < (/*Tj)(y).
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SYMMETRIZED SEPARABLE CONVEX PROGRAMMING 9

Combined with the rest of the information in (a), this yields

f(x) + £ = 0.
Now using this, we can rewrite the equation in (a) as

r¡f(x) + (/*T,)(y) = <*, y>,
which, in view of the identity cited earlier, is equivalent to y E 3 (tj/)(x). The
converse implication, starting from (a'), follows by reversing the last part of
the argument just given. Now suppose (b) holds. Then x E dorn / so that

téomAx) + (fo+)(y) = <x,y>-
Since x^*omf = f*0+ by Lemma 1, this means y E d\pdomj(x). This argument,
too, reverses to establish the converse. To complete the proof, just observe
that the disjunction (a') or (b') is equivalent to the characterization we needed
to prove.

We turn now to functions of type a,, given by (2.2). When / is closed, the
basic information needed later for the symmetrized model can be obtained by
"dualizing" Proposition 1 in the usual manner (i.e. by applying it to f* in
place of / and using /** = cl/ = /). In order to cover /'s which are not
necessarily closed, however, we now derive another, more general result, one
somewhat parallel to Proposition 1. It covers the application to the a/s arising
from nonclosed /'s as in (2.2) and also a bit more. It may be useful in
applying the symmetrized model to situations in which the recession functions
/0+ are not readily available.

Proposition 2. Let f be a proper convex function with lsc f somewhere finite,
and let h be any function (not necessarily convex) satisfying (cl/)0+ < h <
i//{0j. (The choices h = t/>{0) and h = /0+ are the main ones.) Then the (not
necessarily convex) function a defined by

(Mz)   </£>0,
o(x,t) = \h(x) ifî = 0,

+ 00 ifè<0,
satisfies

and in fact
o* = 4>E,   where E = {(y, Tj)|/*(.y) + t, < 0},

(lsc a)(x, !) = ,//*. (*,£) =
((clf)O(x) if i > 0,
((cl/)0+)(*) i/£ = 0,
+ 00 i/£<0,

where lsc a is closed proper convex. Hence, one has the inequality

(f£)(x) > <x,y> + £tj    wheneverf*(y) + tj < 0 < |,
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10 L. MCLINDEN

where /£ is interpreted as h when £ = 0. Equality occurs in this inequality if and
only if(y, tj) E da(x, £), and this is equivalent to the conditions

yE3(/|)(x),   f*(y) + r,<0<l   (/»0») + r,) >* - 0,
where again /| is interpreted as h when £ = 0. Moreover, the function a is
convex if and only if h is convex and satisfies ^{0j > h > /0+. (Thus, the
choice h = /0+ is the least which will make a convex.) Finally, in the event that
X = R", the function a is polyhedral convex if and only if f is polyhedral convex
and h =/0+.

Proof. First we show why h can be taken to be/0+, i.e. why (cl/)0+ <
/0+. This is equivalent to epi/0+ c epi(cl/)0+. Since

epi/0+ = 0+ epi/,    epi(cl/)0+ = 0+ epi cl/ = 0+ cl epi/,
the question reduces to whether 0+S c 0+(cl S) holds for a nonempty
convex set S. But this follows from [17, Theorem 2A(b)] (or [19, Theorem 8.3]
in the Euclidean case). Next, we work towards the formulas for lsc a and <r*.
To this end, let a, denote the "sigma" function corresponding to the choice
h = ^(0j, let a correspond to an arbitrary h of the sort specified in the
hypotheses, and finally let a2 denote the asserted form of lsc a. We have
a2 < a < a, by these definitions (since cl/ < /), so that

lsc a2 < lsc a < lsc a,,    a* < a* < a*.

From Proposition 1 we have
— oo < lsc 02 = °"2 = 4*e>       a* = ¡Pe

for E = {(y, v)\r(y) + tj < 0}. We also have that
ofCy, V) = sup«x,.y> + frj - at(x, £)} = max{0, a),

x,(

where
a = sup «jc, y> + to - (/£)(*)}

i>0,x

= sup sup«x,.y> + to - tf(è~lx)}
í>o    x

= suplí- (sup«x,y> - f(x)} + tj)|
i>o I       V   x > )

= sup {{ • (f*(y) + T,)} = +E(y, tj),
f>0

so that of = \pE = a*. Since lsc o, > — oo, it follows that lsc o, = cl a, =
at* = "r'B = a2- ^n yiew °f tne above inequalities bounding lsc a and a*, it
follows that

lsc a = t//|,    a* = t¡/E.

Next, using the formula a* = \pE, we can write Fenchel's inequality for the
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SYMMETRIZED separable convex programming 11

function o as

a(x, £) + if/E(y, tj) > (x, y> + £r>.

This is the general inequality asserted. Equality occurs in it if and only if
( y, tj) E do(x, £). Taking into account the special form of a and \pE, this is
equivalent to having either

f*(y) + r,<0<t   and   (/£)(*) = <x,j> + £tj (a)
or else

/*(>>)+ tj< 0 = £   and   h(x) - <x,y>. (b)
By an argument similar to that used in Proposition 1, one can verify that (a)
is equivalent to

r(y) + ri-0<S   and   >>E 3 (/£)(*). (a')
(One uses the identity (/£)* = £/*•) Now consider (b). From (cl/)0+ < h <
^{0) it follows that

*y   =   t*{0)       <h*<  ((cl/)0+)*   =   ̂ domr),

where the last equality is by Lemma 1 applied to f*. Hence, A* is identically
zero on cl(dom/*). From this fact and the observation that f*(y) + tj < 0
forces^ E dorn/*, it follows that (b) is the same as

f*(y) + tj < 0 = £   and   y Gdh(x). (V)
Hence, (y, tj) E da(x, £) is equivalent to having either (a') or (b') hold, which
is essentially the assertion.

Now we tackle the convexity characterization. Since a is convex on X X R
if and only if its restriction to each line in X X R is convex, let us examine
the behavior of the one-dimensional function

aL(X) = a(xx, |A ),        - oo < X < + oo,

on lines L consisting of points of the form

(*a.£a) = (1-a)(*0,!0) + X(x„£1)
for distinct pairs (x0, £0) and (*,, £,) in X X R. Each such L can be regarded
as being of one of three types: (i) £0 = £, = 0; (ii) |0 = |j ^ 0; and (iii) £0 = 0
and £, = 1. The convexity of oL(X) for all lines L of type (i) is clearly
equivalent to convexity of h on X. Next, consider the function

°i(*>Ç) =
(/£)(*)    if £ > 0,
4>[0](x)    if£ = 0,
+ 00 if £ < 0,

which is convex because/is (see [19, p. 35]). Since aL(\) for lines L of type (ii)
coincides with the restriction of o,(x, £) to L, it follows that convexity of
aL(X) is automatic on all lines of type (ii). Now consider any fixed line L of
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12 L. MCLINDEN

type (iii); that is, let pairs (x0, 0) and (*„ 1) be given (notice that £x = X in
this case). Now aL(X) coincides with the restriction of ax(x, £) to L
everywhere, except perhaps at the point (x0, 0) corresponding to X = 0. Since
for such an L the function aL(X) has the value +oo for negative X and is
known to be convex for positive X, it will be convex on all of R if and only if

either aL(0) > lim aL(X)   or   aL(X) = + oo, Va > 0.

Now the first of these alternatives is the same as

H*o) >l™(fX)(xx),

while the second can easily be seen equivalent to
x, £dom/+ ( — oo, l)x0.

It follows that aL(X) is convex on all lines L of type (iii) having the same x0
parameter if and only if

h(x0) > sup! lim(fX)(xx)\xl E dom/+ (-oo, l)x0\.

Let s(x0) denote this supremum. We can rewrite it as

s(x0) =    sup      sup  ( lim (fX)(xx)\x¡ = x + x0 — ßx0]

= sup{í(x0, x)\x E dom/},

where for each x E dorn/

t(x0, x) = sup  { lim Xf(x + (A-1 - ß)x0)}
p>0 y \ío 7J

= sup  ( um  X"'/(x + (X - ß)x0)\
ß>0 l xî°° J

= sup  ( lim (ß + t)~'/(x + TX0)}.
a >o <■ Tî°° J/3>

Now it is not hard to show that

lim (ß + t)~'/(* + tx0) = lim t_1/(x + tx0)
T"foO TfoO

for each ß > 0, x E dom/, x0 E X. (To see this, let B(r) = f(x + tx0) and
y = limTÎ0OT_1o(T). If y is finite,

lim (ß + T)"1Ö(T) = lim[()ß + T)-1Tl-rT-10(T)l
TfoO TfoO   L -IL -I

-lim[(/8 + T)"ITl-limrT-,e(T)l = 1 -y.
TfoO   I- -I      TfoO L J

If y is - oo, then ( ß + t)_ 'Ö (t) < r ~ x9 (t) imphes

lim (0 + t)~'0(t) < y = -oo.
T^OO

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



symmetrized separable convex programming 13

If Y is + oo, let M > 0 be given. We can choose t > ß so that t xB(t) > 2M
whenever r > t. Since (yS + t)~'t > 1/2 for t > f, it follows that

(/3 + t)~1Ô(t)=[(^ + t)"1t]-[t-10(t)] >(l/2)-(2M) = M

whenever t > f. This shows limTÎ00(y8 + t)-10(t) = +oo also, completing
the verification.) Using this fact, we have that

t(x0, x) = lim t~'/(x + tx0),
TfoO

and hence
s(x0) = sup! lim r~lf(x + tjc0)|a: E dom/ 1

V  TfOO I

= sup! lim t"'[/(x + tx0) -/(x)]|x Edom/|

= sup!    sup     [r~l[f(x + rx0) - f(x)]}\x G dom f\
*■ 0<T<00 '

= sup{/(x + x0) -/(x)|x E dorn/} = (/0+)(x0).

It follows that aL(X) is convex on all lines L of type (iii) if and only if
h(xo) > /0+(*o)> ^*o G ^- Combining this fact with the earlier ones concer-
ning lines of type (i) and (ii) completes the proof of the convexity characteri-
zation.

Finally, assume X = R " and suppose that a is polyhedral convex. Since a is
clearly proper, a is therefore closed [19, Corollary 19.1.2] and agrees with
lsc a. From the formula already established for lsc a, it follows that /£ =
(cl/)£ for each £ > 0 and h = (cl/)0+. The choice £ = 1 in the first fact
yields / closed, and so the second fact yields h =/0+. The fact that / is
polyhedral is immediate from the fact that epi/ is essentially just the
intersection of epi a with the hyperplane

{(x, £, p) E R" X R XÄ|£= 1},

and hence is a (nonempty) polyhedral convex set. Suppose conversely, now,
that / is polyhedral proper convex and h = /0+. Then / is closed [19,
Corollary 19.1.2], so the formula for lsc a shows that a = lsc a, hence a is
closed proper convex. Therefore o = a**, where we know that

*,      N      /0 iff*(y) + t, < 0,o*(y, tj) = / w{
\ +00     otherwise.

This shows a* is, to within a minus sign, the indicator of epi/*. Since/* is
polyhedral [19, Theorem 19.2], this means a* is, and hence o = (a*)* is also
[19, Theorem 19.2].

We remark that Proposition 1 for the closed case can be deduced from
Proposition 2 by choosing h = f0+ and then dualizing the resulting facts.
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14 L. McLINDEN

4. The symmetrized separable duality model. Here we derive the overall
structure and prove the basic facts concerning the general symmetrized
model. That is, starting from the primal problem (P) given in §2, we generate
(D) and an associated saddlepoint problem. Then we develop the associated
Kuhn-Tucker theorem, and provide several criteria for strong duality, inclu-
ding an especially sharp criterion for the finite-dimensional case.

Our approach, as implied in §2, is to think of (P) initially as simply a
problem of minimizing a convex function/over a convex cone K, suppressing
for the moment the particular structure of/ and K. Symmetric duality for this
very general form of problem dates back to 1963 (Rockafellar [16], see also
[19, Theorem 31.4]). Although one can, of course, regard this as a special case
of the original Fenchel duality theorem, for what follows we prefer to present
it instead within the broader perspective of perturbational duality. In doing
this, we follow the general formulation given in [21]. This has the advantage
that many of the general results from [21] can immediately, or at least fairly
readily, be translated into the present situation. For this reason, in the
development below we limit ourselves to writing down only the most central
results for the present model, leaving to the interested reader the task of
stating the many other, more special results which can be so obtained.

Let Y denote the space paired with X, and let V be another copy of Y and
U be another copy of X. From now on, we regard X as paired with V and U
as paired with Y. Now consider the convex functionFonI X Ugiven by

F(x, u) = f(x) + tK(x + u), (4.1)

and the associated minimization problem

min{F(*,0)},   i.e. nun {/(x)}. (4.2)

From F form a concave function G on y X V by means of the formula

G(y, v) = inf {F(x, u) + <u, y> - <x, v)}

[21, Equation (4.17)]. In view of (4.1), a straightforward computation yields
that

G (y, v) - -fc. (y) - f*(y + v), (4.3)
where K* = {u|<jc, v} > 0, Vxë K). The problem dual to (4.2) is now
formed using G:

max{G(y,0)},   i.e. - min {/*(y)}. (4.4)

The "generalized Lagrangian" saddlepoint problem associated with (4.2) and
(4.4) is that which corresponds to the saddle function H on X X Y given by
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symmetrized separable convex programming 15

the formula

H(x,y) = ini {F(x,u) + (u,y}}

[21, Equation (4.2)]. Another easy calculation using (4.1) yields that

H(x,y) = f fW ~ *r(y) - <x>y>    if x e dom/> (4.5)
I + oo otherwise.

The associated Lagrangian problem (L) is thus

minimax      if(x) - (x,y}\. (4.6)
xedomf yeK'    l '

Notice that this problem is essentially linear in y (disregarding the relatively
simple cone constraint K*). The abstract Kuhn-Tucker condition (cf. [19],
[21]), i.e. extremality or optimality condition, corresponding to problems (4.2),
(4.4) and (4.6) is (0, 0) E dH (x, y). This is equivalent to the property that the
pair (x, y) is a saddlepoint of H, i.e. a solution of (L), and this is easily seen
to be equivalent, in view of (4.5), to the pair of subdifferential relations

yGdf(x),        -xGdxpK.(y). (4.7)
The symmetrized model now essentially follows from the above, upon

choosing/and K as in (2.3) and (2.4) and invoking the information contained
in Propositions 1 and 2. In view of the very general formulation of
Proposition 2, though, we can actually treat with no additional effort a form
of (P) slightly more general. Specifically, we assume henceforth that / is
defined as in (2.3) but with the slight change that, instead of taking the ct/s to
be of the form (2.2), we permit them to be of the form

\fÂ)(xj)    if£y>0,
°¡(*j>%)- Wxj) ifi = °> (4-8)

+ 00 if £,. < 0,

where h¡ is any given extended-real-valued convex function satisfying

«ho) > hj > fj°+- (4-9)
With this choice of / and K, problem (4.2) becomes the primal problem (P)
introduced following (2.3), where it is understood that the a/s may be of the
more general form (4.8), (4.9).

Turning now to the dual, in problem (4.4) we have K* given by (2.7). By
Propositions 1 and 2, formulas (2.8) and (2.9) are valid for \pf and of,
respectively. When substituted into formula (2.6) for/*, these serve to express
/* directly in terms of the individual conjugates f$, /*, ff. The resulting
expression for /* reveals /* as having structure essentially identical (i.e.
"symmetric") with that of /, except for the roles of i and j having been
interchanged. Note that in Q* also the roles of i and/ are interchanged. This
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16 L. McLINDEN

shows that problem (4.4) does reduce to problem (D) of §2, and that this
problem is indeed a symmetric dual of (P).

The reader can easily imagine the saddlepoint problem (4.6) written also in
terms of the additional structure now present.

Consider now the perturbational aspect of the model. Formula (4.1) shows
that problem (4.2) is embedded in a whole class of parametrized problems

u ->min {F(x, w)},

in which the perturbation parameter u measures the amount by which the
cone K and the graph of / have been shifted horizontally in relation to each
other. An examination of (4.3) and (4.4) reveals the (symmetric) fact that the
same type of perturbations are involved with the dual problem. It is an
important fact about perturbational duality that, when there is no duality
gap, the dual optimal solutions serve to describe, in terms of directional
derivatives and subgradient theory, the sensitivity or instantaneous rate of
change of the primal optimal value with respect to small perturbations in a
given direction u, say. (See [19, Theorem 29.1] and [21, Theorems 16 and 17].)
Viewed in relation to the specific structure involved in (P), the above class of
perturbations for (4.2) are as follows. Regarding the cone P as stationary (in
relative terms), the epigraph of /0 is translated horizontally, the epigraphs of
the /'s are each translated both horizontally and vertically, and the epigraphs
of the /'s are each both translated horizontally and also subjected to a
positive scalar magnification with respect to the origin. A dual optimal
solution will, according to the general theory, usually describe primal problem
sensitivity with respect to any vector combination of the above types of
problem perturbations.

A dual optimal solution^ which satisfies the condition

val(P) = val(D) = -f*(y) E R,   y E K*, (4.10)
is called a Kuhn- Tucker vector for (P). The importance of such vectors stems
from the following type of result.

Proposition 3. Let y be a Kuhn-Tucker vector for (P). Then the solutions of
(P), if any, occur among the global minimizers of the function

x^>H(x,y) = f(x) - (x,y)>.
In particular, x solves (P) // and only if

f(x)-(x,y}=mi{f-(-,y}}    and   xGK,(x,y) = 0.

Proof. From the way G and H were introduced above, we have that

G(y, v) =inf (inf {F(x, u) + (u,y}} - (x, v)]

= M{H(x,y)-(x,v}}.
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For any>» E K*, it therefore follows from (4.3) and (4.5) that

-f*(y)=inf{H(x,y)}=ini{f-(-,yy}. (4.11)

Now assume y is a Kuhn-Tucker vector for (P), and write ii for the common
optimal value in (4.10). Suppose x solves (P). Then/(x) = ii, x E K. But by
(4.10) and (4.11) we also have /x = - f*(y) < f(x) - (x,y},y E AT*. Using
/x E R, we can combine these facts to deduce both 0 < -<x,.y> and 0 <
(x, y>. Hence 0 = <jc, y>, and so it follows (using (4.11) again) that

/(*)-<*,y> -p-M{/¿ <•,;>>}.
On the other hand, suppose that x satisfies

x<EK,    <x,y> = 0,   f(x)-(x,y>=M{f-(-,y)}.

Using (4.10) and (4.11), we can then write ju = — /*(.y) = f(x) — <x, y>, and
hence ii = /(jc). Since also x & K, this shows that x solves (P).

The next result includes an explicit characterization of the Kuhn-Tucker
conditions.

Proposition 4. In order that x solve (P) and y be a Kuhn-Tucker vector for
(P), it is necessary that (x, y) solve (L), and this occurs if and only if (x, y)
satisfies the Kuhn- Tucker conditions

(x0, x', xJ) E cl P,       (y0,y',yJ) E P\

<(x0, x1, xJ), (yo,y',yJ)) = 0,      y0 E3/0(x0),

/(*,) < 0 < TJ,

y,. e3(tj^.)(x,)
v/E/,     f*{yj)-îj = o

^E3(/£,)(xy)
V/ E J,

where r¡J¡ is to be interpreted as $domj whenever tj, = 0, and /£y is to be
interpreted as hj whenever £y = 0. Conversely, if (x, y) satisfies the Kuhn- Tucker
conditions just listed and if the cone P is closed, then x solves (P) and y is a
Kuhn-Tucker vector for (P).

Proof. The condition — x E 3^.( y) in (4.7) is equivalent (using the
bipolar theorem) to x E cl K, y E K*, (x,y} = 0. The special form of K, cf.
(2.4), permits this to be written as the two conditions

(x0, x1, xJ) E cl P, (y0,y',yJ) £ P*, <(x0, x1, xJ), (y0,y',yJ)) = 0

and

£7 = 0,    £y E RJ,   tj7 £ R1,   r\J = 0.

Now consider the other condition of (4.7), y E3/(x). It is an elementary
consequence  of  the  additive  separability  of / that  this  splits  into  the
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18 L. McLINDEN

conditions
y0 E3/0(x0),

(>>,, t,,.) E ty(X» £,. ), Vi E /,    ( y,, tj,) E 3a,(x,, £, ), V/ E 7.
By the subdifferential formulas established in Propositions 1 and 2, the last
two sets of conditions can be broken down further. Combining all the
resulting facts with the cone information gives the characterization of the
Kuhn-Tucker conditions asserted. Next, the necessity assertion is immediate
from the implication (e) =» (f) of [21, Theorem 15]. When P is closed, so is K,
and hence the underlying function F defined in (4.1) is closed convex in u for
each fixed x. Nearly everything in the converse assertion now follows
immediately from the implication (f)=>(e) of [21, Theorem 15]. The only
remaining item to prove is finiteness of the saddlevalue. But it is easy to
check, using (4.5), that if H has a saddlepoint then its saddlevalue must be
finite.

The following corollary corresponds to the classical Kuhn-Tucker theorem.
The traditional role of some sort of constraint qualification is played here by
the relation

inf(P) = max(D), (4.12)
which is sometimes called "strong duality." We understand (4.12) to mean
that

val(P) = val(D) = -f(y)   for some y E K*. (4.12')
Note that, while them's fulfilling (4.12') are necessarily solutions to (D), they
need not in general be Kuhn-Tucker vectors for (P), cf. (4.10). This is because
the common optimal value in (4.12') could perhaps be — oo.

Corollary 4A (Kuhn-Tucker Theorem). Assume that the strong duality
relation (4.12) holds. In order that x solve (P), /'/ is necessary that there exist ay
such that (x,y) satisfies the Kuhn-Tucker conditions listed in Proposition 4.
When the cone P is closed, this necessary condition is also sufficient.

Proof. Let x solve (P) and^ satisfy the condition in (4.12'). Since/is never
-oo, val(P) > -oo; since /* is never -oo, val(Z)) < +oo. Hence the
common optimal value in (4.12') is finite, so that y is in fact a Kuhn-Tucker
vector for (P). Now apply the proposition.

For the necessary condition in Corollary 4A to have substance, we must
provide conditions which guarantee that relation (4.12) holds. The section
concludes with two such conditions. The first is an all-purpose condition,
applicable to the most general spaces.

Proposition 5. The strong duality relation (4.12) holds if there exist
(x0, x', xJ) E P and £7 > 0 such that
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(i)/0 is bounded above on some neighborhood of x0;
(ii) for each / E / there exists a, > 0 such that f < — a, on some neigh-

borhood of x¡; and
(hi)/or each) E /, a is bounded above on some neighborhood of (Xj, £■).

We remark that when an / is continuous, the corresponding condition in
(ii) can of course be replaced by the condition /(*,) < 0. Also, when the
topology on Xj is determined by a norm, it can be shown that the correspon-
ding condition in (iii) can be relaxed to simply requiring that / be bounded
above on some neighborhood of £~ lx,.

Proof. By [21, Theorem 17], it suffices to ensure that the primal optimal
value function <p(u) = infx{.F(;ic, u)} is bounded above on a neighborhood of
the origin. Since by (4.1) 9 satisfies

<P(")=inf {/(*) + «/* (* + «)}

= inf {f(x -u) + xpK(x)} < 4>K(x) +f(x - u)

for any x, it suffices to have an x E K such that the function u ->/(x — u), is
bounded above on some neighborhood of the origin. The rest of the proof
consists of translating this condition into the form asserted, using the particu-
lar form of/ and K given in (2.3), (2.1), (4.8) and (2.4).

The second result along these lines deals rather fully with the basic case in
which all the spaces are finite-dimensional. In §5, as an application of this
result, we shall obtain a new, refined criterion for the existence of optimal
Lagrange multipliers for ordinary convex programming in R".

The relative interior of a set will be denoted by "ri".

Proposition 6. Assume all the spaces are finite-dimensional and that val(P)
> - 00. Then a Kuhn-Tucker vector for (P) exists (and hence the strong duality
relation (4.12) holds a fortiori) if there exist an £y > 0 and (x0, x', xJ) E P
such that the conditions

(x0, x', xJ) E ri P, (4.13)

x0 E ri dom/0, (4.14)

*,. E ri dom/   and  f(x¡)<0, (4.15i)
£,. > 0   and   xj E § ri dorn/, (4.16J)

hold for all i £ / andj E J. Moreover, when any or all of the problem elements
Pyfo'fufj are polyhedral, corresponding weakenings in conditions (4.13) through
(4.16) can be made as follows:

(x0,x',xJ)eP, (4.13')

x0 £ dom/0, (4.14')
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/(*,)< 0, (4.150
/l,=/.0+,£,>0,x,Edom/.£,,l

where fâ is//)+if Ç-O.j K '   >>
Proof. Since the hypotheses entail finiteness of u = val(P) and since the

optimal value in (D) cannot exceed /x, it suffices to prove that

H = -f*(y)   for some .y £ K*. (4.17)
We shall first provide an argument leading to (4.17), introducing hypotheses
as needed, and afterwards indicate why the condition in the proposition
guarantees the hypotheses needed by our argument. We begin by scanning all
the functions/0, \p¡, Oj involved in/ (given by (2.3), (2.1), (4.8), (4.9)) to see
which are polyhedral and which are not. Note that \p¡ is polyhedral if and
only if/ is, and (by Proposition 2) a, is polyhedral if and only if/ is and also
hj = /0+. By a suitable relabeling (permutation) of the coordinates of X, we
can partition it as X = A", X X2 in such a way that / can be written in the
form

f(x) = /(*„ x2) = p(xx) + q(x2), (4.18)
where p consists of all the polyhedral terms of / and q consists of all the
nonpolyhedral terms. Next, effectively extend the domains of definition of p
and q to all of X by introducing functions/ and q via

p(x)=p(xx,x2)=p(xx)       (Vx2) (4.19)

and
q(x) = q(xx, x2) = q(x2)       (Vx,). (4.20)

For definiteness in what follows, we suppose that P is polyhedral. Then K is,
too, and so *pK(x) = 4>K(xx, x2) is also (even under the relabeling of variables,
since that operation is accomplished via a linear transformation). We can
now write

M = inf {/(*) + M*)} = ,inf Ap(*i) + 9(*2> + <M*i> *2>}
X (*l>*2)

=   inf   {p(xx, Xj) + q(xx,x2) + ypK(xx,x2)}
(x„x2)

- ~[(P+4>k) + *]•(%0). (4.21)
Since/ + \pK is polyhedral, by [19, Theorem 20.1] we have

[(# +<M + q]*(0, 0) = (p +.M* D ?*(0, 0),
where the infimal convolution on the right is actually attained, provided the
hypothesis

0 t^ dom(/ + \l/K) n ri dorn q (4.22)
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is satisfied. This means, according to (4.21), that

I" = - [(P +**)*(-"i. - "*) + **Oi> "2)] (4-23)
for some w = (wx, w2) belonging to the space Y — Yx X Y2 paired with
X = Xx X X2. Since (4.20) yields

-*/- \    -*/       \    Í q*(w2)   if w\ = o.q*(w) = q*(wx, w2) =    * v   2> '    _
I +00        otherwise,

and since /x > — oo, it follows from (4.23) that

h>, = 0   and   q*(wx, w2) = q*(w2). (4-24)

By [19, p. 179], we also have (p + ^K)*(0, - w2) = p* U »Wff(0, - w2), where
the inf-convolution on the right is attained, provided the hypothesis

0=^ dorn/ n dom \pK (4.25)
is satisfied. This means, according to (4.23) and (4.24), that

/x = ~[p*(zx, z2) + ^*(0 - z„ - w2 - z2) + 9*(w2)] (4.26)

for some z = (zx,z2) in K Since (4.19) yields

/*(z)=/*(z1,z2)=f^(Z'>     if^ = °'
I +00        otherwise,

and since /x > — oo, it follows from (4.26) that

z2 = 0   and   p*(zx, z2) = p*(zx).

From this, (4.26) can be rewritten as

Ii = ~[p*(zx) + q*(w2) + ^(-z„ - w2)]. (4.27)

Now notice from the additive separability in (4.18) that

f*(y)=f*(yi,y2)=p*(yl) + <i*(y2y
Using this together with the fact that $*- = \¡/Ko = \¡/K.(-•), we can rewrite
(4.27) as

(»"-[/•W + ^W].     >'  = (zl. w2)-

Using jx > — oo once more, we obtain y E. K* for this y, and so (4.17) is
established. This argument used (4.22) and (4.25). Since dom(/> + \pK) =
dom p n dom \pK, it is clear that

0 ¥= dom / n dom \pK n ri dom q (4-28)

is the hypothesis required for our argument. In the event that K is not
polyhedral, we simply group the term \¡/K with q rather than / and then mimic
the above argument. The hypotheses required for this are

0=£ dom/ n ri dom^y* + q)
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and
0 ^ ri dom \¡/K n ri dom q.

By [19, Theorem 6.5], these are equivalent to the single hypothesis

0i¿ dorn/ n ri dom ^ n ri dom q. (4-29)
To finish the proof, it remains only to check that the condition assumed in

the proposition amounts to either (4.28) or (4.29) according to whether P is or
is not polyhedral. Since K = P X Q, where Q is relatively open, dom \pK = P
X Q and ri dom \pK = ri P X Q. Now consider the remaining sets involved
in (4.28) and (4.29). By formulas (4.18)-(4.20), together with the additive
separability of p and q in terms of the functions /0, tp¡, o,, the issue reduces to
determining formulas describing the sets dom ty¡, dom a, and also their
relative interiors. But (2.1) yields dom uV = {(x,, £,)|/(x,) + £,. < 0}, and so
by [19, Lemma 7.3 or Theorem 6.8] it follows that

ri dom ifc = {(x,., £,)|x,. E ri dom/,/(x,) + £,. < 0}.

Also, according to (4.8) and (4.9) we have

dom Oj = {(x,, £,)|£7 > 0 and x, E dom/£,, or £, = 0 and x, E dom A,},

so by [19, Theorem 6.8] it follows that

ri dom a} = {(xy, £y)|£, > 0, Xj E £,■ dom/ }.

From this information it is easy to see that the condition in the proposition is
equivalent to either (4.28) or (4.29), depending on whether P is or is not
polyhedral. This concludes the proof.

Alternative conditions which ensure (4.12) can be developed by combining
[21, Theorem 17] with the various criteria given in [21, Theorem 18], much as
in the proof of Proposition 5. This we leave to the interested reader.

Finally, we remark that there are other general results which hold for the
present model by virtue of its fitting the general perturbational duality
framework. We refer the reader to [21, especially §7] from which it is possible
to deduce these further results concerning the symmetrized model.

5. Specialization to ordinary programming: comparison with the traditional
Lagrangian model. We now analyze the symmetrized model of §4 in the most
important case,

/ =0,   P = {(x0, x7)|x0 - x„ Vi £ /},

i*-{(.Vcy)bo +2 *-<>}. (5.1)

to see how it compares with the usual duality model for the ordinary convex
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programming problem

min{/o(xo)|/(xo)<0,V/E/}. (P0)

We shall see that the resulting symmetrized model is technically distinct from
ordinary duality, yet closely related and in fact, under generally mild
conditions, essentially equivalent. The symmetrized model thus provides an
alternate means of obtaining facts concerning the ordinary convex program.
In particular, we establish in this way a new, sharpened existence theorem for
optimal Lagrange multipliers in the finite-dimensional case. We also derive
(directly) under minimal assumptions the classical Kuhn-Tucker optimality
conditions for the case of nondifferentiable, not everywhere finite functions
in general spaces. As an illustration of the delicate interrelationships between
the ordinary and the symmetrized models, we conclude with a discussion of
the case of homogeneous constraint functions. This extends recent work of C.
R. Glassey concerning "explicit duality" for such problems.

By the "ordinary duality model" we mean the trio of problems consisting
of (P0) together with its so-called Lagrangian dual problem

max      inf   l/o(*o) +2 ^K) (Do)
d'>o  [x0ec  [ , ) j

and Lagrangian saddlepoint problem

inimax     /„ (x0) + 2 *&£ (*o)  • (Lo)
:cti'>o  I / I

We use the notation

minimax
*0e

C= C0n D   C„   C0 = dom/0,    C, = dorn/ Vi E / (5.2)
/

and make the trivial nondegeneracy assumption that C =£0. In the case of
functions not everywhere finite, it is essential to observe the restriction
x0 E C in both (D0) and (L0).

This trio arises from the general perturbational duality model by choosing

^o (*o> iO = f /o (Xo)    iUi (Xo) < ft V'' e 7' (5-3)
I + oo        otherwise.

Indeed, minJto{F0(x0, 0)} is exactly (P0), and when we generate G0 and H0
from F0 by means of the formulas

#o(*oV)=inf {F0(x0,itx/) + </x7,T,7>}

and

G0(*)7, vo) = inf { ffo(xo, V1) - (*o, Vo)}

prescribed in [21, see Equations (4.2) and (4.15)], we easily obtain by (5.3)
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that

HQ(x0, V1) =

/o (*o) + 2 ruf, (x0)    if x0 E C and t, ' > 0,
/

- oo if x0 £ C and tj ' > 0,
+ 00 if x0 £ C,

(5.4)

and

Gq{t]1, v0) = (5.5)
inf      /o (*o) + 2 ^ (*o) - <*0> ü0> [     if tj7 > o,

x0<EC    { j )

. — oo otherwise.
From these, it is clear that the problem max7J;{G0(Tj7, 0)} coincides with (D0)
and the problem

minimax i//0(x0, tj7)}

coincides with (L0).
Now consider the form taken by the symmetrized model of §4 under the

particular choice (5.1). The primal problem (P) becomes

min{/0(x0)|(x0, x7, £7) such that/(x0) < 0 V/ E /,

and£7 = 0,x0 = x, V/£/}.      (Ps)

The extra variables (x7, £7) here are of course completely determined and
could be suppressed without harm. Nevertheless, for the purpose of
maintaining a clear distinction between the ordinary and the symmetrized
model, it is useful to keep in mind, at least in a formal way, the presence of
these additional variables. With the dual and Lagrangian problems (Ds) and
(Ls), analogous distinctions actually can make a difference in terms of
solvability.

The dual problem (D) when specialized according to (5.1) becomes

nun [mCvo) + 2OThiX'jM1 > o,y0 + 2 -v, = o},

where/*tj, is/*0+ whenever tj, = 0.      (Ds+)

Proposition 7(a) below shows that, under a usually harmless assumption, we
can substitute for (Ds+) a simpler dual problem not requiring the recession
functions _/*0+:

mm {^(^o) + 2(M0'/)fo/ > o,y0 + 2 yt - o},
where/*tj, is i^{0} whenever tj, = 0.        (Ds)
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In the course of the proof it is shown that the relations

val(D.) < val(Ds+) < val(D0)
hold in general. Proposition 7(b+) provides a relatively mild condition under
which solving the symmetrized dual (Ds+) is equivalent to solving the ordinary
dual (D0). Proposition 7(b) is a variant which provides the condition under
which solving the simplified symmetrized dual (Ds) is equivalent to solving
(D0).

The reader will notice here and below that, in labeling results and
equations pertaining to the two symmetrized dual problems, we try system-
atically to use the presence or absence of the superscript + to signal reference
to problem (Ds+) or (Ds), respectively. In other words, the + is employed in
this way as a mnemonic device intended to signal the use of/*0+ or i//{0) for
the indices / corresponding to tj, = 0.

Proposition 7. (a) Assume that the effective domains of the functions satisfy
C0 c C„   Vi E / (5.6)

(see (5.2)). Then the optimal values in (Ds+) and (Ds) coincide. Moreover, any
solution of (Ds) is a solution of (Ds+ ), and conversely,if(y0,y,,r¡1) solves (Ds+ )
then (y0,y1, tj7) solves (Ds), where

y0 = ^o + 2 y i    and   y¡ =      '      '       °' (5.7)
/„ i y»   * *= j+»

/or/0={/E/|Tj,. = 0},/+ = /\/0.
(b+) Assume that for each tj7 > 0 the functions satisfy the condition

-(/o + 2 %«) K) = minJ^(70)+2(/*T),.)(y,.)|y0 + 2>', = fo}.

where t]J¡ is ¡pc andffr)¡ isf*0+ whenever tj, = 0.   (5.8 + )

Then the optimal values of (Ds+) and (D0) coincide. Moreover, if (y0, y', tj7)
solves (Ds+) then tj7 solves (D0), and conversely, if tj7 solves (D0) then there
exist y 0 and y ' such that (y0,y', tj7) solves (Ds+).

(b) Assume that for each tj7 > 0 the functions satisfy the condition

-(/o+2li) (%> = min ji* (y0) + 2 (/**,,)(y,)I.Vo + 2 y,, - «A

where I+ = {/ E 7|tj,. > 0},    (5.8)

and assume that (5.6) holds as well. Then the optimal values of (Ds) and (D0)
coincide. Moreover, if (y0,y',r¡') solves (Ds) then tj' solves (D0), and
conversely, if tj7 solves (D0) then there exist y0 and y' such that (y&y', tj7)
solves (Ds).
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Proof. Observe first that any collection <p„ . . . , q>m of proper convex
functions having lower semicontinuous hulls somewhere finite satisfies

inf{2 <P,} >inf{2 cl<p,} = -(2 cl <p,)*(0)

= -ch>*D • • • D«P*)(0) > -(<pfD • • • D<)(0).   (5.9)
The second equality here follows by the same argument as given in [19, p.
145]. Using (5.9) and then i/>{0) > /*0+, we have

inf ( /o + 2 V¿ ) = inf ( /o + 2 *q. + 2 tá )
c y        i       ]     xo {       i0 i+      )

> -inf(y*(>>0)+ 2 (y¡*o+)U) + 2(^,)U)l>'o + 2>', = o)

> -infido) + 2 (fTvdiydlyo + 2 y,= o) (5.io)

for each tj ' > 0. This establishes the general relations
val(Ds) < val(Ds+) < val(D0). (5.11)

Now assume condition (5.6). Then ^c < i//c and hence J*0+ > y*0+ by
Lemma 1 in §3. If (y^y1, tj7) satisfies tj7 > 0, y0 + 2/y¡; = 0 and y0 E
dorn/*, then we can write

fS(y0) + 2 (JP0+x^) >JS(y0) + 2 Cfto+Xy,)

> IS (y0) + ̂ o+( 2 y) > IS (yo) = fS (/o) + 2 twin)-   (5.12)
v h     I lo

The second inequality is by the subadditivity of /*0+ (Lemma 1 shows it is a
support function), while the third inequality follows from y0 E dom./* and
the definition of recession function (see ff. (2.2)). Since \pm > /*0+, equality
must hold throughout (5.12). Hence

fS(yo) + l(fro+)(yi) + l(frvi)(yd
/o /+

= Jg (y0) + 2 *m(y¿ + 2 {J?n,M%
where y0 + 2/j?, = (y0 + 2/ y¡) + 2/+ y, = 0. This shows that the optimal
values in (Ds+) and (Ds) coincide and that if (_y0,.y7, tj7) solves (Ds+) then the
(y0,y',r\') induced as in (5.7) solves (Ds). On the other hand, suppose that
(y0,y', r\') solves (Ds). If the (common) optimal value is — oo, then trivially
Cvo'-V7. V1) also solves (Ds+). So suppose val(Ds) > -oo. Then necessarily
y, = 0 for each / E IQ, so that \¡>[0}(y¡) = 0 = (/*0+)(y¡) for such z's. Hence
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(y0,y', tj7) yields the same value in the objective function of (Ds+) as it does
in (Ds). Since the two optimal values agree, this vector must also be optimal
for (Ds+). This completes the proof of part (a). Now assume condition (5.8+).
This yields equality, with attainment by some _y's, in the first inequality of
calculation (5.10). The conclusions of part (b+) are immediate from this.
Finally, assume conditions (5.8) and (5.6). These yield

inf{/o + 2^} -mf{/o + 2^+2^}-inf{/o + 2Vij

= -mini ft (y0) + 2 («O./bo + 2 y,= o)

for each tj7 > 0. The conclusions of part (b) are immediate from this.
Condition (5.6) can always be met by simply redefining/0 (if necessary) to

be + oo outside C. The new /0 will then satisfy C0 = C c C,, V/ E I. The
only adverse effect likely from this redefinition is the possible complication of
the formula for/*. This can occur, as for example in the case of programming
subject to homogeneous constraints discussed at the end of this section.

Conditions (5.8) and (5.8+) are somewhat more restrictive hypotheses but
still relatively harmless. Indeed, generally speaking, they are easier to satisfy
(i.e. weaker) than a constraint qualification. For example, according to [21,
Theorem 20(a)], (5.8) is satisfied in general spaces if there exists an x0 such
that each of the functions /0, / (/ E I) is finite at x0 and all except possibly
one of them are bounded above on some neighborhood of x0. Alternatively, if
X0 = R", (5.8) is satisfied whenever

0^riCon H   riC,.,
/

where here the relative interior operation can be deleted for any and all of
those functions /0, / (i £ 7) which happen to be polyhedral [19, Theorems
16.4, 20.1]. Other conditions sufficient to guarantee validity of (5.8) and
(5.8+) in both finite- and infinite-dimensional contexts can be formulated
using [21, Theorem 20], [6, §§4e and 9c] and [22, Theorem 5.6.2].

For a somewhat tangential yet related discussion of the consequences of
(5.8), see [5].

We remark that in the presence of (5.6) it can be proved that condition
(5.8) is equivalent to condition (5.8+).

From Proposition 7(a) it follows that, when (5.6) can be arranged (without
adverse effects from complicating ft), we might as well deal with the
simplified symmetrized dual (Ds) rather than the technically correct version
(Ds+). It should be noted, though, that in so substituting (DJ for (Ds+), we will
in general be discarding certain unbounded portions of the solution set of
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(Ds+). But this is immaterial in terms of the actual solvability of the dual
problem, so long as (5.6) holds (cf. (5.7)).

In connection with Proposition 7(a), we remark that even without condition
(5.6) an asymptotic relationship holds between (Ds+) and (DJ. Namely, by
using [17, Theorem 3b(e)] one can show that to each feasible solution (y0,
y'y-ri') of (TV") there corresponds a net (y0, y'a, Tja7) of vectors, indexed by a,
satisfying

t?„' > 0,   tj7 = lim Tja7,    0 = limly0 + 2 /,,„)

and

r0(yo) + l(frvd(yi) < — lim ft(yo) + Il(fr\a)(yi,a)i
If (Ds) were known to be normal (i.e. if the perturbation function correspond-
ing to (Ds) satisfied (use y)(0) < y(0)), it would follow that va^DJ =
val(Ds+) and hence that each solution of (Ds) is a solution of (Ds+).

We turn our attention now towards a comparison of Kuhn-Tucker theories
associated with the symmetrized and the ordinary models. For the ordinary
model this involves the traditional Lagrangian function H0 given in (5.4),
while for the symmetrized model it involves specializing the function H given
by (4.5) according to (5.1). This yields Hs, defined as follows:

Hs(x0, x', t',y0,y', t,7) = /0(x0) - <(x0, x7, £7), (y0,y', tj7)>    (5.13)

if the "x-conditions" x0 E dom/0, /(x,) + £, < 0 Vi £ / and the "y-
conditions" tj7 E R1, y0 + 2/.y, = 0 are both satisfied; Hs(x,y) — — oo if
these x-conditions are met but the y-conditions fail; and Hs(x,y) = +oo if
the x-conditions fail. The Lagrangian function Hs plays the same role for (PJ
and (Ds+) (and also (Ds) when (5.6) holds) as H0 plays for (P0) and (D0). In
particular, the pairs (x0, x7, £7), (y0,y1, tj7) characterized in Proposition 9
below as the solutions to the "symmetrized" Kuhn-Tucker conditions are
precisely the saddlepoints of the minimax problem (Ls) determined by Hs.

The Kuhn-Tucker vectors for (Ps) are, according to (5.1) and the general
definition in §4, those (y0,y1,^') which satisfy

and

val(P.) =

v1 > o, y0 + 2 y¡ = o

£(*>) +2 (^o+)U) + 2 (fT-ndiyd
'o 1 +

(5.14a+)

E R,   (5.14b+)

where as usual we write /„ = {/ E 7|tj(- = 0} and 7+ = 7 \ 70. In particular,
they are solutions of (Ds+). Also of interest are the vectors which satisfy the
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stronger conditions

r? ' > 0,   y0 + 2 y, = 0,   yt = 0 Vi £ 70 (5.14a)

and

val(Ps) = - R. (5.14b)

Vectors (^o»^7' V) satisfying the latter pair of conditions will be called strong
Kuhn-Tucker vectors for (Ps). They are contained in the solution set of the
simplified dual (Ds). The Kuhn-Tucker vectors for (P0) are the tj7 which satisfy

T,7 > 0,   val(Po) = inf {/o + 2 U } G 7?. (5.15)

These are also called optimal Lagrange multipliers for (P0). The next result
describes the interrelationships among these objects.

Proposition 8. Let tj7 > 0 be given, and write I+ = {i £ 7|tj, > 0} and
70 = 7 \ 7+. The implications (b)=>(b+) =>(a) hold among the conditions
below. Furthermore, if (5.8+) holds then (b+) is equivalent to (a), and if (5.6)
holds then (b) is equivalent to (b+). If both (5.8) and (5.6) hold, the three
conditions are mutually equivalent.

(a) tj7 is a Kuhn-Tucker vector for (P0), i.e. (5.15) holds;
(b+) there exist y0 and y' such that (y0,y', tj7) is a Kuhn-Tucker vector for

(PJ, i.e. (5.14+) holds.
(b) there exist y0 andy1 such that (y0,y', tj7) is a strong Kuhn-Tucker vector

for (Ps), i.e. (5.14) holds.

Proof. Note first that to go along with the general relation (5.11)
established above we also have

val(D0) < val(P0) = val(Ps). (5.16)
The implication (b) => (b+) is trivial from the fact that/*0+(0) = 0. Suppose
(yo>y'> V1) satisfies (5.14+). By the estimate (5.10) together with the general
inequalities (5.11) and (5.16), it follows that tj7 satisfies (5.15). Hence (b+) =>
(a). Next, suppose tj7 satisfies (5.15) and that condition (5.8+) holds. Then by
Proposition 7(b+), there exist y0 and y1 such that (5.14+) holds. Hence,
(a)=>(b+) in the presence of (5.8+). Now suppose (y^y1,^1) satisfies
(5.14+) and that condition (5.6) holds. Define y0 and y' as in (5.7). By
Proposition 7(a) it follows that (y0,y', tj7) satisfies (5.14). Hence, (b+) =>(b)
in the presence of (5.6). The final assertion follows by combining what has
already been proved, using the fact (remarked earlier) that (5.8+) is equiva-
lent to (5.8) in the presence of (5.6). Alternatively, apply Proposition 7(b).
This completes the proof.
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Propositions 3 and 4 and Corollary 4A from §4 can all be specialized
according to (5.1), of course, to yield comparable assertions concerning the
trio (Ps), (Ds+), (Ls). We will not write all of this down, though. Instead, we
focus on just that part of Proposition 4 characterizing the Kuhn-Tucker
conditions, to see what they look like for (Ps).

Proposition 9. A pair of vectors (x0, x7, £7) and (y0, y', tj7) satisfies the
Kuhn-Tucker conditions for (Ps) if and only if it satisfies the conditions

x0 = x,V/£7,    £7 = 0,    _y0 + 2v, = 0> (5.17a)

y0£3/0(x0), (5.17b)

/(x0) < 0 < tj,    and   /(x0) • Tj, = 0 Vi £ 7, (5.17c)

>>,. E3^dom/(x0)V/E70   and   y,. E tj,3/(x0) Vi £ 7+,   (5.17d+)
where 70 = (i E 7|tj, = 0} and 7+ = 7 \ 70. When (5.6) holds, it is possible to
satisfy the preceding conditions if and only if it is possible to satisfy the
simplified conditions obtained by replacing (5.17d+) with

y, =0Vi£70   and   y, E tj,3/(x0) Vi E 7+. (5.17d)

Proof. The first assertion is immediate from Proposition 4, in view of (5.1).
Now observe that 3(t)¡/)(x0) = tj,3/(x0) whenever tj, > 0 and 3/(x0) ¥=0,
and that 0 E axpc (x0) whenever x0 E C,. From these facts it is clear that any
pair (x0, x7, £7), (y0,y', tj7) which satisfies (5.17) must also satisfy (5.17+).
Now suppose we have such a pair satisfying (5.17+), and assume that
condition (5.6) holds. Define (y0,y', tj7) as in (5.7). It is clear that the given
(x0, x7, £7) together with (y0,y', tj7) satisfy everything in (5.17) except
possibly requirement (5.17d). But we have x0 E C0 c C„ from which 3»/>c(x0)
C fyCo(x0) follows easily. We also have the easy fact that 3/0(x0) + d\pc (x0)
C 3/o(*o)- Combining this information yields

9a =7o + Sx-e9/o(*o) + 2 tyq(*o)

C9/o(*o) + 2 tyc0(xo) c3/o(x0),
h

and so the proof is complete.
The extremality conditions just derived for the symmetrized model, at least

in the simplified form (5.17), are extremely closely related to the well known,
classical Kuhn-Tucker conditions. In order to make a precise comparison
between the two in the present context, we now derive the classical Kuhn-
Tucker conditions. These are obtained as part (b) of the following result,
which extends [19, Theorem 28.3 (see 1972 edition)] to the general case.
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Proposition 10. (a) In order that x0 solve (P0) and tj7 be a Kuhn-Tucker
vector for (P0), it is necessary and sufficient that (x0, tj7) solve (L0).

(b) In order that (x0, tj7) solve (L0) it is sufficient that (x0, tj7) satisfies the
conditions

/ (x0) < 0 < Tj,    and   / (x0) • tj, = 0 Vi E 7 (5.18a)
and

0£3/0(x0)+2 vM(xo)> (5.18b)

where I+ — (i £ 7|tj, > 0}. When (5.6) an<7(5.8) hold, these conditions are also
necessary.

Proof. Most of part (a) follows immediately from the equivalence between
(e) and (f) in [21, Theorem 15], since the function F0 defined in (5.3), which
underlies the ordinary duality model, is clearly closed convex in ¡i1 for each
fixed x0. The finiteness of the common optimal vlaue for the necessity half of
(a) is built in to the definition of Kuhn-Tucker vector. Finiteness in the
sufficiency half follows from the fact that if (x0, tj7) is a saddlepoint of 770
then x0 E C and tj7 > 0, in which case the saddlevalue is finite. This is easy
to deduce directly from (5.4). (It requires our nondegeneracy assumption
C ¥=0.) Now let us establish (b). As just noted, if (x0, tj7) is a saddlepoint of
770 then necessarily x0 £ C and tj7 > 0. From this it follows, using (5.4), that
the saddlepoint condition is equivalent to the conditions (x0 £ C, tj7 > 0
and)

2   (Tj,-Tj,.)-/(X0)<0,      Vij7>0,

and

/o(*o) + 2 %//(*o) < /o(*o) + 2 yJi(xo)>   v*o e c.
i i

Now it is easily seen (in the presence of x0 E C, tj7 > 0) that the first of these
is equivalent to (5.18a) and that the second is equivalent to

OE3(/o + 2 H/iW
where tj¿/ is interpreted as <|/c whenever tj, = 0, or in other words, to the
condition

0 £ 3 i/o + 2 4>q + 2 ruf, )(x0), (5.18b*)

where 70 = {i E 7|tj, = 0} and I + = 7 \ 70. The remaining analysis concerns
breaking (5.18b*) down further. Suppose (x0, tj7) satisfies (5.18a) together
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with (5.18b). Then

0E3/0(x0) + 2 {0} +S 1,-9/i(*o)
i0 i+

c3/o(x0) + 2 WcXxo) + 2 vM(xo)
lo '+

C 3 i/o + 2 ^+2^-)(*o)V        /„ /+       /
shows that (5.18b*) holds. The first inclusion here follows trivially from the
fact 0 £ d\pc (x0), while the second is an elementary fact concerning the
subdifferential of a sum (see, e.g. [19, proof of Theorem 23.8]). This
establishes the sufficiency part of assertion (b). Now assume conversely that
(x0, tj7) satisfies (5.18a) together with (5.18b*) and that conditions (5.6) and
(5.8) hold. By (5.6) we have that

/o + 2 "fe; +2 nJtI - /o + 2 1¡/<»
h i+ i+

and hence (5.18b*) simplifies to 0 E3(/0 + 2/+Tji/j)(x0). From (5.8) it follows
by an elementary argument that

9 i/o + 2 ruf, )(x0) = 3/0 (x0) + 2 VM (xo)-

(Such an argument can be found in [5, §2].) Combining the last two facts, we
obtain (5.18b), thus completing the proof.

It is clear that the ordinary Kuhn-Tucker conditions (5.18) are satisfiable if
and only if the simplified conditions (5.17) corresponding to the symmetrized
model are satisfiable. Similarly, conditions (5.17+) are satisfiable if and only
if conditions (5.18+) are, where by (5.18+) we mean (5.18a) together with

0 E3/o(x0) + 2 a*c,(*o) + 2 rj,9/(x0). (5.18b+)
4> 1*

Corollary 10A (Kuhn-Tucker Theorem). If conditions (5.6), (5.8) and the
strong duality relation inf(P0) = max(D0) hold, then in order that x0 solve (P0) it
is necessary that there exists an tj7 which together with x0 satisfies the Kuhn-
Tucker conditions (5.18). Conversely, if (x0, tj7) satisfies (5.18), then x0 solves
(P0) andt]1 is a Kuhn-Tucker vector for (P0).

Proof. The converse assertion is immediate from the proposition. Suppose
now that inf(P0) = max(D0) = /x. From (5.5) it is clear that no tj7 can yield
value + oo in (D0), so since (D0) has a solution we must have /x < + oo. (This
uses our nondegeneracy assumption C ¥=0; see (5.5).) Suppose (P0) has a
solution. Then /x > — oo, because (5.3) shows that no x0 can yield value — oo
in (P0). Hence /x must be finite, and the hypothesized solution to (D0) is
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actually a Kuhn-Tucker vector for (P0). Now apply the proposition.
Notice that Proposition 10 and Corollary 10A are the analogues, for the

ordinary duality model, of Proposition 4 and Corollary 4A. For completeness,
we provide the analogue of Proposition 3. This extends [19, Theorem 28.1] to
the general case.

Proposition 11. Let tj7 be a Kuhn-Tucker vector for (P0). Then the optimal
solutions to (P0), if any, occur among the global minimizers of the function

xo^> H0{x0, tj7) =
fo(xo) + 2 T\ifi(xo)    'fxo e C,

i
. + oo otherwise.

In particular, x0 solves (P0) if and only if

x0   solves inf   /o + 2 V¡f¡\ (5-19)

and also satisfies

f(x0) < 0 < T,,.   and  /(x0) • T,,. = 0,   Vi £ 7. (5.20)
Proof. We can obtain this result very succinctly as a corollary to

Proposition 10, as follows. Since tj7 is a Kuhn-Tucker vector, the proof of
Proposition 10 shows that x0 solves (P0) if and only if (x0, tj7) satisfies (5.18a)
and (5.18b*). But these conditions are the same as (5.20) and (5.19), respec-
tively. An elementary, direct proof can also be given. This we leave to the
reader.

Next, we discuss constraint qualifications. This is the term usually given to
any of a variety of conditions which guarantee the existence of a Kuhn-
Tucker vector, or at least guarantee the strong duality relation (4.12) for the
model under study. Propositions 8 and 7 imply that any result along these
lines for the symmetrized model (involving either (Ds+) or (DJ) yields the
corresponding result for the ordinary model. Sharp conditions under which
the converse implications hold are provided also in Propositions 8 and 7.
Notice in particular that when conditions (5.6) and (5.8) both hold, it makes
no difference for which of the (three) models one establishes such results.
That is, under these conditions it is immaterial whether one derives the result
for (P0) and (D0), for (Ps) and (Ds+), or for (PJ and (DJ.

This raises the question of whether one can generate weaker (hence better)
constraint qualifications by working with the symmetrized model. In general
the answer is no, and the reason is as follows. Constraint qualifications are
intimately tied up with the optimal value function's being bounded above on
some neighborhood of the origin in U, the space of perturbations (see [21,
§7]). Now the U involved in the symmetrized model is X0 X X1 X R', since
the model includes horizontal translations of the functions /0, / (i E 7) as
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well as vertical translations of the /'s. On the other hand, U for the ordinary
model is simply R1, since only the vertical translations are involved. So if X0
is infinite-dimensional, it is generally more difficult to ensure the bounded-
ness property for q>s, the optimal value function for (PJ, than it is for <p0> tne
optimal value function for (P0).

To illustrate, consider the form taken for (Ps) by the all-purpose constraint
qualification presented in Proposition 5. It is that there should exist an x0
satisfying both (l)/0 is bounded above on some neighborhood of x0, and (2)
for each i £ 7 there exists an a, > 0 such that / < — a, on some neigh-
borhood of x0. This qualification is essentially based on applying [21,
Theorem 18(a)] to Fs, as an inspection of the proof of Proposition 5 quickly
reveals. It guarantees an optimal (y0, y7, tj7) for (Ds+), where the component
tj7 is optimal for (D0) by Proposition 7 (see the estimate (5.10)). By contrast,
applying the same tool [21, Theorem 18(a)] to F0 yields a considerably weaker
(hence better) constraint qualification, namely, that there should exist an x0
in dorn/, such that/(x0) < 0 for every i E 7 (the so-called Slater condition).
The latter condition, though weaker, does however have the countervailing
aspect of guaranteeing only an optimal tj7 for (D0). Lacking further
assumptions, it is not enough to ensure in general the existence of an
"optimal" pair y0,.y7 which, together with tj7, will solve (Ds+); condition (5.8)
or (5.8+) would typically be required for that (see Proposition 7). In situations
where not both (5.6) and (5.8) hold, there is then a certain tradeoff: constraint
qualifications for the ordinary model are generally weaker, but the
conclusions implied are not as strong as for the symmetrized model.

In the case X0 = R", it turns out that the general difficulties mentioned
above do not apply. This is due in part to the availability of the considerable
arsenal of special facts concerning relative interiors. Combined with the
additive separability structure which is the distinguishing feature of the
symmetrized model, this permits the following particularly refined existence
result. It extends slightly Rockafellar's theorem [19, Theorem 28.2], which
already refined the Slater condition to handle affine functions.

Proposition 12. Assume X0 = R" and val(P0) > -oo. In order that there
exist a Kuhn- Tucker vector for (Ps) (and hence a fortiori a Kuhn- Tucker vector
for (P0)) it is sufficient that there exists an x0 satisfying the conditions

x0 E ri dom/0 (5-21)
and

x0 £ ri dorn/,   &(x0) < 0 (5.22¡)

for each i E 7. Moreover, when any or all of the functions f0, / (i E 7) are
polyhedral, the corresponding conditions (5.21), (5.22¡) can be weakened as
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follows:
x0 E dorn/,, (5.21')

/(x0) < 0. (5.220
Proof. Proposition 6 specialized according to (5.1) yields a Kuhn-Tucker

vector (y0,y', tj7) for (Ps). By the implication (b+) => (a) of Proposition 8, the
component tj ' is a Kuhn-Tucker vector for (P0).

We conclude this section with a brief discussion of the case in which all of
the constraint functions are (translates of) homogeneous functions. That is,
we assume now that each/ has the form

fi(xo) = M*o - a,) - «/> (5-23)
where h¡ is positively homogeneous of degree one and is assumed to be closed.
Now it is easy to check that a closed proper convex function is homogeneous
if and only if its conjugate is an indicator (i.e. assumes only the values 0 or
+ oo). Hence, A* = \j/D for some nonempty closed convex set D¡, and in fact
one has

D, = { y0 £ ^o|<x0, y0> < A,(x0), Vx0 E X0 } =3A,(0)

(cf. [19, Corollary 13.2.1]). From this it is easy to compute that

(fTvdiyo) = W^o) + <<h>yo> + *.,«, (5-24)
for any tj, > 0. Here, for notational convenience we use the value tj, = 0 to
represent the case of 0+, i.e.

Cff0+)0>0) = W-M + ^o)-
Due to formulas (5.23) and (5.24), the various problems treated earlier in

this section assume the following form:

min{/0(xo)|A,.(x0 - a,) < a,, Vi £ 7 }; (P0)

max      inf      /0(x0) + 2 *),[M*o - a,-) - «,] ) I; (Do)
7)'>o   {x0ec  { j ) j

- min jy* (y0) + 2 [<ai,>'o> + V*]!1»' > °>

^0 + 2^,=0,>',ET,,.AViE/

where tj,7), is 0+7J), whenever tj, = 0;       (Ds+)

same as (Ds+), except for tj,7J), being
interpreted as 07), = {0} whenever tj, = 0. (Ds)

In a recent paper [2], C. R. Glassey essentially argued that solving (D0) is
equivalent to solving the projection of (Ds) onto R1, i.e. solving for those
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Tj7 > 0 satisfying

val(Ds) = -inf{y*(y0) + 2 [<**,> + %«,]!

>'o + 2>', = 0,>',ET,,.A,Vi£7j.

The proof given, treating under certain assumptions the case in which
X0 = 7?", the a¡'s are all zero, and/, is linear, has gaps however (see [2, p.
181]), and is conclusive only for functions A, which are everywhere finite. (E.g.
the formula derived just above equation (5a) requires C = X0 in our
terminology.) The difficulties which can arise when C ¥= Xq, or more
generally when (5.6) fails, are illustrated by the following examples.

Example 1. Suppose X0 = R2 and 7 = {1, 2}, and let/0,/,,/2 be as follows:

/oW = £2  (VÉ, en

/i(;Co)=f-2(£1£2)1/2    ifx0>0,
{ + oo otherwise

:(*o)= { +

otherwise,

aw-,; "i'*0'+ oo otherwise.

This yields for the primal problem val(P0) = 0, achieved on {x0\£x > 0 = £2},
and for the ordinary dual (note that C = 7? \ here), val(D0) = 0, achieved on
{t)7|tj,=0<t)2}. Now it is not hard to verify that the conjugates of/,,/,,/2
are the indicator functions

/Vvï-i0 if j^0 = (0, 1),h (yo) "i
l + oo     otherwise,

ÍW-j» if tj, < O and tj,tj2 > 1,
oo     otherwise,

if Tj! < 0 and tj2 — 0,
{ + oo     otherwise.

From this it follows that for the symmetrized dual, val(Ds+) = 0, achieved on
{0V77, rjOk = 0 < tj2, y0 - (0, 1) = - yx,y2 = (0, 0)}, while for the
simplified symmetrized dual, val(Ds) = — oo (infeasible). The latter means, of
course, that the projection of (Ds) onto the space R' = R2 oí multipliers tj7
also has value — oo and is infeasible.

This example shows that (Ds), and its projection, can be hopelessly
inadequate, with in fact an infinite gap between val(Ds) and val(Ds+), even
when both (5.8) and (5.8+) are satisfied and there exists a Slater point.
Condition (5.6) fails here. The next example is a slight variation, involving a
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nonlinear/0, illustrating a finite gap between val(Ds) and val(Ds+), where both
values are achieved.

Example 2. Let everything be the same as in Example 1 except for
replacing the/, there by/0(x0) = eél (V£, £ R), so that

tj2 In tj2 — tj2    if tj, = 0 and tj2 > 0,
fo(yo)=0 ifÎJl = 0 = Tj2,

. + oo otherwise.
Then one can check that val(P0) = 1, achieved on {x0|£, > 0 = £2}, val(D0)
= 1, achieved on {tj7|tj,=0<tj2}, and val(Ds+) = 1, achieved on
{OW7* v')\Vi = 0 < Tj2,^0 = (0, 1) = - yx,y2 E D2), whereas val(Ds) = 0,
achieved on {(y^y1, tjOItj, = 0 < tj2, y0 = (0, 0) = y, = y2}.

According to Proposition 7, if condition (5.6) holds then solving (Ds+) is
essentially equivalent to solving the simpler (Ds), and if in addition (5.8) holds
then solving (Ds), or its projection, is essentially equivalent to solving (D0).
The pair of conditions (5.6), (5.8) is weaker than the conditions imposed in
[2], and furthermore does not require linearity or even homogeneity of /0.
When (5.6) cannot be conveniently arranged, though (as for example when /0
is linear and the A,'s are not everywhere finite), then according to Proposition
7(b+) we could still use (Ds+), or its projection onto 7?7, as a satisfactory dual
provided (5.8+) is satisfied.

6. The ordinary model as the projection of the symmetrized model. In the last
section we saw that the problems (P0), (D0), (L0) in the ordinary duality
model can each be regarded as essentially a projection of the corresponding
problem (Ps), (Ds) (or (Ds+)), (Ls) in the symmetrized duality model. We shall
now show that in fact the entire ordinary problem trio collectively is the
projection of the entire symmetrized problem trio. This we do by showing
that the three projection transformations underlying the phenomena in §5 are
interrelated in a certain well-prescribed way, much as are the three functions
F, G, H which characterize the three problems in a perturbational duality
model.

The projection transformations involved are linear transformations which
are not everywhere defined. We find it appropriate to view them as oriented
convex processes (see Rockafellar [19, §39] for definitions). Specifically, we
shall exhibit three oriented convex processes, call them M, N, L, which are
interrelated by the adjoint operation of [19] and which satisfy the relations

MF = F0,   NG = G0,   LH = H0. (6.1)
The left-hand sides of these relations represent certain operations of forming
images of (convex, concave, or convex-concave) functions under (variously
oriented) convex processes; these operations will be explained as we go. Here
and throughout, the functions Fq, G0, H0 are those of (5.3), (5.5), (5.4) while
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the functions F, G, H are those of (4.1), (4.3), (4.5) specialized according to
(5.1). Each of the three relations in (6.1) expresses one of the individual
projection phenomena of §5. It is the further fact that M, N, L are interrela-
ted by means of the adjoint operation which corresponds to our assertion that
the whole symmetrized trio projects onto the whole ordinary trio. Viewed
another way, the results to follow establish under mild conditions the
commutativity of certain constructions involving taking conjugates of
functions, adjoints of processes, and images of functions under processes.

Let M: X X U -* XQ X R ' be the sup-oriented convex process given by

M(x,u)=\{ (*<>' *'))     if «o = 0 and «7 = 0, {f> 2)
10 otherwise.

Since F is convex and M is sup-oriented, the function MF: X0 X R 7 -»
[ - oo, + oo], called the image of F under M, is defined [19] by

(MF)(x0, ,x7) = inf{F(x, u)\(x, u) E M"1 (x0, /x7)}- (6-3)

It is not hard to show that this construction results in a convex function.
What we wish to note is the following.

Proposition 13. The identity MF = F0 holds without any additional
assumption.

Proof. We can simply compute that

(MF)(x0, (i1) = inf {/(x0, x7, £7) + ^(x0, x7, £7 + ja7)}
x',i'

= inf{/o(x0) + 2 */(*/> £)k = *0and£,. = -jx„ Vi E 7 J

= /o(*o) + 2 4>i(x» - ft) = *o(*o> M7)-

Here we have used (6.3), (6.2), (4.1), (5.1), (2.1) and (5.3).
It is not hard to calculate from the definitions in [19] that the inverse of the

adjoint of M is the sup-oriented convex process M*~x: V X y-> V0X R1
given by

M*-\v,y)~ f ÍK1?7)}     ifü7 = 0andí'7 = 0,
{0 otherwise.

Now  define  an  inf-oriented  convex  process  iV:   Y X V-^ R' X V0 by
switching the order of variables in M* ~ ' and reversing its orientation:

N(y,v)=\ U^o)}     if^7 = 0and».7 = 0, (M)
10 otherwise.

Since G is concave and N is inf-oriented, the function NG: R1 X V0—>

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



symmetrized separable convex programming 39

[ - oo, + oo], called the image of G under N, is defined [19] by

(NG)(Vl,v0) = Sup{G(y,v)\(y,v)eN-x(r)1,   „„)}. (6.5)

Again, it is not hard to show that this construction results in a concave
function. What is of interest here is the following.

Proposition 14. If (5.8+) holds, then NG = GQ. Moreover, this identity is
equivalent to the identity (MF)* = M*~lF*.

Proof. Using (6.5), (6.4), (4.3) and (2.6) yields

(NG)(r,', v0) = sup {-y¡>K.(yo,yl, r\') - f*(y0 + ^y1, v1)}
y&y'

=      sup -f* (y0 + vQ) - 2 «rV U> Vd   ■
A-o + Sitt-O   I / J

By (2.8) this equals — oo when tj ' > 0 fails, while if tj ' > 0 holds it equals

sup    f-^Cvo + tg-2(M(.y,)l
y0+^iyi=o  v / I

where /*tj, is /*0+ when tj, = 0. (It can be shown, incidentally, that this
quantity is at most G0(tj7, v0) even without (5.8+).) Assuming that (5.8+)
holds, we therefore have that, for tj 7 > 0,

(M7)(tj7, v0) = -      inf       \f*(y0) + 2 («(tt))

--(/o + 2V/)*(%)

=   inf    j /0(x0) + 2 vJi(xo) - <xo> «o>    = G0(r¡', v0),
x0BC   \\ ¡ )

where the function i\ji is \\ic when tj, = 0 and we have used (5.5). For the
equivalence assertion, note first that

- G0(-tj7, ü0) = 7^(ü0, t,7) = (MF)*(v0, T,7)

by [21, equation (4.17)] and Proposition 13. Using [21, equation (4.17)] again,
we have

- (M?)(-tj7, ü0) = -sup{G(y, v)\(y, v) £ N~l (-t,7, v0)}

= -suplG^o,^7, - tj7, ü0, 0, 0)|>>0,.y7}

= -sup{G(-y0, -y', - tj7, d0, 0, 0)|y0, y7}

= M{F*(v0, 0, 0,.yo,.y7, tj7)|/0,y'}

= mî{F*(v,y)\(v,y) E M*(ü0, t,7)} = (M*-xF*)(Vo, t,7).
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The equivalence of the identities is immediate from these facts.
Propositions 13 and 14 show that when (5.8+) holds the following diagram

commutes:
* in (x, u)

F -V G

Mi Ni
* in (xo, ¡i')

fo -* G0

The * here denotes conjugacy, modulo minus signs (see [21, equation (4.17)]).
Note also that N is just the inverse adjoint of M, modulo orientation.

It remains to establish the third relation in (6.1). For this, consider the
product transformation L: X X Y^> X0X R1 given by

L = LXX L2, (6.6)

where L, : X -» X0 is the sup-oriented convex process
LI(x) = {x0} (6.7)

and L2: Y -» R1 is the inf-oriented convex process

L2(y) = {t,7}. (6.8)

We have used the singleton set notation here to emphasize that we are
regarding these (ordinary projection) transformations as convex processes.
This is conceptually helpful later, when we consider the (not everywhere
defined) inverse adjoints and corresponding orientations.

What we wish to do now is to form the image of 77 under L, much as we
did previously with M and F in (6.3) and with N and G in (6.5). There is now,
however, the ambiguity of whether we should take

J\ {xo> v') =     inf SUP     H(x,y)
x€£|* x0   ^eij-lq'

= inf(sup{77(x,y)\y £ L2~y}|x E Lf'x0}

or

•M^oV) =    SUP inf     H{x,y)

= supiinf{77(x,>')|x E Lf'xo}!^ E L2_1tj7}.

Our final result shows that it usually does not matter in which order these
extrema are taken, and that moreover the result is 770.

Proposition 15. The identity Jx = 770 holds without any additional
assumption. If (5.6) holds and each / for i £ 7 is closed, then also J2 = 770
holds.
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Proof. Using (6.7) and (6.8), we have

Ji(xo>r>')= inf   sup{77(x0, x7, £7,y0,y7, tj7)}.
x'.i'    „_„/

41

yoj

By (4.5) this equals + oo when x0 E C0, while if x0 E C0 we can continue:

-     inf       sup{/o(x0) - ^.(y)-<x,7>}
'irf£í y*y'each i G /

=      inf sup /o(*o)
li<-f,{*t)   y0 + Ziy¡ = 0
each /' e /

(^o-^o) + 2 <xi>y¡> 2U. •

For any choice of x,'s which fails the condition x, = x0, Vi E 7, the term in
brackets can be used to drive the supremum to + oo. Hence we can continue:

= inf {/„(*„) - 2 fc*fc < -/(x0), Vi £ 7 j.

Now this infimum equals + oo vacuously when x0 £ C, for some i E 7; when
x0 E C, it equals — oo if any tj, < 0, and it equals /0(x0) + 2/tjj/(x0) if
tj7 > 0. Summarizing all this, we have

•^l (xo> V) =

/o (xo) + 2 Vift ixo)    if x0 £ C and tj 7 > 0,

-oo if x0 E CandTj7 > 0,
+ 00 if x0 £ C,

- 770(x0, tj7),

where the last equality is by (5.4). On the other hand,

Jii^V1) = sup   inf   (7f(x0, x7, £7,>'0,y7, tj7)}.
>w

By (4.5) this equals + oo when x0 £ C0, while if x0 £ C0 we can continue

= sup       inf      {/o(x0) - tffr.00 - <x,y)}
yoJ>• 6 <-/,(**)

each /' e /

=     sup inf /o(x0)
y o+2ív¡-o 6<-//W

each i e/

<*o>.Vo> + 2 Cw/> 2 ta

If any tj, < 0, then for all^.y7 the term — 2/£,tj, can be used to drive the
infimum to — oo, so that the overall value is — oo in this case. If tj7 > 0, we
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can continue:

=     sup        inf     /o (x0) - <x0, y0> - 2 <*¿. tt> + 2 *kfi (*.)
yo + 2Z,y, = 0   xtec-,   y. Il)

=      sup /0 (x0) - <x0, y0> - 2 (./?t),)( v,)

= sup(/o(x0) +2<^o->',> -2(^,)U)1|

= /o(*o) + 2 W(*o) = /o(x0) + 2 (rj, cl/)(x0).
/ /

In this calculation, for tj, = 0 we interpret/*tj, as/*0+ and tj, cl/ as \pcX c (by
Lemma 1 of §3). This information is summarized by

•A¡(*o>Tí7) =

/o (*o) + 2/(tj, cl / )(x0)    if x0 £ C0 and t, 7 > 0,
- oo if x0 £ C0 and tj7 £ 0,
+ 00 if x0 £ C0,

where tj, cl/ is i//cl c when tj, = 0. If (5.6) holds, then C0= C and so ^/cl c¡ is
zero on C0. If also each/ is closed, it follows from (5.4) that J2 coincides with
770.

Proposition 15 justifies the relation L77 = 770, where it is immaterial in
which order the extrema are taken, provided (5.6) holds and the /'s are
closed. This completes the remaining part of (6.1).

On the strength of Propositions 13, 14 and 15, we have that the following
diagram commutes:

F     'r    h    '%*     G
Mi Li Ni

* in ¡i' * in x0

Po -*        #0        -*        Go
The * here denotes partial conjugacy in the arguments indicated, modulo
minus signs (see [21, equations (4.2) and (4.15)]). In fact, there is among M, L,
N a counterpart to the partial conjugacy relations among F, 77, G. To see
this, note from (6.7) that the sup-oriented convex process Lf ~ ' is given by

L*~x(v) = ( (M     if«7 = 0andi'7 = 0, (6 9)
10 otherwise,

and from (6.8) that the inf-oriented convex process L* _ ' is given by

L*-'(M) =[{*'}     if «o = 0 and u' = 0, (6_1Q)
{0 otherwise.
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Now reversing the orientations of both L*_1 and L*-1, we have from (6.2),
(6.7) and (6.10) that

M=LxXL2*~l (6.11)

and from (6.4), (6.8) and (6.9) that

Af = L2XL*-'. (6.12)

It follows from (6.11), (6.6) and (6.12) that the inverse adjoint operation on a
process is the analogue of taking the partial conjugate of a function, and
orientation reversal of a process is the counterpart of placing a minus sign
before a function.

Another illustration of the phenomenon of an entire duality model projec-
ting onto another appears in [4, §6].
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