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Symmetrizing Smoothing Filters∗

Peyman Milanfar†

Abstract. We study a general class of nonlinear and shift-varying smoothing filters that operate based on
averaging. This important class of filters includes many well-known examples such as the bilateral
filter, nonlocal means, general adaptive moving average filters, and more. (Many linear filters such
as linear minimum mean-squared error smoothing filters, Savitzky–Golay filters, smoothing splines,
and wavelet smoothers can be considered special cases.) They are frequently used in both signal and
image processing as they are elegant, computationally simple, and high performing. The operators
that implement such filters, however, are not symmetric in general. The main contribution of this
paper is to provide a provably stable method for symmetrizing the smoothing operators. Specifically,
we propose a novel approximation of smoothing operators by symmetric doubly stochastic matrices
and show that this approximation is stable and accurate, even more so in higher dimensions. We
demonstrate that there are several important advantages to this symmetrization, particularly in
image processing/filtering applications such as denoising. In particular, (1) doubly stochastic filters
generally lead to improved performance over the baseline smoothing procedure; (2) when the filters
are applied iteratively, the symmetric ones can be guaranteed to lead to stable algorithms; and
(3) symmetric smoothers allow an orthonormal eigendecomposition which enables us to peer into
the complex behavior of such nonlinear and shift-varying filters in a locally adapted basis using
principal components. Finally, a doubly stochastic filter has a simple and intuitive interpretation.
Namely, it implies the very natural property that every pixel in the given input image has the same
sum total contribution to the output image.
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1. Introduction. Given an n× 1 data vector y, a smoothing filter replaces each element
of y by a normalized weighted combination of its elements. That is,

(1.1) ŷ = Ay,

where A is an n × n nonnegative matrix. While the analysis that follows can be cast for
general nonnegative A, we focus on the cases where A is constructed so that its rows sum
to one. The corresponding matrices are called (row-)stochastic matrices. These filters are
commonly used in signal processing applications because they keep the mean value of the signal
unchanged. In particular, moving least squares averaging filters [38], the bilateral filter [51],
and the nonlocal means filter [7] are all special cases. For their part, stochastic matrices find
numerous applications in statistical signal processing, including in classical optimal filtering,
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image denoising [11], Markov chain theory [44, 49], distributed processing [20], and many
others.

While the smoothing operator in (1.1) has a linear appearance, the A we consider can in
fact depend on the given data samples y and the locations x of these samples. Therefore, these
filters are generally neither linear nor shift-invariant. As such, the standard Fourier transform
results we are accustomed to for spectral analysis in an orthogonal basis do not apply, and
our understanding of these filters has consequently been limited to their behavior in only
their original sample space of definition (time domain, pixel domain, etc.). Understanding
the spectral behavior of these filters in an orthogonal basis is important not only for better
intuition about their properties, but also for analyzing their statistical performance [39]. This
latter issue has become of great practical importance recently since many competing state-
of-the-art smoothing algorithms invented in the last few years appear to display comparable
performance, prompting many to wonder whether we have reached a limit on the performance
of such filters1 for the denoising application [11, 12, 37].

The fundamental technical roadblock in the spectral analysis of smoothing filters is that in
general A is not symmetric or circulant. With a symmetric A, its eigendecomposition would
reveal the structure of the filter in the spectral sense, whereas in the latter case, the Fourier
basis would diagonalize A and reveal the frequency domain filter behavior. Unfortunately,
neither of these tools is directly applicable here.

The general construction of smoothing filters begins by specifying a (symmetric positive
semidefinite) kernel kij = K(yi, yj) ≥ 0 from which A is constructed.2 More specifically,

aij =
kij∑n
i=1 kij

.

Each element of the smoothed signal ŷ is then given by

ŷj =
n∑

i=1

aij yi,

where [a1j , . . . , anj] is the jth row of A whose elements sum to one:

n∑
i=1

aij = 1.

It should be apparent that regardless of whether kij are symmetric or not, aij will generally
not be so because the normalizing coefficients are not uniform. In matrix language, A can be
written as a product

(1.2) A = D−1K,

1The answer turns out to be no!
2In practice, the kernels we consider vary smoothly with the underlying (clean) signal, and furthermore it

is commonplace to compute the kernel not on the original noisy y but on a “prefiltered” version of it with the
intent to weaken the dependence of A on noise. More details on this point are provided in Appendix A.
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where D is a nontrivial diagonal matrix with diagonal elements [D]jj =
∑n

i=1 kij . We again
observe that even if K is symmetric, the resulting (row-)stochastic matrix A will generally
not be symmetric due to the multiplication on the left by D−1. But is it the case that A
must in general be “close” to symmetric? This paper answers this question in the affirmative
and provides a constructive method for approximating a smoothing matrix A by a symmetric
doubly stochastic matrix Â.

It is worth noting that the process of symmetrization can in general be carried out directly
on any nonnegative smoothing matrix regardless of whether it is row-stochastic or not.3 In the
particular case of (1.2), the process will yield [39] the very same result regardless of whether
we symmetrize K or A = D−1K.

We summarize the main goals of this paper:
• We propose a novel approximation of nonlinear smoothing operators by doubly sto-

chastic matrices and show that this approximation is stable and accurate.
• We demonstrate the advantages to this symmetrization; namely,

– we show that symmetrization leads to improved performance of the baseline
smoother;

– we use the symmetrization to derive an orthogonal basis of principal components
that allows us to peer into the complex nature of nonlinear and shift-varying filters
and their performance.

1.1. Some background. Before we move to the details, here is a brief summary of rele-
vant earlier work. In the context of expressing a nonlinear filtering scheme in an orthogonal
basis, Coifman et al. [14] proposed the construction of diffusion maps and used eigenfunctions
of the Laplacian on the manifold of patches derived from an image. Peyré provided an inter-
esting spectral analysis of the graph Laplacian for nonlocal means and bilateral kernels in [43].
This paper also discussed symmetrization of the operator, but rather a different one carried
out elementwise that does not preserve stochasticity. Furthermore, Peyré used a nonlinear
thresholding procedure on the eigenvalues for denoising, and analyzed numerically the perfor-
mance on some example by looking at the nonlinear approximation error in the eigenbases.
We note that both of the above methods worked with a graph structure and therefore its
Laplacian, whereas we work directly with the smoothing matrix. The relationship between
the two has been clarified in several places, including recently in [39]. Namely, the Laplacian
L = D1/2 AD−1/2−I. Therefore, the analysis we present here is directly relevant to the study
of the spectrum of the Laplacian operator as well. Meanwhile, consistent with our analysis,
Kindermann, Osher, and Jones [35] have proposed directly symmetrizing the nonlocal means
or bilateral kernel matrices. But they too do not insist on maintaining the stochastic nature
of the smoothing operator. Hence, our approach to making the smoothing operator doubly
stochastic is new and different from the previous similar attempts. Finally, we note that the
type of normalization we promote would likely have some impact in other areas of work well
beyond the current filtering context, such as scale-space meshing in computer graphics [19]
and in machine learning [3].

3How to carry out the symmetrization and whether it is useful in the case where A contains negative
elements remain an interesting open problem.
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As we mentioned earlier, many popular filters are contained in the class of smoothing
operators we consider. To be more specific, we highlight a few such kernels which lead to
smoothing matrices A which are not symmetric. These are commonly used in the signal and
image processing, computer vision, and graphics literature for many purposes.

1.1.1. Classical Gaussian filters [53, 26, 55]. Measuring the Euclidean (spatial) distance
between samples, the classical Gaussian kernel is

kij = exp

(−‖xi − xj‖2
h2

)
.

Such kernels lead to the classical and well-worn Gaussian filters (including shift-varying ver-
sions [18]).

1.1.2. The bilateral filter [51, 21]. This filter takes into account both the spatial and
datawise distances between two samples, in separable fashion, as follows:
(1.3)

kij = exp

(−‖xi − xj‖2
h2x

)
exp

(−(yi − yj)
2

h2y

)
= exp

{−‖xi − xj‖2
h2x

+
−(yi − yj)

2

h2y

}
.

As can be observed in the exponent on the right-hand side, the similarity metric here is a
weighted Euclidean distance between the vectors (xi, yi) and (xj , yj). This approach has
several advantages. Namely, while the kernel is easy to construct, and computationally simple
to calculate, it yields useful local adaptivity to the given data.

1.1.3. Nonlocal means [7, 33, 2]. The nonlocal means algorithm, originally proposed in
[7] and [2], is a generalization of the bilateral filter in which the data-dependent distance term
(1.3) is measured blockwise instead of pointwise:

(1.4) kij = exp

(−‖xi − xj‖2
h2x

)
exp

(−‖yi − yj‖2
h2y

)
,

where yi and yj refer now to subsets of samples (patches) in y.

1.1.4. Locally adaptive regression kernel (LARK) [50]. The key idea behind this kernel
is to robustly measure the local structure of data by making use of an estimate of the local
geodesic distance between nearby samples:

(1.5) kij = exp
{−(xi − xj)

TQij(xi − xj)
}
,

whereQij = Q(yi, yj) is the covariance matrix of the gradient of sample values estimated from
the given data [50], yielding an approximation of local geodesic distance in the exponent of the
kernel. The dependence ofQij on the given data means that the smoothing matrix A = D−1K
is therefore nonlinear and shift-varying. This kernel is closely related but somewhat more
general than the Beltrami kernel of [48] and the coherence enhancing diffusion approach of
[54].
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2. Nearness of stochastic and doubly stochastic matrices. Our interest in this paper
is to convert a smoothing operator A which is generically not symmetric into a symmetric
doubly stochastic one. As we shall see, this is done quite easily using an iterative process.
When a (row-)stochastic matrix is made symmetric, it must therefore have columns that sum
to one as well. The class of nonnegative matrices whose rows and columns both sum to one are
called doubly stochastic. Our aim is to show that when applied to a (row-)stochastic smoother
A, this process yields a nearby matrix Â that has both its elements and its eigenvalues close
to the original. This is the subject of this section. We note that classical results in this
direction have been available since the 1970s. Of these, the work of Darroch and Ratcliff [17]
and Csiszar [15] involving relative entropy is particularly noteworthy. Here, we prove that the
set of n×n (row-)stochastic matrices and the corresponding set of doubly stochastic matrices
are asymptotically close in the mean-squared error (MSE) sense.

Let Sn denote the set of n× n stochastic matrices with nonnegative entries, and define 1
as the n× 1 vector of ones. By definition, any A ∈ Sn satisfies

(2.1) A1 = 1.

The Perron–Frobenius theory of nonnegative matrices (cf. [44], [30, page 498]) provides a com-
prehensive characterization of their spectrum. Denoting the eigenvalues {λi}ni=1 in descending
order, we have the following:4

1. λ1 = 1 is the unique eigenvalue of A with maximum modulus.
2. λ1 corresponds to positive right and left eigenvectors v1 and u1, where

v1 =
1√
n
1,(2.2)

ATu1 = u1,(2.3)

(ergodicity) lim
k→∞

Ak = 1uT
1 ,(2.4)

‖u1‖1 = 1.(2.5)

3. The subdominant eigenvalue λ2 determines the ergodic rate of convergence. In partic-
ular, we have, elementwise,

(2.6) Ak = 1uT
1 +O(λk

2).

Using these properties, we prove a rather general result in the following lemma. For the proof,
we refer the reader to Appendix B.

Lemma 2.1. Denote the set of n× n doubly stochastic matrices by Dn. Any two matrices
A ∈ Sn and Â ∈ Dn satisfy

(2.7)
1

n
‖Ak − Âk‖F ≤ c λk

2 + ĉ λ̂k
2 +O(n−1/2)

for all nonnegative integers k.

4Since we consider only positive semidefinite kernels kij , the eigenvalues are nonnegative and real through-
out.
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This result is a bound on the root mean-squared (RMS) difference between the elements
of the respective matrices. It is quite general in the sense that the matrices are (powers of)
any pair of nonnegative n×n stochastic and doubly stochastic matrices. This bound becomes
tighter with n, and we note that since the subdominant eigenvalues of both A and Â are
strictly less than 1, the first two terms on the right-hand side of (2.7) also collapse to zero
with increasing k. This result by itself shows that the set of doubly stochastic matrices Dn

and the set of ordinary (row-)stochastic matrices Sn are close. But even more compelling is
what happens when A is random [10, 5, 24, 25, 31]. In particular, it is known [25] that if
the entries are drawn at random from a distribution on [0, 1] such that E(Ai,j) = 1/n and
Var(Ai,j) ≤ c1/n

2, then the subdominant eigenvalue tends, in probability, to zero as n → ∞
at a rate of 1/

√
n. In fact, the same behavior occurs when only the rows are independent5 [24].

We are less interested, however, in arbitrary elements of Dn and Sn. Instead, it is more
relevant for our purposes to consider a stochastic matrix A and to seek the nearest doubly
stochastic matrix to it. One would expect that the general bound above would be even more
informative when Â is an explicit symmetric approximation of A, and this is indeed the case.

The interesting practical question of how to find this nearest element was addressed by
Sinkhorn and colleagues (see [36, 46, 47]). Specifically, a stochastic matrix (indeed any non-
negative matrix with positive diagonals) can be scaled to a doubly stochastic matrix via a
procedure sometimes known as iterative proportional scaling, or Sinkhorn balancing. Sinkhorn
and Knopp proved the following general result.

Theorem 2.2 (see [46, 47]). Let A be a nonnegative matrix with total support. Then, there
exist positive diagonal matrices R = diag(r) and C = diag(c) such that

(2.8) Â = RAC

is doubly stochastic. The matrix Â is unique, and the vectors r and c are unique up to a
scalar factor, as in μr and c/μ if and only if A is fully indecomposable.6

It is worth noting that for our purpose, the smoothing matrix A = D−1K has strictly
positive diagonal elements aii = kii/dii > 0, and generically satisfies the conditions of the
above theorem. With this in mind, the actual algorithm for computing Â is quite simple and
involves only repeated normalization of the rows and columns of A. We state the procedure in
Algorithm 1 using MATLAB notation. The convergence of this iterative algorithm is known
to be linear [36], with the rate given by the subdominant eigenvalue λ2.

How good is Â as an approximation to A? Somewhat surprisingly, the matrices A and
Â related as in (2.8) are indeed optimally close in the relative entropy sense, as made precise
by Darroch and Ratcliff [17] and Csiszar [15]. Namely, Â minimizes the cross-entropy or
Kullback–Leibler (KL) measure, ∑

i,j

Âij log
Âij

Aij
,

5This holds so long as the covariance also satisfies Cov(Ai,k,Aj,k) ≤ c2/n
3.

6A matrix A is said to have total support if every positive entry in A can be (column) permuted into a
positive diagonal matrix. A nonnegative matrix A is said to be fully indecomposable if there do not exist
permutation matrices P and Q such that PAQ is of the form [ A11 A12

© A22
] with A11 and A22 being square

matrices. A fully indecomposable matrix has total support [6].



SYMMETRIZING SMOOTHING FILTERS 269

Algorithm 1. Algorithm for scaling a nonnegative matrix A to a nearby doubly stochastic

matrix Â.

Given A, let (n, n) = size(A) and initialize r = ones(n, 1);
for k = 1 : iter;

c = 1./(AT r);
r = 1./(Ac);

end
C = diag(c); R = diag(r);
Â = RAC

over all Â ∈ Dn.
When the starting kernel kij is positive definite, the scaling procedure, which involves left

and right multiplication by positive diagonal matrices, preserves this property and results in a
positive definite, symmetric, and doubly stochastic Â. It is reasonable to ask why KL is useful
as a measure of closeness to get a good nearby normalization, particularly for signal processing
applications. One answer is that it is of course a natural metric to impose nonnegativity in
the approximation, or, more precisely, to maintain the connectivity of the graph structure
implied by the data. But could other distances or divergences replace the KL measure used
here to do a similar or even better job? The evidence says no. In fact, other norms such as L1

and L2 for this approximation are more common in the machine learning literature (e.g., [56]).
Conceptually, the L2 projection would not seem to be a very good choice as it would likely
push many entries to zero, which may not be desirable. We have observed experimentally
that the use of either of these norms leads to quite severe perturbations of the eigenvalues of
the smoothing matrix. Hence, we believe that the KL distance is indeed the most appropriate
for the task.

Next, we study how the proposed diagonal scalings will perturb the eigenvalues of A. It
is not necessarily the case that a small perturbation of a matrix will give a small perturbation
of its eigenvalues. The stability of eigenvalues of a matrix is in fact a strong function of the
condition number of the matrix of its eigenvectors (cf. the Bauer–Fike theorem [4]). In our
filtering framework, it is important to verify that the eigenvalues of the symmetrized matrix
Â are very near those of A, because the spectrum determines the effect of the filter on the
data and ultimately influences its statistical performance. The following result is applicable
to bound the perturbation of the spectra.

Theorem 2.3 (see [4, Chap. 12]). Let A and Â be n× n matrices with ordered eigenvalues
|λ1| ≥ |λ2| ≥ · · · ≥ |λn| and |λ̂1| ≥ |λ̂2| ≥ · · · ≥ |λ̂n|, respectively. If Â = RAC is symmetric,
then

(2.9)
n∑

i=1

|λi − λ̂i|2 ≤ 2 ‖A− Â‖2F .

Now we can combine this result with Lemma 2.1 and arrive at the following.
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Theorem 2.4. Let A ∈ Sn and the corresponding scaled matrix Â = RAC ∈ Dn. Then,

(2.10)
1√
2n

(
n∑

i=1

|λi − λ̂i|2
)1/2

≤ 1

n
‖A− Â‖F ≤ c0λ2 + c1λ̂2 +O(n−1/2).

The general conclusion here is that the scaled perturbation of the eigenvalues and the
RMS variation in the elements of the smoothing matrix A are bounded from above.7 We
observe that the bound is composed of two terms that decay with dimension. Namely, as
shown in [24], with random rows8 with elements selected from some density on [0, 1], the term

c0λ2 + c1λ̂2 decays as 1/
√
n. To assess how large this upper bound is for a given n, we would

need to have an estimate of the coefficients c0 and c1. At this time, we do not have such an
estimate in analytical form. But as we illustrate in the next section, experimental evidence
suggests that they are well below 1.

3. The benefits of symmetrization. Symmetrizing the smoothing operator is not just
a mathematical nicety; it can have interesting practical advantages as well. In particular,
three such advantages are that (1) given a smoother, its symmetrized version generally results
in improved performance; (2) symmetrizing guarantees the stability of iterative filters based
on the smoother; and (3) symmetrization enables us to peer into the complex behavior of
smoothing filters in the transform domain using principal components. In what follows, we
analyze these aspects theoretically, and while the results are valid for the general class of
kernels described earlier, we choose to illustrate the practical effects of symmetrization using
the LARK smoother [50] introduced earlier.

3.1. Performance improvement. First, it is worth recalling an important result about the
optimality of smoothers. In [13], Cohen proved that asymmetric smoothers are inadmissible
with respect to the MSE measure. This means that for any linear smoother A there always
exists a symmetric smoother Â which outperforms it in the MSE sense. This result does
not directly imply the same conclusion for nonlinear smoothers, but, considering at least the
oracle filter where A depends only on the clean signal, it is an indication that improvement
can be expected. More realistically, in the practical nonlinear case where (1) A is based on
a sufficiently smooth kernel, and (2) the noise is weak,9 improvement can be expected. This
is in fact the case in practical scenarios because (1) the general class of kernels we employ, at
least in signal and image processing, use the Gaussian form exemplified in section 1.1 which
is a smooth function of its argument; and (2) the kernels are typically computed on some
“prefiltered” version of the measured noisy data so that as far as the calculation of the kernel
is concerned, the variance of the noise can be considered small. Meanwhile, we can show that
from a purely algebraic point of view, the improvement results from the particular way in

7These results on the surface seem to contradict the earlier statement regarding the use of KL distance as
a measure of distance between matrices. What is happening is that even though the Frobenius norm gives a
bound on the eigenvalue perturbation, this bound is not very tight. Indeed, we observe that in practice, the
eigenvalue error is actually much smaller than what the bound would imply. Unfortunately, we could not prove
a stronger result at this point.

8Given that the weights are computed on pixels corrupted by some noise, this applies to our case.
9See Appendix A for details.
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which Sinkhorn’s diagonal scaling perturbs the eigenvalues. The following result is the first
step in establishing this fact.

Theorem 3.1 (see [32]). If A is row-stochastic and Â = RAC is doubly stochastic, then

det(RC) ≥ 1.

Furthermore, equality holds if and only if A is actually doubly stochastic.
It follows as a corollary that

(3.1) det(A) ≤ det(Â),

or said another way, there exists a constant 0 < α ≤ 1 such that det(A) = α det(Â).
How is this related to the question of performance for the symmetrized versus unsymmetrized
smoothers? The size of α is an indicator of how much difference there is between the two
smoothers, and we use the above insight about the determinants to make a more direct
observation about the bias-variance tradeoff of the respective filters. To do this, we first
establish the following relationship between the trace and the determinant of the respective
matrices. The proof is again given in Appendix B.

Theorem 3.2. For any two matrices A and Â with real eigenvalues in (0, 1], if det(A) ≤
det(Â), then tr(A) ≤ tr(Â).

The trace of a smoother is related to its effective degrees of freedom. The degrees of
freedom of an estimator ŷ of y measure the overall sensitivity of the estimated values with
respect to the measured values [29] as follows:

(3.2) df =

n∑
i=1

∂ŷi
∂yi

.

The quantity df is an indicator of how the smoother trades bias against variance. Recalling
that the mean-squared error can be written as MSE = ‖bias‖2 + var(ŷ), larger df implies a
“rougher” estimate, i.e., one with higher variance but smaller bias. In our case, the process of
symmetrization produces an estimate that is indeed rougher, in proportion to how far the row-
stochastic A is from being doubly stochastic. As we shall see, with nearly all high-performance
denoising algorithms, particularly at moderate noise levels, the major problem is that they
produce artifacts which are due to the bias of the smoother. As a result of symmetrization,
this bias is reduced, though at the expense of a modest increase in variance, but ultimately
leading to improved MSE performance.

Consider our smoothing framework ŷ = Ay again, and take the “oracle” scenario where
A can be a function of z, but we assume that it is not disturbed by noise. We denote the
degrees of freedom of each smoother by df = tr(A) and df s = tr(Â), respectively. Taken
together, Theorem 3.2 and the fact that symmetrizing the smoother increases the determinant
of the smoothing operator imply an increase in the degrees of freedom; that is, df ≤ df s. We
can estimate the size of this increase in relation to the size of α = det(RC)−1. Let us write
df = β df s with 0 < β ≤ 1 so that a small β indicates a significant increase in the degrees of
freedom as a result of symmetrization. Now consider the ratio of the geometric to arithmetic
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means of the eigenvalues

(3.3)
(
∏n

i=1 λi)
1/n(

1
n

∑n
i=1 λi

) =

(
α1/n

β

) (∏n
i=1 λ̂i

)1/n
1
n

∑n
i=1 λ̂i

.

It is an interesting, and little known, fact that asymptotically with large n, the ratio of the
geometric to the arithmetic mean for any random sequence of numbers in (0, 1] converges to the
same constant10 with high probability [1, 23]. Therefore asymptotically, β = O(α1/n). This
indicates that when the row-stochastic A is nearly symmetric already (i.e., α ≈ 1 and therefore
β ≈ 1), the gain is small. Next we provide some examples of the observed improvement.

Consider the image patches (each of size 21×21) shown in Figure 1 (top), and denote each,
scanned columnwise into vector form, by z. We corrupt these images with white Gaussian
noise of variance σ2 = 100 to get the noisy images y shown in the second row. For each patch,
we compute the (oracle) LARK kernel [50], leading to the smoothing matrix A. Next, we
compute the doubly stochastic matrix Â using Algorithm 1 described earlier. The respective
smoothed estimates ŷ = Ay and ŷs = Ây are calculated, leading to the MSE values ‖z−ŷ‖2/n
and ‖z− ŷs‖2/n. These values, along with the percent improvement in the MSE, the effective
degrees of freedom df s of the symmetric smoother, and the corresponding values of β defined
earlier, are shown11 in Table 1. As expected, the values of β farther away from one result in
the largest improvements in the MSE.

3.2. Stability of iterated smoothing. The general class of smoothers for which ‖Ay‖ ≤
‖y‖ are called shrinking12 smoothers [9, 29]. This happens when all the singular values of
A are bounded above by 1. This may seem like a minor issue at first, but it turns out to
have important consequences when it comes to something we do routinely to improve the
performance of some smoothers: iteration. Indeed, in some cases, iterated application of
smoothers depends on whether the procedure is shrinking. In general, before symmetrization,
the kernel-based smoothing filters are not shrinking. As an example, the largest singular
values of A for the LARK filters are shown in Table 2.

With symmetrization, since the eigenvalues and singular values of Â now coincide, the
largest singular value must be equal to 1. Hence Â is, in fact, guaranteed to be a shrinking
smoother.

There are numerous ways in which iterative application of smoothers comes into play. One
of the most useful and widely studied is boosting, also known as twicing [52], L2-boosting [8],
reaction-diffusion [40], and Bregman iteration [42]. We studied this approach in detail in [39].
The iteration is given by

(3.4) ŷk = ŷk−1 +A(y − ŷk−1) =

k∑
l=0

A(I−A)l y.

This iteration will be stable so long as the largest singular value (I−A) is bounded by 1. We
observe in Table 3 that this is in general not the case before the symmetrization.

10This constant is e−γ , where γ = 0.577215665 is Euler’s constant.
11The degrees of freedom of the unsymmetrized smoother A are given by df = β df s.
12Other norms can be used for the definition, but we use the L2 norm.
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Flat Edge 1 Edge 2 Corner 1 Corner 2 Texture 1 Texture 2 Texture 3

Clean Patches

Noisy Patches, σ = 10

Denoised with LARK Smoother

Denoised with Symmetric LARK Smoother

Residual Error of LARK Smoother

Residual Error of Symmetric LARK Smoother

Figure 1. Denoising performance comparison using LARK smoother and its symmetrized version.

Table 1
MSE comparisons for original versus symmetrized LARK smoother on various images shown in Figure 1

(top).

Flat Edge 1 Edge 2 Corner 1 Corner 2 Texture 1 Texture 2 Texture 3

MSE(ŷ) 4.78 14.29 18.25 57.73 102.39 72.90 37.72 96.14
MSE(ŷs) 4.79 10.10 18.20 20.02 99.22 72.99 37.63 94.30

(Improvement) (−0.24%) (29.34%) (0.28%) (65.32%) (3.10%) (−0.12%) (0.26%) (1.92%)

β 0.9335 0.8283 0.9211 0.7676 0.8305 0.9992 0.9747 0.9744

df s 12.94 29.88 75.01 54.47 88.59 371.72 217.16 115.47
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Table 2
Top singular value of original (unsymmetrized) and symmetrized LARK smoothing matrices.

Flat Edge 1 Edge 2 Corner 1 Corner 2 Texture 1 Texture 2 Texture 3

Top sing. val. of A 1.0182 1.0583 1.0374 1.0668 1.1361 1.0005 1.0689 1.0085

Top sing. val. of Â 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 3
Top singular values of (unsymmetrized and symmetrized) boosted LARK smoothing matrices.

Flat Edge 1 Edge 2 Corner 1 Corner 2 Texture 1 Texture 2 Texture 3

Top sing. val. of I−A 1.0040 1.0593 1.0154 1.0632 1.1081 0.7981 1.0520 1.0021

Top sing. val. of I− Â 1.0 1.0 1.0 1.0 1.0 0.7999 1.0 1.0

Related iterative procedures, such as the backfitting method of [9], also depend strongly
on this shrinking property. It was noted in [9] that backfitting, and the related Gauss–Seidel
process, is stable and consistent only for symmetric smoothers. For this and all such iterative
algorithms, the normalization proposed here allows this constraint to be relaxed.

3.3. Spectral decomposition. Given their data-adaptive nature, understanding the be-
havior of nonlinear smoothers is not easy. But considering the symmetric approximation
we promote, this becomes tractable. Consider the eigendecompositions A = UŜU−1 and
Â = VSVT . The latter, of course, is advantageous because the eigenvectors in the columns
of V (the principal components) form an orthonormal basis which allows us to clearly see the
local effect of this filter. In Figures 2 and 3 we visualize, as images, the four most dominant
columns of U and V, respectively. As is apparent, the orthonormal basis corresponding to the
symmetrized matrix captures the local geometry of the patches very efficiently. With either
a fixed basis such as Fourier or discrete cosine transform (DCT), or the nonorthogonal basis
given by the columns of U, many more terms are required to capture the local geometry,
particularly at discontinuities. The important advantage we gain here is that the symmetriza-
tion allows for a sparse and compact representation of the edge in terms of a few principal
components, therefore allowing high performance denoising [11].

Next, let us visually illustrate the weights for the patches shown in Figure 1 (top). Note
that for a 21 × 21 image, each of these matrices is of size 441 × 441. As an example, the
middle row of each of the smoothing matrices (corresponding to the center pixel of the patch)
is illustrated13 in Figure 4. The corresponding eigenvalues of A and Â for these patches are
also shown in Figure 5. We compute the squared difference between the elements aij and âij
for all patches, and these are shown in Table 4. The eigenvalue perturbation

∑n
i=1(λi− λ̂i)

2 is

13For convenience of illustration, the rows are reshaped to a 21× 21 picture of weights. Also, a brief note on
implementation: Each element of A uses a different covariance Qij , where, in each row, the first of these indices
is fixed. To compute the LARK features over these small patches, we used a region slightly larger than the
ones shown, extracted from a bigger image. Each pixel i inside the patch has a kernel value Kij corresponding
to any given pixel j (either inside or outside the patch region). However, when actually forming the matrix K,
in its ith row only j inside the patch is used. After that, Sinkhorn balancing is implemented to generate the
doubly stochastic W .
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Figure 2. Eigenvectors u2 through u5 of the original LARK smoother A for the patches shown in the first
column. The dominant eigenvector u1 is constant, and is therefore not shown.
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Figure 3. Dominant eigenvectors v2 through v5 of the symmetrized LARK smoother Â for the patches
shown in the first column. The dominant eigenvector v1 is constant, and is therefore not shown.
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Flat Edge 1 Edge 2 Corner 1 Corner 2 Texture 1 Texture 2 Texture 3

LARK weights

Figure 4. (Square root of) LARK weights for the center pixel position.
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Figure 5. Spectra of the smoothing matrices: the original A (solid), the symmetrized Â (dashed).

also shown in the same table. We note that these perturbations are smaller for highly textured
images, which, as a practical matter, is encouraging.

Another important consequence of the spectral analysis is that we can study the “oracle”
performance of the filter analytically. Namely, let us assume that the smoothing matrix A is
given exactly (from the clean data.) We can then ask how good the performance of this filter
can be in the MSE sense. First, consider the measured data as given by a simple additive
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Table 4
Perturbation values for original versus symmetrized LARK smoother on various images shown in Figure 1

(top).

Flat Edge 1 Edge 2 Corner 1 Corner 2 Texture 1 Texture 2 Texture 3

‖A− Â‖2F 0.22 1.24 1.00 3.07 3.3 0.05 1.02 0.68
(Difference) (4.04%) (10.48%) (2.72%) (15.23%) (8.37%) (0.01%) (0.68%) (1.10%)

∑n
i=1(λi − λ̂i)

2 0.03 0.47 0.25 1.49 1.46 0.00 0.12 0.05
(Difference) (0.51%) (4.21%) (0.70%) (7.79%) (3.87%) (0.00%) (0.08%) (0.08%)

noise model:

(3.5) y = z+ e,

where z is the latent image, and e is noise with E(e) = 0 and Cov(e) = σ2I.
We can compute the statistics of the smoother ŷ = Ay. The bias in the estimate is

bias = E(ŷ)− z = E(Ay)− z ≈ Âz− z = (Â− I) z,

where Â is the doubly stochastic, symmetric approximation. The squared magnitude of the
bias is therefore

(3.6) ‖bias‖2 = ‖(Â− I)z‖2.

Writing the latent image z as a linear combination of the orthogonal principal components of
Â (that is, its eigenvectors) as z = Vb, we can rewrite the squared bias magnitude as

(3.7) ‖bias‖2 = ‖(Â− I)z‖2 = ‖V(S− I)b‖2 = ‖(S− I)b‖2 =
n∑

i=1

(λ̂i − 1)2b2i .

We also have

cov(ŷ) = cov(Ay) ≈ cov(Â e) = σ2Â ÂT =⇒ var(ŷ) = tr(cov(ŷ)) = σ2
n∑

i=1

λ̂2
i .

Overall, the mean-squared error is therefore given by

(3.8) MSE = ‖bias‖2 + var(ŷ) ≈
n∑

i=1

(λ̂i − 1)2b2i + σ2λ̂2
i .

For a given latent image z, or equivalently, given coefficients b, the above MSE expression gives
the ideal (lowest) error that an “oracle” version of the smoother could realize. This insight can
be used to study the performance of existing smoothing filters for comparison, much in the
same spirit as was done in [11]. Furthermore, we can also ask what the spectrum of an ideal
smoothing filter for denoising a given image would look like. The answer is mercifully simple,
given our formulation. Namely, by differentiating the MSE expression (3.8) with respect to
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λi and setting the result to zero, we find that the best eigenvalues are given by the Wiener
filter condition:

(3.9) λ∗
i =

b2i
b2i + σ2

=
1

1 + snr−1
i

,

where snri =
b2i
σ2 denotes the signal-to-noise ratio at each i. With this ideal spectrum, the

smallest possible MSE value is obtained by replacing the eigenvalues in (3.8) with λ∗
i from

(3.9), which after some algebra gives

(3.10) MSEmin = σ2
n∑

i=1

λ∗
i .

Interestingly, in patches that are relatively flat, the bias component of this minimum MSE
is dominant. The fact that bias in flat regions is a problem in practice is a well-known
phenomenon [11] for high performance algorithms such as BM3D [16].

Using the MSE expression in (3.10), we can also ask what class of images (that is, which
sequences of bi) will result in the worst or largest MSEmin . This question must, of course, be

asked subject to an energy constraint on the coefficients bi. Recalling that snri =
b2i
σ2 , we can

pose this problem as

max
b

n∑
i=1

b2i
σ2 + b2i

subject to bTb = 1.

This is a simple constrained optimization problem whose solution is readily found to be
b2i = 1/n. Generating images using the local basis with these coefficients yields completely
unstructured patches. This is because a constant representation given by b2i = 1/n essentially
corresponds to white noise. Such patches indeed visually appear as flat patches corrupted by
noise. Since there is no redundancy in such patches, the estimator’s bias becomes very large.
Again, it has been noted that the best performing algorithms such as BM3D [16] in fact pro-
duce their largest errors in relatively flat but noisy areas, where visible artifacts appear. This
is also consistent with what we know from the performance bound analysis provided by [11]
and [37], namely, that the largest improvements we can expect to realize in future denoising
algorithms are to be had in these types of regions.

4. Remarks and conclusions. For the reader interested in applying and extending the
results presented here, we make a few observations.

Remark 1. By nature, any smoothing filter with nonnegative coefficients can have rela-
tively strong bias components. One well-known way to improve them is to use smoothers with
negative coefficients, or equivalently, higher order regression [29]. Another is to simply nor-
malize them as we have suggested here. The mechanism we have proposed for symmetrizing
smoothers is general enough to be applied to any smoothing filter with nonnegative coefficients.

Remark 2. It is not possible to apply Sinkhorn balancing to matrices that have negative
elements, as this can result in nonconvergence of the iteration in Algorithm 1. It is in fact un-
clear whether application of such a normalization scheme would have a performance advantage
in such cases. Yet, it is certainly of interest to study mechanisms for symmetrizing general
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(not necessarily positive-valued) smoothing matrices, as this would facilitate their spectral
analysis in orthonormal bases. As we hinted in [39], here we would be dealing with the class
of generalized stochastic matrices [34].

Remark 3. It is well known [28] that when the smoother is symmetric, the estimator
always has a Bayesian interpretation with a well-defined posterior density. By approximating
a given smoother with a symmetric one, we have enabled such an interpretation. In particular,
when the smoother is data-dependent, the interpretation is more appropriately defined as an
empirical Bayesian procedure as described in [39].

Remark 4. It is possible, and in some cases desirable, to apply several smoothers to the data
and to aggregate the result for improvement—a procedure known as boosting in the machine
learning literature. The smoothers can be related (such as powers of a given smoothing
matrix [39]) or chosen to provide intentionally different characteristics (one oversmoothing,
and another undersmoothing). The results in this paper can be applied to all such procedures.

Remark 5. The normalization provided by the Sinkhorn algorithm can also be applied to
scale the Laplacian matrix. Recalling that L = D−1/2KD−1/2 − I, we can apply Sinkhorn’s
scaling to the first term to obtain a newly scaled, doubly stochastic version of the kernel
K̂ = MD−1/2KD−1/2M, whereM is a unique positive diagonal matrix. The scaled Laplacian
can then be defined as L̂ = K̂− I. This scaled Laplacian now enjoys the interesting property
that it has both row and column sums equal to zero. We speculate that this result may in
fact yield improvements in various areas of application such as dimensionality reduction, data
representation [3], clustering [56], segmentation [45], and others.

Remark 6. As observed by a reviewer, it is interesting to consider whether we can design
cost functions (or, equivalently, PDEs) that lead naturally to symmetrized kernels. Similarly, it
would be very useful to be able to design and compute approximations of existing kernel filters
(such as bilateral, nonlocal means, etc.), or new kernels, from first principles, such that the
coefficients are automatically and naturally symmetric, hence not requiring a symmetrization
step.

Remark 7. Ideally, we wish to avoid altogether the calculation of the large matrix W,
followed by Sinkhorn balancing, in a sequential fashion. We have noted that the process of
computing the spectrum of W can be made significantly more computationally efficient by
making use of a sampling method [41] (more recently employed in [22] and elsewhere).

To summarize, we studied a class of smoothing filters which operate based on nonlinear,
shift-variant averaging which are frequently used in both signal and image processing. We
provided a matrix approximation that converts a given smoother to one that is symmetric and
doubly stochastic. This enables us to not only improve performance of the base procedure, but
also to peer into the complex behavior of such filters in the transform domain using principal
components.

Appendix A. Approximation of nonlinear smoothers. In the course of the paper, we make
the observation that the nonlinear smoothers we have considered here can be treated as if the
smoothing matrix A is nearly decoupled from the noisy observation y. We justify this ap-
proach here. For convenience, consider the filter for a single value at a time. Define the vector
a(y) = [a1j , . . . , anj], so that the jth element of the smoothed output vector y is given by

ŷj = a(y)Ty,
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where, to simplify the notation, we have suppressed the dependence of the right-hand side on
the index j. For the purpose of computing the smoothing operator from the data, in practice
we always compute a “prefiltered” or “pilot” estimate first, whose intent is not to yield a final
result on its own, but to suppress the sensitivity of the weight calculations to noise. Let this
pilot estimate be ỹ = z+ ε, where we assume ε is small. As such we can make the following
first order Taylor approximation to the (practical) smoother which uses the pilot estimate:

a(ỹ)Ty = a(z+ ε)Ty ≈ (a(z) +∇a(z)T ε
)T

y = a(z)Ty + εT∇a(z)y,

where ∇a(z) is the gradient of the vector a evaluated at the latent image. The first term
a(z)Ty on the right-hand side is the oracle smoother which we have used as a benchmark
throughout the paper. The second term is the error between the practical smoother and the
oracle:

Δ = a(ỹ)Ty − a(z)Ty ≈ εT∇a(z) y.

We observe that when ε and the gradient ∇a are small, the approximation error can remain
small. The first is a consequence of the quality of the chosen prefilter, which must be good,
whereas the second is a result of the smoothness of the kernel—specifically, the magnitude of
its gradient.14 With an appropriate prefilter, and with a choice of a smooth kernel such as
the Gaussian, we can be assured that the approximation is faithful for the analysis described
here and further detailed in [39].

Appendix B. Proofs.
Proof of Lemma 2.1. Let

A1 = lim
k→∞

Ak = 1uT
1 ,

Â1 = lim
k→∞

Âk =
1

n
11T .

For all positive integers k, we have

‖Ak − Âk‖F = ‖Ak −A1 +A1 − Âk‖F
≤ ‖Ak −A1‖F + ‖Âk −A1‖F
= ‖Ak −A1‖F + ‖Âk −A1 + Â1 − Â1‖F
≤ ‖Ak −A1‖F + ‖Âk − Â1‖F + ‖Â1 −A1‖F
≤ c n |λ2|k + ĉ n |λ̂2|k +

∥∥∥∥1uT
1 − 1

n
11T

∥∥∥∥
F

,(B.1)

where the last inequality follows from (2.6). The last term on the right-hand side can be

14When we speak of the smoothness of the kernel, we are not referring to whether the underlying signal is
smooth. We are referring only to the way in which the kernel depends on its argument.
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estimated as

‖1uT
1 − 1

n
11T ‖2F = n

n∑
i=1

(
u1i − 1

n

)2

= n
n∑

i=1

(
u21i −

2

n
u1i +

1

n2

)

= n

(
n∑

i=1

u21i −
2

n

n∑
i=1

u1i +
1

n

)

≤ n

(
1− 1

n

)
= n− 1,

where the last inequality follows since ‖u1‖1 = 1 and u1 ≥ 0. Taking square roots and
replacing this in (B.1), we have

(B.2) ‖Ak − Âk‖F ≤ c n |λ2|k + ĉ n |λ̂2|k + (n− 1)1/2 .

Dividing by n yields the result.
Proof of Theorem 3.2. The determinant inequality implies that there exists a constant

0 < α ≤ 1 such that
n∏

i=1

λi = α

n∏
i=1

λ̂i.

Assume that the trace inequality is not true. That is, we suppose

(B.3)
n∑

i=1

λ̂i <
n∑

i=1

λi.

As we shall see, this assumption leads to a contradiction. Invoking the geometric-arithmetic
inequality [27], we write

gn =

(
n∏

i=1

λi

)1/n

= α1/n

(
n∏

i=1

λ̂i

)1/n

≤ α1/n

(
1

n

n∑
i=1

λ̂i

)
< α1/n an,

where gn is the geometric mean and an = n−1
∑n

i=1 λi is the arithmetic mean. The last
inequality follows by invoking (B.3). The above implies that for every n × n (n ≥ 2) matrix
A satisfying the conditions of the theorem, it must be the case that

(B.4)
gn
an

< α1/n.

Now consider the two matrices A = diag [1, 1, . . . , α] and Â = diag [1, 1, . . . , 1], which give

gn
an

=
α1/n

1
n(n − 1 + α)

< α1/n.

Simplifying, this yields α > 1, which is a contradiction.
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