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Symmetropy, an entropy-like measure
of visual symmetry
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Musashino Electrical Communication Laboratory, Nippon Telegraph and Telephone Public Corporation
Musashino-shi, Tokyo, Japan

A new objective measure of symmetry for single patterns, called symmetropy, is developed
on two bases, the two-dimensional discrete Walsh transform of a pattern and the entropy con-
cept in information theory. It is extended to a more general measure, called the symmetropy
vector. In order to test the predictive power of the symmetropy vector, multiple regression
analyses of judged pattern goodness and of judged pattern complexity were carried out. The
analyses show that the symmetropy vector predicts pattern goodness and pattern complexity,
as well as the amount of symmetry in a pattern. They also suggest that pattern goodness is a
concept based on the holistic properties of a pattern, while pattern complexity (or simplicity) is
a concept based on both holistic and partial properties of a pattern.

According to the Gestalt organizational laws of
visual perception, we usually see a visual pattern as
the simplest organization of all possible organiza-
tions from the elements in the visual field (Koffka,
1935). There can be no doubt that the Gestalt laws,
such as proximity, similarity, continuation, sym-
metry, etc., work well in an intuitive sense. However,
an adequate means for specifying objective variables
underlying the organizations predicted by the laws is
lacking. To remedy this lack, recent studies have
turned to quantitative approaches to pattern ‘‘good-
ness,”’ which has been regarded as one of the most
important Gestalt concepts of figural organizations.

Attneave (1954, 1955) demonstrated that many of
the Gestalt laws constitute redundancy in visual stim-
ulation, and may be quantified within a framework
of information theory. He investigated the symmetry
effect on memory for patterns and found that sym-
metrical patterns were more accurately reproduced
from memory only when they contained less infor-
mation than asymmetrical patterns. A similar ap-
proach was taken by Hochberg and McAlister (1953).

In these studies, the redundancy concept was re-
garded as a measurable property for single patterns
and was considered directly related to the goodness
of the patterns. On the other hand, Garner (1962)
pointed out that redundancy was a property of sets of
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patterns, not of single patterns, and suggested that
each single pattern was perceived not only as that one
pattern, but also as one of a subset of equivalent pat-
terns. Furthermore, he hypothesized that pattern
goodness was inversely related to the size of this in-
ferred subset of equivalent patterns. Later, Garner
and Clement (1963) obtained experimental results
supporting this hypothesis. In their experiment, two
patterns are said to be equivalent if one pattern is
produced by reflections and 90-deg rotations of the
other. Although Garner directly related pattern good-
ness to the size of equivalent subsets, Imai et al.
(1976) related it to the intrapattern transformation
structures, rather than the subset size. The transfor-
mation structures of patterns were defined by invari-
ant properties for three cognitive transformations:
mirroring on a diagonal axis, mirroring on the ver-
tical axis, and 180-deg rotation. Their experimental
results showed that pattern goodness judgments were
dependent on the transformation structures. In addi-
tion, Howe (1980) investigated the effect of partial
symmetry on pattern goodness judgments and found
that judged pattern goodness was a function not
simply of equivalent subset size, but also of amount
of partial symmetry within patterns that were asym-
metrical when considered as wholes. Szilagyi and
Baird (1977) investigated the quantitative relation-
ship between pattern goodness and the amount of
symmetry in visual designs, and showed that pattern
goodness was inversely related to the quantitative
degree of asymmetry. It should, however, be noted
that the goodness of a pattern was operationally
defined by the percent of subjects who created such
a pattern on the basis of aesthetic preference.

These studies suggest the importance of symmetry
in pattern goodness. Furthermore, symmetry has
been regarded as a fundamental determinant of judged

0031-5117/82/090230-11$01.35/0



pattern complexity (Chipman, 1977). It would be
useful, therefore, to develop a quantitative and ob-
jective measure of symmetry in order to predict per-
ceptual organization. Despite the importance of sym-
metry, there has been little work to date on measures
of symmetry, and quantitative and objective mea-
sures proposed by previous studies have several prob-
lems. First, in most studies, the amount of symmetry
is measured by the number of axes through which
reflection will reproduce the same pattern, or by the
size of an equivalent subset, as Garner and Clement
suggested. However, symmetry is a continuum. Sec-
ond, most measures of symmetry are not adequate
to measure the amount of partial symmetry within a
pattern. Third, the measures do not have sufficient
predictive power. (Zusne, 1965, 1971, devised three
single-form measures of symmetry—third moment of
area, maximum self-overlap, and asymmetry of coor-
dinates—but none of these measures was a good pre-
dictor of symmetry judgments.)

The present paper develops a new objective phys-
ical measure of visual symmetry that solves these
problems. First, we consider the relationship between
the amount of symmetry in a single pattern and the
concept of entropy in information theory. Second,
an entropy-like measure, called symmetropy, is pro-
posed as an objective physical measure of symmetry.
Then it is extended to a more general measure, called
the symmetropy vector. Third, multiple regression
analyses are carried out to test the utility of the sym-
metropy vectors as predictors of pattern goodness
and complexity. Finally, some of the advantages of
symmetropy vectors are discussed. A distinction be-
tween pattern goodness and pattern complexity (or
simplicity) is also discussed on the basis of the results
of the regression analyses.

AMOUNT OF SYMMETRY
AND THE ENTROPY CONCEPT

The concept of redundancy in information theory
has been used to quantify the amount of symmetry
and pattern goodness, but without much success.
This paper reports an attempt to apply the entropy
concept to quantification of the amount of symmetry
in a pattern.

In information theory, an information-generating
mechanism is described by an information source.
The source is emitting a sequence of symbols from a
fixed finite source alphabet. Successive symbols oc-
cur according to some fixed probability law. Thus,
an information source is specified by giving a set of
finite symbols, or a source alphabet, and the prob-
abilities with which the symbols occur. The entropy
of an information source is defined to be the average
amount of information per source symbol. Sym-
metry may be generally considered as a form of re-
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dundancy. Since entropy, or its inverse, redundancy,
is measurable in bits of information, so is symmetry,
if an entropy-like measure of symmetry can be found.
However, as Garner (1962) pointed out, there is in-
consistency in using the redundancy concept with re-
spect to single patterns, since redundancy is a prop-
erty of sets of patterns. In this paper, this inconsis-
tency is solved by the use of an orthogonal trans-
formation of single patterns.

In the area of signal processing, the Fourier trans-
form of an original signal is often used as the primary
method of analysis, since the Fourier transform makes
it easier to understand the nature of the signal. In
a similar way, an original pattern may be transformed
into some pattern in another mathematical space,
which is convenient for analyzing the amount of sym-
metry in the original pattern. The two-dimensional
Walsh transform is one such transform.

Two-dimensional Walsh functions are particularly
suited to the present purpose. They form a complete
orthonormal set, which is equally divided into four
subsets according to the types of symmetry—vertical,
horizontal, 180-deg rotational, and double (i.e., both
vertical and horizontal. Note that the doubly sym-
metric patterns also have rotational symmetry. Al-
though Fourier (sine-cosine) functions also have this
property, they do not have the following property:
The two-dimensional Walsh functions take only two
values, +1 and —1. This property facilitates the com-
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Figure 1. Two-dimensional Waish functions (for N =4) arranged
with respect to the types of symmetry described in the text. Black
represents +1 and white represents —1.
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putation of the two-dimensional Walsh transform of
patterns.

The first 16 of the two-dimensional Walsh func-
tions are shown in Figure 1. Thus, the two-dimensional
Walsh transform, which is defined in the next sec-
tion, decomposes any single pattern into four compo-
nents of symmetry. Here, we can think of a pattern
as a zero-memory information source' with source
alphabet (s,, sz, S3, s«—the four types of symmetry)
and with the probability of s; equal to the normalized
value P; of the corresponding component. Then we
can think of the entropy of the source as a measure
of symmetry in the pattern, or the source (Abramson,
1963). In other words, if the value of a certain com-
ponent of the four types of symmetry is larger than
the values of other components, the original pattern
is richer in symmetry. On the other hand, if the values
of the four components are almost equal, the original
pattern is poor in symmetry. This notion is formal-
ized in the following section.

FORMULATION OF AN ENTROPY-LIKE
MEASURE OF SYMMETRY

Two-Dimensional Discrete Walsh Transforms

In the Appendix, Walsh functions are explicitly
defined, and their fundamental properties, a brief
history, the advantages they have over Fourier func-
tions, and their applications are presented. A reader
who is unfamiliar with Walsh functions should refer
to this first in order to understand the following def-
initions.

The two-dimensional discrete Walsh function
W, n(i,j) of order (m,n) and argument (i,j) can be
defined as

W, (0,d) = W wi (),
m,n,i,j=0,1,2,...,N—-1,

where N=29 (q is a positive integer), and wy(i) and
wm(j) are the one-dimensional discrete Walsh func-
tions defined in the Appendix.

Here, we define the two-dimensional discrete Walsh
functions on a square region, which is divided into
N XN equal square subregions called cells (see Fig-
ure 1). These functions can be represented in matrix
form as [Wy 5(i,j)], where Wy, n(1,_1) is the value of
the (m,n)th order Walsh function in the ith row cell
in the jth column.

Patterns used in this paper are restricted to square
matrices, each consisting of N X N square cells, where
N =29 (q is a positive integer). The use of the two-
dimensional discrete Walsh transform requires that
N be equal to a power of two. This requirement,
however, is not a limitation, since any pattern can
be embedded in an N X N matrix. A pattern can
be written as [x; ;], where x; j is the value of gray level

in the ith row cell in the jth column and i,j =0, 1, ...,
N —1. In particular, if there are just two gray levels,
“‘black’’ and ‘‘white,”’ we usually represent them by
1andO.

By making use of the above definitions, the two-
dimensional discrete Walsh transform of a pattern,
[xi,;1, of N X N cells, is given by the expression

N-1 —

-1
e |

i=0 j=0

WoaGd @

mn=0,1,2,...,N-1,

and the inverse transformation is given by

N-1 N-1
Xj= D) D ama Wi alis)
m=0 n=0

,j=0,1,2,...,N—1,
We will call ap, , the two-dimensional Walsh spec-
trum, and (ap,n)* the two-dimensional Walsh power
spectrum. From Equation 1, for m,n=0, we obtain

N-1 N-1

00=xe 2y 2%

i=0 j=0

Therefore, ag g is interpreted as the average value for
the summation of gray levels in the pattern [x; ;].

Using the two-dimensional discrete Walsh trans-
form, a pattern [x;;] is transformed from a repre-
sentation in the original domain (or the image
domain) to its corresponding representation in the se-
quence domain, which is the counterpart of the fre-
quency domain in the discrete Fourier transform.

The two-dimensional Walsh power spectra (am, )’
can be normalized as follows:

N-1 N-1
K= 2_% Z_; (@m ) — @00 @
Pmn = (am /K, 0

where we assume that K # 0. Thus, we obtainpy 520
and

N-1
2 Pma=1, @
m,n

where the sum is taken over all ordered pairs (m,n)
except (0,0) for 0 € m,n € N-1. The reason for



subtracting (ap,0)* from the summation of the Walsh
power spectra in Equation 2 is that (ag,g)* is the
Walsh power spectrum of the pattern [x;;] for
Wo,0(i,j), which provides no shape information. The
normalized Walsh power spectra pm  defined in
Equation 3 will be used in the next section.

A New Measure of Symmetry
To develop a new measure of symmetry in a pat-
tern, we will use the following property of the two-
dimensional Walsh functions with respect to sym-
metry:
vertically symmetric, if m = even and n = odd;
horizontally symmetric, if m = odd and n = even;
W ) =
centrosymmetric, if m,n = odd;

doubly symmetric, if m,n = even.

This is easily proven from the symmetries of the one-
dimensional Walsh functions presented in the Ap-
pendix. By using this property, a set of two-dimen-
sional Walsh power spectra of a pattern can be easily
divided into four components according to the types
of symmetry involved, as follows:

vertically symmetric component,

P, = Pans ©)
m=even
n=odd

horizontally symmetric component,

P, = 2 Pm,n} ()

m=odd
n=even

centrosymmetric component,

) Pm.ni M

m=odd
n=odd

and doubly symmetric component,

P.= Prn.o- ®)

m=even
n=even

In each equation, the sum is taken over all ordered
pairs (m,n) except (0,0) for0 € m,n € N—1.

Now we can define a new measure of symmetry.
Applying the entropy function in information theory
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to the four components of the types of symmetry,
we define

4
SN = —Epk 1081 Pk’
k=1

and we call Sy the symmetropy.

The symmetropy Sy can be explained as follows:
(1) A pattern can be considered as a zero-memory
information source consisting of the four types of
symmetry, each occurring with a probability whose
value is equal to the corresponding symmetric com-
ponent P, (k=1, 2, 3, 4). (2) Each symmetric com-
ponent Py is given as the sum of the two-dimensional
normalized Walsh power spectra of the pattern for
the same symmetry type. (3) The symmetropy Sy
means the entropy of such an information source,
and can be considered as a quantitative and objective
measure of symmetry.

Whether or not the human visual system actually
performs such computations as those for entropy and
two-dimensional Walsh power spectra remains con-
jectural.

We can easily verify the following properties of
the symmetropy. The symmetropy is invariant under
the following operations on patterns: (1) 90-deg ro-
tations, (2) dilations or contractions by 2k (k is a
nonzero integer) times in the horizontal or vertical
direction, and (3) black-white reversals of binary pat-
terns (i.e., figure-ground reversals).

The symmetropy of that pattern, which is coinci-
dent with one of the two-dimensional Walsh func-
tions, except for the correspondence of each gray
level, equals zero. Furthermore, the symmetropy of
a doubly symmetric pattern is also zero. In general,
all of the patterns that have, for example, perfect
vertical symmetry do not necessarily have the same
value for their vertically symmetric components be-
cause vertically symmetric patterns usually have not
only the vertically symmetric, but also the doubly
symmetric components. The same goes for horizon-
tally symmetric patterns and centrosymmetric pat-
terns. Therefore, the value of the vertically symmetric
component measured in this paper does not perfectly
correspond to the direct measurements of the amount
of mirroring around a vertical axis. However, it
should be noted that if the pattern being examined
is identical to one of the pattern templates of the two-
dimensional Walsh functions, they have perfect cor-
respondence.

Symmetropy Vector

The symmetropy is defined only for the 29x 29
patterns. For any MxM (M 2 3 and M # 29) pat-
tern A, we transform the pattern A into the 29x 29
pattern B, as follows:
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(1) If M is even, let q be a minimum integer which
satisfies 24 > M. Then, pattern B is defined as

where 0 denotes a zero matrix.
(2) If M is odd, let q be a minimum integer which
satisfies 29 > 2M. Then pattern B is defined as

0 0 0
B= 0 A ® C 0 2q’
0 0 0

where 0 = a zero matrix, C = g: }], and ® denotes
the direct, or Kronecker, product. The Kronecker
product A ® C means replacing each element a in
matrix A by the matrix [: :]. In other words, A® C
is the pattern which is formed from dilating pat-
tern A four times.

In the previous section, we showed that the sym-
metropy is invariant under dilations of a pattern 2k
times in the horizontal or vertical direction. There-
fore, without loss of generality, the' symmetropy of
the M X M pattern A can be defined to be that of
the transformed pattern B.

In general, the goodness and the complexity of a
pattern seem to be directly related not only to the
amount of total symmetry but also to the amount of
partial symmetry in the pattern (Chipman, 1977;
Howe, 1980). Therefore, we now define a measure
of partial symmetry and another related measure. Let
A be any M xM pattern, where 2'+! > M > 2f and
r is a positive integer. To obtain the measure of par-
tial symmetry, some observation windows are intro-
duced. The observation windows are the 2k x 2k
k=1, 2, ..., r) square regions through which pat-
tern A is observed at all possible distinct window
positions. At each window position in pattern A, the
symmetropy of each subpattern observed through the
2k x 2k window is computed. Then, the mean sym-
metropy value, averaged over all possible window
positions, and the standard deviation of the sym-
metropy are computed for each window size. They
are denoted by SKA and ok,i, respectively. Since pat-
tern A is observed through the 2k x 2k window,
SK,I can be considered as a measure of partial sym-
metry. The standard deviations are introduced with
the intention of estimating the homogeneity of pat-
tern A for each window size.

To estimate the amount of symmetry for various
observation window sizes, the following vector is in-
troduced.

Vi = (Sm» Shas Skrls - - -5 Shpo G S8 Ly + - -5 ),
where 2'+1 > M > 27, and r 2> 1. Vector V), is called
the symmetropy vector of the M xM pattern A. In
addition, Sy, Sfy, and ofy are called the whole sym-
metropy, the 2kx 2k partial symmetropy, and the
standard deviation of the 2k x 2k partial symmetropy
of the M x M pattern A, respectively. Here, it should
be noted that the symmetropy vector is defined for
any MXM (M 2 3) patterns.

We now consider the relation between the sym-
metropy vector and the variables that have previously
been used in research on the psychophysics of pat-
tern, suchas the number of turns, the amount of con-
tour, dispersion, compactness, repetitions, rotations,
and several types of symmetry. Since the symmetropy
measure has its properties stated in the previous sec-
tion, it can be said that it is closely related to repeti-
tions, rotations, and several types of symmetry. It
seems that the standard deviation of symmetropy
reflects dispersion and compactness. Neither the
symmetropy measure nor its standard deviation have
a cléar relation to the number of turns and the amount
of contour. However, there seem to be some indirect
relations existing between them.

Here, it should be pointed out that the symme-
tropy vector has been represented in terms of two-
dimensional Walsh power spectra, and is based on
the symmetry concept only, while variables that have
been used previously in related studies have been
represented in terms of features in the original image
domain and are chosen intuitively.

Illustrative Examples

Consider a 4 x 4 pattern, consisting of eight black
and eight white cells, as shown in Figure 2A. In pat-
tern A, white represents the value 0 and black repre-
sents 1.

The two-dimensional Walsh spectra, obtained
from pattern A by using Equation 1, are given in
Table 1.

>
w

Figure 2. A sample of the patterns having different symmetropy
vector values. Black represents +1 and white represents 0.



Table |
Two-Dimensional Walsh Spectra for the
Pattern Shown in Figure 2A

Component
Vertically Horizontally Centro- Doubly
Symmetric Symmetric symmetric Symmetric
ag,1 1/8 a8 apy 0 age 1/2
a0 3 0 a3.0 1/8 a3 -1/8 ap,2 -1/8
ayy /8 ajp 0 a3z, 0 agp 0
a2,3 1/4 33’2 —1/4 a3’3 1/8 32‘2 1/8

Putting the values given in Table 1 into Equa-
tion 2, we obtain

3 3
K= E z(am,n)2 - (a0,0)z’

m=0 n=0
=(1/2)-(1/4),
=1/4,

Then, using Equation 3, p,, , are calculated. Substi-
tuting the values for py, 5 in Equations 5, 6, 7, and
8, we obtain

P1=3/8 P1=3/8, P3=1/8, P4=1/8.

From Equation 4, we see easily that

k=1

Hence, we can calculate the symmetropy of pat-

tern A:
4
Se = —Zpk log: Py,
k=1

= 1.81 bits.

Then, in order to obtain the symmetropy vector, the
symmetropies of all the 2x2 patterns within pat-
tern A are calculated. Putting them at each distinct
2 x 2 window position within pattern A, we can write

1.58 0 0
1.58 1.58 0
0 0 1.58.

The mean and the standard deviation of these nine
symmetropy values are S{=.70 and oi=.79, respec-
tively. Therefore, the symmetropy vector of pat-
tern A is
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V4(A) = (S4’ SL 0}),
= (1.81, .70, .79).

In the same way, the symmetropy vector of pat-
tern B, given in Figure 2, is

V.«B) = (1.0, 0, 0).

Multiple Regression Analyses

If patterns have the same symmetropy vector, they
should be equally good or equally complex. Multiple
regression analyses can be used to test the utility of
the symmetropy vector as a predictor of pattern good-
ness and complexity. In the regression analyses, we
consider the elements of a symmetropy vector as pre-
dictor variables.

Pattern Goodness

Howe (1980) constructed a set of 60 patterns, each
consisting of nine black dots ina 5 x 5 square grid,
to investigate the effects of partial symmetry in visual
patterns on judgment of pattern goodness, immedi-
ate memory, and learning. Some examples of the
Howe patterns are shown in Figure 3.

In order to relate the symmetropy vector to judged
pattern goodness, we use this set of the 60 Howe pat-
terns and their mean goodness values taken from
Howe (1980). First, the symmetropy vectors were cal-
culated by a computer program for all of the 60 Howe
patterns. Then, using these symmetropy vectors and
the mean goodness values, multiple regression analy-
sis was carried out. The computed correlations among
the predictor variables and judged pattern goodness
are shown in Table 2.

The following regression equation was obtained:

Pattern goodness = 1.90S; +1.38 02 + 1.78,

R = .96,

10 4,0 80 8yud 80

. L L] . . L] L]

(o) * < o L Ld * ol < . ele < L] ol < L
155(1.78) 258(263) 405(400) 501(460) 4651(4.54)

24 4,0 82n0 8,u0 80

( b) < L] . < < L] L] . L]
o ele ole ele oje [JLd el ol ejele L3
166(1.78) 281(259) 391(394) 451(438) 508(472

Figure 3. A sample of the Howe patterns (from Howe, 1980).
Above each pattern is an identity code.? Under esch pattern Is the
judged goodness value. The number in parentheses following the
judged goodness indicates the goodness value predicted by the
regression equation obtained in this paper.
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Table 2 Table 3
Correlations Among Predictor Variables Correlations Among Predictor Variables
and Judged Pattern Goodness and Judged Pattern Complexity

Variable S S? St ol o} Variable ~ §, S; Si a: o,

Ss Ss

Si 12 Si 72

Si .00 47 St .47 .68

a} .49 -.32 -.24 o} —.66 —-.84 -.73

o} .22 -.19 .69 .29 o} 45 .74 .90 —.69

Goodness 95 .09 -.03 56 .29 Complexity .78 77 .74 —.80 .70
where R represents the coefficient of multiple cor- R =.90,

relation. This equation and the high value of the co-
efficient of multiple correlation indicate that the
goodness of each of the 60 Howe patterns is mostly
predicted by using only two objective variables, S,
and o3.

Pattern Complexity

Chipman (1977) used a set of 45 patterns as the
stimuli in studying the determinants of judged pat-
tern complexity. The 45 Chipman patterns are 6 X 6
matrices of black and white square cells, each with
12 black square cells. Note, however, that the bound-
ary of the matrix is not indicated. Some examples
of the Chipman patterns are shown in Figure 4. This
time, we used the 45 Chipman patterns and their
mean judged complexity values to relate the symme-
tropy vector to judged pattern complexity. As in the
case of pattern goodness stated above, multiple re-
gression analysis was carried out. The computed cor-
relations among the predictor variables and judged
pattern complexity are shown in Table 3.

The following two regression equations were ob-
tained:

Pattern complexity = 7.66 Sy + 20.93 Si

—18.05 0§ + 5.32,

ORI

Figure 4. A sample of the Chipman patterns (from Chipman,
1977). At the upper right of each pattern is an identification num-
ber. At the lower right is the judged complexity value. The number
in parentheses at the lower left indicates the complexity value pre-
dicted by the regression equation obtained in this paper.

and pattern complexity = 9.41 S +29.10 S§ —7.81,
R = .89,

where R represents the coefficient of multiple corre-
lation,

Note that M is equal to 8, not to 6, in predictor
variables Sf; and of. The reason for this is that mul-
tiple regression analyses yielded a higher multiple
correlation for M = 8 than for M =6.

The results of multiple regression analyses indicate
that the complexity of each of the 45 Chipman pat-
terns is well predicted by using only two objective
variables Ss and S}, which are the whole symmetropy
and the 2 x 2 partial symmetropy, respectively.

DISCUSSION

What are the advantages and disadvantages of
using the two-dimensional discrete Walsh transform
to develop a measure of visual symmetry? As com-
pared with the discrete Fourier transform and other
orthogonal transforms, the Walsh transform has the
following advantages: (1) Since the Waish functions
take only the two values +1 and —1, and the only
operations involved are additions and subtractions,
the two-dimensional discrete Walsh transform is
easier and considerably faster to compute than the
discrete Fourier and other orthogonal transforms.
(2) Patterns, each consisting of black dots in a square
grid, or of a matrix of black and white cells, are used
as stimuli in many studies on pattern goodness and
pattern complexity. In this case, the two-dimensional
discrete Walsh transform provides the same accuracy
with fewer terms.

On the other hand, the Walsh transform has the
following disadvantages. (1) In general, any pattern
must be represented by a 2P x 29 (p and q are pos-
itive integers) matrix. (In this paper, the case p=q
was chosen.) (2) The two-dimensional discrete Walsh
transform is not invariant under each operation of
translation, rotation, dilation, and contraction. (3) The



symmetropy of that pattern which is coincident with
one two-dimensional Walsh function other than the
correspondence of each gray level equals zero. There-
fore, such a pattern must be treated as a singular
case. However, (1) is not an essential disadvantage,
because any pattern can be represented as a 29x 29
pattern by use of the method explained in an earlier
section. In relation to (2), it should be noted that the
Walsh transform has peculiar invariant properties,
as stated in an earlier section.

In the first section, it was pointed out that most
measures of symmetry proposed in the past (1) are
not continuous, while symmetry is a continuum,
(2) are not adequate to measure partial symmetry,
and (3) do not have enough predictive power.

In the present paper, these problems have been
solved by developing a new measure of symmetry,
the symmetropy vector. From the definitions of sym-
metropy and the symmetropy vector, one can easily
understand how problems 1 and 2 have been solved.
With respect to problem 3, multiple regression analy-
ses of judged pattern goodness and of judged pattern
complexity were carried out to test the predictive
power of the symmetry vector.

It is important to note that in the 60 Howe patterns
used in the regression analysis there was a very high
correlation of .95 between whole symmetropy and
judged pattern goodness. This indicates that whole
symmetropy is a very good representation of the
quantitative physical variable underlying perceived
pattern goodness.

The regression equations predicting pattern com-
plexity, obtained here for the 45 Chipman patterns,
can be compared with those in Chipman’s study
(1977). She has obtained the following regression
equations for the same set of patterns used here:

Pattern complexity = .78(turns) — .10(H-V symmetry)
—.12(diagonal symmetry)
+43.96,

R=.85,

Pattern complexity = .90(turns) — .14(H-V symmetry)
—.13(diagonal symmetry)
.17(opposition symmetry)
+64.12,

R=.90,
where R represents the coefficient of multiple corre-

lation. These regression equations may be compared
with those obtained in this paper. It should be em-
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phasized that, in Chipman’s equations, the coeffi-
cient of multiple correlation is .85 for three variables
and .90 for four variables, while in those obtained
in this paper, it is .89 for only two variables and .90
for three variables. Furthermore, the more important
and fundamental distinction between the two regres-
sion models is that, in Chipman’s, all the predictor
variables are selected out of such geometrical fea-
tures as the number of turns, the amount of contour,
the amount of each type of symmetry, and others,
whereas in the present model, the variables are the
whole symmetropy, the partial symmetropies, and
their standard deviations, which are simpler and
more systematic variables.

There are several differences between Chipman’s
symmetry variables and the symmetropy measures.
(1) Since the two-dimensional Walsh functions form
a complete orthonormal set, the four symmetry com-
ponents grouped according to the types of symmetry
are linearly independent, whereas Chipman’s sym-
metry variables do not show this mathematically
desirable property. (2) By using the linearly indepen-
dent property of the four symmetry components, it
has been possible to define symmetropy as an entropy-
like measure of symmetry. However, Chipman’s
symmetry variables were created by simply summing
up partial symmetries measured with a moving axis
of symmetry. Therefore, although partial symme-
tropy is created by averaging symmetropy values for
all possible locations of a window of a given size,
the symmetropy measures themselves are quite dif-
ferent from Chipman’s. (3) Chipman used the vari-
able of diagonal symmetry, while symmetropy mea-
sures have been developed on the basis of four sym-
metry types which do not include diagonal symmetry.
However, this is not an essentially weak point of the
symmetropy measures, since observation windows
can be rotated by 45 deg, although this has not yet
been attempted.

Finally, we examine instances of particularly bad
predictions using the symmetropy measures. The
four instances of the worst predictions for both the
Howe and Chipman patterns are shown in Figure 5.
In all of these patterns, the predicted values are smaller
than the judged values. That is, all of them are pre-
dicted by the symmetropy vector to be simpler or
better patterns than is the case by actual judgment.

In the previous studies on pattern goodness and
pattern complexity, or its inverse, simplicity, it has
long been recognized that a good pattern is simple.
However, using linear binary patterns as stimuli,
Imai et al. (1976) have reported that judged complex-
ity increases with the number of runs whereas judged
goodness does not. Thus, although the two concepts,
pattern goodness and pattern simplicity (or complex-
ity), have a fairly high correlation, they are not iden-
tical. To make this distinction clear, we examine the
results of the multiple regression analyses. Table 2
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Figure 5. The four instances of the worst predictions using the
symmetropy vectors for both the Howe and Chipman patterns.

shows that the correlation between judged pattern
goodness and the whole symmetropy is particularly
high (.95), as compared with those for the other pre-
dictor variables. In addition, Table 3 shows that the
correlations between judged pattern complexity and
the predictor variables all range from .70 to .80. These
suggest that pattern goodness is a holistic property
of a pattern, while pattern complexity (or simplicity)
depends on both holistic and partial properties of a
pattern.

Finally, in this paper, equal weight is given to the
four types of symmetry (i.e., vertical, horizontal,
centro-, and double symmetries). However, it has
been suggested that vertical symmetry is perceptually
more salient than horizontal and rotational sym-
metry (Corballis & Roldan, 1975; Palmer &
Hemenway, 1978). Therefore, if we could give ap-
propriate weight to each of the four types of sym-
metry, symmetropy would become a better objective
measure of symmetry, and therefore, a better model
of the human perceptual response to visual symmetry.
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APPENDIX
WALSH FUNCTIONS

Definition

There are several different ways of defining and/or rep-
resenting Walsh functions (Beauchamp, 1975; Harmuth,
1972). In this paper, we adopt the definition shown below
(Blachman, 1974) derived from sinusoidal functions, be-
cause, although most readers will be unfamiliar with Walsh
functions, they will be familiar with Fourier (sine-cosine)
functions. In addition, this definition clarifies the relation-
ship between Walsh functions and Fourier functions.

The Walsh function wal(k,x) of order k and argument x
can be represented over the interval 0 € x < 1 as follows:

m-—1
wal(k,x) = H sgn((cos 2‘nx)ki], (Al)
i=0
k=0,1,2,...,
where ki =0orlandi=0,1, ..., m—1 are the digits

of the binary numeral for the integer k such that

m-1
k= E k2!
i=0

and m is the smallest positive integer such that 2m > k, and
the function sgn(t) is —lkif t<0and +1if t > 0. In Equa-
tion Al, when (cos 2!nx) =0, we define

sgn[(cos 2inx)ki] = sgn{[cos 2in(x + e)]ki},

where e is any real number with 0 < e < 2~™, Here, note
that, since

lim tt=1,
t—+0

we define 0° = 1.



The number of sign changes in the interval 0 € x< 1, of
the Walsh function wal(k,x) is called its sequency. It is
easily shown that the sequency of wal(k,x) is k. The sequency
corresponds to the frequency of Fourier sinusoidal func-
tions. It should be noted that some authors define the se-
quency of wal(k,x) as one-half the number of sign changes
in the unit interval.

Superimposition of the first eight Walsh functions and
the corresponding Fourier sinusoidal functions is shown in
Figure 6. As can be seen in Figure 6, Walsh functions ap-
pear to be squared-up versions of Fourier sinusoidal func-
tions. This is not true, since, in general, the sign changes of
Walsh functions are not equidistant. The total number of
sign changes of Walsh functions and their corresponding
sinusoidal functions, however, are the same.

Some Fundamental Properties

We now present without proof some fundamental prop-
erties of Walsh functions that will be needed in the paper.
(For detailed explanations, refer to Beauchamp, 1975, and
Harmuth, 1972.)

Multiplication. Dyadic addition hé@®k, of nonnegative in-
tegers h and k, is defined as

f
h@k:Z(;lhi—kilzi,
1=

f f
whereh = E h2iand k = E k;2i,
i=0 i=0

wal (0,x)

wal (1,x)

~_| cos2xx 7
—— 1 wal(2,x)

\\(\\ - 1

S [sindrx (7

4 —  wal (3,x)

wal(4, x)

1 =1 sinéxae yam
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Figure 6. Superimposition of the first eight Walsh functions and
the corresponding Fourier sinusoidal functions.
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Consequently, the product of the two Walsh functions is
given by
wal(h,x)wal(k,x) = walth P k,x), (A2)

where @ denotes dyadic addition.

Ifhk<29,q=0,1,2,...,then h@® k < 29, There-
fore, from Equation A2, it is easily shown that the
Walsh functions of order k<29, q=20,1, 2, ...,
form a closed set under multiplication.

Orthonormality.

1
Jo walh, owal(k,x)dx = 0, forh#k,
= 1, forh =k.

This means that Walsh functions form an orthonormal set
in theinterval 0 € x < 1.

Walsh series. Every function f(x) which is integrable in
the Lebesgue sense can be expressed in the interval 0€ x< 1
as a series of the form

f(x) = Qaiwal(i,x), (A3)
1=

where the coefficients a; are given by

a = [ fowal,xdx, fori=0,1,2,.... (A4)
As with the Fourier series, Parseval’s equivalence holds,
and we can write

1

N 1
- a; = fo f’(x)dx.

Therefore, Walsh functions form a complete orthonormal
set in the interval 0 € x < 1.

Walsh transform. From Equations A3 and A4, we can
define a transform pair just like the Fourier transform,

f(x) = 2 F(iywal(i,x),
i=0

F(i) = j;)l f(x)wal(i,x)dx.

Discrete Walsh transform. Let the interval (0,1) be divided
into N=24 (q is a positive integer) with equal subintervals.
Next, we define wq(i) as the value of the nth order Walsh
function in the ith subinterval, where n,i = 0, 1, 2, ...,
N —1. Let a; be the sampled value of a function f(x) in the
ith subinterval. Thus, the discrete Walsh transform can be
defined by

N-1
2= D Apwy(i), (AS)

n=0
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wherei,n=0,1,2,...,N—-1.

It should be noted that we must make N equal to a power
of 2, that is, N=24, in order that a; can be expressed in the
form of Equation AS.

Symmetries. Replacing x by 1-x in Equation Al, we
easily see that all of the factors are unchanged except
sgn(cos nx), which changes sign. Since this factor is involved
only if i is odd, we obtain wal(i,1 — x) = (—1)'wal(i,x). This
means that wal(i,x) has even or odd symmetry about x= 13,
depending on whether i is even or odd.

Previous Applications

Walsh functions were introduced by the American
mathematician J. L. Walsh in 1923 (Walsh, 1923), but there
was little interest in their application until the 1960s, when
the advent of digital computers revived interest in Walsh
functions. In the last decade, a large number of papers
dealing with their applications have appeared in the electri-
cal engineering literature. Many of these are published in
the Proceedings of the Symposia on the Applications of
Walsh Functions.

Engineers have become interested in studying Walsh
functions because (1) they form a complete orthonormal
set that can be used as a basis to represent signals in much
the same way as Fourier sinusoidal functions, (2) they are
particularly suited to applications in digital signal pro-
cessing using logic circuits or digital computers, because
they take only two values, +1 and —1, and (3) they can be

computed more quickly than the equivalent Fourier trans-
forms.

Walsh functions now have many fields of application,
including speech processing, pattern recognition, image
coding and transmission, data compression, signal pro-
cessing and multiplexing, switching functions, and logic
circuitry.

Here, it is worthwhile to note that the finite discrete
Walsh transform has some biological relevance. That is to
say, Carl (1970) has shown that interacting neurons are
intrinsically capable of performing finite discrete Walsh
transform computations. However, whether or not a bio-
logical system actually performs such computations re-
mains a matter for conjecture.

To the best of the author’s knowledge, no theoretical or
experimental results concerning applications of Walsh
functions to visual perception have been published.

NOTES

1. An information source is called a zero-memory source if
successive symbols emitted from the source are statistically inde-
pendent (Abramson, 1963).

2, The first digit of each identity code indicates the number of
equivalent patterns by rotation and reflection. The subscript digit
indicates that more complex patterns were derived from those
having an equivalent subset size of either (a) 1 or (b) 2. Subscripts
H (high), M (medium), and L (low) define the degree of partial
symmetry (Howe, 1980).
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