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Symmetry-adapted classification of aberrations
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Optical systems produce canonical transformations on phase space that are nonlinear. When a power expansion of
the coordinates is performed around a chosen optical axis, the linear part is the paraxial approximation, and the
nonlinear part is the ideal of aberrations. When the optical system has axial symmetry, its linear part is the
symplectic group Sp(2, R) represented by 2 X 2 matrices. It is used to provide a classification of aberrations into
multiplets of spin that are irreducible under the group, in complete analogy with the quantum harmonic-oscillator
states. The "magnetic" axis of the latter may be chosen to adapt to magnifying systems or to optical fiberlike
media. There seems to be a significant computational advantage in using the symplectic classification of aberra-
tions.

1. INTRODUCTION

In the past few years the methods of Lie algebras and groups
were applied to optics, from radar detection to magnetic
optics and to coherent states. Much of the literature is
presented or contained in Ref. 1. The purpose of this paper
is to show how the symmetry methods of Lie optics apply for
the classification of aberrations based on the paraxial prop-
erties of the system. The language used here resembles that
used to describe harmonic-oscillator models in physics.

Optical phase space, we should recall,2 is the manifold of
rays crossing a reference screen normal to a chosen optical
axis z. We mark Cartesian coordinates (x, y) on the screen.
The position coordinates of a ray q = (qx, qy)T determine the
intersection with the screen. The momentum coordinates p
= (Px, py)T conjugate to the former are the projection of a
three-vector along the ray direction of length n(q) (the re-
fractive index of the medium at q) on the plane of the screen.
Optical phase space is the manifold of four-vectors3' 4:

(p), (PX) q qX (1.1)

The optical Hamiltonian is the component of the above
three-vector that is normal to the reference screen. Snell's
law for differential variations of the refractive index leads to
the Hamilton equations of motion,5 which are familiar from
studies of mechanics.6 Optical phase space differs from
mechanical phase space only in its global properties: mo-
mentum is bounded by IPI < n(q) in the former but has no
-such restriction in the latter.

We follow the common practice of regarding a coordinate
patch in a neighborhood of the optical axis in the momentum
subspace and perform analytic continuation in any expres-
sion to all value of p in the plane. This permits the usual
separation into paraxial and aberration optics through pow-
er-series expansion of both q and p coordinates, with the
direct analogy of the former regime with mechanics: the
free particle with free propagation in homogeneous optical
media and the harmonic oscillator with quadratic- or ellip-
tic-profile fibers.7 Still in the paraxial regime, harmonic

oscillator "kicks" correspond to quasi-flat refracting sur-
faces.

The standard2 elements of the Lie-optics formalism that
view optical systems as transformations of phase space real-
ized through exponentiaf operators factorized into aberra-
tion orders, as done by Dragt8 and by Dragt and Finn,9 are
described in Section 2.

Optical systems that are symmetric under rotations
around the optical axis (and reflections across planes con-
taining the latter) are succinctly described by functions over
a sphere. The spherical-harmonic expansion of the func-
tions over a sphere leads to the classification of the aberra-
tions of the optical systems under study.10 In Section 3
this construction is detailed for the monomial basis,2 and in
Section 4 the symplectic (or spherical-harmonic) basis is
introduced. This is possible because of the complex homo-
morphism between the two-dimensional symplectic group
Sp(2, R) of paraxial transformations and the group SO(3) of
three-dimensional rotations. It is pointed out that the tra-
ditional Seidel classification of aberrations in imaging sys-
tems distinguishes one north pole of the sphere. Systems
whose paraxial part is that of a fiber distinguish another
direction, related to the former by a rotation of the sphere
corresponding to the (complex) Bargmann transform of
phase space. In this context, in Section 5 aberrations adapt-
ed to fiberlike systems are classified.

The behavior of the third-order aberration coefficients of
a quartic-profile fiber along the optical axis in closed form is
calculated in Section 6.

In Lie optics, optical elements are concatenated through
multiplication of the corresponding group elements. This is
done by computer algorithms for aberration orders higher
than 3. In Section 7 we discuss the economy of the symplec-
tic over the monomial aberration classification and the econ-
omy of adapting the symplectic classification to the paraxial
part of the system. The conceptual economy of group-theo-
retical classification schemes consists of reducing the rather
formidable theory of aberrations to the mathematics of the
quantum harmonic oscillator, perhaps at the reasonable
price of some abstraction.
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2. LIE TRANSFORMATIONS OF OPTICAL
PHASE SPACE

The elements of Lie theory in optics are the following. Con-
sider smooth functions f and g of phase space [Eq. (1.1)].
Their Poisson bracket 6 is

ff, gI(), q) = Og pf O ( :g)(p, q) (2.1)aq ap ap aq

For arbitrary g, the last equality defines the Lie operator8

:f: associated with the function f. The exponential of this
operator is the Lie transformation generated by f and is
given by the series

[exp(z: f)g](p, q) [ -! (z:/:) (p, q)
m=O

Ezm! { {t, {- V * g}- * *}(p, q)
m=O

= g(p, q; z). (2.2)

The three-variable function g(p, q; z) then satisfies the fol-
lowing differential equation and boundary condition:

d g(p, q; z) = :f:g(p, q; z), g(p, q; 0) = g(p, q). (2.3)

Conversely, if Eqs. (2.3) hold and f is independent of z, then
the formal solution [Eq. (2.2)] follows.

In particular, if f(p, q) = -H(p, q) is (minus) the optical
Hamiltonian2' 5 of a medium of refractive index n(q) that is
homogeneous under translations along the z axis [i.e., a fiber
of profile n(q)],

H(p, q) = -[n(q) 2 _ p2]1/2, (2.4)

then Eqs. (2.3), for g(p, q) = p, q, are the Hamilton equation
of motion for rays in the fiber. (This includes free propaga-
tion when n is constant.)

Lie transformations of immediate interest are the follow-
ing: Linear functions of phase space f = x - p + y - q gener-
ate translations of phase space:

[exp(:x -p + y- q:)g](p, q) = g(p + y, q - x). (2.5)

Quadratic functions generate Lie transformations of phase
space that are linear and that may be written in matrix form
as5l

exp(:ap 2 + flp - q +yq 2 :)

F cosu + a sincu 2y sincu )
-2a sinc u cos u-# sinc u q

u = (4a-y - #2)1/2 sinc x = x-l sin x. (2.6b)

A few other functions f lead to Lie transformations that can
be written in closed form. We are generally content to know
that functions f that are of order higher than second in p and
q will yield through Eq. (2.2) an expansion in powers of p and
q when acting on the coordinates of phase space.

Let us now give some further basic results1 2 from the
theory of Lie transformations: First, Lie transformations
are canonical (i.e., Poisson brackets are conserved); second,

refracting surfaces also produce canonical transformations
of phase space.'3 The composition of canonical transforma-
tions is a canonical transformation. Third, a result that may
be regarded as a converse to the first is the Dragt-Finn
factorization theorem,9 the statement that canonical trans-
formations m leaving the origin of phase space invariant (i.e.,
referred to the system's optical axis) may be written, locally,
in the factorized form

m = . *. exp:f5 : exp:f4 : exp:f3 : exp:f2 : (2.7)

generated by polynomials fm(p, q) that are homogeneous of
degree m = 2,3, ... in the components of p and q. When we
restrict the transformation m to be axis symmetric (repre-
senting optical systems invariant under rotations around a
common optical axis and under reflections across planes
containing this axis2'4), then the fm present in Eq. (2.7) may
be functions of only the quadratic combinations'0

p2 = At+ = -(1 + i02),

p . q = 40 = 43

q2 = C2,_ = 41 - it21

(2.8a)

(2.8b)

(2.8c)

so that m = 0 for all odd m. We thus define the vector t.
We should stress the fact that the general linear axis-

symmetric Lie transformation is generated by f2 and given
by Eqs. (2.6). Such transformations are privileged since
they form a group of three parameters; these we may choose
as (a, 1, -y) or the 2 X 2 unimodular matrix of Eqs. (2.6).
This group is called the two-dimensional real symplectic
group, denoted by Sp(2, R). In dimension 2, the accident
occurs that this is the same as the group SL(2, R) of real 2 X 2
unimodular matrices. Further, as transformations of the
three functions ti in Eqs. (2.8), this group'4 is recognized
to be 2:1 homeomorphic to the group of pseudo-
orthogonal matrices SO(2, 1) with the metric (1, 1, -1).
Finally, SQ(2, 1) has the same complex extension as SO(3),
the ordinary rotation group in three dimensions.

Aberrations, as is stated above, constitute the nonlinear
part of an optical transformation. For axis-symmetric sys-
tems, all aberrations have the generic form

mf = *-- exp:f8 :exp:f6 :exp:f 4 : (2.9)

and are generated by the polynomials f2k of degree k in I, as
defined in Eqs. (2.8). Aberrations compose to aberrations,
the neutral element exists, and optical elements are associa-
tive; the last axiom, the inverse of Eq. (2.9), exists (but one
must be careful with limits, nevertheless). The set of ele-
ments [Eq. (2.9)] forms an infinite-parameter group param-
eterized by the coefficients of the polynomials /2k, k = 2, 3, 4,

Moreover, from the Baker-Campbell-Hausdorff for-
mulas'2 and the property {f2n, f2m1

= g2(n+m-1) of the Poisson
bracket, we have

exp:f2 n: exp:f2m: = . .. exp:g 2(n+m-): exp:f 2m: exp:f 2n:-

(2.10)

It follows that the group of aberrations has a nested struc-
ture that permits us to form the factor group of Nth-order
aberrations, modulo aberrations of order higher than N.

Aberrating optical systems have a paraxial part described
by the 2 X 2 matrix M and an aberration part [Eq. (2.9)]. Its
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restriction to aberration order N = 2k - 1 permits us to
parameterize the elements through f = tf2kb'k=2, where f is a
vector of polynomials or, alternatively, a vector with their

coefficients in some basis,

G(f; M) = G(f2k, f2h2, * .. , f4; M) = G(f; 1)exp:f2:.

(2.11)

Composing optical elements means multiplying group ele-
ments:

G(f; M)G(g; N) = G(f# [exp:f2:g]; MN). (2.12)

The two paraxial parts are composed by ordinary matrix
multiplication, and # denotes aberration composition.4"12

The structure of Eq. (2.12) indicates that, within the group
of axis-symmetric Nth-order optical transformations, the
subgroup of aberrations forms an ideal, i.e., is acted on by
linear (paraxial) transformations but does not act on them.
This permits us to use Sp(2, R) to classify aberrations into
irreducible vector subspaces, as we shall show below.

3. MONOMIAL (SEIDEL) CLASSIFICATION OF
ABERRATIONS

The action of linear transformations on the aberration poly-
nomials is partially reduced: the former do not map the
latter out of their aberration order, so it will suffice to work
with a single, generic aberration polynomial of degree k in (,
for aberration order N = 2k - 1:

f2k(p, q) = 3
k,+k(,+k-=k

Vh+)k0,kMk+,kok_(Q)I

Mk+,k 0,k_() = (p2)k+(p - q)ko(q2)kh (3.1b)

The v's are the monomial aberration coefficients. As shown
for order 3 by Dragt,2 they correspond directly to the tradi-
tional Seidel aberrations. Following Eq. (2.2) to the second

(k)
term in the series for any single aberration Vk+k ok_ acting on
object position g = q, we find

exp:f2 k:q = q - Vk~(k [2Mk+i,_k(,kP + Mh+,ho-lzk_q] + . . - -

(3.2)

This we may compare with previously obtained results' 5 to
arrive at the following identifications for general aberration
order:

Vk,0o,0 spherical aberration (S),

Vk-Vkl2O0

Vk-2,2,0, Vk-1,0,1)

Vk.3,3,0, Vk-2,1,1

, . .

VWk, Vlsk-2,11 *.*.*

. . .

VO,2,k-2, V1,O,k-1

VO,1,k-1,

VO,0,k

circular coma (C),

oblique spherical aberration,

(nameless),

Vk/2,0,k/2 or L(k-1)/2,1,(k-1)/2,

elliptical coma,

curvature of field (F), astigmatism (A),

distortion (D),

(nameless) (P).

D

A ko

S

Fig. 1. The sextet of third-order aberrations in the monomial (Sei-
del) classification: S, spherical aberration; C, coma; A, astigma-
tism; F, curvature of field; D, distortion; P, pocus. Fourier conjuga-
tion reflects across the A-F line.

The letters in parentheses (S, C, F, A, D, P) identify the
classic third-order aberrations in Fig. 1, in which k = 0, 1, 2 is
plotted for the unit, paraxial, and aberration generators.
This diagram is nothing more than one of the standard
diagrams to display the quantum three-dimensional har-
monic-oscillator states by number of quanta along the three
axes. The (nameless) P aberration does not affect the posi-
tion coordinate in Eq. (3.2), since the term in brackets is
zero, but it does affect the direction of arrival, as we may see
if we write the p analog of that equation. Fourier transfor-
mation (q e- p, p H -q) is a reflection across the F-A line,
and P is the Fourier conjugate of S, the spherical aberra-
tion.' 6 In Ref. 17 it was playfully called pocus, since it p-
unfocuses a position-perfect image and produces a diminish-
ing depth of field at an increasing distance from the optical
center. We should note that, except for S, C, D, and P, the
traditional names refer to parametric families of monomial-
classified aberrations.

Lastly, in Lie optics the full exponential series is a canoni-
cal transformation, where position and momentum are on
equal footing. The above identification holds for only the
first term of the series beyond the identity. Lie and tradi-
tional aberrations differ beyond, by terms of at least the
order of V2.

4. SYMPLECTIC CLASSIFICATION OF
ABERRATIONS

For aberration orders 3, 5, 7, ... , 2k - 1, there are 6, 10, 15,

' / *, 1/2k(k + 1) independent aberrations, as we may verify by
summing triangular numbers. These are the dimensions of

the submatrices in Eq. (2.12) when we write exp:12: in ma-

trix form and acting on the aberration coefficients Vkkkok- as
entries in the vector g of dimension 6 + 10 + ..* + 1/2 k(k + 1).
These matrices can be reduced further by a better choice of
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basis. This amounts to classifying the harmonic-oscillator
states by angular momentum. Note that the squared radius
of a sphere in t space is

2 = 42 + 42 + = 4- 2 = (p .q)2 - p2q' = (p X q)2,

(4.1)

namely, minus the Petzval invariant. Paraxial transforma-
tions only rotate the sphere [this is a complex rotation, owing
to Eqs. (2.8)]. The plan is thus to use solid spherical har-
monics and powers of Eq. (4.1) as a basis alternative to the
monomial basis (3.1) that will reduce the action of the sym-
plectic transformation exp:f2: to blocks classified by the
symplectic spin j, which is entirely analogous to the angular
momenta j = k, k - 2, . . ., 1 or 0, contained in a k-quantum
oscillator shell in nuclear models: third aberration order
corresponds to the six-state 2s-ld shell, whose familiar dia-
gram is shown in Fig. 2 with the aberration labels of Fig. 1.

An explicit choice of magnetic axis is that of pure magnify-
ing paraxial systems:

exp(a:p. q:) (P) =[ e-a]( ) (4.2a)

i.e.,

exp(a: 40:)g(+, o0, t_) = g(e2a+, 40, e -2a.). (4.2b)

For this reason we choose the 0 component of t to be p - q in
Eqs. (2.8); this is the "north pole" of image-forming optical
systems.

Solid spherical harmonics'8 yJmst) have square-root fac-
tors that are inconvenient for symbolic and numeric compu-
tation. The polynomials

9;] (t) = [4r(2j + 1)( + m)!(j - m)!1 /' 2[ (2j -1)!! YJ

= + m)! - m)!
2m/2(2j - 1)!!

X Z .. + 2V ! 2 ! (4.3a)

k

-A/3+2F/3

-'(7)

S

= C+- A+F
DF
P

I , J

_-=

ol I 12 13
Fig. 2. Harmonic-oscillator, symplectic classification of aberra-
tions. The k = 2 level contains the third-order aberrations: a
singlet (j = 0) and a quintuplet (j = 2). Both aberration multiplets
transform irreducibly under the paraxial subgroup. The Seidel
magnetic-number classification shown is that of pure magnifiers.

(4.3b)

were defined previously. 4"10 These form a basis for the space
of polynomials of degree k in t:

1 or O -j

f2k(p, q) = kXi k XI',( )
j=k,(-2) m=+j

(4.4)

Aberrations are consequently classified by their order 2k -
1; their symplectic spin j = k, k - 2, ... , 1 or 0; and their
Seidel weight m = j, j - 1, j -2, ... , -j. See Fig. 2 for
aberration order 3, in which S, C, D, and P are 2%2, 2 1,
2%2 , and 2_2 and the familiar curvature of field-astigma-
tism degeneracy is resolved into the coefficients of

0 = 2+ -_ = pq _ (p - q)2 = (p X q), (4.5a)
2%X(q) = -1/ i2 + t2 = 2/(+_ + 4)

= /3p
2 q2 + 2/,(p - q). (4.5b)

Under the paraxial part of the system, 'xg is invariant (this
is well known), and 2X2 transforms as an element of a j = 2
quintuplet of quadrupole states. In Ref. 17 these terms are
called astigmature and curvatism, respectively. For higher-
order aberrations, this scheme is never degenerate: in aber-
ration order 5 we have a septuplet and a triplet; in aberration
order 7 we have a nonuplet, a quintuplet, and a singlet, etc.
The number of active matrix coefficients in the group-com-
position algorithm due to the action of the paraxial part of
the first system on the aberrations of the second is thus
reduced, for orders 3, 5, and 7, from 36, 100, and 225 to 26, 58,
and 107.

5. COHERENT-STATE ABERRATION BASIS FOR
FIBERS

When the paraxial part of the system is that of an optical
fiber, a harmonic oscillator in mechanics, its generator is the
Hamiltonian of the form

Hosc = '/2(p2 + q2) = CJ (t+ + t_) =-it2 (5.1)

or it may be brought to this form by a simple change of scale
with Eqs. (4.2). Evolution along the optical axis (complex)
rotates the sphere around the 6, axis and mixes aberrations
within each (k, j) multiplet. It is clear, however, that the
main oscillation'9 in magnifier-classified aberration coeffi-
cients [Eq. (4.4)] is due to the rotation of the north pole
around the new axis. In phase space, the qX-pX and qy-py
planes are rotating, and we should pass to the "coherent-
state" coordinates q I ip. This is to bring the former 40 axis
onto the new 6, axis by means of a rotation by 7r/2 around the
4j axis, namely, the complex Bargmann transformation,2 0' 2'
which we write here as

8 = exp(-'/ 8iir:p2 _ 2:) (5.2)

The Bargmann transformation acts on phase space as

-()*[~II~ - ((q)ip) =( (5.3a)and oth I se t(hqr + ip)oug hJ
and on the t sphere through
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2 (to) = [i/4'2
i/aF -'/2- 4 /+
0 i/U/2 I o = o ,

i/\/ 1/2 I 01

defining new coordinates a in place of Eqs. (2.8):

al = (a_ -_-+)/'/ = = -/2(P -q ),

= i(o-- + o+)/J -3 =-p - q,

3 = 0, = 02 = i(1/2)(p2 + q2).

On the symplectic-basis polynomials [Eqs.
Bargmann transform effects

B kX i = E B me kGi (w) =
Ml=ji

(5.3b)

(5.4a)

(5.4b)

(5.4c)

(4.3)], the

(5.5a)

B'., (1 + m)!(j- m)! im+m'
mm(-2Y(

Xv (v -m -m')(j + m' - )!(j + m -v)!!

(5.5b)

Equations (5.3a) and (5.3b) are the j = 1/2 and j = 1 cases.

We may now expand the aberration polynomials f2k as

1 or0 i

f2k(p, q) = kJ kJ(a), (5.6)
j=k,(-2) m=-j

and we refer to the coefficients ksJi as the coherent-state-
basis aberration coefficients. They relate to the magnifier
symplectic aberration coefficients in Eq. (4.4) through

ksi = 'kxJ, Bm, (5.7a)
my

kxi = Eksj, B8,m (5.7b)
me

6. THIRD-ORDER ABERRATIONS IN QUARTIC-
PROFILE FIBERS

In this section we provide an example of the description of

an optical system in terms of its coherent-state aberration
coefficients (cf. Ref. 19, in which the same example is given
with symplectic aberration coefficients). We consider a fi-

berlike medium with a refractive index expressed as

n(q) = [no - q2 - 1(q2)2 + .. .]1/2. (6-1)

To work in the third aberration order, we build the ruling
Hamiltonian from Eq. (2.4) and (6.1), keeping up to fourth-
order terms in the phase-space components:

Hf = -no+ 1 (p2 + q2) + 1 (p2 + q2)2 + 2n (q2)2

=-nfo- i lo) + A [2X2(g.) + 2X2
2(a)]

+ 0 [2%2(0f) - 2X2 1(a)] - 1 + 3/12X2(,,)2no 1 - 2n +4n- 2%(q

(6.2)+ 1 26nO().

Although the first expression in terms of p and q appears
shorter than the second in a, the latter's transformation
properties under Hosc = -i 'X'(a) are simpler. To the third
order it holds that' 2"19

exp(: wX; + a .X2 + bo: ) exp(: a' _ X2 + bXo:)

X exp(:aa 2m:), (6.3a)

e 2mw - 1
am = am m

m 2,1,0, -1, - 2 (a' = ao), (6.3b)

where we have dropped the anterior index k of the hX terms
for brevity and a and a' are five-vectors (quintuplets) of
third-order aberration; the indicates that this is an equali-
ty for aberration order 3. In the group notation [Eq. (2.12)]
no such proviso needs statement; Lie-operator notation is

used here, since it retains phase-space variables and may be
clearer to the reader as such.

The evolution of phase space along the fiber is given by the
operator exp(: -zHf: ). We may use the last expression in
Eq. (6.2), with w = iz/no and a values read off corresponding-
ly; Eq. (6.3b) tells us that their evolution is governed by the
exponential oscillating factor exp(2imzo/n) - 1 and that the
coherent-state-classified ao, the members of the quintuplet,
and the singlet b aberration coefficients increase linearly in
time; that is,

s2 -32 A[1 - exp(4iz/no)] =22

Si= /413[1 - exp(2iz/no)] = s 1,

s°( 2 3 4no

(6.4a)

(6.4b)

(6.4c)0o 3

Having entered the complex field, we can satisfy ourselves

that the conjugation properties above are the guarantees of
real transformations in phase space. We may apply the
evolution operator exp(: -zHf:) to the coherent-state vari-
ables [Eqs. (5.3)] through the third order, using also Eqs.
(2.6) for the paraxial part, to find

exp (: -zHf:) exp (- iz/no) [ 

+ (-4S272 -2S27-1

- %2/~2 + /2SoI1)X1

+ (-s12 - 14/3S -1/2SOn * S2 1- )-
(6.5)
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The complex-conjugate equation yields the transformation
for r' = -id, so we need compute only once with complex
numbers to find the transformation of the phase-space vari-
ables p and q.

7. CONCLUDING REMARKS

The understanding of the symmetry behind the apparently
complicated subject of optical aberrations is part of the
purpose of this paper. To show that it is computationally
advantageous to use the group-theoretic classification, we
have so far centered the arguments on the transformations
of the pure aberration subgroup under the paraxial part of
the system: matrices reduce to block-diagonal form accord-
ing to symplectic spin-aberration multiplets. The # opera-
tion in Eq. (2.12), denoting aberration composition, deserves
additional discussion.

The composition of Lie transformations [see Eq. (2.10)]
proceeds through Poisson brackets of the generating polyno-
mials. When the monomial basis [Eqs. (3.1)] is used, we can
easily compute

{Mabco Ma.b'Jc' = 4(ca' -a0Ma+a'-1,b+b'+1,c+c'-1
+ 2(ba' - ab' + cb' - bc')
X Ma+a',b+b_-1,c+c'- (7.1)

When the symplectic basis [Eq. (4.4)] of spherical harmonics
is used, the corresponding basic Poisson bracket is of the
structure

Ik)j keg;;'1 ZS4E i'S k+k'-1X+ (7.2)
ij=1m,+m

2 1

k+k'+j"odd

Note that the Seidel weight index m sums and that the
number of terms in the right-hand side of Eq. (7.2) is the
number of symplectic spin values consistent with that sum.
For the four extreme members of any k multiplet, this num-
ber is 1. [The coefficients SJ7O were shown in Ref. 4 to be a
reduced SO(3) Wigner coefficient times a sum of three such
coefficients, but these need to be calculated once and for all.]
In which basis do we have a shorter composition rule?

At the Instituto de Investigaciones en Matemdticas Apli-
cadas y en Sistemas/Cuernavaca, a set of muSIMP functions
was developed to handle symbolically the various mathe-
matical objects described in this paper, in terms of phase-
space variables, monomials, symplectic (spherical) harmon-
ics, and optical group elements parametrically defined, to
seventh aberration order; and optical elements such as free-
space propagation, refracting surfaces (eight order, axis
symmetric), and fibers (with refractive index as fourth-de-
gree polynomials in q2). Including paraxial parts, we can
compose, invert, and bring to paraxial focus optical systems
defined through the set of their (paraxial and) aberration
parameters. The composition function # in Eq. (2.12) that
yields the third-order aberrations is a single sum in each
aberration vector component, and the monomial and sym-
plectic classification schemes have equal complexity (six
sums). The composition to fifth order is a sum of fifth-order
coefficients with bilinear products of the third-order coeffi-
cients of the factors. For the symplectic basis there is a total

of 42 sums (27 for the septuplet, 15 for the triplet); the
monomial basis has 44 sums in the composition function.
For seventh-order composition functions we have a sum of
the aberration coefficients of the factors, plus bilinear prod-
ucts of the fifth and third orders, plus trilinear products of
third-order coefficients of the factors. The symplectic basis
yields a total of 303 sums in that order (169 in the nonuplet,
133 in the quintuplet, and 1 in the singlet); the monomial
basis yields 407 sums. A seventh-order composition of pure
aberrations involves thus 351 sums in the symplectic basis
versus 457 sums in the monomial basis. Operation with the
paraxial part on the aberration ideal, as described in Section
2, is distinctly faster in the symplectic basis of aberrations.
These two arguments compounded would seem to give a
significant computational edge to the use of the symplectic
basis presented in Section 4.

Some virtue has been found in using muSIMP, which will
run on a 256-kilobyte computer (IBM PC), since it is a
working tool even in the dismal local conditions. Early work
was done in REDUCE-2 (e.g., Ref. 22 and work reported in
Ref. 4) to the ninth aberration order, but the machine
(FOONLY F2) is no longer in operation. Results for the
composition of optical elements at aberration order 7 with
too many free, symbolic parameters can easily exceed the
available memory of the microcomputer.

The monomial basis of aberration coefficients, however,
has definite computational and theoretical advantages. Of
the latter, the selection rules that were found for refracting-
surface aberration coefficients4"0 are clearly stated as zeros
of the monomial coefficients, while for the symplectic ones
part of these only bind different-j coefficients. Of the for-
mer, the monomial basis easily generalizes to non-axis-sym-
metric systems such as magnetic-optics systems, where the
program MARYLIE, developed in MACSYMA by Dragt,23 has
had significant influence in the optics of accelerators.
Asymmetric aberrations were classified in Ref. 24 with at-
tention to Sp(4, R) D Sp(2, R) symmetry, but no systematic
computational work has been carried out by the author in
that direction. In any perspective, there seems to be a good
case for the application of the symmetry arguments of Lie
algebras and groups to optics in the realm of aberration
phenomena, as compared with the traditional rendering of
the subject.
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