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Symmetry analysis of Raman scattering mediated by neighboring molecules 
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Raman spectroscopy is a key technique for the identification and structural interrogation of molecules.  It gener-

ally exploits changes in vibrational state within individual molecules which produce, in the scattered light, fre-

quencies that are absent in the incident light.  Considered as a quantum optical process, each Raman scattering 

event involves the concurrent annihilation and creation of photons of two differing radiation modes, accompany-

ing vibrational excitation or decay.  For molecules of sufficiently high symmetry, certain transitions may be for-

bidden by the two-photon selection rules, such that corresponding frequency shifts may not appear in the scattered 

light.  By further developing the theory on a formal basis detailed in other recent work [J. Chem. Phys. 144, 

174304 (2016)], the present analysis now addresses cases in which expected selection rule limitations are removed 

as a result of the electronic interactions between neighboring molecules.  In consequence, new vibrational lines 

may appear – even some odd parity (ungerade) vibrations may then participate in the Raman process.  Subtle 

differences arise according to whether the input and output photon events occur at either the same or different 

molecules, mediated by intermolecular interactions.  For closely neighboring molecules, within near-field dis-

placement distances, it emerges that the radiant intensity of Raman scattering can have various inverse-power 

dependences on separation distance.  A focus is given here to the newly permitted symmetries, and the results 

include an extended list of irreducible representations for each point group in which such behavior can arise. 

I. INTRODUCTION 

Raman scattering is a well-known analytical tool in mod-

ern spectroscopy and microscopy.1-4  At the fundamental level, 

it is an inelastic scattering technique that generates photons 

with a slightly different energy from the input.  Such differ-

ences usually correspond to transitions between vibrational lev-

els, while the electronic states stay the same.  In recent work5 

we have developed a framework of quantum electrodynamics 

(QED)6, 7 to address Raman scattering influenced by a second, 

neighboring molecule; this is one of many situations in which 

such a theory of fundamental coupling is applied.8-16  Our inter-

est is not only in the modification of line intensities (beyond the 

familiar heterogeneous spectral broadening): we have shown 

that it is possible to engender additional spectra lines that are 

not conventionally Raman active, identifying the constraints 

that apply.  The symmetry aspects of the latter feature are the 

focus of the present work.  The origin of this effect lies in two-

center near-field coupling that involves the scattering of light 

by the molecular pair with a single or double virtual photon ex-

change between them.  This form of interaction is responsible 

for a wide range of other effects in the field of chemical phys-

ics,17 most notably resonant energy transfer (where the input 

photon annihilation and output creation events are necessarily 

on different sites).  A similar type of coupling can be exploited 

to enhance second order hyperpolarizabilities, in which connec-

tion such an interaction is referred to as cascading.18  Our pre-

sent results lead to a detailed analysis on the symmetry con-

straints and selection rules governing the emergence of proxim-

ity-induced Raman signals. 
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In the next section, a very brief overview of the fundamen-

tal theory is provided, primarily to introduce the molecular 

properties whose symmetry analysis reveals the new selection 

rules.  This is followed by an in-depth analysis of the wide-

ranging cases that generate Raman-forbidden spectra lines, 

leading to a systematic listing based on the standard Schoenflies 

designations for the molecular point groups.  The penultimate 

section provides a few indicative examples, and the general ap-

plicability of this work is discussed in the Conclusion.   

II. KEY ELEMENTS OF THE PAIR COUPLING 

It is appropriate to begin with an expression, whose de-

tailed derivation has been presented previously,5 for the radiant 

intensity, I', for Raman emission into a solid angle Ω', from a 

molecule A, incorporating all of the fundamentally permissible 

contributory mechanisms associated with the electronic influ-

ence of a neighboring molecule B: 
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where the first matrix element 
A

FIM  involves only molecule A 

and is the single-center term that corresponds to conventional 
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Raman scattering.  Using standard Feynman time-ordered rep-

resentations, the most widely deployed diagrammatic method-

ology,19 one photon arrives and another departs from a world-

line for molecule A, and the interpretation leads to a matrix el-

ement that engages the standard transition polarizability for the 

molecule.  The successive terms appearing in two underbraces 

in Equation (1) then collect all terms that relate to a specific 

number of virtual photon exchanges between the world-lines of 

molecule A and B,7 one and two respectively: it is these eight 

terms that are of interest in this paper, and they will be referred 

to sequentially as couplings (i) through (viii).  Each represents 

a unique set of interactions that can occur between the two mol-

ecules, as indicated by the arrangement of symbols in the su-

perscripts: the leftmost character signifies the site of photon an-

nihilation, with the prime denoting the molecule where the ra-

diation mode is created, and the number of vertical bars corre-

sponds to the number of virtual photons exchanged.  Coupling 

(i), represented by | A B

FIM , has the annihilation at molecule A 

and creation at molecule B, with a single virtual photon con-

necting the pair, as illustrated in Fig. 1(a); (ii), indicated by 
| B A

FIM , is where the roles of A and B in (i) are interchanged, i.e. 

the radiation mode is annihilated at B and created at A; (iii) 
|A B

FIM  is a contribution corresponding to photon annihilation 

and creation at A, as with conventional Raman, but including a 

single additional coupling to molecule B, as seen in Fig. 1(b); 

(iv) |B A

FIM  is essentially as in (iii) but with A B : the radia-

tion modes are both annihilated and created at molecule B.  In-

specting the final four couplings, (v)-(viii), it can be seen that 

the corresponding matrix elements are identical to the first four 

cases except for one addition: a second solidus, which indicates 

an additional virtual photon exchange between the pair of mol-

ecules.  Fig. 1(c) and Fig. 1(d) provide Feynman visualizations 

for couplings (v) and (vii), respectively.  

 This exhausts the possibilities for the complete set of spa-

tial locations for the interactions, but not the temporal arrange-

ment of those interactions: since the initial and final states are 

the only experimentally discernible states, each matrix element 

subsumes a summation of all radiation modes and permutations 

of intermediate states and interaction events.  The explicit form 

for each matrix elements are given by Equations (3), (11), (12), 

(15), (16), (19), (20), (24), and (25) in our previous publica-

tion.5

 

FIG.  1.   An illustrative permutation of interactions and time evolution of molecules A and B in Feynman diagrammatic representations for four 
types of interaction, detailed in the main text. Sinusoidal lines indicate detectable photons (of wavevector ( )k  and polarization ( )  , a horizontal 
line depicts a near-zone virtual photon exchange. Each character  , , ,r s t u  corresponds to an intermediate (virtual) state of the molecule, between 
interactions denoted by Cartesian indices  , , , , ,i j k l m n . Each of these Feynman graphs is a representative of a set with permuted time-orderings.
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All matrix elements that contribute to the radiant intensity, 

equation (1), have a number of virtual photon exchanges.  In the 

near-field static limit each exchange contributes a single power 

of the Coulomb’s constant, 
ek = 1/(40), together with a dis-

tance dependence, 3
R

 , i.e.  3 m

ek R
 . Explicitly, conventional 

Raman scattering has zero exchanges and thus 0m  ; cou-

plings (i) to (iv) engage a single virtual photon, 1m  ; (v) to 

(viii) engage two, 2m  . The ensuing products in equation (1) 

can thus have inverse power distance dependences running up 

to 12
R

 . 

III. MOLECULAR VIBRATIONS AND TENSOR 
STRUCTURES 

In general, to discern the selection rules engaged by any 
specific molecular response tensor, the symmetries in the radi-
ation modes must be identified.  Most notable are the cases 
where two photon interactions are treated through identical ra-
diation operators, and each of the cases introduced above may 
indeed have index symmetry resulting from such symmetry.  
Approximate index symmetries can also be seen in the case of 
two photons engaged in the Raman creation and annihilation 
events, analogous to the Placzek treatment for single-center 
scattering distant from resonance:20  essentially, the assumption 
rests on the very different typical magnitudes of the electronic 
and vibrational transition energies.   

Our interest lies in the vibrational transition from an initial 
state  0  to a final state   occurring at molecule A, denoted 
by an “α0” superscript on the respective molecular response 
tensor.  The complete Born-Oppenheimer development for a 
rank 2 tensor can be found in the preceding paper (Subsection 
II C);5 here we extract the salient result. The molecular response 
tensors of each rank are developed in the same way using the 
Placzek treatment, in which the symmetry properties and selec-
tion rules are determined by the derivatives of the tensor, with 
respect to each vibrational coordinate Q, about the equilibrium 
position Q0.  In the instance of the familiar vibrational transition 
polarizability tensor, where there is no overall change in elec-
tronic state, the leading non-zero term that accommodates a vi-
brational transition is the second in the Taylor series expansion; 
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A non-zero Dirac bracket ensures that the dominant transitions 

are those that involve one quantum of vibrational energy.   

In general terms, for the theory to be equally applicable un-

der near-resonance conditions, the Raman polarizability would 

acquire a damping term in its energy denominators and the ten-

sor would as a result lack any index symmetry.  However, given 

the more common off-resonance conditions, it is well known 

that the antisymmetric part of the tensor essentially vanishes (a 

more detailed discussion of how this works is given in ref. 21). 

From here onwards, all such index symmetries will be repre-

sented by sets of parentheses collecting the appropriate Carte-

sian indices, resulting in a Raman tensor represented as  
0

ij
 .  

Similar methods can be applied to all eight forms of coupling 

and the resultant response tensors and key characteristics will 

now be summarized.  All of those that engage the same number 

of photon interactions will elicit a response designated by the 

same Greek character; for example two-photon processes are 

all characterized by an α.   

The specific form of each tensor involved in the various 

forms of coupling can be retrieved from our previous study.5  

They are long and complicated expressions, whose detail would 

be required in any calculations to quantify their relative contri-

butions for particular molecules.  As we shall see, it suffices 

here to summarize their form of participation.  If we focus on 

the molecule of spectroscopic interest, molecule A where vibra-

tional transitions occur, we can recognize that the couplings (i), 

(ii) and (viii) engage response tensors of these forms:  
0|A

jk
  , 

 
0|A

il

   and     
00| ; 0|B A

ij km ; ln

  , respectively.  The three forms of cou-

pling (iii), (v) and (vi) that conform to three-photon selection 

rules generate  
00|A

ij k
 , 

0| ;00|
;

A B

jkm iln

   and 
00| ; 0|B A

jkm;iln

  , respectively.  

There is only one instance, (vii), where four-photon selection 

rules are engaged;     
0| ;00|

;

A B

ij km ln

 
.  The one other possibility is the 

coupling case (iv), in which the molecule undergoes a single-

photon process and therefore engages a vibrational transition 

moment 0|A
l

 . 

IV. SYMMETRY ANALYSIS 

Next, it is necessary to generalize the procedure required 

to identify the selection rules for molecular transitions, based 

on the terms listed in character tables,22 to enable identification 

of the vibrational symmetries that each tensor form allows.  The 

origin of these rules lies in mapping the basis representations 

for a sphere on to point groups of lower symmetry, as deter-

mined by molecular structure.  The most transparent and effec-

tive means of the appropriate eliciting selection rules is thus to 

resolve the associated molecular response functions into irre-

ducible Cartesian tensors, each of which has a readily resolved 

symmetry behavior.   

By way of simple illustration, we first review the analysis 

for  
0
 , where the subscript indices are now represented by 

Greek characters to denote Cartesian components referred to an 

axial framework for the molecule.  Any such even-parity and 

index-symmetric second rank tensor is expressible as a sum of 

two irreducible parts, these transforming as a scalar (designated 

weight 0) and a symmetric traceless second rank tensor (weight 

2).  The decomposition can be written explicitly as follows; 

    
 

 
 0 20

       ,  (3) 
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where the weights are indicated by the superscript numerals.  

An additional weight 1 term arises only when the input optical 

frequency approaches resonance.  In all other cases the leading 

term from Equation (2) entails the following derivatives with 

weights j = 0, 2; 

 
 

0

j

Q
Q




 , (4) 

for clarity dropping essentially redundant state characters from 

the superscript.  Each of the tensors that arise in the present 

analysis of coupling effects is developed to identify its depend-

ence on vibrational transition in the same way as the transition 

polarizability is established for conventional Raman scattering. 

In general a response tensor of rank n is deconstructed into 

a sum of irreducible tensors, each of rank n but distinguished 

by individual weights in the interval, 0 j n   .  According to 

the specific details of the case in view, the individual terms may 

sometimes be null for certain values of j, whilst for other j val-

ues more than one irreducible tensor may feature in the sum.  

Generally, we can write;23-35 

 

 j
n

n n n

Nn n
j j p

i i i i i i

j j p

T T T

  

  1 1 1

( ) ( : )
... ... ...

0 0 1

 , (5) 

where p is a seniority index, which is the number of occur-

rences,  j
nN  with which a given weight occurs.  The highest 

weight n term, which only ever features once in the sum, has 

the transformation properties of a tensor of rank n that is sym-

metric and traceless with respect to every pair of indices, and is 

known as a natural tensor.  It has (2j + 1) independent compo-

nents.  In general, a weight p contribution can be considered a 

natural tensor of rank p embedded in rank n Cartesian space. 

The weight zero term or terms, if present, have the transfor-

mation properties of a scalar, and therefore always transforms 

under the totally symmetric representation of the molecular 

point group.   

When index symmetry is introduced it reduces the number 

of linearly independent irreducible constituents; this accords 

with the fact that, for a Cartesian tensor of rank n, the number 

of linearly independent tensor components becomes less than 

3n.  Indeed we have already seen how j = 1 term generally van-

ishes from the polarizability, consistent with a reduction from 

nine to six independent tensor components.  In general if P de-

notes the number of independent components then it follows 

that we have;36 

     
0

2 1
n

j

n

j

P N j


   . (6) 

Table I provides the details required for all the tensor forms that 

arise in the present analysis. 

TABLE I. The complete set of irreducible weights 0 4j   for an 
arbitrary three-dimensional Cartesian tensor T, of rank denoted by the 
number of subscript indices 1 4n  .  The presence of parentheses 
indicates symmetry in the relevant Cartesian indices. The second col-
umn gives total number of independent components, P. 

 
P  

 0

n
N   1

n
N   2

n
N  

 3

n
N  

 4

n
N  

T  3 0 1    

T  9 1 1 1   

 T   6 1 0 1   

T  27 1 3 2 1  

 T     18 0 2 1 1  

  T    36 2 1 3 1 1 

 

In Table I the number of subscripts corresponds to the rank 

of the process.  As such, a rank 1 tensor (a vector) of the form 
T , is expressed in one-photon processes at molecule A, as in 

the coupling case (iv).  The entries for  T   account for the 

symmetry of all rank 2 cases away from resonance, whilst for 

comparison T  is the symmetry of the tensors such as the tran-

sition polarizabilities (α) near resonance.  The cases T  and 

 T    are both symmetries seen in three-interaction processes; 

tensors of the form    T  arise from four interactions. 

For the symmetry analysis that is to be our focus, a sub-

stantial simplification can now be effected.  Although the full 

rate equations entail the detailed form of each of the molecular 

response tensors introduced in our previous paper,5 all of the 

symmetry information necessary to determine the modified Ra-

man selection rules can be captured in simple icons as displayed 

in Table II – essentially the ‘left-hand sides’ of the Feynman 
diagrams in Fig. 1.  The Table accounts for all the forms of cou-

pling that arise, sorted by the number of interactions with mol-

ecule A.  In each case the associated coupling tensor accommo-

dates all of the weights that are displayed in the final column 

(as determined by Table I).  The superscript on the rank denotes 

the parity of the interactions; for this work, each interaction is 

assumed to engage an electric dipole transition, and thus each 

additional interaction introduces a change in parity. 

TABLE II. List of molecular response tensors with their corresponding 
forms of coupling, designated ‘case’, and the world-line for molecule 
A, sorted by rank, representing the number of interactions and noting 
the parity.  Each of the permissible weights,  0 4j   are displayed 
for the respective response tensors. 

Rank Case Diagram Tensor Weights 
1- 

(iv) 
       

0|A
l

   (1) 
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2+ 

 
 
 

 

 

 
0

ij

   (02)a 

(i) 

 

 
0|A

jk

    (02)a 

(ii) 

 

 
0|A

il

    (02)a 

(viii) 

       

 

    
00| ; 0|B A

ij km ; ln

 

 

(02) 

3- 

 
 (iii) 

 

 
00|A

ij k
   (123) 

(v) 

 

0| ;00|
;

A B

jkm iln

   (0123) 

(vi) 

 

00| ; 0|B A

jkm;iln

     (0123) 

4+ 

(vii) 

 

    
0| ;00|

;

A B

ij km ln

 
  (01234) 

aNear resonance, these instances will include weight 1 components. 

The addition of weight 1 for the transition polarizabilities, α, 

arises from the aforementioned reduction in symmetry under 

near-resonance, and is included only to allow for any additional 

vibrational lines that arise in the Raman spectrum under such 

conditions.  Focusing on off-resonance effects, all cases with a 

two-photon process involving weight 0 or 2 in a tensor of rank 

and parity 2+ will only arise under the same conditions in which 

conventional Raman scattering occurs; couplings of the form  

(i), (ii) and (viii) follow such a scenario and, as a result, are not 

the main interest of this work (since in these cases, no additional 

vibrational features will appear on the ensuing Raman spectra).  

To classify the other cases of specific interest the following ta-

ble introduces a category system, referred to as ‘type’ in Table 

III, into which each and every irrep (irreducible representation) 

will fall: see Table IV of the Appendix. 

TABLE III. Categorizes the irreps for all novel (neighbor-induced) 
Raman transitions according to the irreducible weights engaged. 

 Rank 1- Rank 3- Rank 4+ 

Type (1)a (0123)b (123)c (01234)d 

I ✓ ✓ ✓ ✓ 
II ✓ ✓ ✓  

III ✓   ✓ 

IV  ✓ ✓ ✓ 

V  ✓ ✓  

VI   ✓ ✓ 

VII   ✓  

VIII    ✓ 

Engaged by corresponding forms of coupling: a (iv); b (iii); c (v) and (vi); d (vii). 

V. ILLUSTRATIVE SPECTRAL MODES 

In this section we offer an example of how the primary re-
sults, tabulated in the Appendix, can be deployed when interro-
gating the Raman spectra with neighbor-modified features.  The 
case of benzene, briefly introduced in Subsection II G. of the 
previous paper,5 draws out many of the most salient properties 
and is further developed here.  By inspecting the results for the 
symmetry group of benzene, D6h, it is clear that there are 9 (out 
of 12) irreps that are conventionally disallowed in Raman scat-
tering.  By virtue of neighbor interaction, vibrational modes be-
longing to any of these irreps should evidently become observ-
able in the Raman spectrum.  One can envisage a mixture of 
benzene with low concentrations of an inert molecule, naphtha-
lene for example, and the interactions between the pair should 
allow for the aforementioned additional interactions to be elic-
ited.  The three gerade irreps listed (A2g, B1g and B2g) would all 
become allowed by the pathway of case (vii).  A1u, B1u and E2u 
all become allowed by virtue of cases (iii), (v) and (vi): the com-
plete set of three photon interactions on molecule A.  Moreover, 
A2u and E1u both engage all of cases (iii) through (vi), which are 
all of the odd ranked processes considered.  It is noteworthy that 
naphthalene mixed with low concentrations of benzene should 
also exhibit additional Raman active lines.  Naphthalene, of D2h 
symmetry, should then display four additional classes of lines 
in its Raman vibrational spectra.  This example is, of course, 
given only to exemplify the mechanisms at work and their po-
tential consequences.  Real systems, subjected to this kind of 
analysis, will need to take account of relative concentrations 
and avoid any possibility of weak association forces.  

VI. CONCLUSION 

In the work described above we have further developed our 
comprehensive research on various means by which neighbor-
induced electronic interactions, between molecules in the con-
densed phase mixtures, can result in a modification of Raman 
spectra – even in systems without any significant chemical as-
sociation between the components.  The most interesting aspect 
is undoubtedly the possibility of generating new spectral lines, 
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corresponding to the engagement of normally forbidden molec-
ular vibrations in Stokes transitions.  Our previous work has 
shown that the relative strength of such lines, compared to nor-
mal lines in the Raman spectrum, can be estimated by the com-
parative magnitudes of the polarizability volume relative to the 
cube of the typical intermolecular separation between neigh-
bors. 

By focusing on the structural form of the various response 
tensors that feature in the previously derived results, and sub-
jecting them to a scheme for irreducible tensor reduction, the 
present study has elicited a raft of new selection rules, directly 
reflecting the nature of the underlying mechanisms.  The ap-
pearance of new lines in the Raman spectrum, as a result of 
neighbor interactions, is anticipated to be most evident in mol-
ecules of relatively high symmetry.  It has been shown how to 
identify the possible symmetry types for molecular vibrations, 
conventionally forbidden by Raman selection rules, which may 
be responsible for such new lines.  Care has been taken to dis-
tinguish between near-resonance and off-resonance forms of 
scattering.  It is hoped that this research, along with our previ-
ous mechanistic analysis, will assist in the interpretation of 
weak spectral features in the Raman spectra of mixtures. 
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APPENDIX: COMPLETE SET OF ADDITIONAL 
RAMAN ACTIVE IRREDUCIBLE REPRESENTATIONS 

TABLE IV. Listing of irreps (for each point group) that relate to the 
spectral lines that may feature on a Raman spectrum with neighbor-
modified features. 

Point 
group 

Irrep Rank 1- Rank 3- Rank 4+ Type 

Ci 
u

A  1 0123  II 

C6  B   3 34 IV 

S6  u
A  1 0123  II 

u
E  1 123  II 

S8 B  1 0123 4 I 

1E  1 123 34 I 

S10 u
A  1 0123  III 

1u
E  1 123  II 

2u
E   23  V 

C2h u
A  1 0123  II 

u
B  1 123  II 

C3h A  1 0123 34 I 

C4h u
A  1 0123  II 

u
B   23  V 

u
E  1 123  II 

C5h 1E  1 123 4 I 

A  1 0123  II 

2E   23 34 IV 

C6h g
B    34 VIII 

u
A  1 0123  II 

u
B   3  V 

1u
E  1 123  II 

2u
E   23  V 

C3v 2A   023 134 IV 

C4v 2A   02 134 IV 

C5v 2A   02 13 IV 

C6v 2A   02 13 IV 

1B   3 34 IV 

2B   3 34 IV 

D3 2A  1 13 134 I 

D4 2A  1 13 134 I 

D5 2A  1 13 13 I 

D6 2A  1 13 13 I 

1B   3 34 IV 

2B   3 34 IV 

D2h u
A   023  V 

1u
B  1 123  II 

2u
B  1 123  II 

3u
B  1 123  II 

D3h 2A   3 13 IV 

1A   02 34 VIII 

2A  1 13 34 I 

D4h 2g
A    134 VIII 

1u
A   02  V 

2u
A  1 13  II 

1u
B   23  V 

2u
B   23  V 

u
E  1 123  II 

D5h 2A    13 VIII 

1E  1 123 4 I 

1A   02  V 

2A  1 13  II 

2E   23 34 IV 

2g
A    13 VIII 
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D6h 1g
B    34 VIII 

2g
B    34 VIII 

1u
A   02  V 

2u
A  1 13  II 

1u
B   3  V 

2u
B   3  V 

1u
E  1 123  II 

2u
E   23  V 

D2d 2A   23 134 IV 

D3d 2g
A   13 134 IV 

1u
A   023  V 

2u
A  1 13  II 

u
E  1 123  II 

D4d 2A  1  13 III 

1B   02 4 IV 

2B  1 13 4 I 

1E  1 123 34 I 

D5d 2g
A    13 VIII 

1u
A   02  V 

2u
A  1 13  II 

1u
E  1 123  II 

2u
E   23  V 

D6d 2A    13 VIII 

1B   02  V 

2B  1 13  II 

1E  1 123  II 

3E   3 34 IV 

4E   23 4 IV 

C∞v  
  02 13 IV 

   3 34 IV 

    4 VIII 

D∞h 
g

 
   13 VIII 

g
    34 VIII 

g
    4 VIII 

u
   1 13  II 

u
    02  V 

u
  1 123  II 

u
   23  V 

u
   3  V 

u
A   03  V 

Th 

 

u
E   2  V 

u
T  1 123  II 

Td 

 

2A   0 3 VI 

1T   23 134 IV 

O 2A   3 3 IV 

1T  1 13 134 I 

Oh 

 

 

 

 

2g
A    3 VIII 

1g
T    134 VIII 

1u
A   0  VII 

2u
A   3  V 

u
E   2  V 

1u
T  1 13  II 

2u
T   23  V 

I 

 

1T  1 1 1 I 

2T   3 3 IV 

G  3 34 IV 

Ih 1g
T    1 VIII 

2g
T    3 VIII 

g
G    34 VIII 

u
A   0  VII 

1u
T  1 1  II 

2u
T   3  V 

u
G   3  V 

u
H   2  V 

REFERENCES 

1 S. Marqués-González, R. Matsushita, and M. Kiguchi, J. Opt. 17, 

114001 (2015). 
2 C. H. Camp Jr and M. T. Cicerone, Nat. Photonics 9, 295 (2015). 
3 F. Zapata, M. López-López, and C. García-Ruiz, Appl. Spectrosc. 

Rev. 51, 227 (2016). 
4 C. Krafft, I. W. Schie, T. Meyer, M. Schmitt, and J. Popp, Chem. 

Soc. Rev. 45, 1819 (2016). 
5 M. D. Williams, D. S. Bradshaw, and D. L. Andrews, J. Chem. Phys. 

144, 174304 (2016). 
6 D. P. Craig and T. Thirunamachandran, Molecular Quantum 

Electrodynamics (Academic Press, London, 1984). 
7 A. Salam, Molecular Quantum Electrodynamics: Long-Range 

Intermolecular Interactions (Wiley, Hoboken, NJ, 2010). 
8 A. Salam, J. Chem. Phys. 122, 044112 (2005). 
9 A. Salam, J. Chem. Phys. 124, 014302 (2006). 
10 A. Salam, J. Chem. Phys. 136, 014509 (2012). 
11 J. E. Frost and G. A. Jones, New J. Phys. 16, 113067 (2014). 
12 P. W. Milonni and S. M. H. Rafsanjani, Phys. Rev. A 92, 062711 

(2015). 
13 X. Liu and J. Qiu, Chem. Soc. Rev. 44, 8714 (2015). 



8 

14 D. Weeraddana, M. Premaratne, and D. L. Andrews, Phys. Rev. B 

92, 035128 (2015). 
15 M. D. LaCount, D. Weingarten, N. Hu, S. E. Shaheen, J. van de 

Lagemaat, G. Rumbles, D. M. Walba, and M. T. Lusk, J. Phys. 

Chem. A 119, 4009 (2015). 
16 M. D. LaCount and M. T. Lusk, Phys. Rev. A 93, 063811 (2016). 
17 D. L. Andrews and D. S. Bradshaw, Ann. Phys. (Berlin) 526, 173 

(2014). 
18 N. J. Dawson, B. R. Anderson, J. L. Schei, and M. G. Kuzyk, Phys. 

Rev. A 84, 043407 (2011). 
19 G. E. Stedman, Diagram Techniques in Group Theory (Cambridge 

University Press, Cambridge, UK, 1990). 
20 G. Placzek, Handbuch der Radiologie (Akademische Verlag, 

Leipzig, Germany, 1934), Vol. 6, part 2. 
21 D. L. Andrews and J. S. Ford, J. Chem. Phys. 139, 014107 (2013). 
22 J. A. Salthouse and M. J. Ware, Point Group Character Tables and 

Related Data (Cambridge University Press, London, 1972). 
23 J. A. R. Coope, R. F. Snider, and F. R. McCourt, J. Chem. Phys. 43, 

2269 (1965). 

24 J. A. R. Coope and R. F. Snider, J. Math. Phys. 11, 1003 (1970). 
25 J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970). 
26 H. Jeffreys, Math. Proc. Camb. Phil. Soc. 73, 173 (1973). 
27 R. A. Harris, W. M. McClain, and C. F. Sloane, Mol. Phys. 28, 381 

(1974). 
28 A. J. Stone, Mol. Phys. 29, 1461 (1975). 
29 J. Jerphagnon and D. S. Chemla, J. Chem. Phys. 65, 1522 (1976). 
30 J. Jerphagnon, D. Chemla, and R. Bonneville, Adv. Phys. 27, 609 

(1978). 
31 D. S. Chemla and R. Bonneville, J. Chem. Phys. 68, 2214 (1978). 
32 D. L. Andrews and W. A. Ghoul, Phys. Rev. A 25, 2647 (1982). 
33 D. L. Andrews and N. P. Blake, J. Phys. A: Math. Gen. 22, 49 

(1989). 
34 J. Zyss, J. Chem. Phys. 98, 6583 (1993). 
35 S. R. Mane, Nucl. Instr. Meth. Phys. Res. A 813, 62 (2016). 
36 D. L. Andrews, Spectrochim. Acta, Part A 46, 871 (1990). 

 


