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ABSTRACT

Geometrical and material symmetries are found in many linear field problems.

They can be taken into account thanks to a rationale called the Group

Representation Theory. This method consists in reducing an original problem

into a family of smaller ones, the overall solution is the sum of the sub-

problems. In this paper, we propose the implementation of the Boundary

Element Method on distributed memory computers for two-dimensional

problems in this context. Different parallel strategies are analysed and

compared. Experimental results are obtained on a Meiko Computing Surface

with 16 T800 transputers.

INTRODUCTION

After recent experiences of Bryant et al. [1], Daoudi and Lobry [2,3] in the

parallelization of the Boundary Element Method (BEM) on distributed memory

computers, we investigate in problems that exhibit geometrical and material

symmetries. Such problems are often met in engineering applications. When

general excitations and complex symmetry are considered, the Group

Representation Theory [4,5] is the only tool that allows to take geometrical

symmetry into account. It consists in reducing an original problem to a set of

subproblems, defined on a cell of symmetry of the domain under study. The

global solution is obtained from superposition of the partial ones. Some papers

have shown that large computational cost savings and reduction in memory

volume are achievable with this too hardly used method; e.g. Bossavit [6],

Bonnet [7], Allgower et al. [8], Lobry and Broche [9].

In this paper, we propose the exploitation of symmetry with the BEM for

the 2-D Laplace's problem on transputers. The abelian case is considered for

sake of clarity but the conclusions should not be much altered for the general
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non-abelian case. The ring architecture is chosen because of its efficiency and

we study three parallel algorithms for the problem. The first is the reference,

it consists in solving on a single ring without any symmetry consideration. The

last two take advantage of symmetry on one or several rings interconnected.

We analyse and compare the execution times for the assembling and solution

of the related linear system.

The algorithms have been implemented on a Meiko Computing Surface

with 16 T800 transputers. Experimental timing results are presented and

compared.

THE BEM FOR THE 2-D LAPLACE'S PROBLEM

Consider the Laplace's problem defined on a 2-D domain Q for a scalar

potential </> (Fig. la) :

,̂ an

(a) (b)

Figure 1. (a) 2-D Laplace's problem and (b) BEM

(f> = 0 in Q (1)

with the boundary conditions on

#„ on

= 0 on
(2)

The procedure that leads to a boundary integral formulation has been

described by Brebbia [10], we briefly recall it for convenience.

A weighting function ("kernel") W; is first defined for any point i of fi so
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that :

V^ w± = -8^ hence : w±(x) = In—— -

where d(i,x) denotes the distance between the points i and x (fig. la).

From equation (1), the following integral statement may be derived

r, V* d> dQ = 0

Applying a Green identity, we finally obtain the boundary integral formulation

of the 2-D Laplace's equation :

' /O\

= JL ifi € 3Q
2n

for all i in ft (a is the internal angle in i).

In order to solve (3), one divide the boundary 9Q into n straight line

elements dQj (fig. Ib) on which the potential 0 and its normal derivative

(denoted q from now on) are defined by a linear interpolation. Hence the

discretized expression :

7. 0. + y f 4>fa dr = y f w^ dr (4)
£% J on « A on
j-o 80, J-o ao,

The integrals of (4) can be numerically or analytically calculated so that we

obtain the form :

J=0 J=0

where <^ and qj^ (k=l,2) are the values of 0 and q on the nodes 1 and 2 of

the element 3Qj. h^ and && are coefficients coming from integration.
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Writing (5) for all i of 3Q and substituting the boundary conditions of the

problem, a nxn linear system is deduced :

S x = f (6)

where the matrix S is dense and x is the vector of the unknown </> and q.

SYMMETRY IN FIELD PROBLEMS

In many field problems, geometrical and material symmetries are often met.

Taking it into account is easy in linear regions when the source fields share

some part of the symmetry in an obvious way. But the intuitive approach fails

with complex symmetries and general source fields. Nevertheless, it is possible

to take full advantage of symmetry by studying the problem on a cell of

symmetry. The background is the Group Representation Theory that we briefly

describe below; see e.g. Hamermesh [4] or Serre [5] for more details.

The Group Representation Theory - some elements

Let 0 be a spatial domain that presents some symmetry we describe by the

isometries g (rotations and reflections) that leave 0 globally invariant. Those

are transformations acting on points. They form a finite group G = {e, f,

g,...} called symmetry group where a composition law is defined. If the law

is commutative, the group G is said abelian. We shall restrict our presentation

to this case. The number of elements in the group is the order of the group n^.

Figure 2 illustrates this by the abelian cyclic group Cg.

?
/

y . c
e^

I )» C^ = {e, r,
/ /

// -%c =3
// ^

Figure 2. Example : the cyclic group €3.

It is clear the subdomain C (cell of symmetry) regenerates 0 from the
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symmetry operations :

Q = \Jsrc
gee

In a similar way as the g's act on points, linear operators Og acting

complex functions 0 of a vector space V are defined :

on

they are such that "the function </> is shifted by Og as x is shifted by g".

These operators form a group G' isomorphic to G and the mapping O

between the groups G and G' is called a linear representation of the group G

in the representation space V. If we consider the group of matrices D(g)

related to the operators Og and a basis of V, we get a matrix representation of

A full theory about finite groups shows that any linear representation of a

finite group can be decomposed in some sub-representations called irreducible

representations. Their number and degree are well defined for a given group

and finding all of them is an important point in group theory. In particular, for

the abelian groups, it can be shown that the number of distinct irreducible

representations is equal to the order of the group. Moreover, they are all of

degree one (complex numbers).

For the C, group presented above, there are three irreducible

representations (numbered v), they are given by :

(r*) = eJ2vt*/3 v = 0,1,2 and k = 0,1,2

We now present the fundamental decomposition theorem.

Let us define the following operators, called projectors, for each

irreducible representation v of a group G of order r^ (= 1 to n^) :

P<V, . A
n,.
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where * denotes the complex conjugation.

The P̂ 's transform any function 0 of the representation space V into the

functions </>̂  so that :

Y^<f><"> where
v=l

and the 0̂ 's verify the v-symmetric property :

O #̂  = D̂ > (g) 4̂ ^ (8)

So, given any function <£ of V, the operators P^ decompose it into n^

functions jF> that exhibit, from (8), some symmetry properties so that they can

be regenerated by their only restriction on a symmetry cell of the domain.

How to apply those concepts to a field problem is easy to guess. Starting

from an original problem described by a set of equations defined on a domain

0 with abelian symmetry, we have to determine a symmetry cell and to solve

on it for each of the source fields derived from the irreducible representations.

The overall solution is finally obtained from superposition.

BEM AND SYMMETRY

Consider now the domain 0 shown in figure 3. Its symmetry group is G of

order n^. The boundary 30 presents the symmetry and we may choose a

symmetry cell T so that :

an = (j
gea

Figure 3.

Exploiting this property of the cell and denoting aan(</>,Wj) the right-hand side
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of relation (4), we may write the relationship :

(9)

gee

Applying the theory described in the previous section, we decompose the

unknown function 0 as in the definition (7). Then, we get the components for

which the formulation (3) should be solved with the corresponding boundary

conditions on T. Those conditions are calculated from (7) applied on conditions

(2) and from the property (8).

Introducing each component in the formulation (3), substituting the integral

identity (9) and using property (8), we obtain :

(i) = £
gEG

= £
geG

Finally we have to solve the following n^ problems associated to the n

irreducible representations i> = 1 to HQ ("symmetrized kernels") :

Cj 0<»> (i) = IG J (wj

where :

^ (x) = P™WI(X) = — TD̂ '(g) -Lin—-J—— (ieD
-^

We see that the original problem defined over the entire boundary 30 has

been replaced by an equivalent set of subproblems defined over the reduced

open boundary F.
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The discretization of (10) leads now to a set of linear systems of equations

similar to (6). Once the subsystems are solved, the partial solutions have to be

added as shown in equation (7).

Taking advantage of geometrical symmetry allows large economies in

computational efforts with finite or boundary elements, since the computational

cost grows much faster than the size of the problem considered. See e.g.

[6,7,8,9]. But it is possible to go further in the reduction of the execution time

by using parallel processing. This is the very purpose of our paper.

PARALLEL IMPLEMENTATION

Starting from our experience [2,3], we choose the ring architecture with

memory distributed computers as the primitive topology for our problem. The

solution method is the Gaussian elimination. The row wrapped interleaved

storage analyzed in [3] is considered for the assembling and solving steps

because of its efficiency and easiness of implementation.

Theoretical analysis of the computation and communication times are

studied with the model of Saa [11]. The communication time of n consecutive

data items between two neighbouring processors is assumed of the form nr+j8

where /? is the start-up time and r is the time to transfer one data item. The

elementary computation time is w.

We first briefly recall the row-oriented algorithm without any symmetry

consideration.

BEM 2-D on the ring architecture

We consider a ring composed of p identical processors numbered from PQ to

PP_I. The linear system (6) is subdivised into p blocks each of n/p rows and we

assign the block composed of the rows i+kp for 0<k<(n/p)-l to processor

Pj. The theory clearly states that parallel system assembly is achieved without

any communication, in a natural way. The execution time T̂ (p) is then equal

to the computation time :

T i p ) = O(-̂ co) (11)

The parallelization of the Gaussian elimination algorithm has to manage the

row wrapped storage. In order to obtain a numerical stability, a partial pivoting

strategy is needed. Hence the search of the maximum pivot element requires

to interchange rows so that many communications are involved. The related

algorithm has been described in [3] and the execution time is roughly :
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where the computation time term is ocn^ and the communication time is ocp.

If we plot the global time T̂ =T,«+Tg, versus the number p of processors

for a given size n, we find a curve presenting a minimum due to the

combination of the 1/p and p terms. Moreover, the p for minimum increases

as n increases.

Exploitation of symmetry

In order to exploit symmetry, two extreme types of implementation may be

considered with the ring topology.

The first consists in adapting the ring algorithm described above to

symmetry considerations : for an abelian group of order n^, the n^ sub-

problems are solved successively on the ring.

The second idea exploits the independance of the subproblems by solving

each of them on separated rings, the global solution is then formed in a single

extra processor. From this point of vue, the decomposition of an original

problem into several subproblems may also be regarded as a possible parallel

strategy for managing symmetry.

Those two opposite situations may be generalized by the following. Let p

be the number of processors, they can be arranged by partitioning them in k

rings composed of p/k processors on which n̂ /k subproblems are to be solved.

In this context, k should be a divisor of p and n^ for an optimum load

balancing (fig. 4).

Figure 4. k-ring architectures, example with n^=4, p = 8 (sp : subproblem).
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In order to minimize the time cost required for the subsystems assembly,

a part of our algorithm is common to the computation of the symmetrized

kernels before treating each the irreducible representations. The time required

for the assembling step is then given by :

(13)

where «'<<<*.

This time should be compared to (11).

The relationship (12) gives the execution time for solving anXn linear system,

the time required to solve the n̂ /k subproblems of size n/n̂  is then :

When k=l, we have the situation of a single ring of processors and we

find respectively :

* T ( \
~ ~ r ~ '

The global tendancy is not obvious since a k-rings architecture decreases

the efficiency of the forming step but speeds-up the solving step. So, there is

a trade-off that can only be determined by conducting numerical experiments

as presented in the next section.

Remark : The last superposition step is of minor importance since the

communication and computation times are of order n.

EXPERIMENTAL RESULTS

The experimental results are obtained from a Meiko Computing Surface with

16 T800 transputers. We use C-language and CS-Tools environment for the

implementation. The time parameters are the following :
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P = 145 us, T * 6.5 \LS, 0) = 1.5 \LS (+) to 45 \JLS (log)

In this section the condition stating p/k as an integer is sometimes violated

and the extra processor which collects and superposes the partial solutions is

one of the p processors used. In fact, this emphasizes the practical situation

where the user has got up to p processors and has to build at best the possible

configurations related to its problem. Nevertheless, the timing results are in

accordance with theoretical expressions.

First of all, the cases k=l and n^ are compared. The example proposed

is the same as shown in figure 3, the domain 0 exhibits the abelian group Cg

presented above and =̂3.

The boundary conditions are three potentials of any values on the top of

each arm of 0 and we have to find </> and its normal derivative on the boundary

30. The group representation theory allows the decomposition of the problem

into 3 subproblems to be solved on F.

Several combinations are considered with the number p of processors and

the size n of the problem. Figure 5 gives a plot of the ratio y = T̂ /T̂ ws

of the global execution times T^ with no and with symmetry consideration on

a single ring as a function of p for different values of n = 48, 96, 192, 384.

As expected, we see that the exploitation of symmetry is generally more

interesting than no taking advantage of it (-y>l). The computational gain

increases as the size n increases and the number of processors p decreases.

This tendancy is corroborated by the theoretical times (11) to (14).

The comparison between k=l and k = 3 in figures 6 a, b, c, d points out

that the relative efficiency depends on the number of processors for a given n.

When few processors are used, the 1-ring solution is the best. But as p

increases, the amount of communications due to the Gaussian elimination (<x p)

is such that the 3-rings option begins better. The transition number of

processors increases with n.

In order to generalize as explained above, we consider the case of the

cyclic group Q where n^ equals to 6. The experimental results obtained from

an appropriate example are given for n=96 and 384. If we now plot the global

time as a function of k for fixed n and various values of p (figs. 7 a, b), the

advantage of taking k> 1 is obtained as p exceeds a critical value p*. This

threshold increases with n and the related k* seems increasing with p. Those

conclusions are in agreement with the theoretical times and constitute a

generalization of the results obtained with n^=3.
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Figure 5. Ratio y versus p.
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Figure 6a. ng=3, T^ versus p, n=48.
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Figure 6b. n<]=3, T^ versus p, n=96.
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Figure 6c. n<3 = 3, T^ versus p, n = 192.
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Figure 6d. ng=3, T^ versus p, n=384.

Figure 7a. n<3=6, T^ versus p, n=96.
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NB. OF RINGS

Figure 7b. n^=6, T^ versus p, n=384.

From the timing results, we deduce some interesting conclusions.

If we dispose of a given set of p processors, the topology (k) is strongly

function of the size n of the problem. Generally, a single ring (k=l) should

be used if p is small. But as p increases, the best solution tends to be a multi-

ring (k> 1) topology, this is all the more true as n is small. However, since

the execution times asymptotically increase with p, the optimum number of

processors may be lower than p if a large quantity of processors is available.

CONCLUSIONS

In this paper, a Boundary Element Method for solving the 2-D Laplace's

problem with symmetrical domains has been implemented on a multi-

processors (16 T800 transputers) architecture. Several configurations based on

the ring topology were considered. A compromise exists between single ring

and multi-rings topologies. It depends on the number of processors and the size

of the problem. The abelian case has been considered but the general non-

abelian case should present about the same conclusions, yet the implementation

is more complicated because of some coupled problems.
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