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Abstract

In this paper, we study a semiparametric family of bivariate copulas. The family is generated
by an univariate function, determining the symmetry (radial symmetry, joint symmetry) and
dependence property (quadrant dependence, total positivity, ...) of the copulas. We provide
bounds on different measures of association (such as Kendall’s Tau, Spearman’s Rho) for this
family and several choices of generating functions allowing to reach these bounds.

Keywords: Copulas, semiparametric family, measures of association, positive dependence,
dependence orderings.

Mots clefs : Copule, famille semi-paramétrique, mesure de dépendance, ordre de dépendance.

Résumé

Nous étudions la famille semi-paramétrique de copules bivariées définie par

Cθ(u, v) = uv + θφ(u)φ(v), θ ∈ [−1, 1],

où φ satisfait une propriété de type Lipschitz ainsi qu’une condition de bord. Tout comme
les copules archimédiennes, cette famille est générée par une fonction univariée qui détermine
les propriétés de symétrie (symétrie radiale, jointe...) et de dépendance (positivité totale...) des
copules. Le paramètre θ détermine quant à lui le degré de dépendance. Nous calculons les bornes
de différentes mesures de dépendance telles que le Tau de Kendall ou le Rho de Spearman pour
cette famille et proposons plusieurs choix de la fonction génératrice permettant d’atteindre ces
bornes.





1 Introduction

The theory of copulas provides a relevant tool to build multivariate probability laws, from fixed margins
and required degree of dependence. From Sklar’s Theorem [13], the dependence properties of a continuous
multivariate distribution H can be entirely summarized, independently of its margins, by a copula, uniquely
associated with H. Several families of copulas, such as Archimedian copulas [1] or copulas with polynomial
sections [11, 9] have been proposed. In [9], the authors point out that the copulas with quadratic section
proposed in [11] are not able to modelize large dependences. Then, they introduce copulas with cubic
sections and conclude that copulas with higher order polynomial sections would increase the dependence
degrees but simultaneously the complexity of the model. We propose to give up the polynomial form to
work with a semiparametric family of copulas. The induced parametric families of copulas are generated
as simply as Archimedian copulas, that is by an univariate function. Furthermore, dependence properties
of copulas with polynomial sections are preserved and the dependence degree can be increased without
significantly complexifying the model. Note that, in [3], a class of symmetric bivariate copulas with
wide correlation coefficients range is introduced, but these copulas are less convenient to perform classical
calculations on a probability law than the copulas studied here.
In Section 2, the semiparametric family is defined and its basic properties are derived. Symmetry properties
are established in Section 3. Properties of three measures of association are investigated in Section 4.
Section 5 is devoted to the dependence structure and the dependence ordering of the family.

2 Definition and basic properties

Throughout this paper, we note I = [0, 1]. A bivariate copula defined on the unit square I2 is a bivariate
cumulative distribution function with univariate uniform I margins. Equivalently, C must satisfy the
following properties :

(P1) C(u, 0) = C(0, v) = 0, ∀(u, v) ∈ I2,

(P2) C(u, 1) = u and C(1, v) = v, ∀(u, v) ∈ I2,

(P3) ∆(u1, u2, v1, v2) = C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0, ∀(u1, u2, v1, v2) ∈ I4, such that
u1 ≤ u2 and v1 ≤ v2.

Let us recall that, from Sklar’s Theorem, any bivariate distribution with cumulative distribution function
H and marginal cumulative distribution functions F and G can be written H(x, y) = C(F (x), G(y)), where
C is a copula. This result justifies the use of copulas for building bivariate distributions.
We consider the semiparametric family of functions defined on I2 by :

Cθ(u, v) = uv + θφ(u)φ(v), θ ∈ [−1, 1], (2.1)

where φ is a function on I. This family is a particular case of Farlie’s family introduced in [2]. Let us note
first that, the independent copula C0(u, v) = uv belongs to any parametric family {Cθ} generated by a
function φ. Second, the functions φ and (−φ) clearly define the same function Cθ.
The following theorem, very similar to Theorem 2.2 in [11], dedicated to bivariate copulas with quadratic
sections, gives sufficient and necessary conditions on φ to ensure that Cθ is a copula.

Theorem 1 φ generates a parametric family of copulas {Cθ, θ ∈ [−1, 1]} if and only if it satisfies the
following conditions :

(a) φ(0) = φ(1) = 0,

(b) φ satisfies the Lipschitz condition : |φ(x) − φ(y)| ≤ |x − y|, ∀(x, y) ∈ I2.

Furthermore, Cθ is absolutely continuous.

5



Proof: It is clear that (P1)⇔ (φ(0) = 0) and (P2)⇔ (φ(1) = 0). In the case of the Cθ function, ∆
rewrites

∆(u1, u2, v1, v2) = (u2 − u1)(v2 − v1) + θ(φ(u2) − φ(u1))(φ(v2) − φ(v1)),

and then (b)⇒ (P3). Conversely, if there are x < y such that |φ(x)−φ(y)| > |x− y|, then with the choice
θ = −1, u1 = v1 = x and u2 = v2 = y, we obtain:

∆(x, y, x, y) = (x − y)2 − (φ(x) − φ(y))2 < 0.

Therefore (P3) ⇒ (b). Lastly, Cθ is absolutely continuous since φ satisfies the Lipschitz condition. ✷

The following corollary provides a new characterization of the functions φ generating parametric families
of copulas. It will be of great help in the following.

Corollary 1 φ generates a parametric family of copulas {Cθ, θ ∈ [−1, 1]} if and only if it satisfies the
following conditions :

(i) φ est absolutely continuous,

(ii) |φ′(x)| ≤ 1 almost everywhere in I,

(iii) |φ(x)| ≤ min(x, 1 − x), ∀x ∈ I.

In such a case, Cθ is absolutely continuous.

Proof: From a classical analysis result ([14], Lemma 2.1), (b) is satisfied if and only if (i) and (ii) both
hold. Now, assume that conditions (i)–(iii) are satisfied. Taking successively x = 0 and x = 1 in (iii)
yields (a). Therefore the corollary implies the theorem.
Conversely, assume that (b) holds. Taking successively y = 0 and y = 1 in the Lipschitz condition gives
(iii). So, the theorem implies the corollary. ✷

The function φ plays a role similar to the generating function in Archimedian copulas [1]. Each copula
Cθ is entirely described by the univariate function φ and the parameter θ, which tunes the dependence
between the margins (see Section 4). Symmetry and dependence properties of the copula Cθ will found
a geometrical interpretation on the graph of φ. Furthermore, the choice of φ determines the vertical and
horizontal sections of the copula up to a multiplicative factor and an additive linear function.
We now give some examples of functions φ generating parametric families of copulas. These examples will
be used to illustrate the symmetry and dependence properties introduced in the following sections.

Example 1 The following functions φ generate parametric families of copulas.

1. φ[1](x) = min(x, 1 − x) is the superior bound of Corollary 1(iii).

2. φ[2](x) = x(1 − x) generates the Farlie-Gumbel-Morgenstern (FGM) family of copulas [6], which
contains all copulas with both horizontal and vertical quadratic sections [11].

3. φ[3](x) = x(1 − x)(1 − 2x) defines the parametric family of symmetric copulas with cubic sections
proposed in [9], equation (4.4).

4. φ[4](x) = 1
π sin(πx) induces a family of copulas able to modelize large dependences.

In the sequel, we note {C
[i]
θ } the parametric family of copulas associated to the function φ[i], i ∈ {1, . . . , 4}.

Graphes of the functions φ[i] are plotted in Figure 1. As a consequence of the condition (iii) of Corollary
1, graphes of φ[1] and (−φ[1]) are the edges of a square K, within which lies the graph of φ.
In the following, we review several concepts of symmetry and dependence. Throughout the rest of this pa-
per, φ denotes a function satisfying the conditions given in Theorem 1, and {Cθ} represents the parametric
family of copulas genetated by the function φ.
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3 Symmetry properties

Let (a, b) ∈ R
2 and (X, Y ) a random pair. We say that X is symmetric about a if the cumulative distribution

function of (X − a) and (a − X) are identical. The following definitions generalize this symmetry concept
to the bivariate case:

• X and Y are exchangeable if (X, Y ) and (Y, X) are identically distributed.

• (X, Y ) is marginally symmetric about (a, b) if X and Y are symmetric about a and b respectively.

• (X, Y ) is radially symmetric about (a, b) if (X − a, Y − b) and (a − X, b − Y ) follow the same joint
cumulative distribution function.

• (X, Y ) is jointly symmetric about (a, b) if the pairs of random variables (X−a, Y −b), (a−X, b−Y ),
(X − a, b − Y ) and (a − X, Y − b) have a common joint cumulative distribution function.

The following theorem provides conditions on φ to ensure that the couple (X, Y ) with associated copula
Cθ is radially (or jointly) symmetric.

Theorem 2

(i) If X and Y are identically distributed then X and Y are exchangeable.

Besides, if (X, Y ) is marginally symmetric about (a, b) then:

(ii) (X, Y ) is radially symmetric about (a, b) if and only if

either ∀u ∈ I, φ(u) = φ(1 − u) or ∀u ∈ I, φ(u) = −φ(1 − u). (3.1)

(iii) (X, Y ) is jointly symmetric about (a, b) if and only if ∀u ∈ I, φ(u) = −φ(1 − u).

Proof:

(i) When X and Y are identically distributed, exchangeability is equivalent to the symmetry of the copula.
In other words, Cθ must verify Cθ(u, v) = Cθ(v, u), ∀(u, v) ∈ I2, which is the case by definition, see
(2.1).

(ii) Assume (X, Y ) is marginally symmetric about (a, b). Then, from Theorem 2.7.3 in [10], (X, Y ) is
radially symmetric about (a, b) if and only if

∀(u, v) ∈ I2, δθ(u, v) = 0, (3.2)

where we have defined

δθ(u, v) = Cθ(u, v) − Cθ(1 − u, 1 − v) − u − v + 1 = θ[φ(u)φ(v) − φ(1 − u)φ(1 − v)].

It clearly appears that (3.1) implies (3.2). Conversely, suppose that (3.2) is verified. Then, δ1(u, u) =
φ2(u)− φ2(1− u) = 0 for all u ∈ I and consequently, either φ(u) = φ(1− u) or φ(u) = −φ(1− u). If
there exist (u1, u2) such that φ(u1) = φ(1 − u1) 6= 0 and φ(u2) = −φ(1 − u2) 6= 0, then δ1(u1, u2) =
2φ(u1)φ(u2) 6= 0. As a conclusion (3.2) implies (3.1).

(iii) Assume (X, Y ) is marginally symmetric about (a, b). (X, Y ) is jointly symmetric about (a, b) if and
only if

∀(u, v) ∈ I2, δ′θ(u, v) = 0, (3.3)

where we have defined

δ′θ(u, v) = Cθ(u, v) + Cθ(u, 1 − v) − u = θφ(u)[φ(v) + φ(1 − v)].

It appears immediately that (3.3) is equivalent to φ(u) = −φ(1 − u), ∀u ∈ I. ✷

As an example, any marginally symmetric random pair (X, Y ) associated to a copula of the families {C
[i]
θ },

i ∈ {1, . . . , 4} is radially symmetric. Moreover, in the case i = 3, (X, Y ) is jointly symmetric. We now
focus on the dependence properties of the semiparametric family of copulas.
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4 Measures of association

In the next two sections, we note (X, Y ) a random pair with joint distribution H, density distribution h,
copula C and margins F and G. The case C = Cθ will be explicitly precised. Three invariant to strictly
increasing function measures of association between the components of the random pair (X, Y ) are usually
considered:

• the normalized volume between graphes of H and FG [12],

σ = 12

∫ 1

0

∫ 1

0
|C(u, v)−uv|dudv,

• the Kendall’s Tau [2,3], defined as the probability of concordance minus the probability of discordance
of two pairs (X1, Y1) and (X2, Y2) described by the same joint bivariate law H,

τ = 4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)−1, (4.1)

• the Spearman’s Rho [2,3], which is the probability of concordance minus the probability of discordance
of two pairs (X1, Y1) and (X2, Y2) with respective joint cumulative law H and FG,

ρ = 12

∫ 1

0

∫ 1

0
C(u, v)dudv−3.

In the case of a copula generated by (2.1), these measures rewrite only in terms of the function φ.

Proposition 1 Let (X, Y ) be a random pair with copula Cθ given by (2.1). The association coefficients
are:

σθ = 12|θ|

(
∫ 1

0
|φ(u)|du

)2

, τθ = 8θ

(
∫ 1

0
φ(u)du

)2

, ρθ = 12θ

(
∫ 1

0
φ(u)du

)2

=
3

2
τθ.

Proof: The proof are very similar for the three coefficients. Let us consider the example of the Kendall’s
Tau. The density distribution of the cumulative distribution function Cθ is

cθ(u, v) = 1 + θφ′(u)φ′(v). (4.2)

Replacing in (4.1), it yields

τθ = 4θ

[
∫ 1

0
φ(u)du

]2

+ 4θ

[
∫ 1

0
uφ′(u)du

]2

+ 4θ2
[
∫ 1

0
φ(u)φ′(u)du

]2

,

= 4θ

[
∫ 1

0
φ(u)du

]2

+ 4θ

[

φ(1) −

∫ 1

0
φ(u)du

]2

+ 2θ2[φ2(1) − φ2(0)],

after partial integration. Theorem 1 entails φ(1) = φ(0) = 0 and the conclusion follows. ✷

The measures τθ and ρθ linearly increase with θ, which appears as an association parameter. They are also
proportionnals to the square of the surface lying between the graph of φ and the x-axis. Bounds for each
of these measures of association are deduced from Corollary 1 (iii).

Proposition 2 ∀θ ∈ [−1, 1], 0 ≤ σθ ≤ 3|θ|/4, |τθ| ≤ |θ|/2 and |ρθ| ≤ 3|θ|/4.

Therefore the range of each association coefficient is 0 ≤ σθ ≤ 3/4, −1/2 ≤ τθ ≤ 1/2 and −3/4 ≤ ρθ ≤ 3/4.
The semiparametric family of copulas defined by (2.1) seems to be a good tool to build low complexity
models with moderate dependences (0 ≤ |τ | ≤ 1/2). This is illustrated in Table 1 where the values
obtained for the copulas presented in Example 1 are reported. Results obtained for the cubic sections
copulas illustrate the fact that τ and ρ imperfectly measure the association relationships. All the values
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associated to {C
[4]
θ } are larger than those obtained with the FGM family. Lastly, bounds of Proposition 2

are reached with family {C
[1]
θ }. This hierarchy of results graphically appears in Figure 1. For each fixed

θ, the closer to the edges of the square K is the graph of φ, the larger is the association coefficient of the
copula induced by φ. Non-derivability of φ[1] can be a drawback. In order to build more regular copulas,
with measures of association remaining closed from optimal values, we define the sequence of C1 functions

(φ
[5]
n ) as following:

∀n > 0, φ[5]
n (x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x if 0 ≤ x ≤
1

2
−

1

n
1

2

(

1 −
1

n

)

−
n

2

(

x −
1

2

)2

if
1

2
−

1

n
< x <

1

2
+

1

n

1 − x if
1

2
+

1

n
≤ x ≤ 1.

Moreover each copula is derivable and the associated Kendall’s Tau sequence is given by

τ
[5]
n,θ = 8θ

(

1

4
−

1

3n2

)2

, n > 0.

It converges to the optimal Tau, τ
[5]
n,θ → θ/2 as n increases. It is also possible to build C∞ copulas, with

measures of association closed from optimal values. Define the sequence (φ
[6]
n ) of C∞ functions by:

∀n ≥ 2, φ[6]
n (x) = 1 − (xn + (1 − x)n)1/n .

Similarly to the previous example, for each n ≥ 2, φ
[6]
n induces a parametric family of copulas {C

[6]
n,θ}.

Moreover ∀x ∈ I, φ
[6]
n (x) → φ[1](x) as n increases and |φ

[6]
n | ≤ 1. So, by Lebesgue dominated convergence

theorem, the associated Kendall’s Tau, τ
[6]
n,θ converges to the optimal value as n increases. Graphes of φ

[6]
2 ,

φ
[6]
4 , and φ

[6]
8 are plotted in Figure 2. We clearly see that the surface lying between the φ

[6]
n graph and the

x-axis increases with n. The sequences (τ
[6]
n,1) and (τ

[5]
n,1) are plotted in Figure 3. We can observe that for

n ≥ 2, τ
[5]
n,1 and τ

[6]
n,1 are both larger than the value obtained by the FGM copula C

[2]
1 and that they exceed

the value reached by the copula C
[4]
1 , whenever n ≥ 3.

5 Concepts of dependence

Although the notion of independence between X and Y is clearly defined by H = FG, the concept
of dependence may be defined in different ways. A dependence ordering, indicating if the random pair
(X1, Y1) of margins F and G is “more dependent” than the pair (X2, Y2) with the same margins, can be
associated to each definition. We firstly study the properties of positive dependence of a copula Cθ and
secondly we search to order elements within the parametric family {Cθ}.

5.1 Positive dependence

In this subsection, we will use several concepts of positive dependence, which express that two variables
are large (or small) simultaneously. Let us shortly review their definition.

• PFD: X and Y are Positive Function Dependent if for all integrable real-valued function g Eh[g(X)g(Y )]
− Eh[g(X)]Eh[g(Y )] ≥ 0 where Eh is the expectation symbol relative to the density h.

• PQD: X and Y are Positively Quadrant Dependent if

∀(x, y) ∈ R
2, P (X ≤ x, Y ≤ y) ≥ P (X ≤ x)P (Y ≤ y). (5.1)
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• LTD(Y |X): Y is Left Tail Decreasing in X if P (Y ≤ y|X ≤ x) is nonincreasing in x for all y. A
similar definition can be given for LTD(X|Y ).

• RTI(Y |X): Y is Right Tail Increasing in X if P (Y > y|X > x) is nondecreasing in x for all y.

• SI(Y |X): Y is Stochastically Increasing in X if P (Y > y|X = x) is nondecreasing in x for all y.

• LCSD: X and Y are Left Corner Set Decreasing if P (X ≤ x, Y ≤ y|X ≤ x′, Y ≤ y′) is nonincreasing
in x′ and y′ for all x and y.

• RCSI: X and Y are Right Corner Set Increasing if P (X > x, Y > y|X > x′, Y > y′) is nondecreasing
in x′ and y′ for all x and y.

• TP2 density: (X, Y ) have the TP2 density property if h is a totally positive function of order 2 i.e.
h(x1, y1)h(x2, y2) − h(x1, y2)h(x2, y1) ≥ 0 for all (x1, x2, y1, y2) ∈ I4 such that x1 ≤ x2 and y1 ≤ y2.

When X and Y are exchangeable, there are no reason to distinguish SI(Y |X) and SI(X|Y ), which will be
both noted SI. Similarly, we will denote LTD the equivalent properties LTD(Y |X) and LTD(X|Y ), and
RTI, RTI(Y |X) or RTI(X|Y ). The links between these concepts [5, 7] are illustrated in Figure 4. The
following theorem is devoted to the study of properties of positive dependence of any pair (X, Y ) associated
with the copula Cθ defined by (2.1). Similar results can be established for the corresponding concepts of
negative dependence.

Theorem 3 Let θ > 0 and (X, Y ) a random pair with copula Cθ.

(i) X and Y are PFD.

(ii) X and Y are PQD if and only if either ∀u ∈ I, φ(u) ≥ 0 or ∀u ∈ I, φ(u) ≤ 0.

(iii) X and Y are LTD if and only if φ(u)/u is monotone.

(iv) X and Y are RTI if and only if φ(u)/(u − 1) is monotone.

(v) X and Y are LCSD if and only if they are LTD.

(vi) X and Y are RCSI if and only if they are RTI.

(vii) X and Y are SI if and only if φ is either concave or convex.

(viii) X and Y have the TP2 density property if and only if they are SI.

Proof:

(i) Let g be an integrable real-valued function on I. The density distribution cθ of the cumulative distri-
bution Cθ is given by (4.2). Routine calculations yield

Ecθ
(g(X)g(Y )) − Ecθ

(g(X))Ecθ
(g(Y )) = θ

[
∫ 1

0
g(t)φ′(t)dt

]2

≥ 0,

since θ ≥ 0.

(ii) The pair (X, Y ) is PQD if and only if the uniform I-margins pair (U, V ) with distribution Cθ is PQD.
For (U, V ), condition (5.1) simply rewrites θφ(u)φ(v) ≥ 0, ∀(u, v) ∈ I2 and the conclusion follows.
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(iii) Since Cθ is symmetric, the necessary and sufficient conditions given by Theorem 5.2.5 in [10], simply
reduce to the unique condition: Cθ(u, v)/u = v + θφ(v)φ(u)/u is nonincreasing in u for all v ∈ I.
Suppose for instance φ(u)/u is nonincreasing. Then, since φ(1) = 0, we have φ(v) ≥ 0 for all v in I
and thus Cθ(u, v)/u is nonincreasing in u for all v ∈ I. The case of a nondecreasing function φ(u)/u
is similar.
Conversely, suppose Cθ(u, v)/u is nonincreasing in u for all v ∈ I. If there exist v ∈ I such that
φ(v) > 0 then φ(u)/u is nonincreasing too. The case where there is v ∈ I such that φ(v) < 0 is
similar. The case φ(v) = 0 for all v ∈ I is trivial. As a conclusion, we have shown that Cθ(u, v)/u is
nonincreasing in u for all v ∈ I if and only if φ(u)/u is monotone.

(iv) is similar to (iii).

(v) In view of Corollary 5.2.17 in [10], a necessary and sufficient condition for X and Y LCSD is: Cθ is a
totally positive function of order 2. For all u1 ≤ u2 and v1 ≤ v2, the quantity

Cθ(u1, v1)Cθ(u2, v2) − Cθ(u1, v2)Cθ(u2, v1) = θ

[

φ(v2)

v2
−

φ(v1)

v1

] [

φ(u2)

u2
−

φ(u1)

u1

]

u1u2v1v2

is nonnegative if and only if φ(u)/u is monotone. This is the necessary and sufficient condition for
X and Y LTD given in (iii).

(vi) is similar to (v).

(vii) In view of the Cθ symmetry, the geometric interpretation of stochastic monotonicity given by Corol-
lary 5.2.11 in [10] provides the necessary and sufficient condition: Cθ(u, v) is a concave function of
u. Suppose φ is a concave function. Then, taking into account that φ(0) = φ(1) = 1, we easily show
that φ(v) ≥ 0 for all v ∈ I and therefore Cθ(u, v) is a concave function of u. The case of a convex
function φ is similar.
Conversely, suppose Cθ(u, v) is a concave function of u. If there exist v such that φ(v) > 0 then (2.1)
shows that φ is concave. The case where there exist v ∈ I such that φ(v) < 0 is similar. The case
φ(v) = 0 for all v ∈ I is trivial. As a conclusion we have shown the equivalence between Cθ(u, v) is
a concave function of u and φ is concave or convex.

(viii) X and Y have the TP2 density property if and only if the density of the copula verifies

∀u1 ≤ u2, v1 ≤ v2, cθ(u1, v1)cθ(u2, v2) − cθ(u1, v2)cθ(u2, v1) ≥ 0,

which rewrites
∀u1 ≤ u2, v1 ≤ v2, [φ′(u1) − φ′(u2)][φ

′(v1) − φ′(v2)] ≥ 0.

Equivalently, φ′ is either nonincreasing or nondecreasing which means that φ is either concave or
convex. This is the necessary and sufficient condition for X and Y SI established in (vii). ✷

Results of Theorem 3 are illustrated in Figure 5. For instance, random pairs with copula in the parametric

families generated by φ[1], φ[2], φ[4], φ
[5]
n or φ

[6]
n have the TP2 density property since these functions are

concave. Consequently, these random pairs are also SI, LCSD, RCSI, LTD, RTI, PQD, and PFD. When

the copula belongs to the family {C
[3]
θ }, the associated random pair is PFD but not PQD.

5.2 Dependence orderings

In Theorem 3 positive dependence properties of the copula Cθ are established for fixed θ > 0. In this
subsection we investigate the variations of the “dependence amount” when θ increases. To this end, it is
necessary to define a dependence ordering which can decide whether a multivariate cumulative distribution
function is more dependent than another. Consider H and H∗ two bivariate cumulative distribution
functions with the same margins. We study two dependence orderings:
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• H∗ is more PQD (or more concordant) than H if H(x1, x2) ≤ H∗(x1, x2) for all (x1, x2). We note
H ≺C H∗.

• Note H2|1 and H∗
2|1 the conditional distributions of the second random variable given the first one.

H∗ is more SI than H if H∗−1
2|1(H2|1(x2|x1)|x1) is increasing in x1. We note H ≺SI H∗.

Remark that H ≺SI H∗ implies H ≺C H∗ (see Theorem 2.12 in [4]). The natural extension of these
definitions to parametric families of copulas is the following.

• A family of copulas {Cθ} is ordered in concordance if θ ≤ θ′ implies Cθ ≺C Cθ′ .

• A family of copulas {Cθ} is SI ordered if θ ≤ θ′ implies Cθ ≺SI Cθ′ .

As mentionned in [4], Cθ ≺C Cθ′ implies τθ ≤ τθ′ and ρθ ≤ ρθ′ . We now give conditions under which the
parametric family of copulas obtained by choosing φ according to Corollary 1 is stochasticly ordered.

Theorem 4

(i) {Cθ} is ordered in concordance if and only if φ is either positive or negative.

(ii) Assume φ is 2-derivable. {Cθ} is SI ordered if φ is either convex or concave.

Proof:

(i) The proof is straigtforward.

(ii) A direct proof is not possible since, in the general case, the inverse of the conditional cumulative
distribution function does not have a closed-form. A necessary condition is given by Theorem 2.14
in [4]: {Cθ} is SI ordered if for all increasing real-valued function g,

A(u, v, θ) =
∂2B

∂v∂u

∂B

∂θ
−

∂2B

∂θ∂u

∂B

∂v
≥ 0,

where B(u, v, θ) = g(v + θφ′(u)φ(v)). We obtain

A(u, v, θ) = −φ′′(u)φ(v)[g′(v + θφ′(u)φ(v))]
2
.

The sign of A(u, v, θ) is given by −φ′′(u)φ(v), which is positive whenever φ is concave or convex. ✷

For instance, all families discussed in this document are ordered in concordance, but {C
[3]
θ } is not SI

ordered.

6 Conclusion

In this paper, a symmetric semiparametric family of copulas is studied and its symmetry and dependence
properties are established. As for Archimedian copulas, a parametric subfamily is generated by an univari-
ate function and both symmetry and dependence properties of the family can be geometrically interpreted
on the graph of the generating function. Furthermore, the horizontal and vertical sections of the copula
are essentially described by the generating function. Finally, the proposed family of copulas provides a
“simple” way to modelize moderate degrees of dependence, in the sense that the copulas are convenient to
perform classical calculations on a probability law. Our further work will consist in generalizing the family
definition to the multivariate case.
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Université de Montréal, whose hospitality is gratefully acknowledged.

12



References

[1] Genest, C. and MacKay, J., 1986. Copules archimédiennes et familles de lois bidimensionnelles
dont les marges sont données, Canad. J. Statist., 14, 145–159.

[2] Farlie, D.G.J., 1960. The performance of some correlation coefficients for a general bivariate
distribution, Biometrika, 47, 307–323.

[3] Ferguson, T.S., 1995. A class of symmetric bivariate uniform copulas, Stastistical paper, 36, 31–40.

[4] Joe, H., 1997. Multivariate models and dependence concepts, Monographs on statistics and applied
probability, 73, Chapman & Hall.

[5] Lehann, E.L., 1966. Some concepts of dependence, Ann. Math. Statist., 37, 1137–1153.

[6] Morgenstern, D., 1956. Einfache Beispiele Zweidimensionaler Verteilungen, Mitteilingsblatt f ur
Matematische Statistik, 8, 234–235.

[7] Nelsen, R.B., 1991. Copulas and association, Advances and probability distribution with given
marginals. Dall’Aglio, G., Kotz, S. and Salineti, G. eds Kluwer academic Publishers, Dordrecht.

[8] Nelsen, R.B., 1993. Some concepts of bivariate symmetry, Nonparametric Statistics, 3, 95–101.

[9] Nelsen, R. B., Quesada-Molina, J. J. and Rodŕıguez-Lallena, J. A., 1997. Bivariate copulas
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Table 1: Measures of dependence associated to the Example 1 copulas.

φ(x) σθ τθ ρθ

φ[1](x) = min(x, 1 − x) 3|θ|/4 θ/2 3θ/4

φ[2](x) = x(1 − x) |θ|/3 2θ/9 θ/3

φ[3](x) = x(1 − x)(1 − 2x) 3|θ|/64 0 0

φ[4](x) = 1
π sin (πx) 48|θ|/π4 32θ/π4 48θ/π4

13



Figure 1: Graphes of the functions φ[i], i ∈ {1, . . . , 4} presented Example 1.

Figure 2: Graphes of functions φ
[6]
n , n ∈ {2, 4, 8}.
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Figure 3: Comparison of several Kendall’s Tau sequences. Solid line: τ
[2]
1 , dashed line: τ

[4]
1 , circles: τ

[5]
n,1

and crosses: τ
[6]
n,1.
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Figure 4: Implications among dependence properties in the general case.
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Figure 5: Implications among dependence properties within the {Cθ} family.
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