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Abstract 

A simple method for obtaining MCSCF orbitals and CI natural orbitals 
adapted to degenerate point groups, with full symmetry and equivalence restric- 
tions, is described. Among several advantages accruing from this method are the 
ability to perform atomic SCF calculations on states for which the SCF energy ex- 
pression cannot be written in terms of Coulomb and exchange integrals over real 
orbitals, and the generation of symmetry-adapted atomic natural orbitals for use in 
a recently proposed method for basis set contraction. 0 
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I .  
I. Introduction 

For an atom or molecule with point group 5, a set of functions (such as atomic 
or molecular orbitals) is said to be symmetry adapted if each function is a basis func- 

tion for an irreducible representation of 5, and the set is said to display equioalence 

if a full set of partner functions is available for each basis function. In general, for an 

atomic or molecular state that transforms according to a degenerate representation 

of 5, an unrestricted SCF or MCSCF calculation on one component of the state 

will not yield orbitals which are symmetry adapted or equivalent. For example, 
SCF optimization of the fluorine atom configuration 

0 

2 2 2  Is 2s 2p,2p;2pz 

will produce a 2p, orbital with a different radial function (inequivalent) from 2p, 
and 2p,. In addition, if a spin unrestricted approach is used, the orbitals associated 
with CY or ,8 spin will also differ. An MCSCF optimization of a 2D state using the 

two configurations s2d  and sd2 will produce optimum orbitals which are of neither 

pure s nor pure d type. Constraining the calculation so that orbitals with all the 

desired symmetry properties are obtained is referred to as imposing symmetry and 
equivalence restrictions. 

a 
Roothaan and Bagus [ 11 implicitly imposed symmetry and equivalence restric- 

tions [2] in their atomic SCF calculations by solving for only the radial part of the 

orbital; the angular part was determined by O(3) symmetry. Even in calculations 

where each orbital is expanded in the full basis set, the simple structure of SCF 
energy expressions (or, equivalently, of SCF reduced density matrices) allows the 

restrictions to be imposed via the vector coupling coefficients used to average degen- 

erate configurations- see Jackels and Davidson [3]. For example, in the F atom 'P 
case discussed above, an energy expression corresponding to an average of energy 

associated with the configurations having the 2p,, 2p, and 2p, orbitals successively 

singly occupied would be used. Jackels and Davidson also noted that if the a and 

p orbitals were averaged, symmetry and equivalence could be imposed in a spin un- 

restricted approach. In this way many atomic and molecular states can be treated 

at the SCF level using a molecular SCF program with little or no facilities for han- 

dling symmetry: any atomic term arising from occupations of the form smpn can be 
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treated this way, for example. There are, however, states which cannot be treated 

in this way, such those arising from certain dk occupations. The terms dZ ( 3 F ) ,  
d3 (4F), d' (4F), ds  ( 3 F ) ,  for instance, each yield average energy expressions which 

can be expressed in terms of Coulomb ([iiljj]) and exchange ([ijlzj]) integrals alone 

only when complex orbitals are used. In terms of real orbitals, the average energy 

expressions contain integrals of the general form [ijlkl], and such expressions can- 

not be handled by conventional SCF codes. Energy expressions which contain only 

Coulomb and exchange integrals over real orbitals can be obtained by averaging 
the F states above with the P states of the same spin from the same d occupation: 

it is actually vector coupling coefficients for these P / F  averages that are given by 

Poirier et a1 in a recent compendium [4], although it is claimed that the coupling 

coefficients are for the F states. 

More complicated energy expressions can be handled by an MCSCF program. 

However, very few MCSCF (or CI) programs exploit more than D z ~  symmetry, and 

if only one component of, say, the d2 3F state is optimized within D2h symmetry, 

the final MCSCF orbitals will be symmetry adapted within D z ~  but will not display 

atomic symmetry and equivalence. (It is relatively easy to eliminate the mixing of 

the s and d orbitals, although this will not make the five d orbitals equivalent). 

Similarly, the natural orbitals from a CJ calculation in DZh on such a state would 

again fail to show symmetry and equivalence. Such problems are not, of course, 

confined to atomic calculations, but arise in any treatment of a degenerate state 

within D2h or its subgroups. In molecular systems symmetry and equivalence re- 
strictions could be imposed in the same manner as Roothaan used in his work on 

atoms, that is, a special code for each symmetry of interest could be developed. 

While this might be consider an elegant approach, it is impractical since it would 

lead to  the problem of developing and supporting a large number of very complex 

codes. In the present work, we first show formally how symmetry and equivalence 

restrictions are imposed, and then describe how these can be implemented compu- 

tationally. A simple example is given to illustrate the method. This approach to 

symmetry and equivalence restrictions is a very powerful one, and its implementa- 

tion is a much simpler task than that of extending codes designed originally for Dzh 
and its subgroups to include higher symmetries. The ability to impose symmetry 

a 
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and equivalence restrictions is of particular current importance in the construction 

of new atomic natural orbital (ANO) basis sets. 

11. Symmetry Adapted Natural Orbitals and Geminals 

The symmetry properties of density matrices and natural orbitals have been 

reviewed extensively by McWeeny and Kutzelnigg 151 and by Davidson [6], and we 

shall generally follow their treatment. The kernel of the electron density opera- 

tor ~ ( T ; T ’ )  (T denotes both spin and spatial coordinates) is given in terms of an 

orthonormal one-electron basis { T ) }  as 

PP 

where rPq is an element of the density matrix. This is a Hermitian matrix and 

can be brought to diagonal form by a unitary transformation, yielding natural spin 

orbitals (NSOs) {x}: 

where np is the occupation number of natural spin orbital xp. The NSOs are of 

pure a or p spin type if the Hamiltonian contains no spin-dependent operators 151. 

That is, a given NSO can be written as a product of a spatial orbital d P ( r )  (r 

denotes spatial coordinates) and a spin factor CY or p. However, it is not generally 

the case that a given & ( r )  will appear with both Q and p spin factors: the partner 
function (within the given irreducible representation of the spin group) of an NSO 

is generally not itself an KSO. This is, in effect, a loss of equivalence properties 

under the spin group for the NSO. Only in the case of zero total spin projection 

( M s  = 0) is equivalence obtained. This is obviously a nuisance, as different NSOs 

will be obtained from density matrices for different Ms values. It is therefore 

customary [5,6: to define a spin-free density matrix (denoted p )  as the sum of the 

a-spin and &spin blocks of 7. It is this matrix which is normally computed as 

the “density matrix” in electronic structure codes, and its eigenvectors are termed 

natural orbitals (NOS). As will be seen, this spin-averaging is exactly analogous to 

imposing spatial symmetry and equivalence restrictions. 
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The kernel of the spin-free density operator can be written as 

It is convenient to  assume that the set of orthonormal orbitals {p} possess the de- 

sired symmetry and equivalence properties. (This is not a practical restriction, as 

some such set of orthonormal orbitals can always be generated straightforwardly, 

say, by diagonalizing the one-electron part of the Hamiltonian (h ) .  See for example 

Ref. 7, where it is shown that it is also trivial to sort the eigenvectors of h by irre- 

ducible representations). We denote by pp"" a basis function for row a of irreducible 

representation p; p is simply a counting index. Equation (3) thus becomes 

where pQa*pb is a sub-block of p.  What is now desired is to obtain NOS with full 

symmetry and equivalence properties from p. Unfortunately, the eigenvectors of p 

will only display these properties when the wave function transforms according to a 
non-degenerate irreducible representation of G [5,6]. In other cases, it is necessary 

to project out po, that component of p that transforms according to the totally 

symmetric irreducible representation of 5, and use the eigenvectors of p as the 

NOS. These orbitals display full symmetry and equivalence properties and differ 

as little as possible (in a least-squares sense 151) from the eigenvectors of p itself. 
The following projection approach, which is essentially that used by Davidson ~[6],  

is easily implemented computationally. 

0 

The component of p which transforms as a basis function for row a of irreducible 

representation p is obtained [6,8] as 

where g is the order of 5 and DP(R) is one of a set of unitary irreducible repre- 

sentation matrices for p ,  which is of dimension np. A set of basis functions for all 

rows of irreducible representation p is obtained by choosing a linearly independent 
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subset of the functions obtained using all possible values of index b in (4). For the 

totally symmetric irreducible representation we have e 
po = 9-l RPR-] .  ( 5 )  

R 

It is simplest to project p block by block: for block (po)paivb we obtain 

R R cd 

But 

9-l o,”c(R)D[d(R)* = n i 1 6 p v 6 a b 6 c d ,  (7) 
R 

by the great orthogonality theorem [SI. Substituting (7) in (6) gives 

C 

for the only non-vanishing blocks of po. This is very simple to implement computa- 

tionally: after identification of blocks of the density matrix by their transformation 

properties under S, the diagonal blocks are averaged within representations, while 

all off-diagonal blocks are discarded. po can then be diagonalized, to give NO oc- 

cupation numbers np and NOS 4p’.: e 
P O P  

It is easily seen that projection of that component of -j that transforms accord- 

ing to the totally symmetric irreducible representation of the spin group (together 
with a renormalization so that NO occupation numbers lie between zero and two) 

corresponds exactly to the spin averaging procedure described above. 

The above approach is sufficient to allow symmetry and equivalence restricted 

NOS to be generated from a given density matrix. However, in a general energy ex- 
pression the second-order reduced density matrix will also appear, and it is therefore 

desirable, for the purposes of averaging energy expressions, to extend the above ap- 

poach to the second-order reduced density matrix. The kernel of the second-order 

reduced density operator [ 5 ]  is 
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Here, as in (1) above, { t)} is a set of orthonormal spin-orbitals, and I' is the second- 

order reduced density matrix. Note that the indices on I' have been ordered to cor- 
respond to those on two-electron integrals given in charge density notation. Again, 

in order to avoid obtaining different results for different M s  values it is usual to ob- 

tain a spin-free kernel P(r1, r 2 ;  ri,  r;) by averaging over spin blocks. Full details are 

given by McWeeny and Kutzelnigg: P and the associated reduced density matrix 

P 

@ 

are the quantities computed in density matrix-driven MCSCF codes. 

In terms of the orthonormal symmetry-adapted basis { p:"} introduced above 

equation (11) becomes 

~ U K X  abcd m n p q  

Po, the component of P that transforms according to the totally symmetric irre- 

ducible representation, is obtained by projection of symmetry blocks of P. For a * given block we have 

The factor in braces in (13) can be regarded as a product of elements of unitary 

reducible representations for the direct products p @ IC and v @ A. The unitarity of 

these reducible representations gives 

Insertion of (14) into (13) yields the final symmetrization formula, however, it is 

obvious from inspection of (14) that the final form will be more complicated than for 
the first-order case (8). In the following section we will show how the symmetrization 

of P can be avoided in MCSCF calculations. If natural geminals with symmetry 
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and equivalence restrictions were required [ 5 ] ,  this step would have to be performed, 

@ of course. 

111. Illustration 

As a simple example of using equation (8) to obtain symmetry and equivalence 

restricted NOS from a CI wave function, we consider the excited 'E' state of planar 

CH3. The molecule has D3h symmetry with SCF occupation 

In a program which handles only &h and its subgroups, this system must be treated 

using CzU symmetry. The two components of the 'E' state (15) in Czu symmetry 

are 

and 
2 2  B1 la: 2al 1 b,3a: 1 b: . 

First, we note that if the orbitals have full &h symmetry, a CI calculation which 

includes all single and double excitations from both (16) and (17) will yield the same 

energy for the 'A1 and ' B 1  states. The first-order reduced density matrices from 

these two CI wave functions are given in Table 1. The two problems which prevent 

the eigenvectors of either of these density matrices displaying D3h symmetry are 

immediately apparent. First, density matrix elements such as pn;nx are not equal 
to pdn" in either matrix. Second, both matrices contain non-zero elements of the 

form p&=. It is straightforward to see that the projection procedure defined by 

equation (8) above eliminates both problems, and the same projected density matrix 

is obtained from both of the original matrices. At this stage it should be pointed 

out that in practical calculations it is important to ensure that phase relationships 

among degenerate orbitals are consistent. That is, applying the shift operator PL, 
which generates a basis function for row a of irreducible representation p from a 

basis function for row b, must yield 

e 

e' e' 

e' e' 

a' e' 

8 



where A is the same phase factor, for all values of the counting index p .  Although 

this condition does not affect the computed energy, it is important in averaging to 

obtain symmetry and equivalence properties. 
8 

It can also be seen from Table I that the same averaged density matrix as ob- 

tained by projection can be obtained by averaging the density matrices for the two 

components of the 2E’ state, since the two wave functions and the corresponding 

density matrices are related by a shift operator. However, if the averaged density 

matrix is obtained from averaging calculations on the individual components, it is 

of paramount importance in practice that the component wave functions be related 

via a shift operator. For example, it was specified above that the CH3 wave func- 

tions comprised all single and double excitations out of both components, (16) and 

(17). This condition is sufficient to guarantee that the CI wave functions will be 
related via a shift operator, even though it means that single and double excitations 

out of reference configurations of the “wrong” symmetry must be included. If such 
excitations are excluded, then the wave functions for the two components will not 

be related by a shift operator. This makes it impossible, for example, to impose 

first-order interacting space restrictions [9] on the CI wave functions. However, 

the symmetrization procedure of equation (8) requires only one CI calculation to 
be performed, and first-order interacting space restrictions can be imposed, as the 

symmetrization procedure effectively generates the result of applying a shift opera- 

tor to this CI wave function. It therefore seems preferable to symmetrize a density 

matrix for a single component of a degenerate state rather than to average density 
matrices for all components. 

* 

The ability to obtain C1 NOS with full symmetry and equivalence properties is 
very important for generating contracted basis sets for molecular calculations using 

atomic natural orbitals (ANOs) and a general contraction scheme [lo]. Because 

of the shell structure exploited in efficient integral codes [Ill, it is vital that the 

contracted basis display full atomic symmetry and equivalence, and it is not always 

possible to find a suitable non-degenerate state of a given atom for generating such 

ANOs directly. 

Our computational implementation of equation (8) for obtaining symmetry- 

adapted NOS is very simple and we briefly outline it here. We refer to the full 
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symmetry it is desired to impose as “high symmetry” and the appropriate subgroup 

of D2h as “low symmetry”. Required as input is the number of high symmetry 

irreducible representations, their degeneracy, and the number of orbitals in each 

irreducible representation. Then, for each row of each irreducible representation 

(pa) ,  the sequence numbers of the low symmetry orbitals which transform as basis 
functions for pa are given. The program loops over distinct pairs of irreducible 

representations p and u. If p and u are not equal, pFt+’b is set to zero. In the case 

of p = u, p F t j p b  is set to zero for all a # b, while for a = b, we average $;,pa 

over all a. Diagonalization of p produces NOS with full symmetry and equivalence 

restrictions. This implementation only requires the identification of the equivalent 

(high symmetry) orbitals in the original orbital list. 

Imposing symmetry and equivalence and restrictions in the NOS in this manner 

is similar to  the method by used in the SCF Fock matrices, where the equivalent 

blocks are averaged and the off-diagonal elements set to zero. Also this method is 

being used in MCSCF treatments based on NOS and the BLB theorem [12]. 

IV. Symmetry and Equivalence Restrictions in MCSCF Calculations 

We now turn to the question of imposing symmetry and equivalence restrictions 

in second-order MCSCF calculations. In most MCSCF methods [ 131 the variation 

of the MCSCF energy with respect to orbital rotations is written in terms of first 

and second-order reduced density matrices, and the methods of section I1 could 

therefore be used to impose symmetry and equivalence restrictions on the MC- 

SCF optimization. It is possible to avoid the more complicated symmetrization 
of the second-order reduced density matrix, however. The MCSCF energy can be 

expanded in the orbital rotations as 

* 

where Eo is the energy with the current MOs, g is the gradient vector, H is the 

Hessian matrix and the antisymmetric matrix X is used to parametrize the orbital 

rotations. Seeking a stationary point of (19) leads to the Newton-Raphson equations 
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Symmetry and equivalence properties will be maintained only if the rotations are 

restricted to mix orbitals of the same symmetry type, (that is, if the only non- 
vanishing X , ,  are those for which r and s transform as basis functions for the same 

row of the same irreducible representation), so this is the condition that must be 

imposed on the Newton-Raphson equations (20). Labelling the symmetry blocks in 

(20) explicitly, we have 

@ 

u b ,>e 

The syrrynetry structure of H is clearly much simpler than that of the second-order 

reduced density matrix in equation (12), as the blocks which transform according 
to  four different symmetry indices do not appear in (21). 

For the MCSCF case, our implementation is similar in spirit to that for the 

first-order density matrix; we wish to specify only the number of high symmetry 

irreducible representations and, for each irreducible representation, its degeneracy 

and the list of the low symmetry orbitals associated with each of its rows pa. It is 
obvious that the gradient vector can be symmetrized using exactly the same scheme 

as for the first-order reduced density matrix. For the Hessian, it is desirable first 
to compress the notation somewhat. As we are interested only in rotations within 

symmetries, we can use a single label pa, and we can represent distinct pairs rs 

by a compound counting index t .  The blocks of X of interest are then those with 

elements X;'". Given the high symmetry irreducible representation and orbital 

list information, potential orbital mixings which would correspond to symmetry 
breaking can be identified. It is now possible to generate a list of allowed mixings 

for each irreducible representation, and to use this rather than the list information 

about the original orbitals. The elements of the Hessian which correspond to a 

mixing which breaks symmetry are now set to zero (excluding diagonal elements 

which can be set to an arbitrary positive value). Note that the elements of g 

corresponding to rotations which break the desired symmetry are eliminated in 

the projection of the gradient. The program loops over distinct pairs of irreducible 

representations p and v. For the case of p = v, and a = b, the Hessian blocks H r 2 p a  
are averaged over all a. This is equivalent to the processing of the gradient or first- 

order reduced density matrix with the orbital indices replaced by the compound 

e 
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mixing indices. For a # b,  the elements H r : p b  + HLaipb are averaged for each value 

of t 2 w over all a > b. Thus for an atom with d orbitals, the ten lower-triangular 
off-diagonal d - d blocks and their transposes would be averaged. For p # v ,  the 

elements H ,  & are averaged for all a and b. Thus for an atom, fifteen equivalent 

p - d blocks would have to be averaged. 

0 
p a  vb 

In the our implementation, we explicitly store the equivalent blocks of the Hes- 

sian, thus retaining its orginal low symmetry dimension. Clearly the dimension of 
the Hessian could be reduced to  the unique orbital mixings in the high symmetry. 

However, by retaining the full low symmetry Hessian dimension the program modi- 

fications are limited to  the symmetrization of the Hessian. The described method to 

maintain orbital symmetry and equivalence during MCSCF optimizations is similar 

to that used by Ruedenberg, Cheung and Elbert in the ALIS program [12]. 

With the same techniques it is also straightforward to impose symmetry and 

equivalence restrictions in MCSCF calculations which include orbital-CI coupling: 

the CI gradient and CI Hessian can be constructed using one component of a de- 

generate state, while the CI/orbital coupling Hessian can be symmetrized in the 

same manner as the orbital gradient. 

This approach can be used to  obtain SCF solutions for the d occupations dis- e 
cussed in the introduction. For example, for d3 there are ten determinants with 

S = M s  = 3/2, one 4Ag and three 4Blg, 4B2g, and 4B3g in D z ~  symmetry. Op- 

timum SCF orbitals for the 4F atomic state can be obtained by performing an 

MCSCF calculation with atomic symmetry and equivalence restrictions imposed, 
solving for any of the seven possible components: * A g  or the two lowest (degenerate) 

4B1g, 4Bz9 ,  or 4B39 solutions. All seven solutions will be exactly degenerate and 

will yield identical orbitals. The third root in each of the B symmetries corresponds 
to a component of the d3(4P)  state. 

It is well known 114) that the orbitals for the lowest state arising from the 

3dn4s2 and 3dn+’4s’ occupations in transition metals are very different. Using 

the approach described above, we have recently performed state-averaged CASSCF 

calculations with symmetry and equivalence restrictions for the 3F (3d24s2) and 5F 
(3d34s’) states of Ti. These CASSCF calculations were followed by CI calculations, 

and the CI first-order density matrices for the two states were averaged. Since full 
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symmetry and equivalence restrictions were imposed, these averaged NOS can be 

used to determine an A N 0  contraction. As discussed by Shavitt [15] in his review 

of configuration interaction methods, averaged NOS are expected to be a good way 

of obtaining an equivalent treatment of two states, and for Ti it is found that the 

average NOS yield a more equivalent description of 3F - 5F separation than either 

3F or 5F orbitals. A [5s 4p 3d If] contracted set yields a 3F - 5F separation 

which agrees to  within 0.03 eV with the result obtained using the uncontracted 

(14s l l p  6d 4f) basis set. One example of the need for methods for performing 
beyond-SCF calculations in which symmetry and equivalence restrictions are im- 

posed is in the construction of such compact A N 0  contractions. 

e 

While the A N 0  contractions are one clear example of the need to impose 
symmetry and equivalence restrictions, it is not always an advantage to use the full 
molecular symmetry. One example would be the distortion away from an isolated 
point of high symmetry where the wave function is degenerate. The imposition 

of symmetry and equivalence at the high symmetry point, but not at the lower 

symmetry geometries could result in a discontinueous potential surface-see the 

discussion by Davidson and Borden 1161. One solution is to state-average for the two 

states, then at the high symmetry point, as discussed above, the density matrix has 
the full high symmetry, and the potential energy surfaces are smooth. While we have 

sucessfully used this approach in one application, the question of symmetry breaking 

is very complex and it is not yet clear how general a solution state-averaging will 

be. 

* 
V. Conclusions 

We have presented a simple method of modifying a Dzh-based MCSCF/CI 

program to obtain full symmetry and equivalence restricted MCSCF solutions and 

CI natural orbitals. Among other advantages, this allows A N 0  basis sets to be 

generated using standard program systems, and SCF solutions to be obtained for 

cases where conventional SCF approaches cannot be used. 
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Table I. The MO density matrix for the 'E :  and 'EL components of the 'E' state 
state of CH3. The density matrix is blocked and labelled by Czv, the symmetry 
used in the CI calculation, while the orbitals are labelled using D3h, the symmetry 
of the molecule, and that used in the SCF calculation. 

a: a 1.987957 
1.987957 

e:: -0.003925 
0.003925 

a: 0.0034 55 
0.003456 

a: 0.003404 
0.003404 

el, -0.0094 04 
0.009404 

e& 1.988767 
1.002602 
-0.043940 e& 
0.031865 

a; 1.972070 
1.972070 

a" -0.011975 
-0.01 1975 

1.002602 
1.988767 

0.030386 
-0.030386 
-0.018831 
0.018831 
0.031865 
-0.04 3940 

0.005489 
0.0061 98 

0.020990 
0.020990 

0.010319 
0.010319 

-0.0007 2 1 0.005609 
-0.000 72 1 0.005609 

0.00038 1 -0.001446 0.006198 
-0.000381 0.00 14 46 0.005489 

b l  

b2 

a The top line is for the 'E: component while the bottom line is for the 'E;  
component. 
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