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INTRODUCTION

The crystallographic approach to magnetic structures is largely based on two kinds of descriptions:
symmetry invariance of magnetic configurations (Magnetic Space Groups, often called Shubnikov
groups) and group representation theory applied to conventional crystallographic space groups. The
first approach is nearly exclusively used for the case of commensurate magnetic structures and usually
is limited to a description of the invariance symmetry properties for this kind of configurations [1–5].
The representation analysis is more general and can be applied to all kinds of magnetic structures.
The literature on this field is broad and one can consult the papers of E.F. Bertaut [6–9] and
Y. Izyumov and co-workers [10–15] to get a deeper insight into the problem. A possible extension
of the Shubnikov approach may be developed in the sense of Magnetic Superspace Groups as in
crystallographic incommensurate structures. This more general approach extends the invariance concept
to incommensurate magnetic structures and may be a better approach when macroscopic properties have
to be deduced from the spin configurations. At present not too much work has been done in that sense
so it will not be considered in the present notes.

1. WHAT IS A MAGNETIC STRUCTURE?

The appearance of magnetic moments in atoms is due to the existence of unpaired electrons in some
electronic shells. The Hund’s rule favours the “ferromagnetic” interaction between electrons inside
the same ion when they are in different orbitals, so that an intrinsic moment appears in such cases.
The intrinsic moment contains, in general, an orbital and a spin contribution. For our purposes we
assume that there are atoms, in positions R, with magnetic moments that are usually disordered in the
paramagnetic state (∀R, 〈mR〉t = 0, where the bracket symbol means time average) and become frozen
(〈mR〉t �= 0), and eventually ordered, below a certain temperature. A magnetic structure corresponds
to a particular, nearly static, spatial arrangement of magnetic moments that sets in below the ordering
temperature. Above the ordering temperature the system is in the paramagnetic state. In this document
we disregard the quantum properties of spin operators and we interchange loosely the terms magnetic
moment (generated by the spin and orbital angular momentum of electrons) and “atomic total spin” or
“spin” for short. For us, the magnetic moment of an atom is a classical “axial vector” (magnetic dipole)
supposed to be generated by an “electrical current”.

The magnetic structures are commonly represented as a set of arrows, associated to the magnetic
atoms, with magnitudes and orientations characteristics of the particular magnetic structure. For
considering symmetry properties we have to suppose that each arrow is in fact a current loop, the
direction of which determines the orientation of the arrow by the right-hand rule of electromagnetism.

What governs the setting up of a particular kind of magnetic ordering? Let us consider a classical
and general Hamiltonian of interacting spins (in fact magnetic moments) of the following form:

H = −
∑

il�,jm�

J
��
il,jmSil�Sjm� +

∑

il�,jm�,kn�

J
���
il,jm,knSil�Sjm�Skn� + . . . O(Sn) (1)
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Where the indices i, j , k label atoms in the primitive cell, the indices l, m, n label different unit cells
(they are composite indices, describing the origin of the unit cells at lattice vectors Rl , Rm and Rn) and
the indices �, �, � label the components x, y, z. If we consider that the magnetic atoms at positions Rlj

have intrinsic magnetic moments of module mj (Slj = mj nlj ), for a given set of exchange parameters
{J ��

il,jm, J
���
il,jm,kn, . . .}, the magnetic structure at T = 0 K corresponds to the minimum of H with respect

to the orientations of the unit vectors nlj . In general the terms of order greater than 2 in the spins are
much weaker than those of second order. Moreover the isotropic part of the tensors J

��
il,jm is strongly

dominant in many cases; the energy can be simplified to obtain the so called Heisenberg Hamiltonian:

Hiso = −
∑

il,jm

Jil,jmSil · Sjm = −
∑

il,jm

Jij (Rm−Rl)Sil · Sjm

Hiso = −
∑

il,jm

Jij (Rm−Rl) mimj nil · njm = −
∑

il,jm

Jij (Rm−Rl) mimj cos �il,jm

(2)

The magnetic energy in such a case does not depend on the absolute orientation of the spins. It depends
only on the relative orientation of the spins (scalar product). This means that for a given configuration,
any global rotation acting on the spins does not change the energy, so the Hamiltonian has more
symmetry elements than the space group underlying the crystal structure if the interaction between
the magnetic moments is strictly isotropic. We see here that the relevant symmetry to be considered
for studying the magnetic ordering is that of the Hamiltonian of the system. However the Hamiltonian
of a system is generally unknown, so we do not know what is the relevant symmetry to begin with.
In the absence of this information we have at our hands the possibility to know the symmetry of the
crystal structure of the compound under study. The space group of the crystal summarises in some way
the result of the different interactions between electrons and nuclei in the solid. We expect that the
magnetic ordering conserves some of the symmetry properties of the crystallographic structure even in
the case of a structural transition accompanying the magnetic ordering. This is the reason why we use
the symmetry of the crystal structure as a starting point for our analysis. In the course of the analysis of
experimental data we may arrive to the conclusion that we have to modify our previous assumptions on
the starting symmetry; or even to suppose that we have more symmetry (additional symmetry elements)
in the magnetic Hamiltonian than in the crystallographic space group.

2. INVARIANCE PROPERTIES OF MAGNETIC STRUCTURES

We assume that the reader is familiar with crystallography and with the crystallographic point and space
groups (see chapter by Grenier & Ballou). The symmetry operators used in crystal structures can also be
used to study the invariance properties of magnetic structures: We have then to consider, in addition to
positions of point atoms, a property associated to each point atom that is represented by an axial vector
(an arrow surrounded by a current loop). To study the invariance of magnetic configurations we have to
introduce a new operator that is usually called “spin reversal” or “time reversal”. This operator is acting
on magnetic moments that are “classical axial vectors”1. The action consists of changing the sense of the
current loop (proportional to the product of a charge by a velocity vector), so that the orientation of the
magnetic moment is reversed. We note this operator as 1′ and it acts only on the magnetic moments/spins
not on the atom positions: 1′ · m = −m (see Figure 1).

The spin reversal operator cannot be contained in the set of symmetry operators that leave invariant
a magnetically ordered system, however it is contained in the paramagnetic state of a magnetic system.
This gives immediately the so called “paramagnetic space groups” that are obtained by adding 1′ to
the set of symmetry elements of the space group. The notation of the paramagnetic space groups is

1 In quantum mechanics “time reversal” is an anti-unitary operator acting on wave functions and quantum operators and is related
to “conjugation” for spinless systems. We will not treat this point in this document.
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Figure 1. Action of time reversal in a current loop: the magnetic dipole is inverted.

Figure 2. Action of a mirror plane on an electrical dipole (polar vector) and on a magnetic dipole (axial vector).

identical to that of crystallographic groups with the 1′ symbol added (e.g. P bnm1′). In magnetically
ordered systems the spin reversal operator can be combined with a conventional symmetry operator. The
operator is called “primed” to indicate that we have to invert the spin after applying the “non-primed”
operator to the spin.

The symmetry operators we have to consider for exploring the invariance of spin configurations are
then formed by the usual operators considered in crystallography together with these same operators
followed by the spin reversal.

2.1 Behaviour of axial vectors under the action of operators representing general motions

Axial vectors are in fact second order antisymmetric tensors in the conventional 3D Euclidean space.
The three independent components of these tensors can be written as components of a vector with the
particularity, contrary to polar vectors, that the orientation of the vector depends on the handedness
of the reference frame. Examples of polar vectors are, for instance, the vector position, velocity and
acceleration of a particle, the electrostatic field, etc. The behaviour of axial vectors under the action of
motions (translations, proper and improper rotations, glide planes and screw axes) is different from that
of polar vectors. This can be visualised as in the scheme of Figure 2 representing the action of a mirror
plane on an electric dipole and on a magnetic dipole (magnetic moment).

Mathematically the action of whatever kind of symmetry operator, which can be represented by
an orthogonal matrix in the appropriate reference frame, on an axial vector is identical to that on a
polar vector except that we have to multiply by the determinant of the matrix. Moreover if we consider a
“primed” element we have to multiply again by -1 all the components of the resulting vector. In summary
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a general operator g = {h|th+n} (see chapter by Grenier & Ballou) acting on an atom rj in the cell at
the origin (zero-cell) having a magnetic moment mj is transformed as follows:
Position:

r′
j = g rj = {h|th + n}rj = hrj + th + n = ri + agj (3)

Magnetic moment:

m′
j = gmj = det(h) � h mj (4)

The transformed atom position r′
j is translationally equivalent to the atom labelled “i” in the zero-cell.

The vector agj is a lattice vector depending on the initial atom j and the operator g. It is called “returning
vector” because its opposite is the vector we need to apply on the transformed atom to put it back in the
zero-cell.

The corresponding magnetic moment is transformed using only the rotational part of the operator
and the resulting vector is multiplied by the determinant and the “signature” (�) of the operator. The
signature is � = 1 for unprimed elements and � = −1 for primed elements.

In a magnetically ordered system the operator g is a symmetry operator if it is a symmetry operator
of the space group and if m′

j = mi .

2.2 Magnetic point groups, magnetic lattices and magnetic space groups

Let us define the time reversal group that is formed by only two elements: R = {1, 1′}. Whatever
crystallographic magnetic group, M, can be obtained as a subgroup of the exterior direct product of
R by the crystallographic group G : M ⊂ G ⊗ R. The group G is always a magnetic group (called
“colourless”). The paramagnetic (“grey”) groups of the form P = G + G1′ are also magnetic groups.
The fact that the product of two primed elements must be an unprimed element gives the fundamental
lemma for constructing the rest of magnetic groups (“black-white” groups): the magnetic groups derived

from the crystallographic group G can be constructed considering the index 2 subgroups H of G as

constituting the unprimed elements and the rest of operators, G − H, those that are multiplied by the

time reversal operator. Remember that the index of H in G is the ratio of the orders of G over H,
[i](H/G) = n(G)/n(H). The magnetic group is then related to the subgroup H ⊂ G (of index 2) by the
expression:

M = H + (G − H)1′. (5)

This is valid for all kind of groups: point groups, translation groups and space groups.
Even without tables of magnetic group one can construct easily different magnetic groups looking

into the International Tables of Crystallography, Volume A (ITA), where the subgroups of index 2 for
all the space groups are given.

Let us consider an example for magnetic point groups. One has to consult the scheme of the
group/subgroup relations as given in page 781 of ITA and reproduced in Figure 3.

Consider the point group G = 4/m of order 8. Its subgroups of index 2 are H1 = 4, H2 = 4̄ and
H3 = 2/m:

G = 4/m = {1, 4+
z , 2z , 4−

z , 1̄, mz , 4+
z , 4−

z }
H1 = 4 = {1, 4+

z , 2z , 4−
z }

H2 = 4̄ = {1, 4+
z , 2z , 4−

z }
H3 = 2/m = {1, 2z , 1̄, mz}
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Figure 3. (reproduced from ITA).

There are then four magnetic point groups derived from G, they have the following elements:

M0 = G = 4/m

M1 = H1 + (G − H1)1′ = {1, 4+
z , 2z , 4−

z , 1
′
, m′

z , 4+
z

′, 4−
z

′} = 4/m′

M2 = H2 + (G − H2)1′ = {1, 4+
z

′, 2z , 4−
z

′, 1
′
, m′

z , 4+
z , 4−

z } = 4′/m′

M3 = H3 + (G − H3)1′ = {1, 4+
z

′, 2z , 4−
z

′, 1, mz , 4+
z

′, 4−
z

′} = 4′/m

2.3 Magnetic point groups

Following the previous procedure one can construct the full list of magnetic point groups. It is
easy to apply the lemma to the crystallographic point groups and deduce that we have 32 trivial
magnetic point groups (identical to the 32 crystallographic point groups), 32 paramagnetic groups, and
〈3 + 3〉 + (5 + 13 + 5) + [5 + 13 + 8] + 3 = 58 black-white point groups. This last sum is obtained
by counting the number of lines connecting groups with subgroups of index 2 in Figure 3. The symbols
〈 〉, ( ), [ ] surrounding the figures refers to cubic, hexagonal-trigonal and tetragonal-orthorhombic
groups; the absence of parenthesis for the last figure refers to monoclinic-triclinic point groups.

An important concept is that of “admissible magnetic point groups”. It is clear that in magnetically
ordered system, the magnetic point group of a magnetic atom cannot be one of the paramagnetic groups;
moreover many of the colourless and black-white magnetic point groups cannot be realized in ordered
system. Let us consider, for instance, the magnetic point group discussed above M3 = 4′/m. If we put
a magnetic moment S in the origin pointing along an arbitrary direction and apply the operators, we
arrive to the conclusion that S should vanish if M3 is to be a symmetry group. If S is along the fourfold
axis, 4′ inverts the spin so that 4′ cannot be a symmetry operator. If S lies within the mirror plane, m

inverts the spin so that m cannot be a symmetry operator. The point group 4′/m is an example of a
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non-admissible magnetic point group. There are only 31 admissible magnetic point groups that are
listed, together with their admissible spin direction in the following table:

Admissible magnetic point groups Admissible spin (magnetic moment) direction
1 1̄ Any direction
2′ 2′/m′ m′m2′ Perpendicular to the 2-fold axis (& to m for m′m2′)
m′ Any direction within the plane
m Perpendicular to the plane
m′m′m Perpendicular to the unprimed plane
2′2′2 Along the unprimed axis
2 2/m m′m′2 Along the 2-fold axis
4 4̄ 4/m 42′2′ Along the four-fold axis
4m′m′ 4̄2m′ 4/mm′m′ Along the four-fold axis
3 3̄ 32′ 3m′ 3̄m′ Along the three-fold axis
6 6̄ 6/m 62′2′ Along the six-fold axis
6m′m′ 6̄m′2′ 6/mm′m′ Along the six-fold axis

2.4 Magnetic lattices

A translation group in 3D is generated by three non-coplanar vectors {a1, a2, a3} called the basis of
the unit cell (sometimes we will use the crystallographic convention: {a, b, c}). For primitive Bravais
lattices, integer linear combinations of the three vectors generate the whole translation group: TP =
{t|t = l1a1 + l2a2 + l3a3, li ∈ Z}.

If we consider centred lattices the whole group is generated not only by integer linear combinations
but by adding centring vectors tC

i (i = 1, ..nc):

TC = {t|t = l1a1 + l2a2 + l3a3 + n1tC
1 + n2tC

2 ... + nnc
tC
nc

, li ∈ Z, ni ∈ {0, 1}}
The centring vectors are of the form: tC

i = q1ia1 + q2ia2 + q3ia3, (qni ∈ Q).
The translation group can always be described using a primitive cell but, in order to simplify the

expressions of the symmetry operators a centred basis is often more convenient. Following the previous
procedure one can construct the different magnetic Bravais lattices. A subgroup, of index 2, of the
translation group, can be obtained just by suppressing half of the translations; for instance if we take
l1 = 2n we obtain a lattice L that is described with a unit cell with a′

1 = 2a1. This lattice is a subgroup
of index 2 of T(L ⊂ T, [i] = n(T)/n(L) = 2), the lost translations (T-L) can be associated with time
reversal for constructing the magnetic lattice: ML = L + (T − L)1′. The classification of all magnetic
lattices can be found in references [2] and [15].

3. SHUBNIKOV GROUPS: OPECHOWSKI-GUCCIONE AND

BELOV-NERONOVA-SMIRNOVA NOTATIONS

The same procedure can be applied to Bravais lattices and space groups. One obtains a total of
1651 types of Shubnikov groups. Among the 1651 magnetic space groups, considering G as a space
group type, 230 are of the form M0 = G (called also “monochrome”), 230 of the form P = G + G1′

(paramagnetic or “grey” groups) and 1191 of the form M = H + (G − H)1′ (“black-white” groups).
Among the black-white groups there are 674 in which the subgroup H ⊂ G is an equi-translation
group: H has the same translation group as G (first kind, BW1). The rest of black-white groups,
517, are equi-class group (second kind, BW2). In this last family the translation subgroup contains
“anti-translations” (pure translations associated with the spin reversal operator). The two notations
for describing magnetic space groups existing in the literature are due to Belov-Neronova-Smirnova
(BNS) [1] and to Opechowski-Guccione (OG) [2]. Both notations are identical for the major part of
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magnetic space groups except for the second kind black-white magnetic space groups. Recently a list
of all magnetic space groups, in a similar form as that of the ITA for crystallographic groups, has been
published [4] using the OG notation. A re-interpretation of [4] in terms of the BNS notation has also
been published [5].

In the Shubnikov groups of the first kind the subgroup of translations is the same as that of the space
group of which they derive, so the spin reversal operator is not associated with translations: the magnetic
unit cell is the same as the crystallographic cell.

In the Shubnikov groups of the second kind there are some translations associated with spin reversal,
so that the “primitive magnetic unit cell” is bigger than the primitive crystal cell.

The matrix representation of the symmetry operators depends on the basis used for referring to atom
positions and magnetic moments. A drawback of using the magnetic unit cell as reference is that we have
to re-write the symmetry operators and atom positions in a different basis as that of the crystallographic
structure.

We shall use the ITA for determining all the magnetic groups deriving from a particular space group
type. To be specific we select, as an example, the space group 46 Ima2. For constructing all magnetic
space group derived from this space group we have to look for space groups that are subgroups of
index 2. The symmetry operators of Ima2 and the subgroups are tabulated in ITA as follows:

Site symmetry and positions of space group Ima2

(0, 0, 0)+ (1/2, 1/2, 1/2)+
8 c 1 (1) x, y, z (2) −x, −y, z (3) x+1/2, −y, z (4) −x+1/2, y, z

4 b m.. 1/4, y, z 1/4, −y, z

4 a ..2 0, 0, z 1/2, 0, z

Symmetry operations

For (0, 0, 0)+ set

(1) 1 (2) 2 0, 0, z (3) a x, 0, z (4) m 1/4, y, z

For (1/2, 1/2, 1/2)+ set

(1) t(1/2, 1/2, 1/2) (2) 2(0, 0, 1/2) 1/4, 1/4, z (3) c x, 1/4, z (4) n(0, 1/2, 1/2) 0, y, z

Maximal non-isomorphic subgroups of Ima2

I [2] I 1 1 2(C 2)(1; 2)+
[2] I 1 a 1 (C c)(1; 3)+
[2] I m1 1(C m)(1; 4)+

IIa [2] P m a 2 1; 2; 3; 4
[2] P n c 2 1; 2; (3; 4) + (1/2, 1/2, 1/2)
[2] P na 21 1; 3; (2; 4) + (1/2, 1/2, 1/2)
[2] P m c 21 1; 4; (2; 3) + (1/2, 1/2, 1/2)

IIb none

The groups I correspond to the translationengleiche of t-subgroups and the groups II to the
klassengleiche or k-subgroups that are also subdivided in order to distinguish those having the same
conventional cell (IIa) from those having a multiple cell (IIb) (see chapter from Tasci et al.). The
division I and II correspond to the BW1 and BW2 respectively. Applying the formula M = H + (G −
H)1′ we obtain:

Colourless trivial magnetic group: M0 = Ima2 = {1, 2z , ay , mx}T
For simplicity we remove the translation group and use only the coset representatives. We first list

the BW1 groups using the data I of the ITA and show the OG notation that in this case coincides with
the BNS notation. The subscript of mirror planes (rotation axes) indicates that they are perpendicular
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(parallel) to the given direction:

I : M1 = I 1 1 2 + (I m a 2 − I 1 1 2)1′ = {1, 2z} + {ay , mx}1′ = Im′a′2
M2 = I 1 a 1 + (I m a 2 − I 1 a 1)1′ = {1, ay} + {2z , mx}1′ = Im′a2′

M3 = I m 1 1 + (I m a 2 − I m 1 1)1′ = {1, mx} + {2z , ay}1′ = Ima′2′

For the BW2 groups, the translation subgroup is that formed by integer linear combinations
of conventional cell parameters. The centring translations tC = (1/2, 1/2, 1/2) become anti-translations
(translations followed by a spin reversal: primed translations), so the magnetic lattice contains the
following set of translations and anti-translations

L = {t |t = l1 a1 + l2a2 + l3a3; li ∈ Z}
L′ = (T − L)1′ = {t′ |t′ = l1 a1 + l2a2 + l3a3 + tC ; li ∈ Z}

We write below the BW2 groups using the data IIa of the ITA and show the BNS and the OG
notation. It is clearly seen that the BNS notation correspond directly to the subgroups written in ITA by
putting the lattice symbol PI for stating that an original body centred lattice becomes primitive and the
centring translations become anti-translations. None of the generators appearing in the symbol is primed.
This is a characteristic of the BNS notation for all BW2 groups. On the contrary the OG conserves the
original HM symbol changing the lattice type to IP and using primed generators when they appear. From
the information given in the decomposition of the magnetic group in terms of translations and anti-
translations one can derive easily the BNS (the generators are selected from the coset representatives
with respect to L) or the OG notation (the generators are always those of the parent space group and
they are primed if they belong to the coset representatives with respect to L′).

IIa:

ITA Notations : BNS OG

[2] P m a 2 M4 = {1, 2z , ay , mx}L + {1, 21z , cy , nx}L′ = PI ma2 IP m a2

[2] P n c 2 M5 = {1, 2z , cy , nx}L + {1, 21z , ay , mx}L′ = PI nc2 IP m′ a′2

[2] P n a 21 M6 = {1, ay , 21z , nx}L + {1, 2z , cy , mx}L′ = PI na21 IP m′ a2′

[2] P m c 21 M7 = {1, mx , 21z , cy}L + {1, 2z , ay , nx}L′ = PI m c 21 IP m a′2′

The association of spin reversal with translations is more conveniently described using the more
general formalism of propagation vectors. Using this formalism we do not need the magnetic unit cell
for describing the magnetic structure. Using the transformation properties of the spin configuration
limited to the content of a primitive cell is enough to calculate the magnetic moment of whatever atom
in the crystal.

4. SUMMARY OF THE REPRESENTATION THEORY FOR SPACE GROUPS

For a mathematical treatment of the notions related to group theory and representation theory see chapter
by Canals and Schober and that by Ballou. The group representation theory can be used to classify the
possible magnetic structures that derive from a crystal structure in which there are magnetically ordered
atoms. The magnetic order takes place in a crystal having symmetry properties described by a space
group G.

Let us summarize the principal results of the representation group theory. If a mapping can be
established between the elements of a group and a set of square matrices that preserves the group
multiplication, we say that the set of matrices constitute a “representation” of the group.

� = {�(g)|g ∈ G} , �(g1g2) = �(g1)�(g2) (6)
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A similarity transformation applied to all matrices provides an equivalent representation (the matrix
U is generally unitary: U−1 = U †).

�̃(g) = U�(g)U−1 {with g ∈ G} (7)

A particular group has an infinite number of representations of arbitrary dimensions. An arbitrary
representation may be reduced to “block-diagonal form” by an appropriate similarity transformation.
For instance the shape of all the matrices of the representation after the transformation may be as:

�̃(g) =




A11 A12 0 0 0 0 0
A21 A22 0 0 0 0 0
0 0 B11 0 0 0 0
0 0 0 B11 0 0 0
0 0 0 0 C11 C12 C13

0 0 0 0 C21 C22 C23

0 0 0 0 C31 C32 C33




= A(g) ⊕ 2B(g) ⊕ C(g) (8)

The matrices A(g), B(g) and C(g) are also representations of the group. The most important
representations are called “Irreducible Representations” (irreps). These are those that cannot be reduced
to block-diagonal form. A reducible representation can be decomposed in direct sum of irreps in a
unique way. We shall note the different irreps with the index ν and a symbol � that may also be used
for matrices. The decomposition of a reducible representation can be written as:

� =
∑

⊕ν

nν�
ν = n1�

1 ⊕ n2�
2 ⊕ n3�

3 · · · ⊕ nm�m (9)

The dimension of the representation �ν is lν . The characters of a representation (traces of the
matrices) will be represented as �ν(g). The irreducible representations satisfy the following great
orthogonality theorem:

∑

g∈G

�ν∗
ij (g)��

lm(g) = n(G)

lν
�il �jm ��ν (10)

with n(G) the order of the group. We can deduce the following corollary for the characters of the irreps:
∑

g∈G

�ν∗(g)��(g) = n(G)��ν (11)

As a consequence we can calculate the number of times a particular irrep is contained in a reducible
representation. From (9) and (11):

nν = 1

n(G)

∑

g∈G

�(g)�∗ν(g) (12)

The elements of the symmetry groups act on position vectors. For each particular problem we can
select a set of physically relevant variables �i{i = 1, 2 . . . p} spanning a working functional space W.
These functions constitute a basis of the W space. The action of the operator associated to a symmetry
operator when applied to a function of position vectors is defined by the expression:

O(g)�(r) = �(g−1r) ≡ �′(r) (13)

When using the functions �i(r), the action of the operator O(g) gives rise to a linear combination,
defining a representation of the group G:

O(g)�j (r) = �′(r) =
∑

i

�ij (g)�i(r) (14)
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If we take another basis � related to the initial one by a unitary transformation we may get the
matrices of the � representation in block-diagonal form.

	j (r) =
∑

i

Uij�i(r) (15)

The system of p 	-functions splits in subsystems defining irreducible subspaces of the working
space W. If we take one of these subspaces (labelled ν), the action of the operator O(g) on the basis
functions is:

O(g)	j (r) =
lν∑

i=1

�ν
ij (g)	i(r) (16)

Here the functions are restricted to those of the subspace ν.
In treating a physical problem for a symmetry analysis, it is simple to find the initial working space

with an arbitrary set of basis functions that generates a reducible representation. We dispose of a set of
operators, called projection operators, providing the basis functions of the irreducible representations
contained in the initial reducible representation. The action of the projection operator P ν providing the
basis functions of the irrep �ν is given by the expression:

	ν
i = P ν� = 1

n(G)

∑

g∈ G

�∗ν
i[j ](g) O(g) � (i = 1, ... lν) (17)

The result of the above operation is zero or a basis function of the corresponding irrep. The index
[j ] is fixed, taking different values it provides new basis functions or zero.

This is all we need for our purposes. We shall study how the so called magnetic representation
decomposes in irreducible representations of space groups. For that let us start working with the
translation subgroup of whatever space group. The translation group T ⊂ G is Abelian (commutative),
so their irreps are all one-dimensional. Considering the properties of the translation operators and the
Born-Von Karman periodic boundary conditions (see chapter by Schober), the translation operators and
their representation matrix (a single number equal to its character) are given by the expressions:

O(t) = O(l1a1 + l2a2 + l3a3) = O(a1)l1O(a2)l2O(a3)l3

O(aj )Nj +1 = O(aj ) j = 1, 2, 3

O(t) → exp

{
2
i

(
p1l1

N1
+ p2l2

N2
+ p3l3

N3

)}
, pi , Ni ∈ Z & 0 ≤ pi ≤ Ni − 1 (18)

Ni is the number of unit cells along the direction ai . There are N1 × N2 × N3 = N representations
(= number of unit cells in the crystal) labelled by the reciprocal space vector:

k =
(

p1

N1
,

p2

N2
,

p3

N3

)
= p1

N1
b1 + p2

N2
b2 + p3

N3
b3 (19)

The matrix of the representation k corresponding to the translation t is then:

�k(t) = exp

{
2
i

(
p1l1

N1
+ p2l2

N2
+ p3l3

N3

)}
= exp {2
i k t} (20)

where the k-vectors in reciprocal space are restricted to the first Brillouin Zone2.

2 The sign of the phase factor is a matter of convention. Here we take the positive sign in order to be consistent with the convention
used in crystallography for Fourier series. This selection makes the phase sign of Bloch functions to be negative (see chapter by
Schober). In many textbooks of solid state physics and representation analysis the negative sign is adopted. This reduces to rename
the vector k as –k and vice versa.
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It is clear that adding a reciprocal lattice vector H to k does not change the matrix, so the vectors
k′ = H + k and k are equivalent.

The basis functions of the group of translations must satisfy the equation:

O(t)	k(r) = �k(t)	k(r) = exp {2
i k t} 	k(r) (21)

The most general form for the functions 	k(r) are the Bloch functions3

	k(r) = uk(r)exp {−2
i kr}, with uk(r ± t) = uk(r) (22)

For constructing the representations of the space groups it is important to start with the basis
functions. Let us see how the Bloch functions behave under the action of a general element of the
space group g = {h|th}:

O(g)	k(r) = {h|th}	k(r) = 	′(r) (23)

To determine the form of the functions 	′(r) one can see that they should also be Bloch functions
with a different k-label:

O(t)	′(r) = {1|t}	′(r) = {1|t}{h|th}	k(r) = {h|th}{1|h−1t}	k(r)

= {h|th}exp {2
i k h−1t}	k(r) = exp {2
i k h−1t}{h|th}	k(r)

= exp {2
i hk t}	′(r) (24)

so that:

O(g)	k(r) = {h|th}	k(r) = 	hk(r) (25)

The Bloch functions also serve as basis functions but the representations are no longer one-
dimensional because the Bloch functions whose wave vectors are related by the rotational part of g ∈ G

belong to a same subspace. The set of non-equivalent k vectors obtained by applying the rotational part
of the symmetry operators of the space group constitute the so called “star of k”:

{k} = {h1k1, h2k1, h3k1, h4k1, ...} = {k1, k2, ... klk } (26)

The kivectors are called the arms of the star. The number lk is less or equal to the order of the point
group n(G0). The set of elements g ∈ G leaving the k vector invariant, or equal to an equivalent vector,
form the group Gk, called the group of the wave vector (or propagation vector group) or the “little
group”. It is always a subgroup of G. The whole space/point group can be decomposed in cosets of the
propagation vector group:

Space Group: G = Gk + g2Gk + · · · =
lk∑

L=1
gLGk

P oint Group: G0 = G0k + h2G0k + · · · =
lk∑

L=1
hLG0k kL = hLk

(27)

The point group G0k is also called the “little co-group”. The fact that the translation group is a
normal subgroup of the space group simplifies enormously the representations of space groups. We
have to handle only the representative elements of the space group in their decomposition into cosets of
the translation group. The quotient group G/T is always finite and isomorphic to the point group of the
space group.

3 This is easily verified by applying the rules of the operators action on functions: O(t)	k(r) = 	k(r − t) = uk(r −
t)exp {−2
i k( r − t)} = exp {2
i kt} uk(r)exp {−2
i k r} = exp {2
i kt}	k(r).
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Let us note the irreducible representations of Gk as �kν of dimensionality lν . The basis functions
should be of the form:

	kν
i (r) = uν

ki(r) exp {−2
i k t} (i = 1, 2...lν) (28)

Under the action of the elements of Gk the functions transform into each other with the same k-vector.
Using the elements of G not belonging to Gk one generates other sets of basis functions:

	
k1ν
i (r); 	

k2ν
i (r); 	

k3ν
i (r) ... 	

kLν
i (r); (i = 1, 2...lν) (29)

constituting the basis functions of the representations of the total space group.
These representations are labelled by the star of the k vector as: �{k}ν and are of dimensionality

lν × lk . Each irreducible “small representation” induces an irreducible representation of the total space
group. The induction formula is:

�
{k}ν
Li,Mj (g) = �kν

ij (g−1
L g gM ) �g−1

L g gM∈Gk
(30)

The symbol � is 1 if the subscript condition is true, otherwise it is zero.
We need to know only the matrices of the small representations (representations of Gk) for the coset

representatives of Gk with respect to the translation group:

Gk = 1T + g2T + g3T + ... + gnT (31)

For a general element of Gk we have:

�kν(g ) = �kν({h|th + t}) = �kν({1|t}{h|th} ) = �kν({1|t}) �kν({h|th} )
�kν({h|th + t} ) = e2
i kt�kν({h|th} )

(32)

The matrices �kν of the small representations can be easily calculated from the projective (or loaded)
representations that are tabulated in the Kovalev book [16]:

�kν(g ) = �kν({h|th} ) = �ν
proj (h ) e2
i kth (33)

or calculated with the appropriate algorithm [17].

5. THE FORMALISM OF PROPAGATION VECTORS FOR DESCRIBING

MAGNETIC STRUCTURES

If we disregard, for the moment, the symmetry properties, except the translation subgroup of the space
group, of the magnetic moment configuration whatever class of magnetic structure can be represented
by the Fourier series:

mlj =
∑

k

Skj exp(−2
i kRl) (34)

This defines the magnetic moment of the atom numbered j in the unit cell having as origin the lattice
vector Rl (the atom at Rlj = Rl + rj ). The k vectors are defined in reciprocal space and are called
propagation vectors of the magnetic structure. For the description of magnetic structures they can be
restricted to the first Brillouin zone (BZ). Notice that a Fourier series in nothing else that a development
of a function in terms of Bloch functions.

The Fourier coefficients Skj are, in general, complex vectors and must verify the equality Skj = S∗
−kj

to make the sum result a real vector. Even disordered magnetic structures, like those of spin glasses,
may eventually be described with an expression like (34) if a nearly continuous distribution of k-vectors
inside the BZ is considered. In practice, most of the magnetic structures can be described by a small
number (1 to 3) of propagation vectors.
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We may have defined (34) in a slightly different manner also usual in literature. Instead of writing
Rl in the argument of the exponential function, one can write Rlj = Rl + rj :

mlj =
∑

k

Tkj exp(−2
i k(Rl + rj )) (34′)

In such a case the Fourier coefficients, Tkj , of the new expression should be related to those of expression
(34) by a phase factor, Skj = Tkj exp(−2
i krj ), that depends on the atom positions inside the unit
cell. We shall see that the convention we have adopted (34), similar to that of reference [18], is more
convenient for a unified description of commensurate and incommensurate magnetic structures. On the
other hand (34′) is more convenient when symmetry invariance is used in incommensurate structures.

The formulae we are considering in this paragraph are written in vectorial form, so they are
independent of the particular frame for describing the magnetic moments, propagation vectors, atom
positions, etc. Atom positions inside the unit cell are normally referred to the conventional basis
A = (a, b, c), so that fractional co-ordinates are dimensionless. The Fourier coefficients, Skj , have the
same units as magnetic moments, usually Bohr magnetons, and their components are given with respect
to the unitary frame of the conventional unit cell U = (a/a, b/b, c/c) = (e1, e2, e3). The components of
reciprocal lattice vectors, H, of the nuclear structure and those of the propagation vectors k, are given
with respect to the reciprocal basis of the conventional unit cell and are also dimensionless. This is a
very important point because in many of the available tables of space group irreducible representations,
the k-vectors are given with respect to a primitive basis of the reciprocal lattice b = (b1, b2, b3) which
coincides with a∗ = (a∗

1, a∗
2, a∗

3) only for primitive direct lattices. When the Bravais lattice of the crystal
is centred, the set b is obtained from a primitive basis of the direct cell and not from the Bravais (or
conventional) unit cell. Izyumov and collaborators [15] have introduced a set of vectors B = (B1, B2, B3)
as a reference frame for the reciprocal lattice. The set B correspond to the “Bravais cell” of the reciprocal
lattice. This is a frame that is not used by crystallographers and, giving the components of the reciprocal
vectors with respect to it is confusing. We do not recommend the use of this frame for studies of magnetic
structures.

The lattice vectors Rl appearing in the argument of the exponential function are integer linear
combinations of the basis vectors of frame A only for primitive lattices. For centred lattices two formal
types of lattice vectors exist: Rl = Rn = n1a + n2b + n3c with ni ∈ Z and Rl = Rn + tC , where tC is
one of the centring vectors of the lattice with components ti ∈ Q. There is nothing special for these two
types of lattice vectors, the different type of components is just a matter of convention. The minimum
set of magnetic atoms to be considered for describing a magnetic structure, without considering at this
stage the symmetry, should not be related by lattice centring translations. The expression (34) assures the
knowledge of the magnetic moments in the whole crystal when we know both the propagation vector(s)
and the Fourier coefficients of the elemental set of atoms in the reference zero-cell R0 = (0, 0, 0).
The translational properties of the crystal allow reducing the necessary number of free parameters for
describing a magnetic structure. If no translational properties exist the free parameters correspond to the
three components of magnetic moments of each atom in the crystal. The Fourier decomposition (34),
consequence of the translational symmetry, indicates that we need to consider only a finite number of,
in general, complex vectors associated to the magnetic atoms within a primitive unit cell.

Let us describe general types of magnetic structures of increasing degree of complexity, using the
formalism of propagation vectors through the expression (34).
a) The simplest types of magnetic structures existing in complex crystals have a single null propagation
vector at the centre of the BZ: k = (0, 0, 0) = 0. The Fourier coefficients should be real and can be
identified to the magnetic moments directly:

mlj = S0j exp(−2
i 0 Rl) = S0j = m0j (35)

This expression tells us that the orientation and magnitudes of the magnetic moments in whatever cell of
the crystal are identical to those of the zero-cell. The translational symmetry of the magnetic structure
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is identical to that of the crystal structure: the magnetic unit cell is the same as the chemical cell. This
class of magnetic structures may be ferromagnetic, ferrimagnetic or antiferromagnetic, collinear or non-
collinear. The propagation vector at the centre of the BZ does not mean that the magnetic structure is
ferromagnetic. This is only true for Bravais lattices (a single magnetic atom per primitive cell). This
kind of magnetic structure can be described by one of the 230 monochrome or the 674 black-white first
kind (BW1) magnetic space groups.

Notice that if we had taken the convention for the Fourier series (34) that puts in the exponential
term the global vector position of the atom, Rlj = Rl + rj , the Fourier coefficients Tkj could not be
identified with magnetic moments because of the phase factor containing the atom positions.
b) The next class of magnetic structures corresponds also to a single propagation vector, in this case
of the form: k = 1/2H, where H is a reciprocal lattice vector. The propagation vectors of this kind
correspond to high symmetry points of the surface of the BZ (Liftchitz points). In this case we have:

mlj = Skj exp(−2
i k Rl) = Skj exp(−
i H Rl) = Skj (−1)H Rl = Skj (−1)nl = m0j (−1)nl (36)

This expression tells us that the orientation and magnitudes of the magnetic moments in whatever cell of
the crystal are either identical or opposite to those of the zero-cell. The translational symmetry is lower
than that of the chemical cell. The magnetic cell can easily be deduced from the particular values of the
propagation vector (see [15] for a classification of magnetic lattices in terms of propagation vectors).
The magnetic structures of this kind are necessarily antiferromagnetic and can be described by one of
the 517 black-white second kind (BW2) magnetic space groups.
c) This is the general case, where the k-vector is not a special vector as in the two previous types. For
these cases there is no Shubnikov group, in three dimensions, that can describe the symmetry properties
of such spin configuration. The general expression of the Fourier coefficient for the atom j is explicitly
given by:

Skj = 1

2
{ �Rkj + i �I kj } exp(−2
i�kj )

= 1

2
{Rx

kj e1 + R
y
kj e2 + Rz

kj e3 + i(I x
kj e1 + I

y
kj e2 + I z

kj e3)} exp(−2
i�kj )

Only six real parameters define the Skj vectors, so the phase factor �kj is not generally needed, but
it is convenient to use it when particular relations or constraints between the real vectors, ( �Rkj , �I kj ),
are given. The calculation of the magnetic moment of the atom j in the unit cell of index l, should be
performed by using the formula (34) that may be also written in this case as:

mlj =
∑

〈k〉
{ �Rkj cos 2
[k Rl + �kj ] + �I kj sin 2
[k Rl + �kj ]} (37)

where the sum is now extended to half the number of propagation vectors, i.e. over the total number of
pairs (k, −k).

If the magnetic structure represents a helical order the Fourier coefficients are of the form:

Skj = 1

2
{m1j uj + i m2j vj } exp(−2
i�kj ), with |uj | = |vj | = 1, uj · vj = 0 (38)

where uj and vj are orthogonal unit vectors.
Three situations can then be encountered:
i- m2j = 0: The magnetic structure corresponds to a modulated sinusoid of amplitude A = m1j .

ii- m1j = m2j : All j atoms have equal magnetic moments. If the propagation vector is perpendicular
to the plane formed by the vectors uj and vj the magnetic structure for the sublattice j corresponds
to a classical helix (or spiral), of cylindrical envelope (see Fig. 4b). If the propagation vector is
within the (u, v) plane, the structure is called a cycloid (see Fig. 4c).
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b
c

b
c

Figure 4. Examples of magnetic structures. In all cases the orientation of the lattice is similar, except in the
second view of (b) in which the point of view is nearly along b. (a) Sinusoidal structure with propagation
vector k = (0, �, 0) and Sk = (0, 0, w). (b) Helical, or spiral, structure with propagation vector k = (0, �, 0) and
Sk = (ui, 0, u). (c) Cycloidal structure with propagation vector k = (0, �, 0) and Sk = (0, u, ui).

iii- m1j �= m2j : The helix (or cycloid) has an elliptical envelope and the moments have values
between min(m1j , m2j ) and max(m1j , m2j ).

6. HOW WE GET INFORMATION ABOUT MAGNETIC STRUCTURES: MAGNETIC

NEUTRON SCATTERING

6.1 The scattering amplitude

The intensity of magnetic Bragg peaks due to neutron scattering by magnetically ordered systems can be
calculated in a similar way as for X-rays or nuclear neutron scattering. The most important difference is
that the scattering amplitude is not a scalar variable. Here we will give a summary of the most important
expressions needed to calculate the intensity of a Bragg reflection, the reader interested in more details
of the elastic magnetic scattering in relation with magnetic structures can consult [18] and the references
therein.

The interaction of neutrons with the magnetic moments of atoms is of dipolar origin through the
magnetic moment of the neutron. The scattering amplitude vector, for a single atom with atomic moment
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m, is given by:

a(Q) = pf (Q)m⊥ = 1

2
re�f (Q)

(
m − Q(m · Q)

Q2

)
= 1

2Q2
re�f (Q)(Q × m × Q) (39)

The constant p = re �/2 = 0.2695 allows the conversion of the magnetic moments, given in Bohr
magnetons to scattering lengths units of 10−12 cm. The other constants appearing in formula (39)
are: the classical radius of the electron re = e2/mc2 = 2.81776 × 10−13 cm and the magnetic moment
of the neutron in nuclear magnetons �(= 1.9132). The function f (Q) is the atomic magnetic form-
factor (Fourier transform of the unpaired electron density, normalized as f (0) = 1, assumed to be
spherical hereafter), and m⊥ is the perpendicular component of the atomic moment to the scattering
vector Q = 2�s. As shown in (39), only the perpendicular component of m contributes to the magnetic
scattering of neutrons by matter. The vectorial character of the interaction allows determining the
magnetic moment direction with respect to the crystal lattice.

6.2 Magnetic interaction vector of the whole crystal

For unpolarised neutrons the nuclear and magnetic intensities are simply additive and are, in general, of
the same order of magnitude. An important difference between nuclear and magnetic scattering is that
the latter is strongly reduced at high Q. The absence of “form factor” in the case of nuclear scattering
gives rise to a decrease of intensity with Q due only to thermal vibrations, whereas the magnetic form
factor f (Q) in (39) is the Fourier transform of the unpaired electron density having a spatial extension
of the order of magnitude of the neutron wavelength. The elastic scattered intensity by a crystal, as a
function of Q or s, is proportional to the square of the total amplitude (also called “magnetic interaction
vector”):

MT
⊥(s) =

∑

lj

pfj (s) m⊥lj e2
is·Rlj = p

s2
s ×

∑

lj

fj (s) mlj e2
is·Rlj × s = 1

s2
s × MT (s) × s (40)

The vector MT is the magnetic structure factor of the whole crystal. The scattered intensity is calculated
multiplying the expression (40) by its complex conjugate as usual.

Contrary to the majority of crystal structures, many magnetic structures are incommensurate: the
periodicity of the orientation of the magnetic moments is not commensurate with the underlying crystal
structure. This is a consequence of the competition of the exchange interactions giving rise to different
kinds of frustration in many compounds. We shall develop the expression (40) using the formalism of
propagation vectors that allows, for magnetic scattering, a general way of treating, on the same foot,
commensurate and incommensurate magnetic structures. Using this formalism we do not need to use
the concept of magnetic unit cell even in the case of commensurate structures.

6.3 The magnetic structure factor

We can substitute (34) in the expression (40) to obtain a compact description of the magnetic interaction
vector of the whole crystal. The total magnetic structure factor is given by:

MT (s) = p
∑

lj

fj (s)mlj e2
is·Rlj =p
∑

lj

fj (s)e2
is·Rlj

∑

k

Skj e−2
ik·Rl =

= p
∑

j

fj (s)e2
is·rj

∑

k

Skj

∑

l

e2
i(s−k)·Rl ∝ p
∑

j

fj (s)e2
is·rj

∑

k

Skj

∑

H

�(s − k − H)
(41)

The expression (41) indicates that the magnetic intensity is practically zero in the whole reciprocal space
except at positions given by:

s = h = H + k (42)
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Magnetic diffraction appears like a filter. Each satellite is decoupled of the rest of satellites, so if there are
different propagation vectors k there is no interference between them, so there is always a phase factor
between the Fourier coefficients Sk corresponding to different propagation vectors that is not accessible
by diffraction methods unless a crystal structure distortion is coupled with the magnetic ordering. Notice
that the concept of “fundamental reflections” (used in modulated crystal structures) does not apply here
because h = H corresponds to nuclear reflections. Only when k = 0 there is a magnetic contribution on
top of the nuclear reflections.

For a particular magnetic reflection indexed as in (42) the magnetic structure factor of the unit cell
is:

M(h) = Mh = p
∑

j

fj (h)Skj e2
ih·rj = p
∑

j

fj (|H + k|)Skj e2
i(H+k)·rj (43)

The intensity of a magnetic Bragg reflection is proportional to the square of the magnetic interaction
vector:

M⊥h = 1

h2
h × Mh × h = e × Mh × e = Mh − (e · Mh)e (44)

where e is the unit vector along the scattering vector h = H + k. In the case of a propagation vector
k = 0 the intensity of a Bragg reflection for non polarised neutrons is given by:

Ih = NhN∗
h + M⊥h · M∗

⊥h (45)

where Nh = F (h) is the nuclear structure factor, otherwise only the second term (pure magnetic
scattering) of the sum contributes to the intensity of reflection h.

7. THE SYMMETRY ANALYSIS BASED ON REPRESENTATION THEORY FOR

DETERMINING MAGNETIC STRUCTURES

Magnetic neutron diffraction experiments provide as immediate information the position of magnetic
reflections in reciprocal space. This allows the determination of the propagation vector(s) characterising
the magnetic moment configuration given by the Fourier series (34). The measurement of the intensities
gives us a list of non-linear equations with the Fourier coefficients Skj as unknowns (equations 43–45).
The problem of determining the magnetic structure of a crystalline solid, for which the crystal structure
is known, reduces to the determination of the quantities {k} and {Skj } from which we can apply the
expression (34) for determining the magnetic moment of whatever atom in the crystal. This result takes
into account only the translational symmetry of the crystal. In general we have enough information from
the whole symmetry of the crystal structure to further reduce the number of free independent parameters.
Let us apply the general method of group representations (summarised in section 4) to the problem of
finding and classifying the possible magnetic structures that can be realised in the frame of a particular
crystal structure. Notice that in the forthcoming sections we will not use the time inversion symmetry
(primed operators). The concept of propagation vector(s) in the Fourier series (34) replaces to some
extend the “anti-translations” in the description of commensurate magnetic structures having k = 1/2H

(see formula (36)).

7.1 The working space for symmetry analysis of magnetic structures: magnetic representation

Up to now we have considered the index j for labelling magnetic atoms in a primitive cell without
taking into account the space group and the different Wyckoff positions. We do the analysis for the
propagation vector k. Let us now consider that the magnetic atom site j has equivalent atoms labelled as
js (j1, j2, . . . jpj ) under the application of symmetry operators of the crystal space group G belonging
also to the wave vector group Gk. The group Gk is formed by the set of symmetry operators that leave
invariant the propagation vector modulo a reciprocal lattice vector: Gk = {g ∈ G|gk = k + H, H ∈ L∗},
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where L∗ is the crystallographic reciprocal lattice. One can generate a reducible representation of Gk by
considering the complex working space spanned by all the components of Skjs . Each complex vector
has three components (but two parameters per component: modulus and phase or real and imaginary
part). As the atoms belonging to different sites do not mix under the symmetry operators, we can treat
separately the different sites. For us the index j is then fixed and the index s varies from 1 to pj .
Being pj the number of sublattices generated by the site j . The working complex space for site j has
dimension nj = 3 × pj and it is spanned by unit vectors {�kj

s� } (� = 1, 2, 3 –or x, y, z and s = 1 . . . pj ,)
represented as column vectors (with a single index n) with zeroes except for n = � + 3(s − 1) for which
the component is one. The vectors {�kj

s� } are formed by direct sums (juxtaposition) of normal 3D unit
vectors {ukj

s� }. For instance one of the vectors is given by:

�
kj
s� =

∑

⊕s

ukj
s� =




u
kj

1�

u
kj

2�

...

u
kj
pj �




=




u
kj

1x

u
kj

1y

u
kj

1z

u
kj

2x

...

u
kj
pj y

u
kj
pj z




=




0
0
0
...
1
...
0




The vectors {�kj
s� } may be considered as the columns of the unit matrix of dimension nj × nj = 9p2

j :

{ �
kj

11 �
kj

12 �
kj

13 . . . . . . �
kj

pj 2 �
kj

pj 3 } =




1 0 0 . . . . . . 0 0

0 1 0 . . . . . . 0 0

0 0 1 . . . . . . 0 0

...
...

...
. . .

...
...

...

...
...

...
...

. . .
...

...

0 0 0 . . . . . . 1 0

0 0 0 . . . . . . 0 1




The nj {�kj
s� } vectors refer to the zero-cell. One can extend the basis vectors to the whole crystal by using

the Bloch propagation then forming column vectors of up to nj × N = 3 × pj × N dimensions, being
N the total number of unit cells in the crystal. The component number n, for each kind of vector (3D,
3pj D and 3Npj D), is given by the expressions:

���
kj
s� =

∑

⊕s

ukj
s� 3D → (ukj

s� )n = ���n,�; 3pj D → (���kj
s� )n = ���n,�+3(s−1)

���
kj
s� =

∑

⊕l

���kj
s� exp(−2
ikRl) 3Npj D → (���kj

s� )n = e−2
ikRl �n,�+3(s−1)+3lpj

(46)

If one applies the symmetry operators of Gk to the vectors {���kj
s� } taking into account that they are axial

vectors we obtain another vector (after correcting for the Bloch phase factor if the operator moves the
atom outside the reference zero-cell) of the same basis. The matrices �

kj

s�,q�(g) of dimension nj × nj
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corresponding to the different operators constitute what is called the “Magnetic Representation” for the
site j and propagation vector k. Let us get an explicit form for these matrices.

The action of the operator O(g) on the vector {���kj
s� } can be obtained from the equations (3) and

(4) but considering only conventional crystallographic operators. Applying a symmetry operator to the
vector position and the unit spin associated to the atom js along the �-axis, changes the index js to jq

and reorient the spin according to the nature of the operator g = {h|th} for axial vectors.

gr
j
s = hr

j
s + th = r

j
q + a

j
gs ; symbolically: gs → (q, a

j
gs)

O(g)ukj
s� = det(h) hu

kj
gs,� = det(h)

∑

m

h�m(ukj
q�)m = det(h)

∑

m

h�m�q
m,� = det(h)h��[q] (47)

The operator g acting on atom positions permutes the numbering of the atoms belonging to a same site
(orbit) and provides a returning vector a

j
gs , which must appear in a phase factor when working with

Bloch functions when the transformed atom is outside the zero-cell.

O(g)���kj
s� =

∑

q�

�
kj

q�,s�(g) ���
kj

q� =
∑

q�

e2
i k a
j
gs det(h)h���

j
s,gq���

kj

q� (48)

The explicit components for the magnetic representation matrices are:

�Mag → �
kj

q�,s�(g) = e2
i k a
j
gs det(h)h���

j
q,gs (49)

The � symbol has value equal to 1 when the operator g transforms the atom s into the atom q, and zero
otherwise.

7.2 The magnetic representation as direct product of permutation and vector representation

An inspection to the explicit expression for the magnetic representation, given by equation (49), for the
propagation vector k, the Wyckoff position j , with sublattices indexed by (s, q), shows that it may be
considered as the direct product of the so called “permutation representation” by the axial (or in general
“vector”) representation. The explicit matrices of the permutation representation, of dimension pj × pj ,
are:

�P erm → P kj
qs (g) = e2
i k a

j
gs �j

q,gs (50)

The matrices of the axial representation, of dimension 3, are constituted by the rotational part of the
Gk operators multiplied by -1 when the operator g = {h|th} corresponds to an improper rotation.

�Axial → V��(g) = det(h)h��

�Mag = �P erm ⊗ �Axial

(51)

The magnetic representation �Mag , irrespective of the indices, can be decomposed in irreducible
representations of the propagation vector group. Using the expressions (9–12) and taking into account
that, though the space group is infinite, we work only with the coset representatives with respect to the
translation subgroup, we can calculate a priori the number of possible basis functions of the irreps of
Gk that describe the possible magnetic structures. This number (NBV) is equal to the number of times
the representation �ν is contained in �Mag times the dimension of �ν : NBV = nν × lν .

7.3 Projection operators and basis vectors of irreducible representations of Gk

The basis functions of the irreps of Gk can be calculated using the projection operator formula (17)
particularised for the explicit expression of O(g) acting on the vectors {�kj

�s } (equation 48). The explicit
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formula giving the nj -dimensional basis vectors of the representation �ν for site j is the following:

			kν
 (j ) = 1

n(G0k)

∑
g∈G0k

�∗ν
[�](g) O(g) ���

kj
s� ( = 1, ...lν)

			kν
 (j ) = 1

n(G0k)

∑
g∈G0k

�∗ν
[�](g)

∑
q�

exp(2
i k a
j
gs) det(h)h���

j
s,gq���

kj

q�

(52)

It is convenient to use, instead of the basis vectors for the whole set of magnetic atoms in the primitive
cell, the so called atomic components of the basis vectors, which are normal 3D constant vectors attached
to individual atoms:

			kν
 (j ) =

∑

⊕,s=1,...pj

Skν
 (js) (53)

The explicit expression for the atomic components of the basis functions is:

Skν
 (js) ∝

∑

g∈G0k

�∗ν
[�](g) e2
i k a

j
gs det(h)�j

s,g[q]




h1�

h2�

h3�


 (54)

The possible magnetic structures, described by Fourier coefficients, can be obtained in terms of
hopefully less number of independent parameters if these Fourier components are linear combinations
of the basis vectors (54).

We have considered up to now a single k-vector and the representations of the wave vector group
Gk. It is convenient to derive the basis vectors corresponding to the full star in terms of the basis vectors
of a single arm. If we assume that the transition involves all the arms of the star (representations of the
full space group) we can eventually obtain more constraints and reduce the number of free parameters.
Taking into account the fact that for the arm kL = gLk (see equations (27)) the wave vector group is
conjugate to Gk (GkL = gL Gk g−1

L ) we obtain the following relation between the atomic components
of the basis vectors:

S
kLν
 (js) = e2
i kL a

j
gL q det(hL)hLSkν

 (jq) (55)

The atoms s and q of the site j and the returning vector given in the exponential term are related by the
equation:

gLrj
q = hLrj

q + thL
= rj

s + aj
gLq (56)

Notice that gL is an operator of the full space group that connects atoms that may be split into different
orbits in the wave vector group Gk. We can impose further constraints by applying the relation (55) not
just to basis vectors but to Fourier vector coefficients belonging to different orbits reducing the number
of free parameters to describe a magnetic structure.

The so-called multi-k structures correspond to magnetic structures in which the full set of star-arms
participates in the spin configuration. It is very difficult to determine how many arms, transition channel

[15], are contributing to an experimental magnetic structure (see chapter 4, starting at section 18, of
reference [15]) unless a physical test can be performed to distinguish a real multi-k structure from the
presence of magnetic domains.

7.4 Relations between the Fourier coefficients of the magnetic moments and the basis vectors

A general magnetic structure can be described by a Fourier series as (34) where the index j was
for a generic magnetic atom irrespective of symmetry. The Fourier series can be rewritten using the
notation used in the present section, simply by changing the index j for the double index js. The
fundamental hypothesis of the symmetry analysis, when working with magnetic structures, is that the
Fourier coefficients Skjs that describe magnetic structures with propagation vector k must be a linear
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combination of the basis functions (atomic components) of the Gk irreducible representations.

Skjs =
∑

n

Ckν
n Sk ν

n (js) (57)

where ν labels the active irreducible representation, �ν , of the propagation vector group Gk,  labels
the component corresponding to the dimension of the representation �ν , n is an additional index
(with respect to expression (54)) running between one and the number of times (n = 1 . . . nν) the
representation �ν is contained in the global magnetic representation �Mag . The quantities Sk ν

n (js) are
constant vectors, in general complex, obtained by the application of the projection operator formula to
axial unit vectors along the directions of the unit cell axes attached to the positions js. The explicit
formula for obtaining them is the equation (54). These vectors are similar to the polarisation vectors
of normal modes in lattice dynamics except that they are axial vectors. The basis vectors may be
normalised in different ways. An additional sum over ν is sometimes necessary when more than one
irreducible representation is involved in the magnetic phase transition (see reference [15] for examples
and details). In the case the representation analysis is fully used, the mixing coefficients Ckν

n are the
free parameters of the magnetic structure (they correspond to the order parameters in the Landau theory
of phase transitions) and usually the total number is lower than the number of Fourier components of
each magnetic atom in the unit cell. If we add a sum over representations, the expression (57) gives
the most general case; in practice one has to assume additional constraints because the number of
mixing coefficients may be too high. In particular for multidimensional representations one can select
a particular direction in the representation space (for instance not considering all the -indices) in
order to diminish the number of parameters. In the case of commensurate magnetic structures this
selection corresponds to the assumption of different Shubnikov groups. The same may be stated for
incommensurate structures when superspace groups are considered.

The number of free coefficients to describe a magnetic structure corresponding to a single
representation of Gk is related to the number of independent basis vectors nf ∝ nν × dim(�ν). In the
general case the basis functions can be complex vectors as well as the coefficients Ckν

n , the condition
Skjs = S∗

−kjs assures the reality of the magnetic moments. The effective number of free parameters
depends on some additional assumptions related to the consideration of the star of the wave vector. Let
us consider only a single wave vector and the representations of Gk. In such a case, the analysis is
successful when the number of free parameters is lower than 6pj in the case of k not equivalent to −k

or 3pj in case of real Fourier coefficients. In summary, the group theory, considering only Gk, is useful
when:

nf = 2nν × dim(�ν) < 6pj (for k non equivalent to −k) (58)

nf = nν × dim(�ν) < 3pj (for k equivalent to −k) (58’)

The factor 2 comes from the fact that, in general, the coefficients may be complex (modulus and phase).
When the constraints introduced by symmetry analysis are not enough to simplify the problem and
tackle successfully the experimental data, one has to consider other kind of restrictions imposed by
the previous knowledge of the physics of the system. The most common constraint, based on physical
grounds, is that the magnetic moment of the different atoms belonging to a same crystallographic site
should have the same modulus, at least for commensurate magnetic structures.

Let us consider briefly the invariance properties of a magnetic structure described by the propagation
vector k. Using the full basis vectors of a single Wyckoff site of Gk (direct sum over s = 1 . . . p, see
eq. (53)) we can remove the index s and write:

Sks =
∑

n

Ckν
n Sk ν

n (s) ⇒ S[k] =
∑

n

Ckν
n			k ν

n (59)
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If an operator g of Gk is a symmetry operator of the magnetic structure it must verify4:

O(g)S[k] = S[k] (60)

O(g)S[k] =
∑

n

Ckν
n O(g)			k ν

n =
∑

n

Ckν
n

∑

′

�kν
′(g)			k ν

n′ =
∑

n′

∑



�kν
′(g)Ckν

n			k ν
n′ =

∑

n′

Ckν
n′			

k ν
n′

(60’)

So that,

Ckν
n′ =

∑



�kν
′(g)Ckν

n (61)

where �kν
′(g) are the matrix elements of the irrep �kν of Gk corresponding to the operator g. If g

is a symmetry operator of the magnetic structure, then the mixing coefficients Ckν
n must satisfy the

equation (61).
We can extend the same considerations to a magnetic structure described by the full set of arms of

{k}. If we consider a single Wyckoff site of the full space group, the Fourier coefficients and the basis
vectors of the full irrep �{k}ν can be written and related as:

S[{k}] =
∑

L

∑

n

C
kLν
n 			

kL ν
n ; O(g)S[{k}] = S[{k}] ⇒ C

kLν
n =

∑

L′

∑

′

�
{k}ν
L,L′′ (g)CkL′ ν

n′ (62)

In this case the matrix elements �
{k}ν
L,L′′ (g) correspond to those of a full irreducible representation of

the space group G. They are related to the irreps matrices of Gk by the induction formula (see eq. 30).
The relations (62) put the appropriate constraints between mixing coefficients in order to assume that
the operator g ∈ G (or g ∈ GP) is a symmetry operator of the magnetic structure.

For incommensurate magnetic structures one can extend the invariance equation (62) by including a
global phase factor associated to the symmetry operator for each pair of (k, −k) arms of the star:

O(g)S[k,−k] = S[k,−k] e−2
i�g (62’)

This extends the symmetry invariance to incommensurate structures. The full treatment should be
done using the superspace formalism not treated in this document.

For the case of incommensurate magnetic structures one has to consider at least two wave vectors
in the arm: k and −k. In such cases it may be possible that atoms belonging to a same orbit in the full
space group are split into two orbits in Gk. The atomic components of the basis vectors of the atoms
belonging to the two orbits are related by the relations (55). When using the superposition (57) for k and
−k and the condition Skjs = S∗

−kjs , one can obtain the relations between the coefficients Ckν
n and C−kν

n .
If we assume additional symmetry constraints by using the relations (62), or the equation (55) applied
to Skjs , restricted to the pair (k, −k), we can fix the relation between the Fourier coefficients of the two
orbits.

Instead of using directly the mixing coefficients for describing a magnetic structure, one can use
a more traditional crystallographic approach in some cases. The Fourier component k of the magnetic
moment of atom j1, which transforms to the atom js when the symmetry operator gs = {h|t}s of Gk is
applied (rj

s = gsr
j

1 = hsr
j

1 + ts), is transformed as:

Skjs = MjsSkj1exp{−2
i�kjs} (63)

4 For the invariance symmetry we have to consider also operators combined with time inversion. We can use the representations
of the paramagnetic group (GP = G + G1’), which have a one to one correspondence to those of the space group G without need
of using co-representations (useful in quantum mechanics): the matrices corresponding to primed elements are just the product of
those corresponding to unprimed elements by the negative identity matrix. Symbolically �(g’) = −�(g), with g, g’ ∈ GP .
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The matrices Mjs and phases �kjs can be deduced from the relations between the Fourier coefficients
and atomic basis functions (57). The matrices Mjs correspond, in the case of commensurate magnetic
structures, to the rotational parts of the magnetic Shubnikov group acting on magnetic moments.

7.5 Magnetic Space Groups and Irreducible Representations of dimension 1

There exists a well defined relation between the theory of magnetic space groups (Shubnikov groups)
and the representation theory. This is known in the literature as the Niggli-Indenbom theorem and
it is related to the fundamental lemma discussed in section 2 about the subgroups of index 2 of
crystallographic groups. The theorem states that: the magnetic space groups correspond to real 1D

irreducible representations of conventional crystallographic space groups. This is easily seen by
considering the following: suppose we have a real representation � of the space group G, the matrices of
this representation can be of the form �(g) = 1 or �(f ) = −1; if we associate the time reversal operator
1′ to the elements f ∈ G, so they become primed elements f ′, the multiplication table of g-type and
f ′-type elements coincides with the multiplication table of the {�(g) . . . , �(f ) . . . } matrices. There is
then an isomorphism between magnetic groups and real 1-dimensional irreducible representations of
space groups.

8. THE MAGNETIC STRUCTURE FACTOR WHEN SYMMETRY IS CONSIDERED

If isotropic thermal motion is considered and if symmetry relations are established for coupling the
different Fourier components, we obtain the general expression of the magnetic structure factor:

M(h) = p

na∑

j=1

Oj fj (h)e−Bj |h/2|2 ∑

s=1,...pj

MjsSkj1exp{2
i[(H + k){h |t }sr
j

1 − 	kjs]} (64)

The sum over j concerns the atoms of the magnetic asymmetric unit for the wave vector k. So that
j labels different sites. The sum over s concerns the symmetry operators of the wave vector group Gk.
The phase factor 	kjs has two components:

	kjs = �kj + �kjs (65)

�kj is a phase factor that is not determined by symmetry. It is a free parameter and it is significant only
for an independent set of magnetic atoms (one orbit) which respect to another one. The component �kjs

is a phase factor determined by symmetry as shown in (63). The sign of �kjs changes for −k. In the
general case Skj1 is a complex vector with six components. These six components per magnetic orbit
constitute the parameters that have to be refined from the diffraction data. Symmetry reduces hopefully
the number of free parameters per orbit to be refined. Notice that we have adopted a different phase sign
convention than that used in reference [19].

In the case of a commensurate magnetic structure one can calculate the magnetic structure factor in
the magnetic unit cell. In such a case Skj1 are real vectors corresponding to the magnetic moment of the
atom j1, the matrices Mjs are all real and the phases verify �kjs = 0. The crystallographic magnetic
group theory can be fully applied in such a case [1–5].

In the case the general decomposition in terms of atomic basis functions (57) is used, the magnetic
structure factor can be written as:

M(h) = p

na∑

j=1

Oj fj (h)e−Bj |h/2|2 ∑

n

Ckν
n

∑

s

Sk ν
n (js)exp{2
i (hsxj + h · ts)} (66)

where we have written hs = hT
s h (superscript T stands here for transpose)
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9. LIMITATIONS OF NEUTRON SCATTERING FOR DETERMINING

MAGNETIC STRUCTURES

If the magnetic structure has several propagation vectors k, and there is no strong coupling with the
crystal lattice, it is not possible to determine unambiguously the spin configuration because the phase
between the different Fourier components cannot be determined by diffraction methods. Here we take
j as the index of a generic magnetic atom (irrespective of symmetry sites). One can see easily what the
origin of this problem is; let us rewrite the expression (34) as:

mlj =
∑

k

Skj exp{−2
i( kRl + �k)} =
∑

k

Sm
kj exp{−2
i kRl} (67)

In which we have added an arbitrary phase factor �k depending only on k. We can understand easily
that the modified Fourier coefficients, Sm

kj , give rise, in general, to another kind of magnetic structure
specially if the structure is commensurate. However, the diffraction pattern obtained with a Fourier
series like (67) is identical to that obtained with (34). This is readily demonstrated because the modified
magnetic structure factors (43) and the intensity corresponding to the reflection h = H + k are given
by:

Mm(h) = p
∑

j

fj (h)Sm
kj e2
i(H+k)·rj = pe−2
i�k

∑

j

fj (h)Skj e2
i(H+k)·rj = e−2
i�k M(h)

Imag(h) = Mm
⊥(h) · M∗m

⊥ (h) = e−2
i�k e+2
i�k M⊥(h) · M∗
⊥(h) = M⊥(h) · M∗

⊥(h)
(68)

The arbitrary phase factor disappears when calculating the intensity. So, if several propagation vectors
exist in a diffraction pattern, infinitely many structures are able to explain the observed pattern and
diffraction alone is unable to provide a unique solution. Symmetry constrains and, more importantly,
restrictions on the amplitude of the magnetic moments can reduce the number of solutions. A study of
the different kinds of propagation vectors that can be combined in order to provide constant moment
structures, among the study of the physical properties, was performed long time ago by Nagamiya
[20]. Fortunately, nature often selects simple solutions and many magnetic structures have a single
propagation vector, or display some symmetry constraints that reduce the complexity of the periodic
magnetic structures given by (34).

Special consideration requires the sinusoidal structures in which the single pair (k, −k) of
propagation vectors at the interior of the Brillouin Zone has commensurate components. Here the
change of the global phase �k modifies the physical properties of the magnetic arrangement. If k is
incommensurate the change of phase means only a change of global origin in the crystal and all the
amplitudes of the magnetic moments between extreme values are realized somewhere in the crystal. If
k is commensurate some particular values of the phases give a picture of the magnetic ordering that
is really different of a conventional sinusoid. Let us consider the simplest case of a single atom per
primitive unit cell and a propagation vector k = 1/4H. To be specific, consider the case described in
Figure 4(a). The magnetic moment, expression (67), in the lattice position Rl = (l1, l2, l3) is given by:

ml =
∑

k,−k

Skexp{−2
i( kRl + �k)} = (0, 0, w) cos 2
( 1/4HRl + �k) = (0, 0, w) cos 2


(
l2

4
+ �k

)

with l2 integer.
Two interesting cases occur:
i) If �k = 0 the sequence of magnetic moment components along c for the lattice points l2 =
(0, 1, 2, 3, 4, 5 . . .) are: (w, 0, −w, 0, w, 0 . . .).
ii) If �k = 1/8 the sequence is: (w′, w′, −w′, −w′, w′, w′, −w′, −w′ . . .), with w′ = w/

√
2.

Both sequences give exactly the same diffraction pattern up to the constant factor 1/
√

2, so they are
indistinguishable. In the first case there are paramagnetic atoms and in the second we have a constant
moment magnetic structure. If the coupling of the magnetic moments with the crystal lattice is strong,
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one can distinguish the different solutions by their effect on the atomic displacements. It is clear that the
pattern of atomic displacements in the case of �k = 0 should be totally different from that of �k = 1/8.
In the major part of the cases the coupling is not strong enough to see nuclear superstructure reflections
and we need other experimental techniques (Mössbauer spectroscopy, �-SR, NMR . . . ) that can help in
getting the good choice among a set of indistinguishable solutions.

The problem of the degeneracy of solutions (different magnetic structures giving rise to the same
diffraction pattern) is exacerbated in the case of powder diffraction. To a particular observed peak there
is the contribution of different Bragg reflections so that the magnetic structure of compounds with
symmetry higher than orthorhombic cannot be determined unambiguously. The paper by G. Shirane [21]
examines the case of “uniaxial” (collinear) magnetic structures and concludes that for cubic symmetry
the direction of the magnetic moments cannot be determined by powder diffraction. In the case of
tetragonal, rhombohedral and hexagonal systems, only the assumed “common” angle of the magnetic
moments with the c-axis can be determined. The powder diffraction pattern is not sensitive to the
orientation angle in the a-b plane.

10. EXAMPLES OF COMMENSURATE MAGNETIC STRUCTURES WITH PROPAGATION

VECTOR AT THE CENTRE OR AT THE SURFACE OF THE SURFACE OF THE

BRILLOUIN ZONE (BZ)

Let us consider the two types of magnetic structures described in (a) and (b) of section 5. These are
respectively (a) k = 0 and (b) k = 1/2H, where H is a reciprocal lattice vector (Liftchitz points of the
BZ). Of course, the first type (a) is a particular case of the second (b) when H = 0. We have separated
the two cases only for signalling the largely spread confusion that when k = 0, the magnetic structure
is necessarily ferromagnetic. We shall consider a single orbit in the following paragraphs, so the index s
labels the different sublattices of a single site.

For all magnetic structures with k = 1/2H (now including H = 0), the Fourier coefficients Skj

should be real and there are cases where it is not possible to obtain from representation analysis real
basis functions Skν

n(s) or a coherent set of coefficients Ckν
n allowing the description of a real magnetic

structure. There are combinations of space groups and propagation vectors of the k = 1/2H type giving
rise to complex representations providing complex basis functions. Classically the Frobenius-Schur
criterion for determining the type of representation (real or complex) for point groups can be extended
for space groups (Herring’s criterion). In summary we have the following cases:

� = lk

n(G0k)

∑

g={h|th}:
hk=−k+H

�kν(g2) =





1: � is real

0: �&�∗ are complex and non equivalent

−1: �&�∗ are complex and equivalent

(69)

where the sum is extended only for those operators of the space group transforming k into −k and lk is
the number of arms of the star of k. For the second and third cases the mixing of two or more irreducible
representations is needed for obtaining real basis functions. In some cases the combination of several
irreducible representations provides real basis functions but non-constant magnetic moments. One has
to decide if for the particular physical situation this is an acceptable issue. In case the physical situation
indicates a clear preference for constant magnetic moment it is necessary to reduce the symmetry of
the initial space group and apply extra constraints. Let us consider four examples of the above general
problem.

10.1 Symmetry analysis of the magnetic structure of LaMnO3

This compound contains a single Mn site and it is an example of the simplest case of a propagation
vector k = 0 and only real 1D irreps [22]. The space group is G = P bnm, the cell parameters are
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Table 1. Irreducible representations of Gk = G = P bnm.

----------------------------------------------------------------------------------------------

Irreps  {1}   {2z|00p}   {2x|pp0}    {2y|ppp}   {-1}  m={mz|00p}  b={mx|pp0} n={my|ppp}   SG 

----------------------------------------------------------------------------------------------

Γ1:     1       1          1           1        1        1          1          1 Pbnm

Γ2:     1       1          1           1       -1       -1         -1         -1 Pb’n’m’

Γ3:     1       1         -1          -1        1        1         -1         -1     Pb’n’m

Γ4:     1       1         -1          -1       -1       -1          1          1     Pbnm’

Γ5:     1      -1          1          -1        1       -1          1         -1     Pbn’m’

Γ6:     1      -1          1          -1       -1        1         -1          1     Pb’nm

Γ7:     1      -1         -1           1        1       -1         -1          1     Pb’nm’

Γ8:     1      -1         -1           1       -1        1          1         -1     Pbn’m

a = 5.695 Å, b = 5.695 Å and c = 7.540 Å (see chapter by Grenier & Ballou). The Mn atoms are in
the Wyckoff positions 4b: 1(1/2, 0, 0), 2(1/2, 0, 1/2), 3(0, 1/2, 1/2) and 4(0, 1/2, 0). As the propagation
vector is k = (0, 0, 0), the magnetic unit cell is identical to the nuclear cell. The whole symmetry analysis
may be performed by hand [23] or by using one of the available computing programs doing the work
automatically [24–26]. We use hereafter the program BasIreps [24].

The propagation vector is invariant, so Gk = G = P bnm. The list of the irreducible representations
(all of them of dimension 1) is given in Table 1, in which p = 1/2.

We have provided the symbol of the Shubnikov group (SG) corresponding to each irreducible
representation (see sections 3 and 7.5) in the last column of the table. All irreps are real, so we are
in the first case or rule (69).

We do not give the matrices of the magnetic representation �m, of dimension 3 × pj = 3 × 4 = 12,
because it can be easily deduced by hand or from the information given in the output file of BasIreps. �m

has the characters: �(�m − 4b) = (12, 0, 0, 0, 12, 0, 0, 0) and decomposes (see equations (9) and (12)) in
terms of the irreps of the previous table as follows:

�m(4b) = 3�1 ⊕ 3�3 ⊕ 3�5 ⊕ 3�7

This means that if a single irrep defines the magnetic structure we have only three free parameters:
nf = nν × dim(�ν) = 3 × 1 = 3, which is well below the 12 components of magnetic moments in the
primitive cell. The calculation of the basis vectors applying the formula (54) is done by BasIreps, here
we reproduce the output of the calculation for the irrep �3 corresponding to the experimental magnetic
structure:

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

  Basis functions of Representation IRrep( 3) of dimension  1 contained 3 times in GAMMA 

 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

              SYMM  x,y,z   -x+1,-y,z+1/2   -x+1/2,y+1/2,-z+1/2   x-1/2,-y+1/2,-z 

              Atoms:      Mn_1              Mn_2              Mn_3              Mn_4 

 BsV( 1, 1: 4):Re (    1    0    0) (   -1    0    0) (    1    0    0) (   -1    0    0) 

 BsV( 2, 1: 4):Re (    0    1    0) (    0   -1    0) (    0   -1    0) (    0    1    0) 

 BsV( 3, 1: 4):Re (    0    0    1) (    0    0    1) (    0    0    1) (    0    0    1) 

  The Fourier coefficients are LINEAR COMBINATIONS of Basis Functions: coefficients u,v,w,p,q… 

  The general expressions of the Fourier coefficients Sk(j) of the atoms non-related 

  by lattice translations are the following: 

  SYMM x,y,z                           Atom: Mn_1      0.5000  0.0000  0.0000 

  Sk(1): (u,v,w) 

  SYMM -x+1,-y,z+1/2                   Atom: Mn_2      0.5000  0.0000  0.5000 

  Sk(2): (-u,-v,w) 

  SYMM -x+1/2,y+1/2,-z+1/2             Atom: Mn_3      0.0000  0.5000  0.5000 

  Sk(3): (u,-v,w) 

  SYMM x-1/2,-y+1/2,-z                 Atom: Mn_4      0.0000  0.5000  0.0000 

  Sk(3): (-u,v,w) 
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The fact that only four irreps contribute to the magnetic representation is due to the fact that the
Wyckoff position (4b) contains a centre of symmetry and the irreps with �(1) = −1 are not allowed.
In other terms, time inversion cannot be mixed with the centre of symmetry in this case because the
atoms in that position would have a zero magnetic moment. The point group 1̄’ is not admissible (see
section 2.3) .

The interpretation of the above table in terms of the mathematical expressions given in this article is
as follows (the indices n are combined in a single integer index):

Example 1: the atomic component of the basis vector (BsV) 1 for atom Mn_2 of representation �3 for
propagation vector (000) is: Skν

n(js) = S
(000) 3
1 (Mn2) = (−1, 0, 0)

Example 2: The atomic component of the basis vector 2 for atom Mn_3 of representation �3 for
propagation vector (000) is: Skν

n(js) = S
(000) 3
2 (Mn3) = (0, −1, 0)

Example 3: the full basis vector 2 for representation �3 and propagation vector (000) for the whole set
of atoms is:

BsV (2, 1 : 4) → 			kν
n = 			

(000) 3
2 = (

1︷ ︸︸ ︷
0, 1, 0,

2︷ ︸︸ ︷
0, −1, 0,

3︷ ︸︸ ︷
0, −1, 0,

4︷ ︸︸ ︷
0, 1, 0)

If we call u, v, w the three free mixing coefficients (in our case they are real numbers because k = 0),
the magnetic structure can be globally described by the global Fourier coefficient (it coincides with the
whole set of magnetic moments):

m[1,2,3,4] = S[k] =
∑

n

Ckν
n			k ν

n = u			k ν
1 + v			k ν

2 + w			k ν
3

The individual magnetic moments of the four atoms are:

Sk(1) → m1 = Sk1 =
∑

n

Ckν
n Sk ν

n (1)= (u, v, w); Sk(2) → m2= Sk2 =
∑

n

Ckν
n Sk ν

n (2) = (−u, −v, w)

Sk(3) → m3 = Sk3 =
∑

n

Ckν
n Sk ν

n (3)= (u, −v, w); Sk(4) → m4 = Sk4 =
∑

n

Ckν
n Sk ν

n (4) = (−u, v, w)

A very common notation in the literature is that of sequence of signs G(+, −, +, −), A(+, −, −, +),
F(+, +, +, +) and C(+, +, −, −), called modes by Bertaut [6, 7]. For the current irrep �3 (Shubnikov
group P b′n′m) the label for the magnetic structure in terms of these modes is: (Gx, Ay, Fz).

The structure is antiferromagnetic with a very weak ferromagnetic component (only seen by
macroscopic magnetisation measurements) along c and formed by ferromagnetic planes stacked
antiferromagnetically along c. This is the so called A-type AF structure in literature about perovskites.
The structure is shown in Figure 5.

If we list the four magnetic moments (identical to Fourier coefficients in this case) as:

1(u, v, w); 2(−u, −v, w); 3(u, −v, w); 4(−u, v, w)

together with the symmetry operators that pass from atom 1 to 1, 2, 3, 4, respectively:

1(x, y, z) : 1; 2(−x+1, −y, z+1/2) : 21z ; 3(−x+1/2, y+1/2, −z+1/2) : 21y ;

4(x−1/2, −y+1/2, −z) : 21x

we can see that the rotational parts of the symmetry operators correspond to the action of the elements:
1, 2z, 2y and 2x respectively. We can interpret the symbols (u, v, w) as matrices corresponding to the
transformation of the magnetic moment of the atom 1 to the magnetic moments of the atoms 1, 2, 3, 4.
As binary axes are proper rotations, we can see that the matrices correspond to the symmetry operators:
1, 2z, 2′

y and 2′
x respectively. Time inversion is then associated with the symmetry operators 21y and 21x

as required by the Shubnikov group P b′n′m (see the characters of the irrep �3 for operators {2x|1/21/20}
and {2y|1/21/21/2} in Table 1).
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Figure 5. Magnetic structure of LaMnO3. Four unit cells and the numbering of the Mn atoms are shown. From the
fitting of the powder diffraction pattern, we obtain u ≈ 0, v ≈ 3.8�B, w ≈ 0. See text for details.

10.2 Symmetry analysis of the magnetic structure of KTb3F12

This compound contains two Tb sites, 2b and 4d, which are attributed to a charge ordering of Tb3+

and Tb4+ respectively [27]. Additional information can be found in the “Examples and Tutorials”
section of the FullProf site [28]. The space group is G = I4/m, the cell parameters are a = 7.695 Å and
c = 7.540 Å at room temperature. The first magnetic peak can be indexed as (100) that is a forbidden
reflection for a lattice of I -type. That means the propagation vector k = (1, 0, 0) = 1/2(2, 0, 0) is in the
surface of the Brillouin Zone and it is equivalent to −k. The group of the propagation vector is the whole
space group because all symmetry operators leave invariant the propagation vector: Gk = G = I4/m.
The irreducible representations are given in Table 2.

Table 2. Irreducible representations of Gk = G = I4/m for k = (1, 0, 0).

------------------------------------------------------------------------------------------  

 Irreps    {1}      {2z}     {4
+
z}       {4

-
z}      {-1}    {mz}       {-4

+
z}     {-4

-
z}   SG 

------------------------------------------------------------------------------------------ 

Γ1:        1        1         1          1         1       1          1          1    Ip4/m

Γ2:        1        1         1          1        -1      -1         -1         -1    Ip4/m’

Γ3:        1        1        -1         -1         1       1         -1         -1    Ip4’/m

Γ4:        1        1        -1         -1        -1      -1          1          1    Ip4’/m’

Γ5:   1  -1 i   -i 1

Γ6

Γ7

Γ8

:   1  -1 i   -i  -1

:   1  -1 -i    i 1

:   1  -1 -i    i  -1

-1 i  -i

1 -i i

-1 -i i

1 i  -i

Here the small representations coincide with the irreps of the full space group. The complex irreps

�5 to �8 are of dimension 1, so they cannot be reduced to real representations because matrices of
dimension 1 always commute: there is no similarity unitary transformation reducing them to real
matrices. This is the reason there is no Shubnikov symbol associated to them. Notice that �5 is the
complex conjugate of �7 and �6 is the complex conjugate of �8. We are in the case 2 of rule (69).
Let us consider now the position of the magnetic atoms Tb(2b): (0,0,1/2) and Tb(4d): (0, 1/2, 1/4),
(1/2, 0, 1/4). Notice that we consider only the content of a primitive cell even if we refer the coordinates
to the conventional centred cell. The global magnetic representation obtained by the direct product of
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the axial representation by the permutation representation has the following list of characters for the
symmetry operators of the space group given in the same order as in Table 2:

�(�m − 2b) = (3, −1, 1, 1, 3, −1, 1, 1)

�(�m − 4d) = (6, −2, 0, 0, 0, 0, −2, −2)

The decomposition of the global magnetic representation in terms of irreps for the two sites is given by:

�m(2b) = �1 ⊕ �5 ⊕ �7

�m(4d) = �2 ⊕ �3 ⊕ �5 ⊕ �6 ⊕ �7 ⊕ �8

The final Fourier coefficients obtained from the basis functions calculated for the different
representations and the two sites are summarised in the following:

Site 2b, a single sublattice:
�1(2b) : Sk = (0, 0, v)
�5(2b) : Sk = (v, 0, 0) + i(0, −v, 0)
�7(2b) : Sk = (v, 0, 0) + i(0, v, 0)

Site 4d, two sublattices:
�2(4d) : Sk(1) = (0, 0, u); Sk(2) = (0, 0, −u)
�3(4d) : Sk(1) = (0, 0, u); Sk(2) = (0, 0, u)
�5(4d) : Sk(1) = (u, 0, 0) + i(0, u, 0); Sk(2) = (u, 0, 0) + i(0, u, 0)
�6(4d) : Sk(1) = (u, 0, 0) + i(0, −u, 0); Sk(2) = (−u, 0, 0) + i(0, u, 0)
�7(4d) : Sk(1) = (u, 0, 0) + i(0, −u, 0); Sk(2) = (u, 0, 0) + i(0, −u, 0)
�8(4d) : Sk(1) = (u, 0, 0) + i(0, u, 0); Sk(2) = (−u, 0, 0) + i(0, −u, 0)

The parameters u and v correspond to the coefficients Ckν
n and are the free parameters of the possible

magnetic structures. Here we have simplified the notation but one has to keep in mind that the parameters
appearing in different representations may have different values. The representations �1, �2 and �3

describe real magnetic structures for this system. Notice that the representation �4 does not appear in the
decomposition of the global magnetic representation for any of the two sites. One can see that the irreps

�5, �6, �7 and �8 cannot describe alone real magnetic structures because, according to the eq. (34), the
Fourier coefficients must be real. Only if we combine the basis functions of the irreps that are complex
conjugate, and we put the same value for the coefficients, we can obtain real magnetic structures. So,
apart from the three representations mentioned above the following combination or representations and
basis functions give real magnetic structures:

�1, �2, �3, �5 ⊕ �7, �6 ⊕ �8

The corresponding basis functions are the following:

Site 2b, a single sublattice:
�1(2b) : Sk = (0, 0, v)

�5 ⊕ �7(2b) : Sk = (v, 0, 0)

Site 4d, two sublattices:

�2(4d) : Sk(1) = (0, 0, u); Sk(2) = (0, 0, −u)
�3(4d) : Sk(1) = (0, 0, u); Sk(2) = (0, 0, u)

�5 ⊕ �7(4d) : Sk(1) = (u, 0, 0); Sk(2) = (u, 0, 0)
�6 ⊕ �8(4d) : Sk(1) = (u, 0, 0); Sk(2) = (−u, 0, 0)

When more than one site exists in a crystallographic structure, the magnetic ordering is usually
driven by a single irrep. So, in our case if magnetic ordering should exist in both sites the only common
magnetic structure should be described within the reducible representation �5 ⊕ �7 (called usually
physically irreducible).

Experimentally, the physically irreducible representation �5 ⊕ �7 does not give satisfactory results.
The analysis of the diffraction pattern shows that the site 4d (Tb4+) orders according to the single irrep 3,
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Figure 6. Refined powder diffraction pattern of KTb3F12 with the model discussed in the text and displayed on the
right. The lower set of tick marks in the powder diagram corresponds to magnetic reflections. The green spheres
in the magnetic structure’s schematic representation correspond to paramagnetic (non-ordered) Tb3+ ions and the
blue spheres are Tb4+ ions.

which does not exist for site 2b, so the magnetic moment of atoms in 2b (Tb3+) should be zero. This
is easily verified experimentally and well justified from the physical point of view because the crystal
field acting on a Tb3+ may create a non magnetic singlet. Moreover, in the present case, the molecular
field of the magnetic configuration of Tb4+ ions creates a zero molecular field at the site of Tb3+ so that,
even in the case of an effective magnetic doublet, the Tb3+ ions remain paramagnetic due to frustration.
The refined powder diffraction pattern at 1.5 K and a scheme of the magnetic structure are shown in
Figure 6.

10.3 Symmetry analysis of the magnetic structure of the compounds R2BaNiO5

The magnetic structures of the family of compounds R2BaNiO5 (R = Rare earth or Y) have been studied
and summarised in reference [28]. The R2BaNiO5 oxides present interesting structural and magnetic
properties due to the fact that their structure possesses a strong 1D character [4, 5]. These oxides
crystallise in the orthorhombic system with the body centred space group G = Immm and having
approximate cell parameters: a ≈ 3.8 Å, b ≈ 5.8 Å, and c ≈ 11.3 Å. The main structural feature is the
presence of one-dimensional (1D) chains of NiO6 octahedra along the a-axis. The octahedra are strongly
distorted with a very short Ni-Oapical distance (≈ 1.88 Å), and a longer Ni-Obasal distance (≈ 2.18 Å).
The basal angle O-Ni-O (≈ 78◦) is also much smaller than expected for a regular octahedron (90◦).
The structural details at room temperature and the dependence of the rare earth size upon the structural
parameters have been extensively discussed in reference [29].

The Ni ions are in a single Bravais sublattice at (2a) site: (0, 0, 0). The rare earth site (4j ) generates
two sublattices 1: (1/2, 0, z) and 2: (−1/2, 0, −z) in a primitive unit cell. The other atoms of the
conventional unit cell are related to those already given by the centring translation tI = (1/2, 1/2, 1/2).
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Figure 7. Refined powder diffraction pattern of Ho2BaNiO5 and scheme of its magnetic structure. The space group
is Immm. There is only three magnetic atoms per primitive unit cell. Ni at (0, 0, 0) and Ho at positions 1(1/2, 0, z),
2(−1/2, 0, −z) with z = 0.2025. The magnetic moments are not in scale, the amplitude of those of Ho atoms have
been arbitrarily multiplied by 0.3 for representation purposes. The magnetic unit cell is doubled along a and c. The
magnetic moments of the three atoms are: Ni(u, 0, w), with u ≈ 0.59�B, w ≈ −1.3�B , Ho1(p, 0, r), Ho2(p, 0, r),
with p ≈ 0.1�B and r ≈ 9�B.

Table 3. Small irreducible representations of Gk = I12/m1 for k = (1/2, 0, 1/2) in G = Immm.
----------------------------------------------------------------

irreps       {1|000}     {2y|000}       {-1|000}      {my|000} 

----------------------------------------------------------------

Γ1 (Ag):       1             1             1             1 

Γ2 (Au):       1             1            -1            -1 

Γ3 (Bg):       1            -1             1            -1 

Γ4 (Bu):       1            -1            -1             1 

The magnetic moments in positions outside the reference cell are calculated from those at the reference
cell by the expression (34). Thus, in order to describe the magnetic structure we need to know only the
Fourier components of magnetic moments of the Ni ion at the origin and of R1 at (1/2, 0, z) and R2 at
(−1/2, 0, −z).

These compounds are all antiferromagnetic with propagation vector k = (1/2, 0, 1/2), equivalent
to −k. However the directions of magnetic moments are different as a consequence of the different
anisotropy of the rare earth ions. The symmetry analysis using the representation theory and the program
BasIreps [24], provides immediately the little co-group G0k = 2/m, with unique axis along b. The
representations of Gk are those of G0k because the space group is symmorphic, there are then four 1D
irreps of Gk. The small representations are gathered in Table 3.

We have added the notation for the irreps used in reference [28] and in chapters by Perez-Mato et al.

and Tasci et al. The star of the k-vector is constituted by two independent arms:

{k} = {k = k1 = (1/2, 0, 1/2); k2 = (−1/2, 0, 1/2)}
The space group can be decomposed in cosets (eq. (27)) as: G = Gk + mxGk, where mx is the

mirror plane perpendicular to the a-axis that transforms k1 into k2.
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The full representations of the space group Immm are two dimensional and can be constructed by
using the induction formula (30). As an example of the use of formula (30) we give below the 2D matrix
corresponding to the operator 2y for irrep �3:

�
{k}3
1,1 (2y) = �k3(g−1

1 2y g1) �g−1
1 2y g1∈Gk

= �k3(1 2y 1) �12y 1∈Gk
= �k3(2y )�2y∈Gk

= −1

�
{k}3
2,2 (2y) = �k3(g−1

2 2y g2) �g−1
2 2y g2∈Gk

= �k3(mx 2y mx) �mx 2y mx∈Gk
= �k3(2y )�2y∈Gk

= −1

�
{k}3
1,2 (2y) = �k3(g−1

1 2y g2) �g−1
1 2y g2∈Gk

= �k3(1 2y mx) �12y mx∈Gk
= �k3(mz )�mz∈Gk

= 0

�
{k}3
2,1 (2y) = �k3(g−1

2 2y g1) �g−1
1 2y g2∈Gk

= �k3(mx2y 1) �mx 2y 1∈Gk
= �k3(mz )�mz∈Gk

= 0

�{k}3(2y) =
(−1 0

0 −1

)

The matrix corresponding to mz that does not belong to Gk is given by:

�
{k}3
1,1 (mz) = �k3(g−1

1 mzg1) �g−1
1 mz g1∈Gk

= �k3(1 mz 1) �1mz 1∈Gk
= �k3(mz )�mz∈Gk

= 0

�
{k}3
2,2 (mz) = �k3(g−1

2 mz g2) �g−1
2 mz g2∈Gk

= �k3(mx mz mx) �mxmz mx∈Gk
= �k3(mz )�mz∈Gk

= 0

�
{k}3
1,2 (mz) = �k3(g−1

1 mz g2) �g−1
1 mz g2∈Gk

= �k3(1 mz mx) �1mz mx∈Gk
= �k3(2y )�2y∈Gk

= −1

�
{k}3
2,1 (mz) = �k3(g−1

2 mzg1) �g−1
1 mz g2∈Gk

= �k3(mxmz 1) �mxmz 1∈Gk
= �k3(2y)�2y∈Gk

= −1

�{k}3(mz) =
(

0 −1
−1 0

)

One can proceed similarly for all the coset representatives of the space group Immm and we obtain
all the irreducible representations of Immm (from all the small irreps of Gk) that are all two dimensional
for the star {k1, k2}. Normally we do not need to calculate explicitly these matrices because the basis
vectors corresponding to the different arms are given explicitly by the formula (55).

Let us come back to the small representations for the single k = (1/2, 0, 1/2). The global magnetic
reducible representation has the following list of characters for the symmetry operators of the space
group given in the same order as in the above table (1, 2y , −1, my):

�(�m − Ni) = (3, −1, 3, −1)

�(�m − R) = (6, 0, 0, −2)

The decomposition of the global magnetic representation in terms of irreps for the two sites is given
by:

�m(Ni) = �1 ⊕ 2�3

�m(R) = �1 ⊕ 2�2 ⊕ 2�3 ⊕ �4

In principle (if the two sites order according to the same representation) only the representations �1

and �3 are allowed. The final Fourier coefficients obtained from the basis functions calculated for these
representations and the two sites are summarised in the following:

�1: Ni(0, v, 0) R1(0, q, 0), R2(0, q, 0)

�3: Ni(u, 0, w) R1(p, 0, r), R2(p, 0, r)

The coefficients should be real because k is equivalent to −k. The experiments have demonstrated
that the active representation is �3 (four free parameters: u, w, p, r) for all the rare earth except for
Tm in which the data can only be explained by mixing both �1 and �3 (six free parameters) with a
strongly dominant �1 component (within 3 standard deviations in the magnetic moments, only �1 is
present in the Tm case). Notice that (see Table 3), from the point of view of symmetry invariance,
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the representation �3 corresponds to the following association of symmetry operators of the little co-
group with time inversion: {1, 2′

y , −1, m′
y}. Just the trivial {1, 2y , −1, my} colourless little co-group is

associated with �1.
As an example we show the refinement of the powder diffraction pattern of Ho2BaNiO5 and a picture

of its magnetic structure, assumed to be single k.
With powder diffraction it is, in general, impossible to determine the transition channel (e.g. what are

the arms of the star defining the magnetic structure), however if we assume that the magnetic structure
is multi-k in this case we will show that the magnetic moments amplitude will not be constant. Let us
just select the Ni ions at the origin of the lattice. The Fourier sum (34) can be written for the present
case as:

ml = Sk1exp(−
i (l1 + l3)) + Sk2exp(−
i (−l1 + l3))

ml =





±(Sk1 + Sk2 ); l1, l3 ∈ Z

±(Sk1 − Sk2 ); l1 = 1
2 + n1; l3 = 1

2 + n3; n1, n3 ∈ Z

The real Fourier coefficients Sk1 and Sk2 may be chosen in order to restore the global orthorhombic
symmetry imposing that mx , or its combination with time inversion, has to be a symmetry operator
of the magnetic structure. In any case one can see that the magnetic moment amplitude can only be
conserved if Sk1 is perpendicular to Sk2. If one applies the formula (55) taking into account (56), for
the basis vectors using hL = mx (that transform k1 into k2) the basis vectors (except for a change of
sign) are the same for Ni ions. This implies that the Fourier coefficients Sk1 and Sk2 are parallel, so the
amplitude of the magnetic moments cannot be conserved in a multi-k structure for the present case.

10.4 Symmetry analysis of the commensurate magnetic structures of the compounds R2T2X

The R2T2X compounds, with R = Rare-Earth or Uranium, T = Fe, Co, Ni, Ru, Rh or Pd and X = Sn
or In, crystallise in the tetragonal U3Si2-type crystal structure with space group P 4/mbm [30–35]. The
occupied Wyckoff positions are (4h) R: (xR, 1/2 + xR, ); (4g) T: (xT, 1/2 + xT, 0) and X: (2a) (0, 0, 0).
The R-ions are the only “magnetic” atoms all along the R2T2X series of compounds.

Some examples of commensurate magnetic structures, revealed from neutron diffraction
experiments in this family of compounds, are shown in Figure 8. These are described either with
k = (0, 0, 0), identical crystalline and magnetic unit-cells, or k = (0, 0, 1/2) (a, a, 2c magnetic unit-cell).
Other commensurate k = (1/2, 1/2, 0), k = (1/2, 1/2, 1/2) and k = (1/4, 1/4, 1/2) values have been observed
for compounds in the series, but with no example shown in Figure 8.

We shall take as examples the symmetry analysis for the cases k = (0, 0, 0) and k = (0, 0, 1/2)
corresponding to the compounds shown in Figure 8. The determination of their magnetic structure
has been performed using the method that we have illustrated in the previous examples. Here we will
give some more detailed information concerning the reducible magnetic representation discussed in
sections 7.1 and 7.2.

Table 4 lists the symmetry operators of the coset representatives of P 4/mbm space group with
respect to the translation group. When no translation associated to the symmetry operator is given, [000]
is assumed. The same applies for the location of the symmetry element. We have emphasised the lines
containing the generators in the Hermann-Mauguin (H-M) symbol, and written them in red.

The U atoms (the only magnetic atoms) are labelled from 1 to 4, as shown below, either in the table
or in the figure. The corresponding Fourier coefficients (in this case identical to magnetic moments) are
referred as S1, S2, S3 and S4.

In the 12-dimensional space of S1 to S4 magnetic moments components (12 = 4 × 3, where 4 stands
for the number of distinct atoms, and 3 for the number of magnetic moment components for one atom),
each of the Gk symmetry operators is represented by a 12 × 12 square matrix: this matrix reflects the
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8a 8b

U2Pd2In – U2Pd2Sn – k = (0 0 0) U2Pd2.4Sn0.6 - k = (0 0 ½)

8c 8d

U2Ni2In - k = (0 0 ½) U2Ni2Sn - U2Rh2Sn - k = (0 0 ½)

Figure 8. Commensurate magnetic structures in P 4/mbm R2T2X compounds [30–34].

transformations of S1, S2, S3 and S4 by the considered symmetry operator, including both permutational
and orientational contributions (permutation of U1-4 atoms, (re)orientation of magnetic moments). The
components of the matrices can be obtained simply by inspection of the action of the symmetry operator
(taking into account the axial character of S-vectors) or by applying directly the formula (49) or (50)
and (51).

For instance, the magnetic matrix for SYMM(1) is clearly the 12 × 12 identity matrix with character
�m(1) = 12. For displaying the magnetic representation matrices we can use a cell representation of the
matrices in order to emphasize the labelling of the atoms positions. The magnetic matrices for the
SYMM(10) operator (mirror perpendicular to the tetragonal c-axis, keeping unchanged U1-4 atoms) and
for SYMM(2) operator (two-fold axis parallel to the c-axis, that permutes atoms 1-2 and 3-4) are:

�m(mz) = �m(10) =
 U1 U2 U3 U4

U1
-1   
 -1  
  1 

U2
-1

-1
1 

U3
  -1   

 -1  

  1 

U4
   -1   

 -1  

  1 
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Table 4. Coset representatives of the space group G = P 4/mbm.

Symmetry 
operators 
ordering

Symmetry 
operators Symbol

(rotational part) 
Translation Location

Kovalev
Notation

(rotational part)

SYMM( 1) x, y, z 1 h1

SYMM( 2) -x, -y, z z2 h4

SYMM( 3) ½-x, ½+y, -z y2 [0 ½ 0] (¼ 0 0) h3

SYMM( 4) ½+x, ½-y, -z x2 [½ 0 0] (0 ¼ 0) h2

SYMM( 5) ½+y, ½+x, -z [110]2

[110]2

[½ ½ 0] h16

SYMM( 6) ½-y, ½-x, -z (0 ½ 0) h13

SYMM( 7) y, -x, z
34z h15

SYMM( 8) -y, x, z z4 (4) h14

SYMM( 9) -x, -y, -z 1 h25

SYMM(10) x, y, -z zm (/m) h28

SYMM(11) ½+x, ½-y, z ym [½ 0 0] (0 ¼ 0) h27

SYMM(12) ½-x, ½+y,  z xm (b) [0 ½ 0] (¼ 0 0) h26

SYMM(13) ½-y, ½-x, z [110]m

[110]m

(m) (0 ½ 0) h40

SYMM(14) ½+y, ½+x, z [½ ½ 0] h37

SYMM(15) -y, x, -z 34z
h39

SYMM(16) y, -x, -z
z4 h38

of character �m(10) = −4, and

�m(2z) = �m(2) =
 U1 U2 U3 U4

U1
-1

-1
  1 

U2
-1   
 -1  
  1 

U3
   -1   

 -1  
  1 

U4
  -1   

 -1  
  1 

of character �m(2) = 0. Each cell is a 3 × 3 matrix holding the axial representation of the operator.
Empty cells are filled with zeroes in the conventional representation of a matrix.

The set of all the sixteen magnetic matrices form a 12-dimensional representation (�m) of the
Gk=(000) group. The matrices for k = (0, 0, 1/2) are constructed in a similar way and the differences
come from the phase factors we have to include when using “returning vectors” that in our case are
always +1 or −1. The explicit form of the matrices can easily be constructed by inspecting the output
of the program BasIreps [24].
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Table 5. List of U-atoms in the 4h positions of space group G = P 4/mbm. The list of symmetry operators passing
from the first atom to the others is given as well as the coordinates in terms of the parameter xU.

SYMM order + 
translation x y z 

U1 x, y, z (1) xU ½ + xU ½ 
U2 -x+1, -y+1, z (2)+[1,1,0] 1 - xU ½ - xU ½ 
U3 -x+1/2, y-1/2, -z+1   (3)+[0,-1,1] ½ - xU xU ½ 
U4 x+1/2, -y+3/2, -z+1 (4)+[0,1,1] ½ + xU 1 - xU ½ 

Table 6. Irreducible representations of Gk = G = P 4/mbm for k = (0, 0, 0) and k = (0, 0, 1/2).

P4/mbm 

k=(0,0,0) 
k=(0,0,1/2)

1 2 3 4 5 6 7 
8 

(4)
9 

10 
(/m)

11 
12 
(b)

13 
(m)

14 15 16 

ΓΓ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ΓΓ 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
ΓΓ 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
ΓΓ 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
ΓΓ 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
ΓΓ 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
ΓΓ 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1
ΓΓ 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1
ΓΓ

 1  0 
 0  1 

–1  0 
 0 –1 

 1   0 
 0 –1 

–1  0 
 0  1 

0  1  
1  0 

 0  -1  
-1   0 

0  -1  
1   0 

  0  1  
-1  0 

–1  0 
 0 –1 

 1  0 
 0  1 

–1  0 
 0  1 

 1   0 
 0 –1 

 0  -1  
-1   0 

0  1  
1  0 

  0  1  
-1  0 

0  -1  
1   0 

Γ
 1  0 
 0  1 

–1  0 
 0 –1 

 1   0 
 0 –1 

–1  0 
 0  1 

0  1  
1  0 

 0  -1  
-1   0 

0  -1  
1   0 

  0  1  
-1  0 

 1  0 
 0  1 

–1  0 
 0 –1 

 1   0 
 0 –1 

–1  0 
 0  1 

0  1  
1  0 

 0  -1  
-1   0 

0  -1  
1   0 

  0  1  
-1  0 

�m can be decomposed into irreps of Gk=(000) or Gk=(001/2). These irreps coincide in this particular
case (notice that there is no symmetry operator in the list of the previous table with associated translation
along the c-axis) and are listed in Table 6. The numbers of the first row correspond to the symmetry
operators listed in a previous table with operators 8, 10, 12 and 13 emphasised because they appear in
the H-M symbol of the space group.

Table 6 shows that there are 10 irreps, eight of them are 1D (�1-8) and two are 2D (�9-10). The
application of orthogonality rules leads easily to the subsequent decomposition of �:

�m{k = (0, 0, 0)} = �2 ⊕ �3 ⊕ �4 ⊕ �6 ⊕ �7 ⊕ �8 ⊕ �9 ⊕ 2�10

�m{k = (0, 0, 1/2)} = �1 ⊕ �2 ⊕ �3 ⊕ �5 ⊕ �6 ⊕ �7 ⊕ 2�9 ⊕ �10

Figure 9 shows the magnetic structures (basis vectors of �i) which have been obtained, by applying
the formula (54), for each one of the six 1D irreps contained in the �m {k = (0, 0, 0)} decomposition. For
all �i, with i = 2, 3, 4, 6, 7 or 8, the associated magnetic structure depends only on a single parameter:
the value of the common magnetic moment for U1 to U4 atoms.

In Figure 9 we give the symbols of the Shubnikov groups in one-to-one correspondence with the
1D irreps. As �m{k = (0, 0, 0)} contains �9 and �10 they have also to be considered. These irreps are
both 2D, but are present either once or twice in the � decomposition. That means that two and four
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mmbPmbmP

mbmP

bmmP

bmmP mbmP

mmbPmbmP

mbmP

bmmP

bmmP mbmP

Figure 9. Magnetic structures for �2, �3, �4, �6, �7 and �8 irreps corresponding to P 4/mbm space-group for
propagation vector k = (0, 0, 0) and (4h) Wyckoff position.

parameters will be necessary to describe the �9 and �10 respectively. The general Fourier coefficients
obtained from the basis vectors are (adapted from BasIreps output):

Γ9

SYMM x

SYMM 

SYMM 

SYMM x

Γ10

SYMM x

SYMM 

SYMM 

SYMM x

x,y,z   

-x+1,-y+

-x+1/2,y

x+1/2,-y

x,y,z   

-x+1,-y+

-x+1/2,y

x+1/2,-y

+1,z     

y-1/2,-z

y+3/2,-z

+1,z     

y-1/2,-z

y+3/2,-z

    Sk(

    Sk(

+1   Sk(

+1   Sk(

    Sk(

    Sk(

+1   Sk(

+1   Sk(

(1): (0,

(2): (0,

(3): (0,

(4): (0,

(1): (u+

(2): (u+

(3): (-u

(4): (-u

0,u-v)  

0,-u+v)

0,-u-v)

0,u+v) 

p,v+w,0)

p,v+w,0)

+p,v-w,0

+p,v-w,0

→ S1:(

→ S2:(

→ S3:(

→ S4:(

) → S1:(

) → S2:(

0)→ S3:(

0)→ S4:(

(0,0, α

(0,0,-α

(0,0,-β

(0,0, β

(α,β

(α,β

(γ,δ

(γ,δ

)

)

)

)

,0)

,0)

,0)

,0)

We have performed a change of mixing coefficients (last column) in order to simplify the aspect of
the Fourier vectors (magnetic moments). Depending on the selection of coefficients we obtain different
invariance symmetries for the magnetic structures. For obtaining constant moment magnetic structures
the coefficients should be constrained as follows: (�9) � = ±�, (�10) (� = ±� and � = ±�) or (� = ±�

and � = ±�).
Figure 10a shows a scheme of the U2Pd2In magnetic structure, as deduced from symmetry analysis

and Neutron Powder Diffraction (NPD) experiments (see Figure 10b). This magnetic structure is
characteristic of the irrep �6(P 4′/m′bm′), with mU = 1.55�B at T = 1.4 K [33].
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Figure 10. U2Pd2In: magnetic structure (T < TN) and difference NPD data [T = 1.5 K] − [T > TN] collected on
G4.1 at LLB,  = 2.425 Å. Only the magnetic contribution to NPD at T = 1.5 K data is shown in the figure.

A similar analysis can be done for �m{k = (0, 0, 1/2)}. We have already shown three different cases
of magnetic structures corresponding to this case. The magnetic structures correspond to the following
irreps of Gk=(0,0,1/2).

Figure 8b:�7(P2c4/mb′m′) : S1 = (m, m, 0); S2 = (−m, −m, 0); S3 = (−m, m, 0); S4 = (m, −m, 0)

Figure 8c : �2(P2c4/m′b′m′) : S1 = (0, 0, m); S2 = (0, 0, m); S3 = (0, 0, m); S4 = (0, 0, m)

Figure 8d: �6(P2c4′/m′bm′) : S1 = (0, 0, m); S2 = (0, 0, m); S3 = (0, 0, −m); S4 = (0, 0, −m)

This can be easily seen by inspecting the output of the BasIreps program.

11. EXAMPLES OF INCOMMENSURATE MAGNETIC STRUCTURES

In this section we provide two examples of simple incommensurate magnetic structures. The first one
is a simple sinusoidal structure (single propagation vector, Ce2Pd2Sn, from the R2T2X family discussed
in subsection 10.4) and the second one a conical structure (DyMn6Ge6 with two propagation vectors
belonging to different stars) close to a commensurate superstructure.

11.1 Incommensurate k = (�, 0, 0) magnetic structure of Ce2Pd2Sn

Experimental studies on Ce2Pd2Sn magnetic properties [36] are presented in Figures 11–14.
From magnetic susceptibility measurements (�(T), Figure 11) the existence of two successive

magnetic transitions is deduced, at around TN = 4.8(2) K (antiferromagnetic transition) and TC =
3.0(2) K (ferromagnetic transition) respectively.

Characteristic NPD data are shown in Figures 12 and 13. Below T = 2.6 K (Figure 12c), the
Ce2Pd2Sn magnetic structure is ferromagnetic with k = (0 0 0) and Ce3+ magnetic moments parallel
to the tetragonal c-axis. In the intermediate [3.4 K − 4.75 K] T-range, NPD data (Figures 12b and 13)
are associated with Ce3+ magnetic moments parallel to c-axis. The experimental NPD data can be
fitted with a very simple magnetic structure in which the moments of the Ce atoms are described
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Figure 11. Ce2Pd2Sn, magnetic susceptibility �(T).

Figure 12. Ce2Pd2Sn, NPD data (G4.1 −  = 2.425 Å), at T = 1.5 K (T < TC), T = 4 K (TC < T < TN) and
T = 10 K (T > TN).

Table 7. Coset representatives of the little group Gk = P 21am (k = �a* in P 4/mbm).

Symmetry operators Symbol Translation Location Kovalev Notation
of Gk (rotational part) (rotational part)
x, y, z 1 h1
1/2+x, 1/2 − y, −z 2x [1/2 0 0] (0 1/4 0) h2

x, y, −z mz h28
1/2 + x, 1/2 − y, z my [1/2 0 0] (0 1/4 0) h27

as: mlj = mCe cos{2
k(Rl+ rj )}, with k = (�, 0, 0), � being T-dependent (see Figure 14) and mCe the
common amplitude of magnetic moments that is directed along the c-axis.

Whatever the case of an incommensurate propagation vector k, the little group Gk is no more
coincident with G (P 4/mbm), but a sub-group of G. For k = �a*, as observed for Ce2Pd2Sn in the
intermediate T-range, this subgroup includes only four symmetry operators, SYMM(1), SYMM(4),
SYMM(10) and SYMM(11), according to Table 4. The list of Gk operators are given in Table 7.

The space group may be decomposed in coset representatives with respect to Gk (P 21am) as follows:

G = P 4/mbm = Gk + 21yGk + 4−
z Gk + 4+

z Gk

The full star of the propagation vector is formed by four non-equivalent k-vectors:

{k} = {k1 = (�, 0, 0); k2 = (−�, 0, 0); k3 = (0, �, 0); k4 = (0, −�, 0)}
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Figure 13. Ce2Pd2Sn, NPD data vs. T , in [39◦, 44◦] 2�-range: (210) Bragg peak and (210)−, (120)−, (120)+, (210)+

magnetic satellites, k = (� 0 0).

Figure 14. Ce2Pd2Sn, propagation vector (� 0 0): � = kx vs. T . Coexistence of commensurate (� = 0) and
incommensurate (� �= 0) propagation vectors observed around 3 K.

The magnetic moments in Ce2Pd2Sn are now still located at the (4h) Wyckoff position (Ce3+

site). But, in the case of k = (�, 0, 0), with � �= 0 and � �= 1/2, Gk now splits their sublattices into two
independent sets (orbits): Ce1 and Ce4 on one side, and Ce3 and Ce2 on the other. No symmetry operation
in Gk allows transforming any Ce atom of one orbit to a Ce atom in the other orbit.

These two orbits, Ob1 and Ob2, are listed below:

Ob1
Ce1 xCe 1/2 + xCe 1/2
Ce4 1/2 + xCe 1 − xCe 1/2

Ob2
Ce3 1/2 − xCe xCe 1/2
Ce2 1 − xCe 1/2 − xCe 1/2

Each of these orbits, Ob1 and Ob2, is associated to a 6-dimensional magnetic (reducible)
representation of Gk, �m(Ob1) and �m(Ob2) respectively.

The Table 8 lists all the irreps of Gk=(�,0,0) group. These irreps are no more real, but complex, with �

parameter being equal to � = exp{2
i(1/2�)} = exp{
i�}, where � = 
� is the phase-shift associated
to the [1/2, 0, 0] translation of the symmetry operators.
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Table 8. Small representations of the little group Gk = P 21am.

Gk 1 {2x |1/200} {mz|000} {my |1/200}
�1 1 � 1 �

�2 1 � −1 −�

�3 1 −� 1 −�

�4 1 −� −1 �

Both �m(Ob1) and �m(Ob2) can be decomposed into Gk=(�,0,0) irreps. Whatever the orbit, Ob1 or
Ob2, we get:

�m = �1 ⊕ 2�2 ⊕ �3 ⊕ 2�4

The Fourier coefficient deduced from the basis vectors are listed in the table below. Similar vec-
tors are obtained for {Ce1, Ce4} (orbit Ob1) and {Ce3, Ce2} (orbit Ob2) sets, but, in principle (no
symmetry constraint), with no relationship either between w and w′ (�1, �3) or {u, v} and {u′, v′}
(�2, �4) parameters. We can leave these parameters free in the refinement adding a phase factor
between the two orbits. In such a case three free parameters define the magnetic structure for
(�1, �3) and five parameters for (�2, �4). However we can consider that the transition channel

comprises always two arms of the star: (k, −k) and one of the symmetry operators relating k to −k

transforms the Fourier coefficients of the one orbit to the other using the equation (55) or equations (62).

Γm Sk(Ce1) Sk(Ce4) Sk(Ce3) Sk(Ce2) 
Γ1 (0, 0, w) α* (0, 0, -w) (0, 0, w’) α* (0, 0, -w’) 
Γ2 (u, v, 0) α* (u, -v, 0) (u’, v’, 0) α* (u’, -v’, 0) 
Γ3 (0, 0, w) α* (0, 0, w) (0, 0, w’) α* (0, 0, w’) 
Γ4 (u, v, 0) α* (-u, v, 0) (u’, v’, 0) α* (-u’, v’, 0) 

We know that at the lowest temperature the magnetic structure is ferromagnetic with all moments
along c. A very simple hypothesis is to consider that a simple sinusoidal wave embraces all magnetic
atoms in the unit cell (all are in phase) that tends towards the ferromagnetic structure when � → 0. This
is verified by the representation �3. The aspect of the Fourier coefficients of both orbits is of the same
type and can be related to the relative position of the atoms:

Sk(Ce4) = �∗Sk(Ce1) = e−2
i 1
2 � Sk(Ce1) = e−2
i k (r4−r1)Sk(Ce1)

Sk(Ce2) = �∗Sk(Ce3) = e−2
i 1
2 � Sk(Ce3) = e−2
i k (r2−r3)Sk(Ce3)

Considering that the Fourier coefficients of the atoms Ce1 and Ce3 are related in the same way as the
internal relation within the orbits we establish the following constraint:

Sk(Ce3) = e−2
i k (r3−r1)Sk(Ce1)

The relation between primed parameters (Ob2) and unprimed parameters (Ob1) is then given by:

p′ = e−2
i k (r3−r1)p = e−2
i�(1/2−2xCe)p.

This constraint fixes the phase between the two orbits to � = �(1/2 − 2xCe) (in fraction of 2
) and
provides the same amplitude of the Fourier coefficients of the two orbits. This constraint is quite well
verified experimentally (see Figure 15a) for irrep �3.

The �3 Ce2Pd2Sn incommensurate magnetic structure is shown on Figure 16, either within the origin
crystal unit-cell (a × b × c) [Figure 16] or within (10a × b × c) volume [Figure 17].

We can rewrite the Fourier coefficients for all representations and the four atoms multiplying by the
phase factor exp(−2
ikr1), this does not change the calculated diffraction pattern, and then we obtain,

00010-p.41



EPJ Web of Conferences

Figure 15. Portion of the pure magnetic NPD pattern of Ce2Pd2Sn refined with the model corresponding to �3.

Figure 16. Ce2Pd2Sn, k = (0.105, 0, 0) magnetic structure.

Figure 17. Ce2Pd2Sn, k = (0.105, 0, 0) magnetic structure.

for instance, for irrep �3:

Sk(Cej ) = (0, 0, w)e−2
ikrj

We can see, looking at the Fourier series defined as in (34) and (34′), that:

mlj =
∑

k,−k

Skj e−2
i k Rl =
∑

k,−k

(0, 0, w)e−2
ik rj e−2
i k Rl =
∑

k,−k

(0, 0, w)exp(−2
i k(Rl + rj ))

mlj = 2 (0, 0, w) cos{2
k(Rl + rj )} = (0, 0, mCe) cos{2
k (Rl + rj )}
The Fourier coefficients Tkj = (0, 0, w) are all identical and real in irrep �3.
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Figure 18. Magnetic sublattices in DyMn6Ge6, showing the Kagomé planes of Mn atoms and the Dy atom at the
origin of the unit cell.

Experimentally, the refinement of the phase factor between the two orbits constraining the
amplitudes to be the same (two free parameters) gives � = 0.015(6) to be compared with the expected
value � = �(1/2 − 2xCe) = 0.105 × (0.5 − 2 × 0.1781) = 0.0151. The refined value of the amplitude
is mCe = 1.70(5)�B at T = 4 K.

11.2 A conical magnetic structure: DyMn6Ge6 with k1 = (0, 0, 0) and k2 = (0, 0, �)

The compound DyMn6Ge6 crystallizes in the well known HfFe6Ge6 structure [37]: space group
P 6/mmm, unit cell parameters a ≈ 5.21 Å, c ≈ 8.15 Å. All the compounds RMn6Ge6 (R: rare earth)
have a macroscopic ferrimagnetic behaviour, however their magnetic structures are quite complex and
vary with temperature. The magnetic atoms occupy the Wyckoff positions R (1a) and Mn (6i) with
the representative first positions (0, 0, 0) and (1/2, 0, z), respectively. The Mn atoms form two Kagomé
planes perpendicular to the c-axis (Figure 18). We present here the low temperature magnetic structure
of DyMn6Ge6 [38] (see also Table 3 of reference [39] for corrected parameters) that is an example of
the coexistence of two propagation vectors k1 = (0, 0, 0) and k2 = (0, 0, �) (Figure 19) and we will see
that the magnetic structure can be described as a double conical structure. The value of � ≈ 0.1651(4)
is quite close to a commensurate rational value (� = 1/6), so that the structure may also be described
with an approximate Shubnikov group.

The symmetry analysis using the representation theory and the program BasIreps [24], provides
immediately the little groups Gk1 = P 6/mmm and Gk2 = P 6mm. The numbering of irreps is that
provided by the program. We do not write explicitly all the irreps in the present case. There are eight
1D irreps and four 2D irreps for Gk1 and four 1D irreps and two 2D irreps for Gk2. From the analysis
of the magnetic representation for both sites:

�m,k1=(0,0,0) (Dy-1a) = �3 ⊕ �12

�m,k1=(0,0,0) (Mn-6i) = �2 ⊕ �3 ⊕ �5 ⊕ �6 ⊕ �7 ⊕ �8 ⊕ �9 ⊕ �10 ⊕ 2�11 ⊕ 2�12

it is clear that a strong candidate to explain the ferrimagnetic component observed macroscopically
is the representation �3, for which the magnetic moments are aligned along the c-axis for both sites:
Dy(0, 0, mzDy) and Mnj=1,...6(0, 0, mzMn). This representation should be combined with the appropriate
representation(s) corresponding to k2 = (0, 0, �). The Wyckoff positions of Mn (6i) are now split in
two orbits of three atoms each. The decomposition of the magnetic representation in small irreps is as
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Figure 19. Powder diffraction pattern of DyMn6Ge6 at 11 K taken at DMC (PSI) with  = 2.425 Å. The first
propagation vector is k1 = (0, 0, 0) and the second one is k2 = (0, 0, �) with � ≈ 0.1651(4), quite close to � = 1/6.
The calculated nuclear diffraction pattern is shown as a continuous line.

follows:

�m,k2=(0,0,�) (Dy-1a) = �2 ⊕ �6

�m,k2=(0,0,�) (Mn-6i) = �2 ⊕ �3 ⊕ �4 ⊕ �5 ⊕ 2�6

The representation �2 for Dy provides a basis function with Fourier components along c:

Sk2,Dy,�2 = (0, 0, u)

The Fourier coefficients for Mn atoms are all of the same type (along the c-axis) as those for Dy atom.
The representation �2 for k2 combined with the representation �3 for k1 will give a collinear magnetic
structure with fluctuating magnetic moments along the c-axis. This can be immediately rejected by
comparing with experimental data.

The special position occupied by Dy atoms (a simple Bravais lattice) induces strong constraints for
the possible magnetic models for describing the whole magnetic structure. The only possibility is to
consider the representation �6 (2D irrep) that gives a Fourier component for Dy that is within the ab

plane:

Sk2,Dy,�2 = (u, v, 0) + i√
3

(u + 2v, 2u + v, 0) = 1

2
(R + iI)

If we put the restriction of a constant magnetic moment, the real part R must be perpendicular to the
imaginary part I (e.g. R · I = 0). This is obtained using real values for u and v and by putting v = 0 (or
u = 0), so:

Sk2,Dy,�2 = (u, 0, 0) + i√
3

(u, 2u, 0)

It is very easy to verify that (u, 0, 0) is perpendicular to (u, 2u, 0) in the hexagonal reference frame. The
magnetic structure for the Dy atoms corresponds in this case (if we combine with �3 for k1) to a conical
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structure, described by the expression:

ml(Dy) =
∑

k1,k2,−k2

Sk(Dy)e−2
i k Rl = (0, 0, mzDy)

+2 (u, 0, 0) cos{2
k2 Rl} + 2√
3

(u, 2u, 0) sin{2
k2 Rl}

The vectors are given with respect to the unitary frame along the axes of the conventional cell. If we
adopt a Cartesian frame with x along a, y in the ab plane and z along c, the Fourier coefficient for Dy
is then: Sk2,Dy,�2 = 1/2mDy(x + iy), with mDy = 2u the amplitude of the helical moment of Dy. The
equation can be simplified as (remember that k2 = (0, 0, �)):

ml(Dy) =
∑

k1,k2,−k2

Sk(Dy)e−2
ik Rl = mDy cos(2
�l3)x + mDy sin(2
�l3)y + mzDyz

The amplitude of the magnetic moments of the Dy atoms is independent of the particular unit cell of the
crystal and is given by:

ml(Dy) = √
ml · ml =

√
m2

Dy cos2(2
�l3) + m2
Dy sin2(2
�l3) + m2

zDy =
√

m2
Dy + m2

zDy

The full cone angle is given by the expression �Dy = 2 arctan(mDy/mzDy). The pitch angle of the helical
part is determined by the propagation vector: � = 2�� ≈ 59.4◦, corresponding nearly to 60◦. The conical
structure for Dy atoms (only two free parameters) breaks the 6-fold symmetry of the little groups of k1

and k2. The only symmetry operator of the original space group that remains in this spin configuration
is the centre of symmetry in which the Dy atom is sited. It is then possible that the basis functions of
the irrep �6 for Mn atoms are not adequate to construct a magnetic model explaining the experimental
diffraction pattern. This is effectively the case. The Fourier coefficients of Mn atoms in the �6 irrep as
obtained from the output of BasIreps are:

SYMM x,y,z                      Atom: Mn1_1     0.5000  0.0000  0.2506 

Sk(1): (u-r0.w+r0.p,v+r0.p,0)+i.r1.(-w+p,p,0) 

SYMM -y,x-y,z                   Atom: Mn1_2     0.0000  0.5000  0.2506 

Sk(2): (r0.v+p,-r0.u+r0.v+w,0)+i.r1.(v,-u+v,0) 

SYMM -x+y,-x,z                  Atom: Mn1_3    -0.5000 -0.5000  0.2506 

Sk(3): r0.(u-v+w,u+w-p,0)+i.r1.(-u+v-w,-u-w+p,0) 

Values of real constants r0, r1... 

    r0 =   0.500000 = cos(π/3)    r1 =   0.866026 = sin(π/3) 

Similar Fourier coefficients are obtained for the other three atoms of the other orbit related by the
inversion centre at the origin. The number of free parameters without considering symmetry is:
6 atoms × 6 Fourier components (3 real + 3 imaginary) = 36 (see equation (58)). For the given orbit we
have up to 8 free parameters (nν = 2, dim �6 = 2 → 2 × nν × dim �6 = 8, see equation (58)) for the
most general magnetic model. If we consider the highest symmetry, the atoms of the other orbit have
Fourier coefficients constrained to be the same (in-phase) or in anti-phase to those of the orbit given
above. If we consider as completely independent the second orbit we have a total of 16 free parameters
to handle. The Fourier coefficients can further be simplified if we select particular directions in the
representation space (selection of free parameters). For instance, if we consider p = w = 0 we have:

Sk(1) = (u, v, 0); Sk(2) = (v, v − u, 0) exp{i�/3}; Sk(3) = (u − v, u, 0) exp{−i�/3}
A similar set of Fourier coefficients is obtained for u = v = 0 and other cases can be found by
establishing relations between coefficients. In all cases a magnetic moment configuration reminiscent of
the 6-fold axis is obtained but none of them corresponds to the observed diffraction pattern. A reduction
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Figure 20. Refined powder diffraction pattern of DyMn6Ge6 at 11 K with the model discussed in the text: double
conical structure with a pitch angle (2��) close to 60◦. Asterisks signal impurity lines. The scheme of the magnetic
structure on the left corresponds to a view along the c-axis whereas the right panel has the c-axis horizontal.

of symmetry is necessary for obtaining appropriate Fourier coefficients. An indication on how to handle
this problem comes from the observation that in all this kind of compounds the observed Mn-Mn
interactions are ferromagnetic. A spin configuration that tries to satisfy the requirement of ferromagnetic
interaction implies Fourier coefficients identical for all six Mn atoms in the (6i) positions but affected
by opposite phase factors

Sk(1, 2, 3) = 1

2
mMn(x + iy) exp{−2�i�}; Sk(4, 5, 6) = 1

2
mMn(x + iy) exp{2�i�}

That gives only two free parameters for describing the helical part of the magnetic structure of the Mn
atoms. We have used the same Cartesian frame that we discussed for Dy atoms. The magnetic moment
of the Mn atoms can be described by the formula:

ml(Mnj ) =
∑

k1,k2,−k2

Sk(Mnj )e−2
i k Rl = mMn cos{2
(�l3 + �j )}x + mMn sin{2
(�l3 + �j )}y + mzMnz

with �j = � for j = 1, 2, 3 and �j = −� for j = 4, 5, 6. The basis functions corresponding to the above
Fourier coefficients can be obtained by mixing the appropriate representations of the ortho-hexagonal
subgroup of P 6/mmm, Cmmm (2a + b, b, c) for k = (0, 0, �) and making the constraint of equal
moments for the Mn atoms. The use of this model gives a very good agreement with the experimental
data. In Figure 20 we present the refinement of the powder diffraction pattern with the discussed model.
Pictures of the magnetic structure are also shown.

We give below the relevant part of the input file for FullProf corresponding to the description of the
magnetic structure with two propagation vectors, using spherical components for the Fourier coefficients
that allow an easy control of the perpendicular constraint of the real and imaginary parts. The total
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number of free parameters for the magnetic structure is 5.

!------------------------------------------------------------------------------- 

!  Data for PHASE number:   2  ==> Current R_Bragg for Pattern#  1:     4.82 

!------------------------------------------------------------------------------- 

DyMn6Ge6 magnetic 

! 

!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 

   6   0   0 0.0 0.0 1.0  -1  -1  -1   0   0          0.000  -2   7  0 

! 

P 6 m m                  <--Space group symbol for hkl generation 

!Nsym Cen Laue MagMat 

   3   1  12   1 

! 

SYMM   x, y, z 

MSYM   u, v, w, 0.00 

SYMM  -y, x-y, z 

MSYM   u, v, w, 0.00 

SYMM  -x+y, -x, z 

MSYM   u, v, w, 0.00 

! 

!Atom   Typ  Mag Vek    X      Y      Z       Biso    Occ      Rm      Rphi  Rtheta 

!     Im   Iphi   Itheta  beta11  beta22  beta33    MagPh 

Dy     JDY3  1 -2  0.00000 0.00000 0.00000 0.00000  0.33333   6.195   0.000  90.000 

                      0.00    0.00    0.00    0.00     0.00   21.00    0.00    0.00 

     6.195  90.000  90.000   0.000   0.000   0.000  0.00000 

     21.00    0.00    0.00    0.00    0.00    0.00     0.00 

Dy     JDY3  1  1  0.00000 0.00000 0.00000 0.00000  0.33333   3.932   0.000   0.000 

                      0.00    0.00    0.00    0.00     0.00  161.00    0.00    0.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

Mn1    MMN2  1 -2  0.50000 0.00000 0.25098 0.00000  1.00000   1.783   0.000  90.000 

                      0.00    0.00   81.00    0.00     0.00   31.00    0.00    0.00 

     1.783  90.000  90.000   0.000   0.000   0.000  0.55732 

     31.00    0.00    0.00    0.00    0.00    0.00    71.00 

Mn1    MMN2  1  1  0.50000 0.00000 0.25098 0.00000  1.00000  -1.149   0.000   0.000 

                      0.00    0.00   81.00    0.00     0.00  171.00    0.00    0.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

Mn2    MMN2  1 -2 -0.50000 0.00000-0.25098 0.00000  1.00000   1.783   0.000  90.000 

                      0.00    0.00  -81.00    0.00     0.00   31.00    0.00    0.00 

     1.783  90.000  90.000   0.000   0.000   0.000 -0.55732 

     31.00    0.00    0.00    0.00    0.00    0.00   -71.00 

Mn2    MMN2  1  1 -0.50000 0.00000-0.25098 0.00000  1.00000  -1.149   0.000   0.000 

                      0.00    0.00  -81.00    0.00     0.00  171.00    0.00    0.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

!-------> Profile Parameters for Pattern #  1 

!  Scale        Shape1      Bov      Str1      Str2      Str3   Strain-Model 

  92.370       0.00000   0.60736   0.00000   0.00000   0.00000       0 

    11.00000     0.000    91.000     0.000     0.000     0.000 

!       U         V          W           X          Y        GauSiz   LorSiz Size-Model 

   1.683215  -1.301411   0.378740   0.000000   0.023638   0.000000   0.000000    0 

     61.000    141.000    151.000      0.000     51.000      0.000      0.000 

!     a          b         c        alpha      beta       gamma      #Cell Info 

   5.208272   5.208272   8.152275  90.000000  90.000000 120.000000    

  111.00000  111.00000  131.00000    0.00000    0.00000  111.00000 

!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4      S_L      D_L 

  1.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.02495  0.03168 

     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00 

! Propagation vectors: 

   0.0000000   0.0000000   0.0000000          Propagation Vector  1 

    0.000000    0.000000    0.000000 

   0.0000000   0.0000000   0.1648251          Propagation Vector  2 

    0.000000    0.000000  121.000000 

. . . . . . . . .  
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Figure 21. Detail of the refined powder diffraction pattern of DyMn6Ge6 by fixing the phases of Mn atoms to
� = 0 (top) , and leaving free the phases (bottom) using the option JBT = 5 in FullProf (see text).

The refined values of the magnetic free parameters, and their standard deviations, given in the text
and corresponding to the values of the above input file, are the following:

k1 = (0, 0, 0),

Sk1 (Mn) = −1.149(64)z

Sk1 (Dy) = 3.932(87)z

k2 = (0, 0, �), � ≈ 0.16483(17),

Sk2 (Dy) = 1

2
6.195(73) (x + iy)

Sk2 (Mn1,2,3) = 1

2
1.783(39) (x + iy) exp {−2
i0.5573(15)}

Sk2 (Mn4,5,6) = 1

2
1.783(39) (x + iy) exp {2
i0.5573(15)}

It is easy to see that the magnetic moments of Mn or Dy atoms within a basal plane are all parallel
between them (as a result of dominant ferromagnetic Mn-Mn and Dy-Dy interactions). The orientation
of Mn moments is nearly antiparallel with that of Dy atoms. The Mn-Dy interactions must be
mostly antiferromagnetic and a competition along the c-axis between first and second neighbours
must be responsible of the incommensurability. The full cone angle of the Dy sublattice is �Dy =
2 arctan(6.195/3.932) ≈ 115.19◦ and that of the Mn sublattices is �Mn = 2 arctan(1.783/1.149) ≈
114.40◦, quite close to that of Dy atoms.

Notice that the refined phase � = 0.5573(15) = 1/2 + 0.0573(15) is not equal to what will be
expected from the consideration that a common modulation wave embraces the whole structure �c =
1/2 + krMn = 1/2 + 0.16483 × 0.25098 = 1/2 + 0.04137. The difference � ≈ 0.016 is higher than three
standard deviations. This can be tested using the option JBT = 5 that describes conical structures in real
space (in terms of magnetic moments, cone angles and phases) using an underline Fourier coefficients
of the form given by expression (34′) in which the explicit atom positions are part of the phases. If we
fix the phase � = 0 and refine the data we obtain a reasonable refinement with RMag = 5.453% but with
significant misfit in the lower angle part of the pattern (see figure 21, top). If we free the parameter we
obtain � = 0.0158(16) and a better refinement RMag = 4.746% (see figure 21, bottom).
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In this kind of refinement (JBT = 5), the free parameters are: the value of the moment of Dy and Mn
atoms, refined to m(Dy) = 7.34(9)�B and m(Mn) = 2.11(4)�B, respectively, the angle of each magnetic
moment with the axis of the cone (half the angle of the cone) and a phase factor per atom. We have
constrained the half angle of the cone of Dy and Mn atoms to have a difference of 180◦ (same angle but
the cone is oriented in the opposite direction). The refined value of the half angle of the cone is 57.5(6)◦.
The relevant part of input control file for FullProf, using only four free parameters, is given below (all
the magnetic atoms must be given explicitly when JBT = 5):

!-------------------------------------------------------------------------------

!  Data for PHASE number:   2  ==> Current R_Bragg for Pattern#  1:     4.75

!------------------------------------------------------------------------------- 

DyMn6Ge6 magnetic 

! 

!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 

   7   0   0 0.0 0.0 1.0   5   0   1   0   0          0.000  -1   7   0 

! 

P 6 m m                  <--Space group symbol for hkl generation 

!Nsym Cen Laue MagMat 

   0   1   1   0 

!Atom   Typ  Mag Vek    X      Y      Z       Biso    Occ      Mom     Phic   Phase 

!   Phi & Theta  of Cone-axis + unused params 

Dy     JDY3  1  0  0.00000 0.00000 0.00000 0.00000  1.00000   7.343 -57.527   0.000 

                      0.00    0.00    0.00    0.00     0.00  121.00 -151.00    0.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

Mn1    MMN2  1  0  0.50000 0.00000 0.25095 0.00000  1.00000   2.113 122.179   0.016 

                      0.00    0.00  111.00    0.00     0.00  131.00  151.00  541.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

Mn2    MMN2  1  0 -0.50000 0.00000-0.25095 0.00000  1.00000   2.113 122.179  -0.016 

                      0.00    0.00 -111.00    0.00     0.00  131.00  151.00 -541.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

. . . . . . . . . . . . . . .  

Mn6    MMN2  1  0 -0.50000-0.50000-0.25095 0.00000  1.00000   2.113 122.179  -0.016 

                      0.00    0.00 -111.00    0.00     0.00  131.00  151.00 -541.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

. . . . . . . . . . . . . . .  

From the refined magnetic structure we can see the presence of approximate invariance symmetry related
to the presence of a 61 screw axis. If we consider that the propagation vector is rational and exactly
equal to k = (0, 0, 1/6), the crystal and magnetic symmetry can be described by a common Shubnikov
group. A simple 6-fold superstructure (a, b, 6c) allows to deduce as subgroups of G = P 6/mmm, the
groups H1 = P 6122 and H2 = P 61. By inspecting the scheme of the refined magnetic structure it is
readily seen that the maximum symmetry corresponds to the Shubnikov group P 612′2′. We know that
the propagation vector is changing with temperature above Tt = 100 K (see reference [38]), however
below this temperature the value of � is locked (within the resolution of the diffraction pattern we can
consider that � = 1/6). With this assumption one can use the Shubnikov group P 612′2′ (a, b, 6c) for
describing the symmetry. However if we start from this assumption from the beginning we have to
face the fact that in this group we have a single site for Dy atoms and three sites for Mn atoms, in
principle with independent values of their magnetic moments. The number of magnetic free parameters
in P 612′2′ (a, b, 6c) is 2 components for Dy atoms, which are in a special position with representative
magnetic moment (u, 2u, w), plus three components for each Mn site (3 × 3 = 9). So, there are
11 free parameters. I we assume the same value of the magnetic moment for all Mn sites and the
ferromagnetic coupling within planes we obtain a model with the same number of free parameters as
that of the representation analysis: 2 parameters for Dy and 3 parameters describing all Mn atoms. These
constraints are not imposed by symmetry, but it is a physically reasonable assumption. On the other hand,
the Shubnikov analysis allows exploring the associated distortions of the nuclear structure by varying
the positional parameters of the nuclear structure. We have not used this option here because the Q-range
is limited. We have performed a refinement using FullProf in the Shubnikov group approach (JBT = 10)
with only five free magnetic parameters and obtained a comparable refinement (see figure 22).
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Figure 22. Refined powder diffraction pattern of DyMn6Ge6 at 11 K with the model based in the Shubnikov
group P 612′2′. In this approach we have constrained the magnetic moments of the Mn atoms in the same basal
plane (same z-coordinate) to be ferromagnetically coupled. The obtained values, in �B, of the magnetic moment
components in the hexagonal unitary frame for Dy are: m(Dy) = (3.57(4), 7.14(8), 3.92(9)); and for those of Mn
atoms: m(Mn) = (−0.32(2), −1.92(4), −1.13(6)).

The complete part of input control file for FullProf of a mixed nuclear and magnetic phase is given
below:

!------------------------------------------------------------------------------- 

!  Data for PHASE number:   1  ==> Current R_Bragg for Pattern#  1:     3.16 

!------------------------------------------------------------------------------- 

DyMn6Ge6 

! 

!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 

   8   0   0 0.0 0.0 1.0  10   0   0   0   0       5566.008   0   7   0 

! 

P 61 2 2             Magnetic symmetry below 

! Time Reversal Operations on Crystal Space Group 

  1  1  1  1  1  1 -1 -1 -1 -1 -1 -1 

!Atom   Typ    Mag Vek      X         Y         Z       Biso      Occ    N_type  Spc/Fftype /Line 

below:Codes 

!       Rx       Ry        Rz        Ix        Iy        Iz      MagPh  / Line below:Codes 

!      beta11   beta22   beta33   beta12   beta13   beta23  / Line below:Codes 

Dy     JDY3      1  0    0.00000   0.00000   0.00000   0.00000   0.50000    1    0 

                            0.00      0.00      0.00      0.00      0.00 

     3.56539   7.13079   3.92108   0.00000   0.00000   0.00000   0.00000 <-MagPar 

       11.00     12.00     21.00      0.00      0.00      0.00      0.00 

Mn1    MMN2      1  0    0.50000   0.00000   0.04181   0.00000   1.00000    1    0 

                            0.00      0.00     71.00      0.00      0.00 

    -0.32364  -1.91453  -1.13012   0.00000   0.00000   0.00000   0.00000 <-MagPar 

       31.00     41.00     51.00      0.00      0.00      0.00      0.00 

Mn2    MMN2      1  0    0.00000   0.50000   0.04181   0.00000   1.00000    1    0 

                            0.00      0.00     71.00      0.00      0.00 

    -0.32364  -1.91453  -1.13012   0.00000   0.00000   0.00000   0.00000 <-MagPar 

       31.00     41.00     51.00      0.00      0.00      0.00      0.00 

Mn3    MMN2      1  0    0.50000   0.50000   0.04181   0.00000   1.00000    1    0 

                            0.00      0.00     71.00      0.00      0.00 

    -0.32364  -1.91453  -1.13012   0.00000   0.00000   0.00000   0.00000 <-MagPar 

       31.00     41.00     51.00      0.00      0.00      0.00      0.00 

Ge1    GE        0  0    0.33333   0.66667   0.08333   0.00000   0.50000    0    0 

                            0.00      0.00      0.00      0.00      0.00 

Ge12   GE        0  0    0.66667   0.33333   0.08333   0.00000   0.50000    0    0 

                            0.00      0.00      0.00      0.00      0.00 

Ge2    GE        0  0    0.33333   0.66667   0.00000   0.00000   1.00000    0    0 

                            0.00      0.00      0.00      0.00      0.00 

Ge3    GE        0  0    0.00000   0.00000   0.05760   0.00000   1.00000    0    0 

                            0.00      0.00     81.00      0.00      0.00 

!-------> Profile Parameters for Pattern #  1 

!  Scale        Shape1      Bov      Str1      Str2      Str3   Strain-Model 

  2.5702       0.00000   0.60647   0.00000   0.00000   0.00000       0 

    61.00000     0.000   101.000     0.000     0.000     0.000 

!       U         V          W           X          Y        GauSiz   LorSiz Size-Model 

   1.688325  -1.307224   0.379423   0.000000   0.024737   0.000000   0.000000    0 

    131.000    141.000    151.000      0.000    171.000      0.000      0.000 

!     a          b         c        alpha      beta       gamma      #Cell Info 

   5.208386   5.208386  48.914703  90.000000  90.000000 120.000000 

  111.00000  111.00000  121.00000    0.00000    0.00000  111.00000 

!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4      S_L      D_L 

  1.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.02495  0.03168 

     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00
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12. FINAL REMARKS

We have presented in these notes the basics of the representational analysis of magnetic structures
using several examples that illustrate the problems one can encounter when dealing with the analysis of
powder neutron diffraction data. These notes do not contain a detailed description of the methods used
for determining magnetic structures. The user may find in the web site of the FullProf Suite [28] a series
of examples and tutorials that can be followed together with the present notes in order to get a deeper
insight into the representational method. We hope, in any case, that the readers will find the presented
examples useful for their own research.
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