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"Whenever you have to do with a structure-endowed entity Z 
try to determine its group of automorphisms" 

- Herlnann Weyl 
in Symmet ry  

Abs t r ac t .  We show how to exploit symmetry in model checking for 
concurrent systems containing many identical or isomorphic components. 
We focus in particular on those composed of many isomorphic processes. 
In many cases we are able to obtain significant, even exponential, savings 
in the complexity of model checking. 

1 I n t r o d u c t i o n  
In this paper, we show how to exploit symmetry  in model checking. We fbcus 

on systems composed of many identical (isomorphic) processes. The globa.1 state 
transition graph M of such a system exhibits a great deal of symmetry,  charac- 
terized by the group of graph automorphisms of M .  The basic idea. underlying 
our method is to reduce model checking over the original structure A/l, to model 
checking over a smaller quotient structure A/l, where symmetric  states are iden- 
tified. In the following paragraphs,  we give a more detailed but, still informal 
account. 

More precisely, the symmetry  of AJ is reflected in the group, Aut IM, of 
permutat ions  of process indices defining graph automorphisms of M .  Similarly, 
any specification formula, f intended to capture correctness of M in a particul~ar 
Temporal  Logic (say, CTL*) exhibits a certain degree of symmetry  reflected 
in the group, Aut f ,  of permutat ions of process indices that  leave f invariant, 
utiliizing conmmtat iv i ty  and associativity of A, V, etc. 

We show that  for any G contained in Aut M ,  we can define M = M / G  to 
be the quotient structure obtained by identifying any two states s, t of M that  
are in the same orbit  (or equivalence class) of the state space of J~  induced by 
G in the usual way: there exists a permutat ion a" in G such tha.t a'(s) = t. In 
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other words, s and t are the same except for a permutation of their indices. (For 
example: s = ( g l ,  T2, C3), t = (N2, T3, C1) ). 

We next show that such a quotient structure ~d corresponds in a coarse sense 
to the original structure Ad, so that if there is a path in .s there is an analogous 
path in Ad, and conversely. However, the correspondence may not be sufficiently 
precise to (directly) model check a specification f .  If we further stipulate that  G 
be contained in Aut .M N Aul f then we get a precise correspondence enabling 
us to establish 

2 t d , s ~ ] '  iff A d , ~ f  

where f is a formula of CTL* or Mu-Calculus, and g indicates the equivalence 
class of s. 

Determination of a. suitable G is potentially a difficult problem. We note 
that  G = Au~ Ad is a possibility, and the fundalnental problem of computing 
Aut M appears to be a computationally difficult one, that  is polynomial time 
equivalent to graph isomorphism (el. [Ho82]). Fortunately, since A4 is derived 
from a concurrent system ? = / / iKi  consisting of many isomorphic processes 
Ki, we are able to show that Aut M = Aut CR, where CR is the process 
communication graph for P.  Since CR often follows a simple, standard pattern, 
Aut CR is often known as a basic fact of group theory. Moreover, for massively 
parallel architectures Aut M = Aut CR is likely to be a large group reflecting 
a high degree of symmettry. 

We emphasize here that any subgroup G of Aut M (? Aut .f is sufficient. The 
largest one possible is desirable for maximal compression. For many of the auto- 
morphism groups G determined in practice we can efficiently and incrementally 
compute M / G ,  thereby circumventing the construction ofAd. Of cours__e, we then 
accrue the advantage of model checking over the smaller structure 34 = JM/G. 

One common and advantageous case occurs when G = Sym [1 : n], the set 
of all permutations on indices [1 : hi. For a system with n processes each with l 
local states, the orginal structure can have on the order of l '~ states, while 3d /G  
has on the order of n t states. When l is fixed and relatively small, while n is 
large, then n z << 1 ~. We Can thus realize exponential savings. 

A complication can occur when .f is a complex formula with little symmetry. 
Then Auto f and G may be small, resulting in little compression using just the 
techniques described above. We argue that it is frequently beneficial to decofi~- 
pose f into smaller constituent subformulae and check those individually. We 
also show how the symmetry of individual states can be exploited for further 
gains in efficiency. 

Finally, we give an Mternative, uniform mel~hod that permits use of (essen- 
tially) the single quotient M = 3d/Aut  M for model checking any specification 
f ,  without computing and intersecting with Auto f .  The idea is to annotate 
the quotient with "guides", indicating how coordinates are permuted from one 
state to the next in the quotient. An automaton for .f designed to run over 

p a t h s  through M ,  can be modified into another automaton run over M using 
the guides to keep track of shifting coordinates. 
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The remainder of the paper  is organized as follows: in section 2 we give 
preliminary definitions and terminology. In section 3 we give the main techni- 
cal results establishing correspondences between the quotient structures and the 
orginal structures. In section 4 we show how the correspondences are applied 
to reduce model checking over A4 to A 4 / G  using the simplification provided by 
A u t  M = Au t  C R .  We also discuss optimizations based on fornmla decompo- 
sition and state symmetry.  An alternative approach is discussed in Section 5. 
Examples are considered in section 6. In the concluding section 7 we discuss 
related work. 
2 P r e l i m i n a r i e s  

2.1 M o d e l  o f  C o m p u t a t i o n  
We deal with structures of the form M = (.S, TO) where 

- S --- L I • D y is the finite set of stales, with L a finite set of individual 
process locatioits, I the set of process indices, D is a finite data domain, and 
V is a finite set of shared variables. We  remark that  D and V are optional, 
in which case we define S = L I.  When present, D and V can have their own 
additional internal organization. In particular, they can depend on I.  

' -  Tr C S • S which represents the moves of the system. 

Notation: For convenience, each state s = ( # , s " )  E S can be written in 
the f o r m ( g 1 , . . .  ' = d,.  'v' , e,~, v .. = d ' )  indicating that  processes 1, . .  , n are in 
locations e , . . . ,  e', respectively and the shared variables v . . .  v ~ are assigned da ta  
values d . . .  d ~, respectively. 

As usual, a path through f14 is a finite or infinite sequence of states such 
that  every consecutive pair of states is in 7r We denote it by So, sl ,  s2 , . . ,  or by 
so ~ sl :. s 2 , . . ,  not bothering to explicitly indicate the last state for finite 
paths.  A fullpalh is a maximal  path, i.e., either an infinite path  or a finite one 
whose last s tate lacks an TO-successor. 

In practice, for ordinary model checking, M ,  is the global state transition 
graph of a finite state concurrent program 7 ) of the form / A K i  consisting of 
processes K1 . . . .  , K,, running in paral!~el. Each Ki may be viewed as a finite 
state transition graph with node set L. An arc from node ~ to node g may be 
labelled by a guarded command B ~ A. The guard B is a predicate that  can 
inspect shared variables and local states of "acessible" processes The action A is a 
set of simultaneous assignments to shared variables v := d I1""  II v' := d'. When 
process K~ is in local state e and the guard B evaluates to ~rue in the current 
global state, the global system can nondeterministically choose to advance by 
firing this transition of K~ which changes the local state of Ki to be g~ and the 
shared variables in V according to A. Thus the arc from ~ to/?' in K,: represents 
a local transition of Ki that  we denote: g : B ~ A : t~ ~ 

In this paper,  we will further stipulate that  (i) All the Ki ' s  are isomorphic, 
i.e., identical up to renaming the index i; and (ii) There is a communicat ion 
relation C R  describing the network topology of which processes can communicate  
with each other. Pair (i, j )  E CR, iff I(~ can communicate  with Kj iff I i j  can 
communicate  with h'i. Formally, C R  C I • I is an irreflexive, symmetr ic  binary 
relation on I. 
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The structure .M corresponding to P is thus defined using the obvious op- 
erational semantics. First, the set of all possible states S is determined from P 
because it provides us with the set of local locations L, process indices I, vari- 
ables V, and data domain D. We define s ----+ t E Tr iff 
3i E I process Ki causes s to move to t, denoted s ~: t ~ 7~. iff 
3i E I 3 local transition ~-i = ~: : Bi ~ Ai : mi of Ki  which drives s = (J ,  s ' )  
to t = (tP,t ") in .M; this means the i-th component of s / equals gi, the i-th 
component of s" equals mi, predicate Bi(s) = true, and t"  = A i ( s ' ) .  

We are often interested in just the set of states reachable by executing 7 ) 
starting in a particular start state so. It is oftel~ most natural to consider execu- 
tion of a Program appropriately intialized. Moreover, the set of states reachable 
from So can be nmch smaller than the set of all possible states. It is thus impor- 
tant to note tha.t we can incrementally generate the structure M corresponding 
to 7) starting in state so. We use the notation Ki(s) to denote the set of  states 
reachable from state s by a single step of process Ki. We begin with so, propa- 
gate it by adding in the members of the various Ki(so)'s, and then propagate the 
Ki's of those members, and so on until closing off. See section 4.2 for a helpful 
generalization of this idea.. 

2.2 Logics of  Programs 
We assume a familiarity with basic aspects of temporal and modal logics 

of programs. (cf. [Era90], [MP92], [St91]). We use the usual linear temporal 
operators F (sometime), G (always), X (nexttime), and U (strong until). We 
get bra.nching time logic by combining these with the path quantifiers A' (for 
all fullpaths) and E (for some fullpath). The basic modalities of CTL are of the 
form A or E followed by a single F, G ,X,  or U applied to pure propositional 
arguments. The formulae of CTL are compositions and boolean combinations 
of its basic modalities. CTL* is defined analogously but with basic modalities 
of the form A or E followed by an arbitrary formula of propositional linear 
temporal logic with F, G, X and U. The propositional Mu-calculus is another 
very powerful logic built up from V, A, ~, atomic propositions and variables, 
A X ,  E X ,  and the extremal fixpoint operators # (least fixpoint) and u (greatest 
fixpoint). It can encode, often succinctly, most other logics of interest. 

2.3 A p p l i c a b l e  G r o u p  T h e o r y  

We sumarize the essential notions from group theory needed here. We refer 
the reader to one of the many standard texts discussing this topic (cf. [He6~]) 
for additonal information. A group jC is a set G together with a. binary opera- 
tion on G, called the group multiplication, that  is associative, has an identity, 
and has an inverse for each group element. In practice, we write just G for 
and multiplication may be indicated by concatenation. H _< G denotes H is a 
subgroup of G. 

A permutation ~r on a finite set ofobects  I is a 1-1, onto mapping ~" : I ~ I. 
The set of all permutations on I, denoted S y m  I, forms a group under functional 
composition: if permutations ~d,Tr" G S y m  I then rc = re" o rd E S y m  . Here the 
order of functional composition in 7r" o 7r ~ is to first apply ~-~ then apply 7r'. If 
J C I then Stab J denotes {~r : V j E J 7r(j) = j}.  Id is the identity permutat ion 



467 

or relation on I .  
Given an indexed object b, i.e. one whose description depends on I ,  we can 

defined a notion of permutation ~r being applied to b, denoted 7r(b). In general, 
rr(b) is obtained from b by simultaneously replacing every occurrence of index 
i E I by ~r(i) We consider some examples of specific types of objects. 

Given state s = (N1, T2, C3, turn  = 1), where {N, T, C} C L, turn  is a s h a r e d  

variable, and rr : 1 ~ 2, 2 ~-+ 1, 3 ~-+ 3, we have rr(s) = (N~(1), T~(2), C=(3), turn  = 
~r(1)) = ( N 2 , T l , C 3 , t u r n  = "2) = (Tt,g,~,C3, t u r n =  2). We define Aut  s = {~r E 
s y , ,  I :  = s}. 

For a formula f of propositional or temporal  logic (over an alphabet  of atomic 
propositions indexed by I (cf. [CG89]) Such as f = P1 A P2 with rr as above, we 
h&ve rr(f) = P~(1) A P~(2) = P2 A P1 -- P1 A P~ = f .  However, for g = P1 A -~P2, 
we get the inequivalent It(g) = P~(1) A -~P~(2) = P2 A -~P1. We define Aut  f = 
{rr E S y m  I : rr(f) _= f} .  The determination of Aut  f is discussed further in 
section 4.1. 

If  f is a CTL* formula with q l , . . . ,  q,~. all the maximal  propositional subfor- 
mulae of f w.r.t, the subformula relation, it is also useful to define Auto f = 
Aut  ql M. . . M Aut  q,,. Auto  .f consists of those permutat ions  respecting the sym- 
metry  not only of f but also of its major  constituent subfommlae  ql. Similarly 
for the Mu-calculus. 

We will also define a notion of automorphisln h of structure A/I into itself. By 
analogy with the usual definition of graph automorphism for labelled, directed 
graphs we say the following: 

An automorphism h of structure A/I = (,9, 7~) is a mapping h : S : S that  
1. is 1-1, onto on S, 
2. preserves edge structure: s ~ t E 7~ implies h(s) , h(t) e Td, and 
3. preserves "labelling" of states up to a permutat ion:  h(s) = rrh,~(s) for some 
rrh,~ E S y m  I. 

Observe, in particular,  that  a permutat ion 7r on I,  viewed a mapping  ,9 ~ ,9, 
may be an au tomorphism of M ,  as it fulfills the 1st and 3rd criteria. If it also 
fulfulls the 2nd criterion it is an automorphism of A~I. We define Aut j~4 = {rr : Tr 
defines an au tomorphism of j~4}. 

Finally, let G be any subgroup of S y m  I. Then we can define an equivalence 
relation - a  on states in ,9 where s - a  t iff 3 rr C G such that  t = rr(s). The 
equivalence class of s, denoted [sic., is also referred to as the G-orbit of  s. In the 
sequel, our task will be to find a subgroup G of S y m  I that  is a subgroup of 
Aut  Jr4 thus respecting the symmetry  of M and also is a subgroup of Auto f ,  
thus respecting the symmet ry  of .f. We then collapse G-equivalent states to get 
a "quotient structure" as defined below. We emphasize that auy subgroup G of 
Auto  All N Aut  f is sufficient for our application. The largest oue possible is 
desirable for maximal compression. 

2.4 Q u o t i e n t  C o n s t r u c t i o n  

Let M = (S,T~) be a structure and let = be an equivalence relation on S. 
Let S be a set of representatives of the parti t ion of 8 into equivalence classes 
induced by =_: for each s E ,9 there exists a unique representative -g of s such 
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t ha t  ~ E [s] O S.  Tlaen the quotient of A/f modulo =_, as specified by the set of  
representa t ives  S,  is ~ = A ~ f / -  = (S,  ~ )  where ~ > t E ~ iff there  exists 
s ~ - ~ and there exists t ~ - ~ such t ha t  s ~ ~ t ~ E 7r When  -- is - a  we wri te  
jus t  M / G  or M .  
3 Correspondence  Resul t s  

C o r r e s p o n d e n c e  L e m m a  3.1 
There  is a bidirect ional  correspondence between pa ths  of  the  original  struc- 

ture M and the quot ient  s t ruc ture  M = M / G  for any G < Aut  A4: 
(i) F rom the s t ruc ture  A4 to the quot ient  A4: i f x  = so, s l ,  s 2 , . . ,  is a p a t h  in A/I, 
t hen  there is an linage pa th  �9 = so, s l ,  s .~, . . ,  of  corresponding representa t ives  
-gi =a si in . ,~. 
(ii) F rom the quot ient  .Ad to the s t ructure  M :  if ~ = so, s l ,  s2 . . . .  is a pa th  
in iL4, then for every s ta te  s~ - a  ~0 in .&4 there exists a Corresponding pa th  

t x' = go , s t , s~ , . . ,  in M of s ta tes  s i - a  ~ .  

P r o o f  T h e  direction (i) is immed ia t e  f rom the definition of quot ient  s truc-  
ture. 

For direction (ii) let z = so, Sl, s 2 , . . ,  be a pa th  in j~4. Choose an a rb i t r a ry  
s~ ---a 70. By definition of quo t i en t  s t ruc ture  and since 70 : :Sl E .A4, there 
exists s~ ~ = a  70 and there exists st  I ---6' 71 such tha t  s~ ~ ~ st I E .s 

Thus ,  by t rans i t iv i ty  s~ - - a  s~ and s~ = ~'(s~) for some p e r m u t a t i o n  ~r E G. 
Let s~ = ~r(.st~). Now, s~ ~ s t =  ~r(s~ ~) ~ ~r(st r) E M since s~ ; s~ ~ E .M 
and ,"c E G < A u t  lM. Moreover,  s t = 7r(st ~) ---a 71 as desired. 

The  first edge of x ~ is thus defined by s~ > s~. Cont inuing with  s~ the same  
! I a rgumen t  can be applied to exhibi t  g such t l iat  s~ : s~ E .t.4 and s ,  - a  ~ .  2 

! I Proceeding,  in this fashion we see t ha t  there is s i ~ si+ 1 E .M corresponding 
to each 7,: > 7i+1 of g in .M. The  process continues for all na tu ra l  numbers  i 
or until  the termilial  i o f u  if it is finite. Let  x ~ = s~ , s t : s~ : . . .  be the 
result ing pa th  in Ad. By construct ion,  it corresponds  to g in the desired way. [] 

R e m a r k  If  the Correspondence  Le lnma  is restr icted to pa ths  consist ing of a 
s ingle , t ransi t ion,  it amoun t s  to saying tha t  there is a b is imula t ion  between .s 
and M defined by =--a. [] 

The  Cor respondence  L e m m a  makes  it easy to prove the following funda-  
menta l  results sl__mwing tha t  model  checking over .A4 can be reduced to mode l  
checking over M .  

T h e o r e m  3.2 . M , s  ~ f i f f M / G , ~  ~ f for any a <_ Aut  M N Auto f 
where f is of  one of the following forms with p being a propos i t iona l  formula:  

- f = p ; o r  
- f = EXp;  or 
- f = EFp; or 
- f = E G p .  

P r o o f .  We note  Auto f = Aut f = Aut  p and argue by cases. 
f = p: .A.4,s ~ p i f f M , g  ~ p since s , g  are in the s ame  G - o r b i t  and 

G < Aut p. T h e  later  holds iff jUI/G,7 ~ p since the t ru th  of  a propos i t iona l  
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formula depends only the current state ~ which is present in both structures A4 
and M / G .  

f = EXp: The ::~ direction is immediate. The r direction is as follows. 
Assume M/G,'~ ~ EXp. Then there is a path of length 1, i.e., edge in M / G  of 
the form ~ �9 ~ -[ such that  M/G,'[ ~ p. Since p is propositional, M , ~  ~ p. By 
direction (ii) of the Correspondence Lemma, there is a corresponding path z'  in 
M of the form s = s' ~ t ~ with 7 =-c t ~, and since G <_ Autp, it must be that  
A4, t '  ~ p. Thus M ,  s ~ EXp. 

f = EGp: The =~ direction is immediate from the Correspondence Lemma 
direction (i). The ~= direction is as follows. Suppose M/G,~o ~ EGp. Then 
there is a fullpath x of the form ~0 : ~1 ~ ~2 "'" in M / G  such that,  for 
ea'~h i, M/G,'g~ ~ p .  By the Correspondence Lemma, part (ii), there is a 
corresponding path x ~ of the form so = s~ ~ s~ ~ s~ . . .  in M such that,  for 

! 
all i, we have s i : a  ~i. Since G < Aut p, the t ruth value of the propositional 

and ~i for each i. Hence, for all i, we have formula p must be the same for s i 
! ,g!  M, s i ~ p and A4, ~ Gp. By virtue of z' ,  we conclude M, so ~ EGp. 

f = EFp : The ~ direction is immediate from part (i) of the Correspondence 
Lemma. The r direction is as follows. Suppose A4/G,'~o ~ EFp. Then there is 
a path u in .~I/G of the form T~0, ~1 , . . . ,  ~: such that  .&I/G, -sk ~ p and, since p is 
propositional, M ,  :~k ~ p. By direction (ii) of the Correspondence Lemma, there 

" ' ~ ' In particular, is a corresponding path x ~ in M of the form so = s 0, s 1, s2 , . . ,  s~:. 
~k = e  s~., and since G < Autp, it must be that  M ,  s~. ~ p. Thus, .~, so ~ EFp. 
[3 

The above theorem can be generalized to 

T h e o r e m  3.3 .~4, s ~ f iff Ad/G,'~ ~ f for any G < Aut M NAuto f where 
f is any formula CTL*. 

A still stronger generalization is possible 

T h e o r e m  3.4 M ,  s ~ f iff ]~4/G,'~ ~ f for any G <_ Aut M NAuto f where 
f is any formula of the propositional Mu-calculus. 

The above results are directly applicable to arbitrary, composite formulae 
of CTL* or the Mu-calculns. However, it is sufficient to handle just the basic 
modalities of a logic like CTL* or the Mu-calculus for mode! checking the entire 
logic (cf. [Era90]). In some cases it is advantageous to decompose a formula into 
subformulae like basic modalities before applying the above results (cf. section 
4.3). 
4 Applications 

We wish to determine whether ,~4, So ~ f ,  where Ad is the global state 
transition graph of 7 ~ = //iKi and f is an arbitrary CTL* or Mu-calculus 
formula, without, incurring the potentia.lly enormous cost of constructing Ad. 
By Theoren~s 3.3 and 3.4, it suffices to instead construct M/G,  where G is a 

subgroup of Aur M V1 Auto f, and then check whether .M/G, so ~ .f. If G is 
large, reflecting a good deal of symmetry common to .h4 and f ,  then we should 
realize a significant savings. 

4.1 D e t e r m i n a t i o n  o f  t h e  G r o u p  G 
It should be noted, however, that to calculate G we must also determine 
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(i) Auto f ,  (ii) Aut A4, and (iii) the intersection of (i) and (ii). Each of these 
appears to be a difficult problem equivalent to Graph Isomorphism in general. 
Fortunately, with certain reasonable restrictions on M and f the computations 
of (i)-(iii) become much easier. 

4.1.1 D e t e r m i n a t i o n  of  t h e  A u t o m o r p h i s m s  o f  F o r m u l a e  For a propo- 
sitional logic formula f ,  there are classically known algorithms to compute Aut  f 
(cf. [Ko78]). If f is a temporal formula, that is a "monadic" basic modality f of 
the form E X p ,  EFp ,  or EGp where p is propositonal, then Aut  f = Aut  p. We 
also note the following. Let .f = Eh be a basic modality of CTL*. Then f of 
the form E h ( q l , . . . ,  qm) where each qi is a maximal, with respect to the subfor- 
mula relation, propositional subforlnulaof f .  We have the useful approximation 
AUto f = Aut  ql N . . .  (3 Aut  qm < Aut  f . Similarly for the  Mu-calculus. 

For a temporal or propositional formula f ,  A.ut f can often be determined 
by inspection, in practice, since f is often short or has a simple "indexed" rep- 
resentation. We have the following rules: 

(i) If f = g,: is a formula with only (occurrences of) the single index symbol i 
appearing, then Aut  f = Stab {i}. 

(ii) If f = gij is a formula with only (occurrences of) the two index symbols i, j 
appearing, then Aut f = Stab {i, j} .  

(iii) If f = Ale/gi  then Aut .f = S y m  I. 
If .f = Vi~l gi then Aut f = S y m  I. 

(iv) If f = Air  gij then Aut f = Sym  I. 
If f = Vi#jeI  gij then Aut  f = S y m  I. 

Here are some specfic example formulae and their automorphism groups: 

f = G P 1  
f = aP~ A GP2 
f = G(P1 ~ P~.) 
.f = AG(TI ~ AFC1)  
f = AiAG(Ti ~ AFCi )  

Aut  f ~ Stab {1} 
Aut  f = S y m  [1: 2]. Stab {1,2} 
Aut f = Stab {1,2} 
Aut  f = Stab {1} 
Aut f = S y m  I 

.[ = AicjAG(- ,Ci  V ",Cj) Aut  f = S y m  I 

To compute Auto f ,  by definition, involves intersections (cf. section 4.1.3), 
but ca.n often be determined by inspection. For monadic modalities f of CTL*, 
E X p ,  EFp ,  EGp, EGFp,  E F G p  , we have Auto f = Aut  = p. 

4.1.2 D e t e r m i n a t i o n  of  t h e  A u t o m o r p h i s m s  o f  S t r u c t u r e s  For many 
systems we can also determine Aut 2 / / b y  inspection of program 7 ). In the case 
when 7) = / / i K i  and all Ki are isomorphic, we are aided by the proposition 
below which intuitively asserts that under reasonable assumptions, Aut  h/[ = 
Aut  CR,  reflecting the communication topology of 7). 

T h e o r e m  4.1 If M is the global state transition graph of 7) = / / . i K i  where 
all Ki are isomorphic and each transition in It'i is of the form: 

gi : AjeCR(i)Bij ---"+lljeCR(i) Aij : mi 

then Aut  M = Aut  UR. 
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P r o o f  Aut  C R  C_ Aut  M :  Pick ~r E Aut  CR.  Assume s ) i  t E M .  Then 
in process Ki there is some local transition 

ri = ~i : A j e c R ( i ) B i j  --"+lijeCR(i) Ai j  : mi  

driving s to t in M .  Since Ki and If~(i) are isomorphic there is a local transition 
7r(ri) in I(~(i) of the following form: 

gr(i) : Arr(j)eCR(n(i))Br(i)~(j) --~l]r(j)eCR(*r(i)) Arr(1)r(j) "mr(1) 

Since 7r(j) fUlfills the roles of a bound variable, rr(n) can be written more simply 
a ~  

e~(i) : Aj'ECR(~(i))B~(i)j' ----~[Ij'ECR(~(i)) Ar(.i)j, m r ( i ) .  

This local transition, 7r(r/) of K~(i)ensures that  ,-r(s) '-i r ( t )  E M .  Hence, 
7r E A ut jk4. 

Aut  M C Aut  CR: Let rr in A,u.t M be chosen arbitrarily. Consider s ~i 
t E A4. It  must be caused by some local transition 

7"i ~ gi : AjECR(1)Bij ---"+HjECR(i) Ai j  " ml  

in Ki. The local transition ri is unique, because our stipulation on 7 9 that  there 
is at most a Single local transition between two locations in each process Ki. 
Because r E Aut  M ,  rr(s) ~(,:) r ( t )  E M ,  which could ony be accounted for 
by the local transition 

7r(vi) = ~r(ii : Aj 'EcR(~(i))B~(i) j '  ----+l]j'ecR(~(i)) A~(i)j,  : mr( i )  

which must be present in K~(i) as all processes are isomorphic. But ~(vi) is 
well-defined only if 7r E Aut  CR.  D 

The communication relation C R  of 79 may be viewed as a graph on the pro- 
cess indices where there is an edge between i and j iff Ki and Kj communicate. 
Since in designing the program 79, the choice of C R  is (one hopes!) explicitly and 
carefully considered, and often chosen from a standard pattern,  determination 
of Aut  C R  is often easy in practice, and frequently is just a well-known fact of 
graph theory. We have for example: 

- If C R  = I • I \ Id so that  the communication topology is the complete graph 
on I, then Au~ A/t = Au~ C R  = S y m  I. 

- If th e processes K1 . . . .  , Kn of 79 are arranged in a ring then C/~ = {(i, i ~ 
1), (i, iOn l )  : i E I}, where O,, denotes wrap-around addition where nGn 1 --- 
1, and analogously for subtranction. This indicates that  each process can only 
communicate with its two neighbors in the ring. Thus, Aut  .M = Aut  C R  = 
D,~, the dihedral group of order 2n. 

4.1.3 D e t e r m i n a t i o n  o f  t h e  I n t e r s e c t i o n  To determine the intersection 
of Aut  f and Aut  ~A, we can again often proceed by inspection. In practice, it is 
likely to turu out that one or both o f A u t  f or Aut  M is large, for example S y m  I 
or S y m  I \ {i}, or at least a well-known permutation group which simplifies our 
task. 
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4.2 Constructing the Quotient Structure 
We can construct J~4/G from P incrementally, without building .A4 itself, as 

shown in figure 1 (cf. [ID92], [LY92], [CEJ93]). ttere we assume P has start  state 
S0. 

Let S := t} 
Let T0 :-- so 
Add T0 to S 
While unprocessed(S) # do 

Remove some improcessed ~ from 
For each i E [1 ! n] do 

For each t E Ki(~) do 
Ensure ~ ends up in 5: 

If 3"ff E S t ----a K then 
Note ~ = ~. E S already 

Else 
Let t := t  
Add t to unprocessed(S) 

Add ~ ~ t to 
End 

End 
Mark ~ processed 

End 

Fig. 1. Incremental Construction of Quotient 

An important  part  of the above procedure is the test whether t - c  ~. Since 
G may in the worst case be Aut  Ad, this could conceivably be intractable (cf. 
[Ho82], [CEJ93]). However, in practice jr4 has special structure derived from P,  
which call simplify matters. In some cases, the test is particularly simple. For 
example, i f S  = L z and L = {e i , . . . ; s  and G = S y m  1, then s - G  t i f f for  
each i E [1 : m] the number of processes in local state s is the same for both 
global states s and t. 

4.3 D e c o m p o s i n g  F o r m u l a e  
In some instances G may be very small essentially because f is a large com-r 

posite formula. Consider, for example, . f  = AiAG(Ni  ~ AFCi ) .  We see tllat 
Auto  f --- Stab 1 O . . .  fl Stab n = Id, so that  no compression is possible in 
forming the quotient M = M / G ,  since G < Auto  f is required. It is often possible 
to ovecome this problem by breaking down the composite formula into its ba- 
sic modalities (or other appropriate subformule) and checking them individually. 
While this may entail computing multiple quotients, it can still be more efficient. 
In the example formula, we can check for each conjunct f i  = AG(5~ ~ AFCI )  
in turn. Since Auto  f~ -= Stab i --- Syrn I \ {i} is of exponential size, any G 
obtained from such an Auto  f is likely to be large. Thus computing n different 
exponentially smaller quotients can be more efficient than computing one large 
quotient, actually equal to the full, original structure. See the following section 
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4.4 on state symmetry for further optimizations. 

4.4 State  S ymmetry  
Suppose so is a state that  is fully symmetric in a fully symmetric structure 

.h/I, viz. Aut  so = A u t  A,4 = S y m  I. For example, so could be the start  State 
( N 1 , . . . ,  N , )  for a solution to the mutual exclusion problem with each process 
in its noncritical region (cf. [AE89], [EC82], section 6). 

Note we have that  M ,  so ~ Ai gi iff .h/[ I SO ~ gl The ::r direction is 
obvious. To see the r direction, choose an arbitrary i E I. Then pick some 
7r E Aut  so = S y m  I such that  rr(1) = I. The right-hand-side implies for all 
permutations rr ~ that M ,  a'~(s0) ~ g~,(1). For rr ~ = ,'r this simplifies to the desired 
M ,  so ~ gi. The  left-hand-side follows. 

Thus, in reference to the previous section 4..3, in checking a formula such as 
AIAG(Ni  ~ AFC~) evaluation of nmltiple conjuncts over multiple quotients is 
not required. 

This idea can be generalized to states and systems with somewhat less sym= 
metry. Aut  s N Aut  M induces an equivalence relation on I :  i - j iff i = 7r(j) 
for some ,'r E A u t s  (1 Aut  .,~. There is an a.ssocia.t, ed partit ion of I, call it. Part ,  
induced by =__. Let Rep be a set of representatives, one from each equivalence 
class in Part .  

T h e o r e m  4.2 M ,  s ~ Ai gi iff .All, s ~ AjE Rep gj 

P r o o f  The ~ direction is obvious. To see the ~ direction, assume the left 
hand side holds. Choose an arbitrary i 'E I. Let j be t'he representative equivalent 
to i. For some 7r E Aut  s M Aut A/[ we have i = 7r(j). Moreover, jL4, s ~ gj. So 
A/I, ~r(s) ~ 7r(gj) because ~r E Aut  M .  Because ~(s) = s and ,-r(j) = i, this 
simplifies to A/I, s ~ gi. [] 

Thus, instead of checking all n = ]I I conjuncts gl, it suffices to check ]Rep] 
constructs which may be significantly smaller. In the extreme case, as above, 
only one conjunct need be checked. If Aut  A4 = S y m  I then matters simplify so 
that  at most [LI, the number of distinct local states, need be checked. Typically 
]LI << n = N-  If Aut  s = S y m  I, so that s is a start  state with all process in the 
same local state, then if Ant  M = Aut  C R  is nontrivial, some equivalence class 
on I has 2 or more members, IRepl < n, and some savings is obtained. It many 
practical cases Aut  C R  may yield a small IRepl. Even a "sparse" connectivity 
graph like a ring yields only a single equivalence class. 
5 A l t e r n a t i v e  A p p r o a c h  

We can give an alternative, uniforln method that  permits use of (essentially) 
the single quotient j~4 = A/I/Aut  M for model checking any specification f ,  
without computing and intersecting with Auto f .  The idea. is to annotate the 
quotient with "guides", indicating how coordinates are permuted fi'om one state 
to the next in the quotient. An automaton for f designed to run over paths 
through f14, can be modified into another automaton run over .s using the 
guides to keep track of shifting coordinates. 

We elaborate the above method here. We define ~ (S,.ATr where S is 
the set of representative states as before, and ATe is an annotated relation. It 
is a set of triples of the form (~, ~ ' , t )  where a-' is a member of Ant  M such 
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that if (~, t) E 7r then there exists a single triple (~, r ,  7) ~ .47~. with 7 = 7r(t). 
Note that all transitions in the original structure from a representative state 
to another representative state are included in .47-r Also, all transitions from a 
representative state to a non-representative state are included in A7r Tl'ansitions 
from a non-representative state to a non-representative state in the original 
structure are not included in A/f. Due to this, many times, the size of the structure 
M can be much smaller than that  of M .  

This augmented representation of the quotient s t ructure allows us to model 
check indexed CTL* properties efficiently. For example, consider the problem of 
checking tile correctness of the formula Ai Agl where g,: is a formula in Proposi- 
tional Linear Temporal Logic over the propositions corresponding to process i. 
To do this, it is enough to verify that the formula Vi E-,gi is not satisfied. For 
this we construct the automaton A corresponding to tile formula gi and check 
that  there is no path in j ~  that is accepted. Tile input alphabet of A is the set 
of subsets of local propositions. To check the above condition, we take the cross 
product of the augmented s~ructure with automaton ,4 and show that  there is 
no accepting path in the cross product.-The states of the cross product are going 
to be triples of the form (~, q, j )  where q is a state of the automaton .4 and j is 
a process index. The initial states of the product are going to be (Tff0, q0, i) where 
s-'~- and q0 are the initial states of the structure and automa.ton respectively and i 
is any process index. For each transition of the form (~, 7r, 7) E ATr and for each 
automaton state q and process index, j ,  there is going to be a tra:nsition in the 
product automaton from tile state (~, q, j )  to tile state (t, r, 7r(j)) where r is any 
state to which there is a transition of .4 from state q on input which is the set 
of local propositions satisfied in the process j ' s  component of 7. The accepting 
states of the product automaton are exactly those states of the form (~ ,q / , j )  
where qy is an accepting state of A. 

Tile above automata  method can be extended to check properties specified by 
automata.. In this case, the automata  checks global (mulit-index) properties, not 
simply the local (single index) properties. If this automaton is also symmetric 
with respect to the permutations in Aut  .s then we can give an efficient method 
based on the automata-theoretic approach. This is described in the full paper. 

6 E x a m p l e s  

We first consider a simple example. )k solution 7 ) to the mutual exclusion 
problem is given in Figure 2. Each process Ki has a noncritical section, cori'e- 
spouding to location Ni, and a critical section, represented by location Ci. The 
transition from Ni to Ci is guarded by the predicate Aj#i -,Cj. Hence, each pro- 
cess cycles through its two sections preserving the property of mutual exclusion: 
that  no two processes are ever in their critical section at the same time. This 
can be expressed in CTL by (a fornmla of the form) AG(Ai#j~(C~ A Cj)).  Thus 
the solution is safe. The starting condition can be captured as Ai.h~. 

To verify mutual exclusion, for a system with n processes, for any fixed n, we 
could build its global state transition graph A4, with n + t states, as in Figure 
3. However, since the communication relation for ~ is the complete graph on n 
nodes, Aut  All -- S y m  [1 : n]. Our rules also tell us that Aut  f -= S y m  [1 : n] 
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Thus we can take G = Sym [1 : n]. Using (N1, N2,..., Nn) and (C1, N2, . . . ,  N,) 
as representatives we obtain a quotient dt4/G shown in Figure 4. We can now 
model check over the quotient using Theorem 3.3. 

Additional examples will be given in the full paper including one based on a 
multi-process extension (cf. [AE89]) of the 3 local state mutual exclusion problem 
from [EC82], showing (i) how auxiliary variables can be handled (ii) treatment 
ofliveness properties, and (iii) a case where true exponential savings is obtained. 

7 Conclusions and  Re la ted  Work 

We have described a framework for expediting model checking by forming 
the quotient structure modulo a subgroup of the group of automorphisms of the 
original structure and the specification. The resulting reduction in size can be 
dramatic when the degree of symmetry is high. The group of automorphislns of 
the structure depends on process network topology, which is possibly a crucial 
factor here. For massively parallel systems with with high connectivity and high 
symmetry like hypercubes, we should get a very good savings. For rings, we would 
get much less. We have also shown how to improve the efficiency by decomposing 
large formulae into smaller subfomnulae. We have further shown that it is possible 
to exploit the symmetry of individual states to avoid redundant computation. 
An alternative approach using automata to track shifting indices was also given 

It should be noted that, while we have focused on systems with many iso- 
morphic processes, this is more in the nature of a restriction on the "systems" 
terminology. Excepting, for example, Theorem 4.1 showing Aut Ad = Aut CR, 
the basic mathematical machinery here is applicable to systems containing mul- 
tiple isomorphic "components". All that is really essential is symmetry in the 
state space, whatever its "physical, systems" source. 

At present, we have a method, that is not fully automated. Obviously, we 
could mechanize it by using na.ive algorithms to compute automorphism groups, 
but this in general would not be efficient. Thus important open problems seem 
to us to be to identify useful special cases for when Aut b, for various objects 
b can provably be calculated efficiently, and the related problem of testing =c  
efficiently (cf. [CEJ93]). Of course, these are largely group-theoretic in nature. 
There is a vast literature in computational group theory which should be helpful 
(cf. [Ho82]). In the interim, we are compiling a catalog of helpful special cases. 

The telling quote from Herman Weyl [We52] in the introduction shows that 
the basic idea. of exploiting the group of automorphislns of a structure in order to 
understand its basic properties, symmetry and otherwsie, is a rather old one in 
mathematics. However, its application to temporal logic model checking seems 
to be quite new. In the reahn of program verification symmetry seems to have 
first been utilized, with varying degrees of formality, in the reahn of reachability 
analysis for petri nets (cf. [JR91]). Here, however, the work seems to have cen- 
tered around simple reachability (AGp) rather than the full range of temporal 
correctness properties. Ip and Dill also [ID93] consider the problem of verifying 
reachabiltiy only, rather than essentially arbitrary correctness properties. Their 
system provides a new, somewhat more abstract than usual programming lan- 
guage, to facilitate identifications of symmetrys. It has been implemented as 
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the Mur~ system and applied to examples. In [AGS83] and [Ku86] an algebraic 
approach to reducing the cost of protocol analysis based on the use of quotient 
structures induced by automorphisms is proposed. For example, the symmetry 
between 0 and 1 in the alternating bit protocol is factored out to reduce the size 
of the state space by one half. 

The most directly related work is that of Clarke, Filkorn, and Jha [CEJ93] 
who have independently reported correspondence results similar to those of our 
section 3 and follow a somewhat similar overall strategy (cf. [CGB89], [St93] ). 
Moreover, they have implemented their ideas using BDD's, provided an analysis 
of the complexity of BDD-based manipulations of permutation groups showing 
that testing =G is graph isomorphism hard for BDD-based representations, and 
d6ue practical examples. 

Our work may be distinguished by the most general explicit, correspondence 
results, including CTL* and the Mu-Calculus, and by focussing on the symme- 
try induced by having many identical processes, which allows us to reduce the 
difficult problem of computing Aut M to Aut CR. We also permit auxiliary 
variab!es, exploit formula decomposition and state symmetry, and provide an 
alternative automata-theoretic approach. 

Acknowledgement s  and  Histor ical  R e m a r k  We have been thinking 
about this problem for some time. Actually, we had the Correspondence Lemma 
3.1 in 1988 but encountered other difficulties. In any event, we would also like 
to thank Paul Attie and Steve Kaufman for valuable suggestions. We also thank 
Bob Kurshan for his comments. 

8 References  

[APS83] 

[AE89] 
[CE81] 

[CFJ93] 

[CGBS8] 

[CGB891 

[EC82] 

[Em90] 

[he64] 
[Uo821 
[Ku86] 

Aggarwal S., Kurshan R. P., Sa.bnani K. K., "A Calculus for Protocol Spec- 
ification and Validation", in Protocol Specification, Testing and Verification 
III, H, Ruden, C. West (ed's), North-Holland 1983, 19-34. 
Attic, P. C., and Emerson, E. A., Synthesis of Many Processes, POPL89 
Clarke, E. M., a.nd Emerson, E. A., Design and Verification of Synchroniza- 
tion Skeletons using Branching Time Temporal Logic, Logics of Programs 
Workshop 1981, Springer LNCS no. 131. 
Clarke, E. M., Filkorn, T., Jha, S. Exploiting Symmetry in Temporal Logic 
Model Checking, 5th CAV, June 1993 (this proceedings). 
Clarke, E. M., Grumberg, O., and Brown, M., Characterizing Kripke Struc- 
tures in Temporal Logic, Theor. Comp. Sci., 1988 
Clarke, E. M., Grumberg, O,, and Brown, M., Reasoning about Many Iden- 
tical Processes, hfform, and Comp., 1989 
Emerson, E. A., and Clarke,.E.M., Using Branching Time Temporal Logic 
to Synthesize Synchroniza.tion Skeletons, Science of Computer Programming, 
Dec. 1982. 
Emerson, E. A., Temporal and Modal Logic, in Handbook of Theoretical 
Computer Science, (J. van Leeuwen, ed,), Elsevier/North-Holland, 1991. 
tterstein, 1, Topics in Algebra, Xerox 196? 
Hoffmann, C., Graph Isomorphism and Permutation Groups, Springer LNCSI 
1992. 
Kurshan, R. P., "Testing Containment of omega-regular Languages", Bell 
Labs rl"ech. Report 1121-861010-33 (1986); conference version in R. P. Kur- 



477 

pRgl] 

[Ko78] 
[IDg~] 

IMP92] 

[St93] 

[WeS2] 

shah, "Reducibility in Analysis of Coordination", LNCIS 103 (1987) Springer- 
Verlag 19-39. 
Jensen, K., and Rozenberg, G. (eds.), High-level Petri Nets: Theory and 
Application, Springer-Verlag, 1991. 
Kohavi, Z., Switching and Finite Automata Theory, McGraw-Hill, 1978. 
Ip, C-W. N., Dill, D. L., Better Verification through Symmetry, CHDL, April 
1993. 
Manna, Z. and Pnueli, A., Temporal Logic of Reactive and Concurrent Sys- 
tems: Specification, Springer-Verlag, 1992 
Stifling, C., Modal and Temporal Logics. in Handbook of Logic in Computer 
Science, (D. Gabbay, ed.) Oxford, 1993 
Weyl, H., Symmetry, Princeton Univ. Press, 1952 



478 

^j#i  -~Cj 

Figure 2: Skeleton for Two State n Process Mutual Exclusion 

Figure 3: Model for Two State n Process Mtltual Exclusion 

C1,N2,,..,Nn 1, 

N1, N~, ..., Nn-1, .~~ 

Figure 4: Quotient of Model for Two State n Process Mutual Exclusion 


