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The con_cept of (full) polarization subalgebra in a Group Approach to Quantization on a Lie 
group G as a generalization of the analogous concept in geometric or standard 
quantization is discussed. The lack of full polarization subalgebras is considered as an 

anomaly of the corresponding system and related to its more conventional definition. A 
generalization of the subalgebra of (full) polarization is then provided, made out of 
higher-order differential operators in the enveloping algebra of G. Higher-order polarizations 
can also be used to quantize nonanomalous theories in different “representations.” 
Numerous examples are analyzed, including the finite-dimensional dynamics associated with 
the Schriidinger group, which presents an anomaly, and an infinite-dimensional 
anomalous system associated with the Virasoro group. In the last example, the operators in 
the higher-order polarization are in one-to-one correspondence with the null vectors in 
the Verma module approach. 

I. INTRODUCTION 

In a previous paper’ the space of first-order polarized 
functions on the Virasoro Group was further reduced by 
enlarging the polarization subalgebra with higher-order 
differential operators lying in the left-enveloping algebra 
of the group. The new operators in this generalized or 
higher-order polarization were closely related to the null 
states appearing in the Verma module approach.’ There 
the need for higher-order polarizations was associated 
with the anomalous character of the Virasoro group 
quantization itself, and that of the bosonic string quanti- 
zation, where the Virasoro group also plays a crucial role. 

In this paper we extend the concept of higher-order 
polarizations (HOP) to general cases, thus enriching the 
general setting of the group approach to quantization.3.4 
For some anomalous systems the group quantization can 
be achieved, nevertheless, without a HOP. They are char- 
acterized by having a vacuum, i.e., a highest-weight vec- 
tor state (see Sec. III and Ref. 5). We shall study, in 
particular, the case of the Schrodinger group,6 which pos- 
sesses a (finite-dimensional) anomaly, and has two non- 
equivalent classes of representations: the conventional 
one without vacuum and a different class containing a 
highest-weight state. This is an interesting example of an 
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anomalous group, because it has finitely many dimen- 
sions, but still suffers from the essential pathology of the 
(typically infinite-dimensional) anomalous physical sys- 
tems.7 The use of a HOP is not restricted to anomalous 
systems but can also be introduced in ordinary systems to 
quantize the theory in a “representation” different from 
the “natural” one(s). To be precise, a (first-order) po- 
larization, whose role is that of reducing the representa- 
tion by restricting the arguments of the wave functions, 
determines the arguments, n, on which the wave func- 
tions depend, and therefore leads to the quantum theory 
in the v representation. If there is no (first-order) polar- 
ization leading to a desired n representation then a HOP 
can probably be introduced to this end. For instance, the 
quantization of the free particle results in the p represen- 
ta$o,n, $nce the centrally extended Galilei algebra 
{El,&x,I} only admits the polarization subalgebra 
{H,P-a/ax}. In the same way the natural representation 
for the harmonic oscillator is the coherent state represen- 
tation. In both cases there is a HOP leading to the x 
representation. 

II. THE CONCEPT OF POLARIZATION 

In quantum mechanics a polarization is an involutive 
set .?Y’ of differential operators annihilating the wave 
functions. The condition TY =O, XE~’ is intended to re- 
duce the quantum representation by restricting the argu- 
ments of the wave functions q. For instance, in geometric 
quantization’ the classical Poisson algebra is first repre- 
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sented by extended Hamiltonian vector fields on the 
quantum manifold Q, which is a U( 1) principal bundle 
on the phase space manifold M, i.e., Q is locally diffeo- 
morphic to the product MXS’. The carrier space is con- 
stituted by U( 1) functions on Q; in other words, complex 
functions on Q satisfying the condition of being homoge- 
neous of degree 1 in the variable &S”. The representation 
thus obtained is not irreducible and corresponds to the 
Bohr approximation. At this stage the wave functions 
depend on x and p. The nonirreducibility of that repre- 
sentation is made evident by the existence of certain sets 
of nontrivial differential operators commuting with the 
basic operators x^ and p? These sets, which are precisely 
the polarizations, are isotropic subspaces of dimension 
n_=$lim M of the symplectic form w (u(X’,X) =0 if 3, 
X&P’, where the overbar indicates lifting of vectors from 
M to Q with the connection form 0, whose curvature @ 
is u). In the finite-dimensional case the conditions XY 
=0, YES restrict the arguments of Y to half of them, 
leading to the irreducible x representation, p representa- 
tion, or any diagonal one. 

tions is the space of complex U( 1 )-equivariant func_tions 
on G satisfying the polarization conditions, i.e., Y: G-PC, 
such that E’VI = PP, E being the U( 1) generator, and 2% 
=0, V &9. The physical operators are the right- 
invariant generators of G, y’, acting on the polarized 
(reduced) space of Y’s. 

In the group approach to quantization (GA-Q), the 
quantum manifold Q is changed to a Lie group G with a 
principal bundle structure with fibre a subgroup U( 1)3 
[in Ref. 4 the structure group U( 1) is generalized to a 
bigger non-Ab_elian and even infinite-dimensional group]. 
The quotient G/U( 1) is no longer a symplectic manifold, 
yet it is endowed with a presymplectic form o naturally 
defined as d0, where 0 is a component, dual to the ver- 
tical U( 1) generator, of the left-invariant canonical one- 
form on G. The kernel of w or, more precisely, 
Ker d0 fl Ker 0 is a module (the_characteristic module) 
generated by a left subalgebra of G, the so-called charac- 
teristic subalgebra .9o. If G is a central extension of a Lie 
group G, as will mostly be the case, then Yo is the kernel 
of the Lie algebra cocycle, 2:s x 9 +I& characteri$ng 
the extension. Now, instead of taking the quotient of G by 
.9o (the generalized equations of motion) to get rid of 
nonsymplectic variables it is far more advantageous to 
keep the whole set of variables (including the time vari- 
able, for instance) and generalize the notion of polariza- 
tion, so as to include the subalgebra 9o. This results in 
additional polarizations conditions, which include the 
Schriidinger equation in the corresponding “representa- 
tion.” In this way no classical equations of motion have 
to be solved prior to quantization. We dejine a full polar- 
ization in GAQ as a maximal left-subalgebra 9 of 9 
containing Y. and excluding the vertical U(l) generator. 
The excluding the U( 1) generator ensures that no con- 
jugate coordinate-momentum pairs are present in the po- 
larization. 

To get familiar with the meaning of a (full) polar- 
ization, let us consider the simplest physical example of 
the free particle, whose basic symmetry is the centrally 
extended Galilei group.314 For this group, translations 
and boosts play the role of canonically conjugate (or 
symplectic) variables, whereas the time translation and 
rotations are in the kernel of the cocycle q=eiC:G 
XG+U(l) (Z:YXY-+R). Only one (full) polariza- 
tion is possible, and it is generated by the time transla- 
tion, rotations, and space translations. The polarization 
conditions then imply that wave functions do not depend 
on x (the translation parameter), depend arbitrarily on p 
(the boost parameter), and the dependence on time is 
such that they obey the momentum-space Schriidinger 
equation i+i(aY/&) =p2/2mY. To get the “x representa- 
tion” we would need the boost generators inside the full 
polarization but, unfortunately, they do not close a sub- 
algebra with the time translation generator. 

From the point of view of the physical operators, i.e., 
the right-invariant vector fields associated with each one 
of the group variables, the quantum observables corre- 
sponding to the characteristic subalgebra differ from the 
remainder in that the former must be expressed in terms 
of the latter once the full polarization conditions are im- 
posed. This solvability of nonsymplectic operators as 
functions of the symplectic ones, say, x^ and p? is nothing 
other than the quantum analog of the “classical” reduc- 
tion of the generalized phase space to the true symplectic 
solution manifold, i.e., the solvability of Noether invari- 
ants (in GAQ they are written as the interior product of 
right-invariant vector fields with the form 0, iFR@) asso- 
ciated with the subalgebra .‘Yo in terms of the rest. 
Indeed, this mechanism is that which allows us to 
generalize geometric quantization by including nonsym- 
plectic variables. These comments can immediately be 
verified for the case of the free particle. There the energy 
operator i+6$=ifi(a/&) reduces to 3/2m once the po- 
larization has been taken. Likewise, the operator 2: as- 
sociated with rotations &CW(3) is parametrized by 

EER3 as R;(E) = (l-8/2)$+ /iZZ rliikP+ 1/2Ei~j), 
which, prior to the polarization restriction, are 

written as iz= [ JiZ%$ - rliik Ek/2]a/M-- nfjflkfV 
ax’ -$jkVka/avi, condense to the standard form a/\$. 

As mentioned above, in connection with geometric 
quantization, a (full) polarization is required (at least in 
the finite-dimensional case) for the quantum representa- 
tion to be irreducible. The space of quantum wave func- 

Ill. ANOMALIES IN GROUP QUANTIZATION: 
HIGHER-ORDER POLARIZATIONS 

Up to now we have been referring to a group G for 
which a full polarization does exist. Nevertheless, this is 
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not always the case, and we shall call anomalous a dy- 
namical system without such a full polarization. It is easy 
to imagine what kind of structure renders a symmetry 

group anomalous. For instance, suppose a group G con- 
tains coordinate-momentum variables xl, pi and a sub- 
group of some sort of nondiagonal “rotations” mixing x’s 
and p’s, These “rotations” would be on the characteristic 
subalgebra (like ordinary rotations) and should therefore 
be in the full polarization subalgebra. However, no such 
subalgebra exists (see the example of the Schrijdinger 
group in Sec. IV). 

The nonexistence of full polarization parallels the ab- 

sence of polarizations in a symplectic manifold’ in stan- 

dard geometric quantization. There, it constitutes an un- 
avoidable obstruction to the quantization mechanism. 

In GAQ we define a nonfull polarization as a maxi- 

mal left subalgebra of 9, excluding the vertical (U( 1)) 
generator and containing a subalgebra of 3o. With this 
definition we can quantize as before, with the drawback 
that the space of polarized functions is not, in general, 
irreducible or, what is more significant, not all the phys- 
ical operators can be solved in terms of the basic ones, 
even though all the classical Noether invariants are ex- 
pressible in terms of the coordinates of the classical solu- 
tion manifold (basic Noether invariants). 

A way out of the problem of nonirreducibility and 
(or) the lack of solvability of some of the operators in 

terms of the basic ones was given in Refs. 5 and 10, in 
connection with the Virasoro group. The solution con- 
sisted in taking the orbit through the vacuum, i.e., a 
highest-weight vector among the polarized functions on 
the group, under the action of the right-enveloping alge- 
bra. This subspace is not only irreducible, but also pro- 
vides the desired form of the physical operators as a func- 
tion of the basic ones, although it is only possible for 
given values, the quantum values, of those constants char- 
acterizing the representation (central charge, vacuum ex- 
pectation value of the energy, etc., see later on in this 
section). 

A mo_re general solution for the anomaly problem in 
a group G is to generalize the notion of full polarization 
subalgebra ,by allowing elements in the left-enveloping 
algebra of G to enter this subalgebra. We arrive at the 
definition of a higher-order polarization as_a maximal sub- 
algebra of the left-enveloping algebra of G excluding the 
central generator and containing a @St-order or ordinary) 
polarization. Once a higher-order polarization is given, 
the space of polarized functions on the group satisfying 
the lJ( I)-equivariance condition is irreducible. Like in 
the case of a non-full (first-order) polarization, when the 
group is anomalous the values of the constants character- 
izing the irreducible representation are not arbitrary. In 
fact, a higher-order polarization only exists for very spe- 
cial values of those constants, referred to as the quantum 
values. 

Let us think in terms of coordinates and Lie algebra 
commutators to clarify this anomalous quantization and 
to relate it to the more conventional presentation of 
anomalies in terms of Poisson brackets, commutators, 
central charges, etc. R_oughly speaking, the coordinates of 
an anomalous group G are of the form (x, p, E+, E-, E’, 
c), where x and p represent a family, perhaps infinite, of 
coordinates and momenta, satisfying Lie commutators of 
the type 

[ gx,ip] = agp + bgp a,b,ER (1) 

(analogous to the ordinary Poisson brackets {x,p} = 1 for 
the Galilei group, or {x,p}=p’+ 1 for the Poincare 

group), E+, Em, and e” parametrize a subgroup with a 
nondiagonal action on x and p, and { parametrizes the 
central U( 1) subgroup. The anomaly arises through the 
nondiagonality of the E action, i.e., the fact that E+ and 
E- mix x and p. A typical communtator for the E sub- 
group is 

[X,+,X,-] =xp. (2) 

Looking at formulas ( 1) and (2), we see that yo, 
the kernel of the Lie algebra cocycle 8:y X 9 -I& is 
generated by (X,0,X,+,X,-). However, if X,* mix X, and 
X, in a nondiagonalizable way, there is no full polariza- 
tion containing 9o and X, or X, i.e., in our language 
there is an anomaly. We can only find, at most, (nonfull) 
polarizations subalgebras 9 containing just the subalge- 

bra (2;) of Yo, actually, 

9 * = (ik* ,f$J,Fi* > , (3) 

where X* are certain comb&ations of x and p that are 
stable under the action of X,* (X,-transform x+ into 
x-; the same holds changing + to -, otherwise a full 
polarization would exist). 

Quantizing according to the (nonfull) polarization 

9 * causes the physical quantum operators X$ not to be 

expressible in terms of those operator that should be the 
basic ones, i.e., 2: and Xf, in contrast to what occurs 
with the corresponding classical Noether invariants 

ii;*@. It looks as if z$ really were basic operators, that 

is to say, as if the initial (classical) commutator (2) had 
been 

[X,+,X,-] =&J-t&$ (4) 

Indeed, once we take an orbit of the vacuum according to 
the prescription mentioned above or a higher-order po- 
larization .91Hoh containing 9’*, the reduced quantum 
operators xf obey (4) for a concrete (quantum) value of 
c, c(b), depending on the (classical) value of the central 
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charge b in ( 1). Even more, no higher-order polarization 
completing 9’ * exists unless c takes that specific (quan- 
tum) value. 

We must remark, nevertheless, that we could-have 
started the quantization mechanism from a group G cen- 
trally extended by two independent constants b and c, i.e., 
from the commutators ( 1) and (4), and then we would 

have found natural to obtain the operators zf+ as inde- 

pendent operators, because (4) says that they are associ- 
ated with canonically conjugated variables E+, E-. Then, 

once the (for this case) full polarization (T$+, i$, 

X2+) (or with + changed to - ) would have been taken, 

we would have discovered that for special values of b and 
c, actually, b and c=c(b) above, there would have been 
an automatic condensation mechanism in such a way that 

the operators xf+ would be written as a function of 

X:* 
Let us summarize our view of anomalies as it emerges 

from the group quantization scheme. In the usual canon- 
ical quantization, anomalies “appear” as additional terms 
if one tries to translate the classical Poisson-bracket rela- 
tions to quantum commutators. However, in the GAQ, 
where one is interested in (exact) unitary irreducible rep- 
resentations of certain dynamical groups G, it does not 
make sense to introduce central extensions or, more gen- 
erally, deformations (in addition to the ordinary central 
terms associated with the classical Poisson bracket struc- 
ture) only after the quantization. They have to be present 

at the classical level. Thatjs, to a given classical system 
we associate a Lie group G together with all its possible 
“extra” deformations labeled by cl,...,cn, i.e., by n (un- 
specified) arbitrary constants. Then we proceed with the 
quantization and, if no obstructions occur, we obtain uni- 
tary irreducible representations of the group G for any 
value of the parameters c? However, we may find that G 
cannot be quantized properly for all values of the Ci, for 
example, if there are Ci for which we cannot find a HOP. 
We call such a theory anomalous. Note that according to 
this philosophy an anomalous theory may still admit 
quantization, albeit only for certain values of the Ci (the 
so-called quantum values). It may even occur that Ciao 
are quantum values, in which case all deformations dis- 
appear from the original group law, and the theory is 
“quantizable” in the usual sense, without ever referring to 

possible anomalous terms. 
However, in the general case this will not occur, and 

therefore it is essential for the understanding of the anom- 
alies to consider all possible central extensions (or defor- 
mations) from the very beginning. In the GAQ, classical 
and quantum structures are intimately connected, which 
allows us to view anomalies not primarily as quantum 
objects, but also as an integral part of the underlying 
symmetry structure of the theory. Hence, an anomalous 
theory does not manifest itself by the appearance of cen- 
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tral extensions, but rather by the fact that only for specific 
values of the corresponding extensions (deformations) 
the theory admits a proper quantization. 

IV. EXAMPLES 

In this section we shall discuss two types of examples. 
On the one hand, there are the genuinely anomalous the- 
ories (Schrodinger group, Virasoro group,’ bosonic 
string), and on the other hand nonanomalous theories 
(free particle, harmonic oscillator, free particle on anti-de 
Sitter background) to which one can apply the HOP 
method to obtain different realizations of quantum repre- 
sentations. For the anomalous case we compare two pos- 
sible ways of quantizing: one by considering orbits 
through vacuum vectors, the other by using HOP. Since 
it is easier to illustrate the method, we shall begin with 
the discussion of the nonanomalous examples. 

A. The free particle 

The starting point is the Galilei group with a stan- 
dard central extension: 

(5) 

From this we derive the left-invariant vector fields, 

a a v 
Ff=at+vx+rn s Z, 

a 
iFk=, , 

a mx a 
jff=g++y E, Tt=iczGE, 

(7) 

leading to the Lie algebra relations 

&X’E] =o, [f$i$] =-if;, 

[fyJ = -f sip 

(8) 

[The rotation subgroup, which we have not written down 
explicitly, forbids the introduction of an additional cen- 
tral term in the first equation of (8).] This algebra is not 
anomalous because a full polarization exists, which is 
generated by 2: and it. The corresponding polarization 
conditions, together with the U( 1) equivariance condi- 
tion Eq=iY, lead to the Schrodinger equation on wave 
functions in momentum space. In order to obtain the 
Schrbdinger equation in configuration space, the operator 
X? has to be in the polarization. However, there is no 
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first-order polarization containing just 2: and Xi and 

not Xi, so that, to get a nontrivial result, we have to 
resort to a higher-order polarization p’=Xt, 
2: - (ifi/2m& Xi). The higher-order polarization 

equations now read as 

a imx 

( 1 z+y Y=O, 

I( 

a 
at+5G+ 2ti 

a ~)2E~]y~o. 

(9) 

The most general solution of (8) is \I, (x,v,t> 
=e -(im/‘)v~x@( XJ), where Q> satisfies the Schrodinger 

equation in configuration space, 

a@ # a2* 
S-g=-%=. (10) 

B. The harmonic oscillator 

The corresponding dynamical group for the har- 
monic oscillator is given by the expression ( 1 ), where the 
matrix S is now 

( 

cos wt 0-l sin wt 
S= 

--w sin wt cos wt ) ’ 
(11) 

Aldaya et a/.: Symmetry and quantization 3091 

Nevertheless, there is no full polarization leading to the 
configuration space representation because the subalgebra 

2: cannot be enlarged further. The wave functions in the 
x representation can be obtained by imposing the polar- 
ization condition x:W = 0 (that factors out the p depen- 
dence) and taking the orbit of the right-enveloping alge- 
bra on the vacuum IO) -Yo, where IO) is the state 
annihilated by the operators Xf and 2; + i/wgt (in Ref. 
11 the same method was applied to obtain the relativistic 
Hermite polynomials). 

We now describe the higher-order polarization 
method to get the wave functions in configuratmn 
space. The hjgher-order polarization is (X:,X: 
- (ifi/2m)~$X~) and the corresponding polarization 
equations are 

a a a 
p’po2X*~ 

=o. 
The most general solution of ( 15) is Y (x,v,t) 
= exp{ - imv*x/2fi}Q, (x,t) , where @ satisfies the Schro- 
dinger equation 

and the cocycle 

r = c’< exp i( m/2fi) [ x’*v cos wt - v’*x cos cot 

+ (v~‘/~+~x*x’)sin at]. (12) 

The left-invariant vector fields are given by 

a a a 
x;=at+v* ,-02x* 5, 

a+ 
ifix= 

i 

#a2 i 
2 2 -j---j-g+2ma x 

) 
a. (16) 

C. Free particle in anti-de Sitter space 

We now consider the quantization of an affine version 
of SO(2,l): 

[&?;I = -(i/m)?, [k,?] =imw25?, 

(17) 

a m 
X$&f~ XE, 

with the following commutation relations: 

[ xf,x;] = td21F;, [ Xf,i$] = -i$, 

(14) 

[ X”,,X5] = -~ Sip. 

(13) 

As in the case of the free particle the group above is not 
anomalous, since a_full polarization can be found. It is 
generated by (2:,X: + (i/m)it), and leads to the 
coherent-state representation of the harmonic oscillator.3 

[i?,P^] =i( 1+&g). 

This algebra was considered previously, in connec- 
tion with two different physical interpretations: first, ob- 
serve that the algebra (17), in the c--+ 03 limit goes to the 
harmonic oscillator algebra, and under o-+0 to the free 
relativistic particle algebra (PoincarC in 1+ 1 dimen- 
sions). Hence, ( 17) can be considered as a relativistic 
harmonic oscilla?r (note, in passing, that the relativistic 
energy operator E in ( 17) has the rest energy substracted, 
in order to have the correct nonrelativistic limit for 
( 17) ). This interpretation of ( 17) as a relativistic oscil- 
lator has been completely worked out in Ref. 11. 

On the other hand, (17) can be viewed as the 1+ l- 
dimensional version of the SO( 3,2) anti-de Sitter algebra 
(again with an energy operator with the rest energy mc2 
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substracted). Taking this into account, the quantization 
of ( 17) should lead to the quantum mechanics of a free 
particle in 1+ 1 anti-de Sitter space. This view was con- 
sidered in Ref. 12. 

Here we want to begin by observing that ( 17) admits 
a full polarization given, e.g., by the left version of the 
two operators, 

(18) 

Quantization of (17) was carried out in Ref. 12 by 
imposing this polarization; the point now is that this po- 
larization does not lead to a solution in configuration 
space. Such a kind of^olution requires imposing the po- 
larization condition XY =0, which by itself is a nonfull 
polarization. Thus, there is a need for further reduction of 
the representation, which can be achieved, as we men- 
tioned before, by determining the vacuum and taking an 
orbit through it; this was done in Ref. 11. 

Another way of getting a solution in configuration 
space, which we want to use out ROW, is to look for a 
HOP that includes the condition XY =O. In particular, 
wave functions in configuration space should satisfy a 
general-relativistic wave equation to be determined by 
this HOP. 

To apply the GAQ to the system we are considering, 
we need a group law having (17) as its Lie algebra. In 
Ref. 12 a group law was given that describes the free 
particle in anti-de Sitter space. There, the metric in 1 + l- 
dimensional space was the one induced by the metric in 
three-dimensional space, 

C+ dxo2-dx2-R2 d2=2 dg, 

under restriction to the hypersurface 

(194 

where R is the anti-de Sitter radius, related to the fre- 
quency in (17) by Ro=c. 

Here, we introduce a reparametrization in time, such 
that the new time is given by 

1 
t=- sin-’ 

w &* 
(20) 

With this time variable, the metric in ( 19), which is non- 
diagonal in 1 + 1 space (see Refs. 12 and 13 ), obtains the 
diagonal form 

(c2+u2x2)dt2- 1 + ofx2,c2 dx2 = c? d?. (21) 

3092 Aldaya et al.: Symmetry and quantization 

Applying the change in (20) to the group law in Ref. 12, 
Eq. (4.2a), we get the following group law in coordinates 

t, x9 p: 

p’a XP’O 
xl’=& sin cdt+ax’ cos ot+- 

mc ’ 

plt=fg ; 
( sin wt--wx’ cos ot 

1 

p PI 
+; ; cos M--Ox’ sin wt +G, 

( ) 

pP’O 

w 
sin Wt” =a” 

( 
&p’x’ sin wt’ sin at 

aP’O 
+- 

moca 
cos wt’ sin ot+& XX’P’O sin wt’ 

I 

+F cos ot sin or'+--&& cos wt' , (224 

where 

+p2 + m2ti2x2. (23) 

Here we shall use the (pseudo)extension of the group law 
(22a) given by 

2 
PO 

(22b) 

z (x-l) E-X ( )I . 

From the group law (22) one derives the following left 
generators: 

Pa Pa Pmc 1 

g*)=$g+~;E, 

0 a PO 
f$)=;~-m~2x;i;;f~, 

(24) 

which obey, under the identification 

h 
E+ ikyx; -L * X -, itixC,); P+i+iZt,,, (25) 

the commutation relations ( 17). 
In order to obtain wave functions in co2figuration 

space, we must, as was said before, impose XY&!&)Y 
=0 as a lirst polarization condition. This is a nonfull 
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polarization, so we have to look fof; another higher-order 
condition, including the operator E-24,, (see the previ- 

ous examples). 
From the commutation relations in (17) it can be 

seen that the combination 

~(jj-mc~)~- m2a2c2X3 - c2p^- m2c4 , (26) 

commutes with both 2 and P^ [from the right-hand side in 
(26) it is evident that this is just the Casimir operator of 
the Lie algebra], and thus completes the HOP, which, in 
terms of the left generators, is given by 

( 
- 2imc2 %P ---yj-- X& - &r, )2+c2(qx, I2 

-m202c2(XtP,)2 . 
> 

The first condition, 

(27) 

24,,Y (x,p,t) =O+Y =eV’tiQl(x,t), (28) 

results in a factorization of the p dependence, which is the 
same for all wave functions If is given in (22b)]. The 
remaining condition, 

I 
2imc2 
-X~~,-(Xt,,)2+c2(X~~~)2 ev'%p(x,t)=O, 1 (29) 

can be seen to lead (after a long, but straightforward 
calculation) to the differential equation 

1 a24) i 2m ap 20~~~ a9 2 a% 
i%xP-za2at-c2ax-a TX? 

m2w2x2 
+ ga2 9=0. 
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This is our final result. The left-hand side of (32) 
turns out to be precisely the D’Alembertian defined by 
the metric in (21). Thus we see how, in this case, the 
usage of a HOP leads directly to the wave equation for 
the wave functions of a free particle in curved space-time 
(see, for example, Ref. 14). 

D. The Schrtbdinger group 

This group is the maximal kinematical invariance 
group of the Schrodinger equation for a particle moving 
in an arbitrary potential of the form Ax2+ Bx+ C (see 
Ref. 6 and references therein). Mathematically, it can be 
obtained from the Galilei group by replacing the time 
parameter with the three-parameter group SL (2,R). The 
Schrodinger group is the first known example of a finite- 
dimensional group that does not possess a full polariza- 
tion. 

We discuss the group in two different coordinations. 
The first one uses the coordinates of Ref. 6, which, 
strictly speaking, correspond to taking the universal cov- 
ering group of the SL (2,R) subgroup. This is necessary if 
we want to interpret t as a noncompact time parameter. 
For the quantization we have to resort to a HOP, leading 
to a representation of the Schriidinger group on the car- 
rier space of wave functions for the Galilean particle. 

In the second one, keeping the compact V( 1) param- 
eter in the SL( 2,R) subgroup, we can find an additional, 
unequivalent nonfull polarization containing this com- 
pact parameter. 

Since there is a distinguished vacuum vector in the 
space of wave functions we use the orbit method in the 
quantization procedure, leading to highest-weight repre- 
sentations of the Schrodinger group on the carrier space 
of wave functions for the harmonic oscillator. We could 
equally well have performed the quantization by using a 
HOP, which, however, would have led to equivalent 
quantum representations. 

(30) 

We begin with the Schrodinger group as given in Ref. 
6, which is of the form (5)) with S being now an element 

of SL(2,R), 

In order to put this into a more familiar form, recall that 
the “energy” operator used in ( 17) and in the polariza- 
tion had the rest energy mc2 substracted [see the rhs of 
(26)]. We can restore the rest energy in the wave func- 
tions by means of the transformation 

Q, = e-im2t/frq, (31) 

in such a way that @ becomes the true relativistic wave 
functions. Under (3 1 ), the differential equation (30) 
transforms into 

i a2* 202x a@ ,a2+ m2c2 
&qr-Q2-~--” s=-FQ* (32) 

( 
a-‘( 1 +ct) at 

s= 
a-l a ) 

=(A :)(t J(n01 i), a,c,tER. (33) 

For the cocycle we use the expression 

lJ”=g’c exp-irn[i a2tvr2+& ( 1 +Ct)X”+i X’*X 

+ctx’*v’+ax*v’ exp ia In 5 (a’+ct’), 
I 

(34) 
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where the exponential containing the real parameter a: 
corresponds to a trivial extension. The left-invariant vec- 
tor fields are 

a a i 
2; =,,+v- z-5 me, 

a a a a 
2t=taz+ (1+2ct)z-?-j-+x*%+ 

( 

1 
-Tmx2+at 

) 
E, 

(35) 

a a a 
~~=~$+2c~-~*~-2*a,fY’~, 

fk=g-mvl, 
a a 

j$=, , jfg=i{z=Z, 

satisfying the algebra relations 

[Xf,Tf] =-2x;, [x;,i;] =o, 

[lE;4,i$] =~~+cz, [Ff,Xi] = -it;, 

[Xf;,Xf ] = 22:, [xf;,?;] =x;, (36) 

[&i$] = -i$, [Ff,if] =o, 

[d&i?;] = -x;, [ ?~,Xf] = ImE. 

By duallity on (35) we are able to work out the left- 
invariant canonical one-form, and, in particular, the com- 
ponent dual to the 25 = E generator, 0: 

@=mv*dx-4 my2 dt+ (4 mv2?-mx*vt 

+fmx’-acrt)dc+[m(1+2ct)x*v 

dC 
-m( 1 +ct)v2t-cmx2+2act]da+-;-. 

4 
(37) 

This group does not have a full polarization and the 
only polarization we can find is a nonfull one, 

9 = (X~,~~&. (38) 

We need to include the operator 2: in the polarization, 
but this is only possible if we modify 24 by a term from 

the left-enveloping algebra. The operator IE;,” 

J. Math. Phys., Vol. 33, No. 9, September 1992 

we can derive the classical Noether invariants, 

+ (i/2m)gt*Ff’, together with (38), form a closing, 
higher-order polarization algebra if a assumes the value 
a=$. 

The three polarization conditions F$=VI = 0 have as 
general solutions wave functions of the form 

y,eim[x.11~-(1/2)r12$flq)(rl,~), (39) 

where q=v/a, c=c/a2, and q satisfies the Schrodinger 
equation, 

1 
a i a2 
$%&2 9=0- 1 
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(4.0) 

It is straightforward to show that the action of the right 
vector fields on the wave functions Q, reduces to 

qp,c?g, = ( * -y g-2 6-p $-gv. g p 1 

it p-a rp, aq +a q= -& j$qp, ac 

(41) 

a 

( 1 
i -R -R 

i$p= --I#?’ & p=,x;x,q?. 

The action is well defined, since all the x” operators map 
solutions of (39) into themselves. 

From the right-invariant vector fields, 

ia i a c a c 
Z=;;2;j;+~~~+;a~+;;2aZ, 

if:=: (1 +a) ~+~~-,SxE, 

Xt=a gfat g-maxE, 

(42) 



1 
p,,--0(X:) =a mv+i m(W-x), 

xc,-0(X:) =am(vt-xx), 

mc2 
-j-g x2+: (CfS 11, (43) 

@(if) = -mv2t(ct+ 1) +mx*v(2ct+ 1) -cmx’ 

+ 2cict, 

@(if) =ia2mv2tz-a2mxW+~a2mx2-aa2t. 

We can perform the classical reduction for any value of Q, 
but only for a=0 we obtain the maximal reduction, 
which enables us to express all quantities in terms of just 
the basic variables x and p, in agreement with our inter- 
pretation of the classical theory. 

Hence, similar to the quantum theory, one value of a 
is singled out, but it is different from the value singled out 
in the quantum case. 

Alternatively, we can write the Schrodinger group 
law in terms of the variables C, c?, 7, z, z*, c, with C 
and C? corresponding to harmonic oscillator creation and 
annihilation operators, and 7, z, z* parametrizing the 
SL (2,R) subgroup. The connection with the old variables 
is given by 

a= 

a-lc=w 
’ 

-iw 
v=q--& w-c+>; 

1 
at=- 

w 
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Zw=Z’7)-2+K’Z+ & [z*z’q-2+z’*z~21, 

zlI*- I* 2 
z* --z 71 +K’Z*+2t1+Kj [zz’*q2+z’z*q-2], (45) 

+ Jg, ~g%*1)‘]? 

c”=cJ’c exp i~(g’,g).(77”77’-1r]-1)y, 

&‘,g) =; [ g ~C’c++ &g C’+.C+ 

- Jc-;c.ct- JE~-lc.,.t]. 

The left- and right-invariant vector fields read as 

a a 
Xf;=iq s-2iz z+2iz 

a a a 
* 7gp+iC*~-iC+*~, 

(4.4) 

a i 
f&-p ‘, tz jp= ct $++, 

~&+ 
i z* a 1 a 

aZ 2(1+K) 2 
--iv~+~C’~ 

iyz* 

+4(1$-K) E’, 
(46a) 

$=K a_ 
i Z 

az* 2(1+K)Jji~&+~C+‘& 

iyz 
--‘= 

4(1+-K) -’ 

These coordinates are well suited if one uses a polariza- 
tion containing the compact, and not the affine, subgroup 
inside S’L( 2,W). The group law is 
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z* 
-iyyE , 

I 

2 

TR =L 
r* 2(1+K) I 

+iyiZ , 
1 

-f (&&q$~qC+)Z, (46b) 

+f (J&l~Jig’C)E, 

a 
j$=ic ZsE. 

We choose to work with the (nonfull) polarization 

9 = (f$?$,$J. (47) 

We could again use a HOP for quantizing, but this time 
we will construct an irreducible representation by taking 
the orbit through the vacuum. 

The general form of a wave function projected out is 

y=e-C+C/2eC+*(K-11/22(l+K)-y2 c 17n(l+K)-“/2 
n 

x 2 An,“2~-“1’2, (48) 
nl7”2 

n*+n2=n 

and we find a distinguished vacuum vector, 

~0)=e-CRC/2,c+2(K-l)/k(1+K)-r/2, (49) 

which is annihilated by the operators it, 25, and 2:. 

The orbit through the vacuum is obtained by applying all 
right-invariant vector fields to (49). The quantum reduc- 
tion (i.e., expressing all operators in terms of the basic 
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ones x”, and 2%) is obtained if we set y= -f, in which 

case ,?: - f(y$ 2 = 0 is fulfilled on all states lying in the 

orbit. Similarly, we find an analogous expression for the 
operator 2:. The fact that the value of y is a half-integer 
means that the SL( 23) subgroup of the Schriidinger 
group appears covered twice. 

Note that if we had used a Verma module approach, 
as in the inflnite-dimensional anomalous case, we also 
would have obtained null vectors generated from the vac- 

uum by the operator analogous to our .%s -i(z:)2. The 

advantage of the method presented here is that these vec- 
tors vanish identically, so we avoid having to quotient out 
by the space of null vectors. 

E. The bosonic string in Minkowski space. 

This typical infinite-dimensional anomalous system 
has already been analyzed in the context of HOP in Ref. 
1. 

The underlying symmetry for this dynamical system 
is characterized by the centrally extended semidirect 
product diff S’ o (loops on R’*d-‘), whose Lie algebra is 
given by 

E r central generator, 

[IFLFL ]=-rniZ$ 
‘II’ “, 

, 
“flfl 

(50) 

[itLi!fJ = -i(n-m)Zi+,-& (cn3-c’n)S,-,E, 

where c’ is related with the vacuum expectation value of 
the Lo operator, h= (c-c’)/24. For the classical values 
c = 0 = c’ the basic functions a{ cannot be quantized with- 
out violating the above symmetry. The reason for this 
obstruction is that the group diff St does not preserve the 

polarization {T$,,} of the loop space, just in the same 

way as the SL(2,iR) subgroup of the Schriidinger group 
does not preserve the x or p polarization of the corre- 
sponding phase space. In other words, the generators 

c$,qP ,m E Z) do not close a first-order polarization 
n<O 

subalgebra. We have to consider only half of the Virasoro 
generators (half of the characteristic subalgebra) to close 
a first-order polarization subalgebra 9 

= ( xf-,,& ,m E Z), even though all Virasoro genera- 
n<O 

tors have Noether invariants that can be solved in terms 
of at’s (the basic ones). Quantizing with the nonfull po- 
larization .Y for c= 0= c’ results in a representation that, 
although irreducible, prevents the solvability of the Vira- 

soro operators, XL, in terms of the basic ones ?$ 

A higher-order polarization 9” can be definid that 
“contains” all the Virasoro generators as the leading 
terms in higher-order operators of the left-enveloping al- 
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gebra. However, such a higher-order polarization PHo 
exists only for c=c’ =d ( = dimension of Minkowski 
space), thus modifying the classical values. PHo is a left 
ideal of the enveloping algebra of (50), generated by the 

first-order polarization 9 =( zt’,,?$ ) and the 

higher-order operators z’f;, ,,, 
n<O 

%;=q-f c ?JI$L$ 
n+m=N n 

(51) 

l<n,m 

These expressions are closely related to the Sugawara 
construction of the Virasoro algebra (see Ref. 1 for tech- 
nical details). As in the finite-dimensional examples stud- 
ied above, the space of higher-order polarized functions 
carries the irreducible representations of the group 
diff S’ @ (loops on RR!‘-’ ) and coincides with the orbit 
of the right-enveloping algebra through the vacuum. 
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