
CHAPTER 1

Symmetry and Resonance in Hamiltonian Systems

A joint work with Ferdinand Verhulst

Abstract. In this paper we study resonances in two degrees of freedom, au-
tonomous, Hamiltonian systems. Due to the presence of a symmetry condition
on one of the degrees of freedom, we show that some of the resonances vanish
as lower order resonances. After giving a sharp estimate of the resonance do-
main, we investigate this order change of resonance in a rather general potential
problem with discrete symmetry and consider as an example the Hénon-Heiles
family of Hamiltonians. We also study a classical example of a mechanical
system with symmetry, the elastic pendulum, which leads to a natural hier-
archy of resonances with the 4 : 1-resonance as the most prominent after the
2 : 1-resonance and which explains why the 3 : 1-resonance is neglected.
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1. Introduction

Symmetries play an essential part in studying the theory and applications of
dynamical systems. In the old literature, attention was usually paid to the relation
between symmetry and the existence of first integrals but recently the relation be-
tween symmetry and resonance, in particular its influence on normal forms has been
explored using equivariant bifurcation and singularity theory; see Golubitsky and
Stewart [11], Golubitsky et al. [10] or Broer et al. [5] and also [29] for references.
For a general dynamical systems reference see [1, 6]; for symmetry in the context of
Hamiltonian systems see [6, 15, 28].

In the literature the emphasis is usually on the low-order resonances like 1 : 2 or
1 : 1 for the obvious reason that in these cases there is interesting dynamics while the
number of nonlinear terms to be retained in the analysis is minimal. This emphasis
is also found in applications, see for instance Nayfeh and Mook [16] for examples
of mechanical engineering. As in practice higher-order resonance will occur more
often than the low-order case we shall focus here on the theory and application of
higher-order resonance, extending [21, 22].

In our analysis we shall use normal forms where in the usual way a small pa-
rameter ε is introduced by re-scaling the variables, see section 2. The implication is
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that, as ε is small we analyze the dynamics of the Hamiltonian flow in the neighbor-
hood of equilibrium corresponding with the origin of phase-space. Note that ε2 is a
measure for the energy with respect to equilibrium. Putting ε = 0, the equations of
motion reduce to linear decoupled oscillators.

Apart from considering frequency ratios one can also classify resonance in the
sense of energy interchange between the degrees of freedom. Terms like strong (or
genuine) resonance and weak resonance are used to express the order of energy
interchange on a certain time-scale which is characteristic for the dynamics of the
system; see the discussion in section 6.

Symmetries arise naturally in applications, think for instance of the plane of
symmetry of a pendulum or, on a much larger scale, the three planes of symmetry
of an elliptical galaxy; an introduction and references are given in [29].

In section 2 we present the framework of our analysis by indicating how symme-
try assumptions affect resonance and the normal forms. We use Birkhoff-Gustavson
normalization which is equivalent with averaging techniques. In section 3 we give a
new sharp estimate of the size of the resonance domain at higher order resonance.

Section 4 focuses on a special resonance, the 1 : 2-resonance for symmetric
potential problems; we discuss an example from an important family of potential
problems for which applications abound. The classical example is the Hénon-Heiles
problem [12] which applies to axisymmetric galaxies but also to nonlinear chains
as in the Fermi-Pasta-Ulam problem, see [8]. Molecular dynamics uses such two-
degrees-of-freedom formulations, for instance in [17, 24]. In mechanical engineering
many examples can be found in [16], see also the treatment of the spring-pendulum
in [5].

Section 5 discusses one of the classical mechanical examples with symmetry, the
elastic pendulum. This system has played a part in applications in aeronautical en-
gineering [9, 20], celestial mechanics [18], astrophysics and aeronautics [13, 14, 18]
and biology [2, 19]. In this problem, we show that the symmetry assumption pro-
duces a new hierarchy of resonances in which, after the well-known 2 : 1-resonance,
the 4 : 1-resonance is the most prominent one. The asymptotic analysis is supple-
mented by numerical calculations which show excellent agreement.

2. Higher order resonance triggered by symmetry

Consider a two degrees of freedom Hamiltonian

(1.1) H(q,p) = 1
2ω1

(
p1

2 + q1
2
)

+ 1
2ω2

(
p2

2 + q2
2
)

+ H3 + H4 + · · · .

with (q, p) = (q1, q2, p1, p2), Hk, k ≥ 3, a homogeneous polynomial of degree k.
We introduce a small parameter ε into the system by rescaling the variables by
qj = εqj , pj = εpj , j = 1, 2 and divide the Hamiltonian by ε2. We can define
successive nonlinear coordinate (or near-identity) transformations that will bring
the Hamiltonian into the so-called Birkhoff normal form. In action-angle variables,
a Hamiltonian H is said to be in Birkhoff normal form of degree 2k if it can be
written as

H = ω1τ1 + ω2τ2 + ε2P2(τ1, τ2) + ε4P3(τ1, τ2) + · · ·+ ε2k−2Pk(τ1, τ2),
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where Pi(τ1, τ2) is a homogeneous polynomial of degree i in τj = 1
2 (pj

2+qj
2), j = 1, 2.

The variables τ1, τ2 are called actions; note that if Birkhoff normalization is possible,
the angles have been eliminated. If a Hamiltonian can be transformed into Birkhoff
normal form, the dynamics is fairly regular. The system is integrable with integral
manifolds which are tori described by taking τ1, τ2 constant. The flow on the tori is
quasi-periodic.

In normalizing, it is convenient if we transform to complex coordinates by

xj = qj + ipj

yj = qj − ipj , j = 1, 2,

with corresponding Hamiltonian H̃ = 2iH. The idea of Birkhoff-Gustavson nor-
malization is to transform H (we have dropped the tilde) so that the transformed
Hamiltonian becomes

(1.2) H(x, y) = Bk(τ1, τ2, ε) + R(x, y, ε)

where (x, y) = (x1, x2, y1, y2) Bk is in Birkhoff normal form with k as high as possible
(τj = 1

2xjyj , j = 1, 2). R is a polynomial which has degree of either 2k or 2k + 1
in (x, y). The terms R are also known as resonant interaction terms and H in this
form is called the Birkhoff-Gustavson or resonant normal form. In this paper we
will refer to the terms in R as resonant terms. For normalization one can use a
generating function or suitable averaging techniques. See for example [1] appendix
7 or [28] chapter 11.

The presence of resonant terms of the lowest degree in the Hamiltonian de-
termines until what order the normalization should be carried out. For example,
consider the Hamiltonian (1.1) and assume there is a pair of natural numbers (m,n)
such that m/n = ω1/ω2 where m and n are relatively prime. The resonant terms of
the lowest degree are generally found in Hm+n; ω1 : ω2 is said to be a lower order
resonance if the corresponding resonant terms of the lowest degree are found in Hk

with k < 5. If m + n ≥ 5 the normal form (1.2) becomes

(1.3) H(x,y) = 2i(Bk(τ1, τ2, ε) + εm+n−2(Dx1
ny2

m + Dy1
nx2

m)) + · · · .

It turns out that some of the lower order resonances are eliminated by symmetry
in which case m and n need not be relative prime. This is due to the fact that dur-
ing normalization symmetries can be preserved. See for example [7]. In table 1 we
present a list of lower order resonances and its corresponding resonant terms of the
lowest degree. The second column shows resonant terms in a general Hamiltonian
system while the third column is for a Hamiltonian system with symmetry in the
second degree of freedom, i.e. H(q1,−q2, p1,−p2) = H(q1, q2, p1, p2). Except for
the 1 : 1 and 2 : 1 -resonances, the other resonances are affected by the symmetry
assumption. For example, the 1 : 2-resonance in the general Hamiltonian has reso-
nant terms of the form x2

1y2 or x2y
2
1 . These terms vanish because of the symmetry

assumption. Thus, instead of these terms which arise from H3, the resonant terms
in the normal form derive from H6 in the form of x4

1y
2
2 or x2

2y
4
1 .

It is also clear that symmetry in the second degree of freedom does not affect
the 2 : 1-resonance. If we assume the symmetry is in the first degree of freedom,
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Resonant term
ω1 : ω2 General Hamiltonian Symmetric in x2, y2

1 : 2 x1
2y2, x2y1

2 x1
4y2

2, x2
2y1

4

2 : 1 x2
2y1, x1y2

2 x2
2y1, x1y2

2

1 : 3 x1
3y2, x2y1

3 x1
6y2

2, x2
2y1

6

3 : 1 x1y2
3, x2

3y1 x1
2y2

6, x2
6y1

2

1 : 1 x1
2y2

2, x2
2y1

2 x1
2y2

2, x2
2y1

2

x1
2y1y2, x1x2y2

2

x1y1
2x2, y1x2

2y2

Table 1. The table presents lower order resonant terms which
cannot be removed by Birkhoff normalization. The second column
shows resonant terms in the general case while in the third column
we have added the symmetry condition H(x1,−x2, y1,−y2) =
H(x1, x2, y1, y2).

then this resonance will be affected while the 1 : 2-resonance will not. On the other
hand, both the 3 : 1- and 1 : 3-resonances are eliminated as a lower order resonance
by the symmetry assumption, no matter on which degree of freedom the symmetric
condition is assumed. As in mechanics one often has symmetries, this may also
explain why these resonances received not much attention in the literature. This is
demonstrated clearly for the elastic pendulum in section 5. For the 1 : 1-resonance,
symmetry conditions on any degree of freedom (or even in both) do not push it into
higher order resonance.

3. Sharp estimate of the resonance domain

In a seminal paper [21], Sanders describes the flow of (1.1) for the m : n (m+n ≥
5) resonance cases on the energy manifold as follows. Interesting dynamics of the
flow takes place in the resonance domain which is embedded in the energy manifold.
The resonance domain which contains a stable and an unstable periodic solution,
is foliated into tori on which the interaction between the two degrees of freedom
takes place. The time-scale of the interaction is ε−(m+n)/2 and the size dε of the
resonance domain is estimated to be O(ε(m+n−4)/6). This estimate is an upper limit,
due to the approximation technique used there. Van den Broek [25] (pp. 65-67)
gave numerical evidence that the size of the resonance domain is actually smaller.
In this section we shall present a sharp estimate of the size dε which we derive from
a Poincaré section of the flow.

Consider the normal form of a Hamiltonian at higher order resonance as in [21]
in action-angle variables

(1.4) H = ω1τ1 + ω2τ2 + ε2P2 (τ1, τ2) + · · ·+ εm+n−2 (τ1
nτ2

m)
1
2 cos(χ),

where χ = nϕ1 − mϕ2 + α, m/n = ω1/ω2; and α ∈ [0, 2π). Note that Pk is a
homogeneous polynomial of degree k and it corresponds to the H2k term in the
Hamiltonian (1.1). Independent integrals of the system are I1 ≡ ω1τ1 + ω2τ2 = E◦,
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and I2 ≡ P2 (τ1, τ2) + · · · + εm+n−4 (τ1
nτ2

m)
1
2 cos(χ) = C. We will use these two

integrals to construct the Poincaré map.
The derivation runs as follows. First eliminate one of the actions, for instance

by setting τ1 = (E◦−ω2τ2)/ω1. Then we choose the section by setting ϕ1 = 0. Thus
we have a section in the second degree of freedom direction which is transversal to
the flow of the system. For simplicity, we put α = 0. Substitute all of these into the
second integral I2 and define τ2 = (p2 + q2)/2 and ϕ2 = arccos

(
q/(p2 + q2)

)
. We

then define P(q, p, ε) = I2 and from (1.4) we know that P has an expansion of the
form

(1.5) P(q, p, ε) = P4(q, p) + ε2P6(q, p) + · · ·+ εm+n−4R(q, p, ε),

where Pk is non-homogeneous polynomial of degree k and R is determined by the
resonant term. For a fixed value of E◦ and ε, the contour plot of (1.5) gives us the
Poincaré map.

The contour plot of P mainly consists of circles surrounding the origin. This is
due to the fact that in the equations of motion, the equation for the actions vary of
order εm+n−2 and the equation for χ of order ε2. This implies that for most of the
initial conditions, the actions are constant up to order εm+n−2 and only the angles
are varying. This condition fails to hold in a region where the right hand side of the
equation for χ is zero or becomes small. Up to order ε2, the location of this region
can be found by solving

(1.6) n
∂P2

∂τ1
−m

∂P2

∂τ2
= 0.

In phase space, equation (1.6) defines the so-called resonance manifold and on this
manifold there exist at least 2 short periodic solutions of the system (more if m and
n are not relatively prime).

In the contour plot, these short periodic orbits appear as 2m fixed points (ex-
cluding the origin) which are saddles and centers corresponding to the unstable and
stable periodic orbit. Each two neighboring saddles are connected by a heteroclinic
cycle. Inside each domain bounded by these heteroclinic cycles, also known as the
resonance domain, there is a center point. For an illustration, see figure 4 in section
5. We approximate the size of this domain by calculating the distance between the
two intersection points of the heteroclinic cycle and a straight line p = λq connecting
a center point to the origin.

Suppose we found one of the saddles (qs, ps) and one of the centers (qc, pc). Let
Cs

ε = P(qs, ps, ε) and Cc
ε = P(qc, pc, ε). Since the integral I2 depends only on the

actions up to order εm+n−4 we have Cs
ε −Cc

ε = O(εm+n−4). The heteroclinic cycles
are given by the equation P(q, p, ε) = Cs

ε and the intersection with the line p = λq is
given by solving P(q, λq, ε) = Cs

ε . Write q = qc + ενξ, ν ∈ R. We want to determine
ν which leads us to the size of the domain.

Since (qc, pc) is a critical point, we have P ′(qc, pc, ε) = 0 where the prime denotes
total differentiation with respect to q. We expand P

P4(qc, λqc) + ε2ν 1
2P4

′′(qc, λqc)ξ2 + · · ·+
ε2P6(qc, λqc) + ε2ν+2 1

2P6
′′(qc, λqc)ξ2 + · · · = Cc

ε + O(εm+n−4).



24 Symmetry and Resonance in Hamiltonian Systems

Since P4(qc, λqc)+ε2P6(qc, λqc)+ · · ·+O(εm+n−4) = Cc
ε , we have ν = (m+n−4)/2

and conclude:

Size of the resonance domain:
In two degrees of freedom Hamiltonian systems at higher order resonance m : n with
m and n natural numbers satisfying m + n ≥ 5, a sharp estimate of the size dε of
the resonance domain is

(1.7) dε = O(ε
m+n−4

2 ).

Note that in cases of the presence of an appropriate symmetry, the 2 : 1-resonance
for instance, has to be viewed as a 4 : 2-resonance

Of course degeneracies in the normal form may change this estimate. It is
interesting to compare this with a formal method to derive the size of a resonance
domain, described in [28], section 11.7. If we repeat the balancing method (method
of significant degenerations) described there for our higher order resonance problem,
we recover estimate (1.7).

4. A potential problem with symmetry

We will now study the 1 : 2 resonance in potential problems with a symme-
try assumption. In the introductory section we listed a large number of different
fields of application. From those we briefly discuss protein cluster modeling from
a paper by E.G. Shidlovskaya et.al [24] and the theory of galactic orbits as sum-
marized by Binney and Tremaine [3]. Substrate activation of the formation of the
enzyme-substrate complex can be considered as a classical (or potential) nonlinear
mechanical system. In [24] the authors consider a 2-dimensional protein cluster
model with linear bonds, which is modeled as a mass suspended to walls by four
springs as in figure 1. The spring constants depend on the type of enzyme involved
in the process. For small oscillations, it can be viewed as a potential Hamiltonian
system with linear frequencies ω1 =

√
k1 + k3 and ω2 =

√
k2 + k4.

We re-scale time to set one of the frequencies to be 1; we put ω1 = 1 and
ω2 = ω. The Hamiltonian with a potential, discrete symmetric in the second degree
of freedom, becomes

(1.8)
H = 1

2 (q̇2
1 + q̇2

2) + 1
2 (q2

1 + ω2q2
2)

−ε( 1
3a1q

3
1 + a2q1q

2
2)− ε2( 1

4b1q
4
1 + 1

2b2q
2
1q2

2 + 1
4b3q

4
2).

Assume ω2 = 4(1 + δ(ε)). The reason for the assumption of the perturbation δ(ε)
is that in applications we never encounter exact resonances; δ is an order function
which is called the detuning to be specified later. In any case δ(ε) = o(1) as ε → 0.
We note that this is exactly the same as the system considered in [24] with symmetry
condition (k2 = k4) and detuning parameter added. The symmetry assumption can
be imposed by choosing the appropriate enzyme.

Another application involving the same potential problem (1.8) arises in the
theory of three-dimensional axisymmetric galaxies, see [3] chapter 3 and [27] for
the mathematical formulation and older references. Among these galactic orbits the
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k1

k2

k3

k4

q1

q2

Figure 1. The 2-dimensional model for Protein Cluster with linear bonds.

so-called box orbits correspond with orbits outside the resonance manifold which
behave like orbits of anharmonic two-dimensional oscillators. The closed loop orbits
correspond with the periodic solutions in the resonance manifold; tube orbits are
solutions in the resonance manifold which stay nearby the stable periodic solutions.

The unperturbed form (ε = 0) of the equations of motion derived from (1.8) is
linear and all solutions are periodic. The periodic solutions in one degree of freedom
only, are called normal modes. The normal mode of the p1, q1 direction will be called
the first normal mode and the other one will be called the second normal mode.
Using averaging techniques, we will approximate other (short) periodic solutions
up to order of ε on a time-scale 1/ε2. Details of the averaging techniques and the
asymptotic validity of the method can be found in [26] or [23].

4.1. The resonance manifold. To apply the averaging techniques, we trans-
form the equations of motion into amplitude-phase form, by qj = rj cos(ωjt +
φj), q̇j = −ωjrj sin(ωjt + φj), j = 1, 2. The transformed equations of motion have
average zero to O(ε). This means that on the time-scale 1/ε, both the amplitude
and the phase are constant, up to order ε. If δ is of O(ε) then there will be no fixed
point in the averaged system and there is no interesting dynamics on this time-
scale. Putting δ(ε) = δ1ε

2, we perform second-order averaging which produces O(ε)
approximations on the time-scale 1/ε2, see [23].
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We find for the approximate amplitudes ρ1, ρ2 and phases ϕ1, ϕ2

(1.9)

ρ̇1 = 0 + O(ε3)

ϕ̇1 = −ε2
((

5
12a1

2 + 3
8b1

)
ρ1

2+
(

1
2a1a2 + 1

15a2
2 + 1

4b2

)
ρ2

2
)

+ O(ε3)

ρ̇2 = 0 + O(ε3)

ϕ̇2 = −ε2
((

1
4a1a2 + 1

30a2
2 + 1

8b2

)
ρ1

2

+
(

29
120a2

2 + 3
16b3

)
ρ2
2 − δ1

)
+ O(ε3).

From system (1.9), we conclude that, up to order ε the amplitude of the periodic
solution is constant. This result is consistent with the result in [27].

We shall define a combination angle χ which reduces the dimension of the av-
eraged system by one. Moreover, a lemma by Verhulst [22] (stated there without
proof) , can simplify the equation for the combination angle. We present this theo-
rem in a slightly different form:

Lemma 1.1. Consider the real Hamiltonian

H = 1
2 (p1

2 + p2
2) + V (q1, q2)

where V (q1, q2) is analytic near (0, 0) and has a Taylor-expansion which starts with
1
2 (ω1

2q1
2 + ω2

2q2
2). Then the coefficient of the resonant term D in the Birkhoff-

Gustavson normal form (1.3) of the Hamiltonian can be chosen as a real number.

Proof. Assume ω1/ω2 = m/n where m,n ∈ N+ and the Hamiltonian in po-
tential form as assumed in the lemma. By linear transformation the Hamiltonian
can be expressed as

H = 1
2ω1

(
p1

2 + q1
2
)

+ 1
2ω2

(
p2

2 + q2
2
)

+
∞∑

k=3

Ṽk(q1, q2)

where Ṽk is the k-th term of the Taylor expansion of V . Define a transformation to
complex coordinates by xj = qj+ipj and yj = xj . In these variables the Hamiltonian
becomes

H̃ = 2i
{

1
2 (ω1x1y1 + ω2x2y2) +

∑∞
k=3 Ṽk

(
x1+y1

2 , x2+y2
2

)}
.

Since the function inside the bracket is polynomial over IR we conclude that the
Birkhoff-Gustavson normal form of the Hamiltonian is

(1.10) H̃ = 2i {P (τ1, τ2) + D (x1
ny2

m + y1
nx2

m) + · · · }
where τj = 1

2xjyj , P is a real polynomial, and D ∈ R. ¤

Remark 1.2. Generalization of this lemma is possible by considering a wider
class of Hamiltonians by allowing terms like p2

2sq2
kq1

l (s a fixed natural number, k
and l are natural numbers) to exist in the Hamiltonian.
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An important consequence of lemma 1.1 is that in the equations of motion
derived from the normal form of the Hamiltonian we have the combination angle
χ = nϕ1−mϕ2 +α with α = 0. The phase-shift α will not affect the location of the
resonance manifold, it will only rotate it with respect to the origin but it will affect
the location of the periodic solutions in the resonance manifold.

Because of this lemma, define χ = 4ϕ1 − 2ϕ2. Then, the averaged equations
become

(1.11)
ρ̇1 = 0, ρ̇2 = 0
χ̇ = ε2

(
γ1ρ1

2 + γ2ρ2
2 − 2δ1

)

where γ1 = − 5
3a1

2 + 1
2a1a2 + 1

15a2
2− 3

2b1 + 1
4b2 and γ2 = −2a1a2 + 13

60a2
2− b2 + 3

8b3.
By putting the right hand side of the last equation zero, the resonance manifold is
given by

(1.12) γ1ρ1
2 + γ2ρ2

2 = 2δ1.

This is equivalent with (1.6). The resonance manifold is embedded in the energy
manifold and contains periodic solutions; because of lemma 1.1 we know the location.

Using the approximate energy integral, i.e. E0 = 1
2ρ1

2+2ρ2
2, assuming γ2 6= 4γ1

we can solve (1.12) for ρ1
2 and ρ2

2, i.e.:

(1.13) ρ1
2 =

2γ2E0 − 8δ1

γ2 − 4γ1
and ρ2

2 =
2δ1 − 2γ1E0

γ2 − 4γ1
.

We shall now discuss what happens at exact resonance (δ1 = 0). It is clear
that 0 ≤ ρ2

1 ≤ 2E0, so that we have, 0 ≤ γ2/(γ2 − 4γ1) ≤ 1. The last inequality is
equivalent with γ1γ2 ≤ 0. If γ1 tends to zero, then the resonance manifold will be
approaching the first normal mode. For γ2 tending to zero, the resonance manifold
approaches the second normal mode. We exclude now the equality and will consider
only the resonance manifold in general position. We summarize in a lemma:

Lemma 1.3 (Existence of the resonance manifold in general position for ex-
act resonance). Consider Hamiltonian (1.8) with δ(ε) = 0. A resonance manifold
containing periodic solutions of the equations of motion induced by this Hamilton-
ian exists if and only if γ1γ2 < 0. Those periodic solution are approximated by
x = ρ1(0) cos(t + ϕ1(t)) and y = ρ2(0) cos(2t + ϕ2(t)) where ρ1(0) and ρ2(0) satisfy
(1.13), ϕ1 and ϕ2 are calculated by direct integration of the second and the fourth
equation of (1.9).

Remark 1.4. Using a specific transformation, we can derive the mathematical
pendulum equation χ̈+Ωχ = 0 related to the system (1.9), see [22]. The fixed points
χ̇ = 0, π, χ̇ = 0 of the mathematical pendulum equation determine the locked-in
phases of the periodic solutions by setting 4ϕ1 − 2ϕ2 = 0 or 4ϕ1 − 2ϕ2 = π. The
first one corresponds with the stable periodic solutions and the second one with the
unstable periodic solutions.

Remark 1.5. From section 3 we know that the size of the resonance domain
is dε = O(ε), the time-scale of interaction is O(ε−3). Note that the size dε is in
agreement with the work of van den Broek in [25].
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4.2. Examples from the Hénon-Heiles family of Hamiltonians. An im-
portant example of Hamiltonian (1.8), with b1 = b2 = b3 = 0, is known as the
Hénon-Heiles family of Hamiltonians, see [27]. The condition for existence of the
resonance manifold in exact resonance in lemma 1.3 reduces to

(− 5
3a1

2 + 1
2a1a2 + 1

15a2
2
) (−2a1a2 + 13

60a2
2
)

< 0.

Assuming a2 6= 0 to avoid decoupling, we introduce the parameter λ = a1/3a2. Using
this parameter, the existence condition can be written as

(
450λ2 − 45λ− 2

)
(360λ− 13) ≤

0. Thus, the resonance manifold for the Hénon-Heiles family exists for λ < − 1
30 or

13
360 < λ < 2

15 . Note that for the Contopoulos problem (a1 = 0) the resonance man-
ifold does not exist at exact resonance while in the original Hénon-Heiles problem
(a1 = 1 and a2 = −1) the resonance manifold exists.

From this analysis, we know that for λ = 2
15 the resonance manifold will coincide

with the first normal mode. Since for λ > 2
15 the resonance manifold does not exist,

let λ decrease on the interval
(−∞, 2

15

]
. The resonance manifold moves to the second

normal mode which it reaches at λ = 13
360 . After that the resonance manifold vanishes

and then emerges again from the first normal mode when λ = − 1
30 . The resonance

manifold then always exist and tends to the second normal mode as λ decreases.
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Figure 2. Existence of the resonance manifold in the presence of
(scaled) detuning parameter ∆ = δ1

E0a2
2
. The vertical axis represents ∆

and the horizontal axis λ = a1
3a2

. The domain II and the unbounded

domain I and III (both bounded by the parabola and the straight line)
correspond with existence of the resonance manifold.

How is the effect of detuning in the case of existence of the resonance manifold?
In the same way as before, in terms of parameters λ and ∆ = δ1/(E0a2

2), we can
write for the existence of the resonant manifold

(1.14) 0 ≤ −360λ+13−240∆
3600λ2−720λ−3 ≤ 1.
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In figure 2, the area marked by I, II and III represent the domains of existence of the
resonance manifold in the parameter space. The parabolic boundary of the domain
represents the first normal mode (q1, p1 direction) and the straight line boundary
the second normal mode. By fixing the detuning coefficient, we have a horizontal
line on which we can move the resonance manifold from one normal mode to the
other as we vary λ. The analysis can be repeated for fixed λ. The bold parts of the
horizontal axes are the cases of exact resonance. Note that the intersection points
are excluded as they correspond with the zero of the denominator in (1.13).

4.3. The degenerate case: γ2 = 4γ1. Consider again the equations in (1.11).
With the condition γ2 = 4γ1, equations (1.11) become

(1.15)
ρ̇1 = 0 + O(ε3)
ρ̇2 = 0 + O(ε3)
χ̇ = ε2 (2γ1E0 − 2δ1) + O(ε3).

System (1.15) immediately yields that at exact resonance there will be no resonance
manifold. Another consequence is that there exist a critical energy Ec = δ1

γ1
such

that the last equation of (1.15) is zero, up to order ε3. It means we have to include
even higher order terms of the Hamiltonian in the analysis.

From the normal form theory in section 2, we know that for the 1 : 2-resonance
H5 does not contain resonant terms. Thus the next nonzero term would be derived
from H6. As a consequence, the equations for amplitudes and phases are all of the
same order, i.e. O(ε4). It is also clear that in H6 besides terms which represent inter-
action between two degrees of freedom (resonant terms), there are also interactions
between each degree of freedom with itself (terms of the form τ1

ατj
β).

To avoid a lengthy calculation and as an example, we consider a problem where
a1 = a2 = 0. From the condition γ2 = 4γ1 we derive b2 = 3b1 + 3

16b3. Then the last
equation of (1.15) becomes

χ̇ = ε2
((− 3

4b1 + 3
64b3

)
ρ1

2 + 4
(− 3

4b1 + 3
64b3

)
ρ2

2 − 2δ1

)
+ O(ε3).

Introducing the critical energy Ec, we have a degeneration of the last equation which
gives an additional relation, i.e.

δ1 = 1
2

((− 3
4b1 + 3

64b3

)
ρ1

2 + 4
(− 3

4b1 + 3
64b3

)
ρ2

2
)
.

We note also that for δ1 > 0 the critical energy exists providing b1 < 1
16b3.
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We apply second order averaging to have an O(ε2) approximation on the time-
scale 1/ε4. We find for the approximations

(1.16)

ρ̇1 = −ε4 3
32 (b1

2 + 5
32b1b3 + 3

512b3
2)ρ2

2ρ1
3 sin(χ)

ρ̇2 = ε4 3
128 (b1

2 + 5
32b1b3 + 3

512b3
2)ρ2ρ1

4 sin(χ)

χ̇ = ε4
(

3
64

(
b1

2 + 5
32b1b3 + 3

512b3
2
) (

ρ1
4 − 1

8ρ1
2ρ2

2
)
cos(χ)

+ 3
64 (−4b1

2 + 1
2b1b3 + 1

256b3
2)ρ4

1

+ 3
64 (−46b1

2 + 1
4b1b3 + 1

128b3
2)ρ1

2ρ2
2

+ 3
64 (−44b1

2 + 1
2b1b3 + 9

64b3
2)ρ2

4
)
.

It is clear that the analysis of periodic solutions obtained by setting χ = 0 or
χ = π runs along the same lines as in lower order resonance cases. Consider χ = 0.
The fixed point of the averaged equations is determined by the last equation of
(1.16). Since we are looking for periodic solutions which are different from normal

modes, we assume both ρ1 and ρ2 to be nonzero. Writing ξ =
(

ρ2
ρ1

)2

we obtain a
periodic solution by solving the quadratic equation

(1.17) aξ2 + bξ + c = 0,

where a = − 33
16b1

2 + 3
128b1b3 + 27

4096b3
2, b = − 81

32b1
2 − 3

64b1b3 − 15
8192b3

2 and c =
− 9

64b1
2 + 63

2048b1b3 + 15
32768b3

2. Assuming that b3 6= 0, we have

a = − 33
16κ2 + 3

128κ + 27
4096

b = − 81
32κ2 − 3

64κ− 15
8192

c = − 9
64κ2 + 63

2048κ + 15
32768 ,

where κ = b1
b3

. It is easy to see that b < 0. Note that both the magnitude and
the sign of b3 is not important. We can also consider b3

b1
instead if b3 = 0. We

calculate the discriminant D = b2 − 4ac and - a, b, and c being quadratic in κ- plot
the function D(κ) in figure 3.

There is an interval around κ = 0 where the value of D is negative. The value
of κ so that D is zero can be calculated using numerics. Thus we know that except
for small values of κ, we always have two roots for the quadratic equation (1.17).
Knowing that we are looking for the root of equation (1.17) which is positive, we have
to add another requirement. If we require c/a to be positive and b/a to be negative
we will have two different periodic solutions. These requirements are satisfied by
κ ∈

(
7
64 −

√
561

192 , 1
16

)
. When κ is at the lower bound of the interval, the periodic

solution coincides with the normal mode, in this case with the second normal mode.
Note also that this interval contains the interval where the discriminant becomes
zero or negative. The upper bound of the interval has to be excluded as a vanishes
there. Thus if κ increases towards zero, the periodic solutions become closer, then
coincide with each other and afterwards disappear. If we let κ increase from zero,
at some point a periodic solution will emerge and split up by increasing κ. For
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Figure 3. Plot of D (κ). Positivity of D(κ) is a necessary condition
for periodic solutions to exist of system (1.16) with χ = 0, which are not
normal modes.

κ ∈
(
− 9

176 , 7
64 −

√
561

192

)
or

(
1
16 , 7

64 +
√

561
192

)
there is only one periodic solution. This

is reasonable since one of the periodic solution coincides with one of the normal
modes at the upper end points of each interval. It is easy to see that the case where
a vanishes corresponds to the existence of one periodic solution. For other values of
κ the periodic solution does not exist. Note that we are only considering the case
χ = 0.

We have to apply the same reasoning to the other case and we expect conditions
where there is no periodic solution (apart from the normal modes), one, two, three or
four periodic solutions. Note that the analysis above also has to satisfy the existence
condition for the critical energy, i.e. if δ > 0 the critical energy only exist for κ < 1

16

and if δ < 0 for κ > 1
16 .

5. The elastic pendulum

In this section we will study one of the classical mechanical examples with dis-
crete symmetry. Consider a spring with spring constant s and length l◦, a mass
m is attached to the spring; g is the gravitational constant and l is the length of
the spring under load in the vertical position. The spring can both oscillate in the
vertical direction and swing like a pendulum. This is called the elastic pendulum.

Let r(t) be the length of the spring at time t and ϕ the angular deflection of the
spring from its vertical position. In [26] van der Burgh uses a Lagrangian formulation
to analyze the elastic pendulum, while in this paper we will use a Hamiltonian
formulation. The Hamiltonian is given by

(1.18) H = 1
2m

(
p2

r + p2
ϕ

r2

)
+ s

2 (r − l◦)2 −mgr cos ϕ,

where pr = mṙ and pϕ = mr2ϕ̇.
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Introducing the elongation of the spring by z = r−l
l , we translate the origin of

the coordinate system to the fixed point of the system where the elastic pendulum
is hanging vertically at rest. By dividing by l we normalize the length of the spring;
we adjust also the momenta pz = lpr to keep the Hamiltonian structure. The
Hamiltonian in the new variables is

(1.19) H =
1

2ml2

(
p2

z +
p2

ϕ

(z + 1)2

)
+

sl2

2

(
z +

l − l◦
l

)2

−mgl(z + 1) cos ϕ

Put α1 = ωzσ and α2 = ωϕσ where σ = ml2. We transform z =
√

α1z and ϕ =√
α1ϕ. To preserve the Hamiltonian structure we also transform pz =

√
α1 pz and

pϕ =
√

α2 pϕ. Expanding this Hamiltonian the two leading terms of the Hamiltonian
are,

H0 = 1
2s(l − l◦)2 −mgl

H1 = 1√
ωzσ (sl (l − l◦)−mgl) z.

We define the coordinate such that the pendulum is at rest in (pz, z, pϕ, ϕ) =
(0, 0, 0, 0). As a consequence the linear term of the Hamiltonian is zero. Thus
we have s(l − l◦) = mg. This condition restricts the ratio of the frequencies of the
two oscillators, i.e. ωz/ωϕ > 1. The restriction is natural since at the equilibrium
position the resultant force of gravitational force (mg) and spring force (s(l− l◦)) is
zero. With

√
s/m = ωz and

√
g/l = ωϕ, the remaining terms in the expansion of

the Hamiltonian are

(1.20)

H2 = 1
2ωz

(
z2 + p2

z

)
+ 1

2ωϕ

(
ϕ2 + p2

ϕ

)
H3 = ωϕ√

σωz

(
1
2zϕ2 − zp2

ϕ

)

H4 = 1
σ

(
3
2

ωϕ

ωz
z2p2

ϕ − 1
24ϕ4

)

H5 = − 1
σ
√

σωz

(
1
24zϕ4 + 2ωϕ

ωz
z3p2

ϕ

)

H6 = 1
σ2ωϕ

(
1

720ϕ6 + 5
2

(
ωϕ

ωz

)2

z4p2
ϕ

)

...

As expected, the - relatively few - terms in the Hamiltonian are symmetric in
the second degree of freedom and also in pz. Due to the restriction of the frequency
ratio above, we will not have the 1 : λ-resonances with λ > 1. On the other hand, the
symmetry condition on the second degree of freedom eliminates the 3 : 1-resonance
as a lower order resonance. The next resonant term of this resonance arises from
H8. Thus, for lower order resonances, the remaining cases are the 2 : 1- and, if we
allow small detuning, the 1 : 1-resonance. The 2 : 1-resonance has been intensively
studied, see [26] or [16] for references. This resonance is the one with resonant terms
of the lowest degree.

As noted in [26], for the 1 : 1-resonance, second order averaging still gives only
zero for both the amplitudes and the phases (this is not rendered correctly in [29]).
It follows that the 1 : 1-resonance is also eliminated as a lower order resonance. The
reason for this degeneracy is simple; by defining x = r sin(ϕ) and y = r cos(ϕ) we
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can transform (1.18) to

H =
1
2
m(ẋ2 + ẏ2) +

s

2
(x2 + y2)−mgy.

This means that for the 1 : 1-resonance we have the harmonic oscillator in which all
solutions are periodic with the same period. Thus we have isochronism. Let us now
assume that ωz/ωϕ 6= 1.

Introduce the transformation z = r1 cos(ωzt + φ1), pz = −r1 sin(ωzt + φ1), ϕ =
r2 cos(ωϕt + φ2), and pϕ = −r2 sin(ωϕt + φ2). Assuming ωz 6= 2ωϕ and rescaling
with ε as usual we find the second-order averaged equations for amplitudes and
phases

(1.21)

ρ̇1 = 0 + O(ε3)
ρ̇2 = 0 + O(ε3)

ψ̇ = −ε2
3
4

(ωϕ − ωz)(ωz
2 + ωzωϕ − 3ωϕ

2)
(ωz + 2ωϕ)(2ωϕ − ωz)σ

ρ1
2+

1
16

(ωϕ − ωz)(ωz
3 + 13ωz

2ωϕ + 20ωzωϕ
2 − 28ωϕ

3)
ωz(ωz + 2ωϕ)(2ωz − ωϕ)

ρ2
2 + O(ε3),

where ψ = ωϕψ1 − ωzψ2, ρ1 and ρ2 are the approximations of r1 and r2, ψ1 and
ψ2 are the approximations of φ1 and φ2, respectively. The resonance manifold is
determined by the requirement that the right hand side of equation (1.21) vanishes.
This implies the resonance manifold exists for all resonances with ωz/ωϕ > (

√
13−

1)/2 ≈ 1.30277. . . (we exclude the 2 : 1-resonance and small detuning of it).
We will now consider the most prominent higher order resonances which are

possible for the elastic pendulum problem. We start with the 3 : 2- and the 4 : 1-
resonance. For both resonances we know that in general the resonant terms arises
from H5 which implies that the amplitude variation will be zero up till second order
averaging. This is in agreement with (1.21). To determine which resonance in the
elastic pendulum arises from H5, we have to normalize.

ωz : ωϕ Resonant Part dε Interaction time-scale
4 : 1 H5 ε1/2 ε−5/2

4 : 3 H7 ε3/2 ε−7/2

6 : 1 H7 ε3/2 ε−7/2

3 : 1 H8 ε2 ε−4

8 : 1 H9 ε5/2 ε−9/2

3 : 2 H10 ε3 ε−5

Table 2. The table presents the most prominent higher order res-
onances of the elastic pendulum with lowest order resonant terms
Hk. The third column gives the size of the resonance domain in
which the resonance manifold is embedded while in the fourth col-
umn we find the time-scale of interaction in the resonance domain.

The result is, for the 3 : 2-resonance, there is no resonant term in the normalized
Hamiltonian up to degree 5. However, for the 4 : 1-resonance, there are resonant
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Figure 4. The Poincaré map for the 6 : 1-resonance in the second
degree of freedom (ε = 0.75 and the energy E = 5; large values for
illustration purposes). The saddles are connected by heteroclinic cycles
and inside the cycles (islands) are centers.

terms in the normalized Hamiltonian of degree 5. The conclusion is, after the first-
order 2 : 1-resonance, the 4 : 1-resonance is the most prominent resonance in the
elastic pendulum. Following the analysis in section 3, we can also determine the
sizes of the resonance manifolds which depend on the lowest degree of resonant
terms in the normal form. We repeat this for cases in which the resonant terms
arise in H7, . . . , H10. The results are summarized in table 2. Note that a low order
resonance as the 3 : 1-resonance figures here at relatively high order.

We checked our result numerically for some of the resonances by constructing
the Poincaré map and by calculating the size of the resonance domain. In the
numerical integrations we vary ε and study how this affects the size of the resonance
manifold. We found confirmation for the 4 : 1-resonance and the 6 : 1-resonance,
i.e. the numerical exponents are 0.4971 . . . and 1.4991 . . . respectively. As table 2
shows, the numerical integration takes a long time. Figure 4 shows the map for the
6 : 1-resonance. To avoid long computation times, we increased the value of ε. In
figure 5 we demonstrate the size and visibility of the resonance domain as ε increases
for the 6 : 1-resonance. In figure 6 the 4 : 1-resonance and the 6 : 1-resonance are
compared.

6. Conclusion and comments

In nearly all real-life applications symmetries and hidden symmetries play an im-
portant part. We have mentioned a large number of examples. We have shown that
(reflection) symmetry assumptions strongly affect some of the lower order and higher
order resonances in two degrees of freedom Hamiltonian systems. In those cases, the
symmetry assumption on one of the degrees of freedom implies a degeneration of
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Figure 5. The 6 : 1-resonance. Part of the map in the second degree
of freedom direction for several values of ε, the energy E = 5. The top-
left figure is for ε = 0.25, the top-right figure is for ε = 0.5 and the figure
below is for ε = 0.75.

the normal form. This degeneration forces us to extend the normalization as the
resonant terms appear at higher order as compared with the case without symmetry
assumptions. The conclusion is then that some of the lower order resonances behave
like higher order ones. This makes sense since we know that for instance the 1 : 2
resonance can be viewed as 2 : 4 resonance or 4 : 8 resonance etc.

In the general, mathematically generic case, lower order resonance corresponds with
strong interaction between the modes while higher order resonance corresponds with
weak interaction, restricted to resonance domains. This happens for instance in a
model for a Protein Cluster and in the theory of galactic orbits. For symmetric
potential problems in 1 : 2 resonance, we have shown that at a certain critical value
of the energy, localized in phase-space at some distance of equilibrium, the system
behaves like a strong resonance while for other values of the energy it produces
higher order resonance. We note that the presence of this critical energy involves
the detuning parameter. This is an intriguing new phenomenon and more analysis
is needed to see what part this critical energy may play in applications.

In applying the analysis to the elastic pendulum we have found a numerical con-
firmation of our analytic estimates of the size of the resonance domain. Also we
have found a new hierarchy in the resonances due to two reasons. First because of
physical restrictions the m : n resonances with m < n are eliminated. Secondly the
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Figure 6. Part of the map in the second degree of freedom direction
for the 4 : 1-resonance (left) and the 6 : 1-resonance (right);ε = 0.1 and
the energy E = 5.

symmetry assumption. As is well-known the 2 : 1 resonance is the most prominent
resonance, the next one turns out to be the 4 : 1 resonance. It turns out that the
1 : 1-resonance of the elastic pendulum is a rather trivial case.
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Appendix

Additional reference to Chapter 1

The estimate for the size of the resonance domain which is derived in Section 3
of Chapter 1, can also be extracted from the paper

Duistermaat, J.J.,Bifurcations of periodic solutions near equilib-
rium points of Hamiltonian systems, in L. Salvadori (ed.): Bifur-
cation Theory and Applications, Lecture Notes in Mathematics
1057, Springer-Verlag, Berlin etc., 1984, pp. 57–105,

if one translates the expressions in terms of asymptotics. Introducing the small
paramater ε which is proportional with

√
H2, from that paper one can also derive

the exact expression for the constant in front of the power of ε. Both the constant
and the exponent of the power of ε are expressed as functions of the linear energy
H2, the detuning parameter, and the resonance it self. Thus, our result is actually
contained in the result of Duistermaat.


