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Abstract—First, we describe how 360
◦-rotational symmetry

may be used for three dimensional reconstruction of repeated
cylinders from a single perspective image. In our experiments,
we consider translational and affine repetition of cylinders with
vertical and random orientations. Later, we create a virtual
camera configuration for retrieving pose and location of repeated
cylinders. The combination of 360

◦-rotational symmetry and
camera center is used to identify two orthogonal planes called axis
plane and orthogonal axis plane. These two planes are the basis
for the proposed reconstruction framework and virtual camera
configuration. Furthermore, we discuss possible extension of our
method in vision tasks based on motion analysis.

I. INTRODUCTION

Computational symmetry and group theory has been exten-

sively studied in computer vision [1]. It is widely used for

image segmentation and retrieving three dimensional structure

and pose and computing structure from motion [2][3][4][5].

Here, we use rotational symmetry for 3D reconstruction

of repeated cylinders with random orientations from single

perspective image. These cylinders may have translational

and affine repetitions. Since a cylinder has 360◦-rotational

symmetry around its axis, it is convenient to use vanishing

points based visual metrology techniques.

Single view metrology techniques are mostly used for

retrieving metric measurements and calibrating cameras

[6][7][8][9]. These techniques use homology, a plane pro-

jective transformation, for scenes containing parallel lines

and parallel planes [10][6][7]. In the proposed method, we

blend and develop previous work on (i) vanishing points

based reconstruction methods; (ii) symmetry of individual 3D

object; (iii) configuration of repeated objects.

In this paper, we consider a prespective image of randomly

placed cylinders on the ground plane. Any one cylinder is

chosen as principal cylinder and rest are called auxiliary cylin-

ders. The 360◦-rotational symmetry and location of camera

projection center are used in finding two orthogonal planes.

First, axis plane passes through camera center and axis of

cylinder. It bisects cylinder in Euclidean space and image plane

too, if we ignore the lens distortion. Second, orthogonal axis

plane passes through cylinder’s axis and is orthogonal to axis

plane.

These two planes are the basis for 3D reconstruction

framework and creating a virtual camera configuration, an

alternate framework, for retrieving 3D-box (pose and location)

of auxiliary cylinder with respect to principal cylinder. Further-

more, proposed framework can be extended for vision tasks

Fig. 1. World Coordinate System (Left-hand)

involving multiple views such as motion analysis - structure

from motion, motion segmentation and tracking.

Primarily, homology is used to find the distance between

two parallel planes [6][10]. A set of three orthogonal pairs of

parallel planes are required for retrieving 3D coordinates of a

point. This is a three homology configuration. Since, a cylinder

has 360◦-rotational symmetry around its axis, it requires only

two homology to find 3D coordinates of a point on the top

surface of a vertical cylinder. The 3D coordinates of the point

give height and diameter. Similar techniques are used to find

the measurements and position of arbitrarily placed auxiliary

cylinder with respect to the principal cylinder.

Section II describes 360◦-rotational symmetry and two

important orthogonal planes for a cylinder. A framework for

computing measurement and location of principal and auxil-

iary cylinders is developed in section III. Detailed discussion

on the virtual camera configuration for computing 3D-box

of repeated cylinders is described in section IV. Results and

conclusion with future work are discussed in Section V and

VI, respectively.

II. SYMMETRY IN THE GEOMETRY OF A CYLINDER

The chosen world coordinate system is shown in figure (1).

Every cylinder has such coordinate system. However, mea-

surements and location of all auxiliary cylinders are computed

with respect to principal cylinder. Particularly, this coordinate

system is useful in understanding rotational symmetry, finding

two orthogonal planes, creating virtual camera configuration,

as discussed in section IV, and computing point correspon-

dences from image.



Fig. 2. Axis Plane and Orthogonal Axis Plane

A. Rotational Symmetry and Projection Center

All the projectors from camera center to a cylinder’s axis

form a plane. This is called an axis plane. The image of

axis plane or image of cylinder’s axis is a line segment that

bisects the image of cylinder, if we ignore the lens distortion.

Consequently, there is reflection symmetry in the image of

every cylinder. This plane is identified due to 360◦-rotational

symmetry in the shape of cylinder. Another important plane

is orthogonal axis plane. It passes through cylinder’s axis and

is orthogonal to axis plane. These two planes are shown in

figure (2).

”If a cylinder is rotated around its axis or is moved in world

space such that the perpendicular distance of orthogonal axis

plane from camera center is kept constant, the size and shape

of its image will remain same”.

This is an important conclusion which relates the motion of

cylinder and its 360◦-rotational symmetry.

B. Point Correspondences

The axis plane and orthogonal axis plane are used to find

corresponding points for each cylinder as shown in figure (1).

Points mi are image of points Mi, where i = 0, . . . , 8. Image

points m1,m3,m5, and m7 lie on orthogonal axis plane.

The lines 〈m1,m5〉 and 〈m3,m7〉 are side-edges of image of

cylinder and can be computed using edge detection techniques.

Due to reflection symmetry, m8 is mid point of m1 and m3 and

image of visible circular surface is ellipse, if lens distortion

is ignored. The line passing through m8 and orthogonal to

line 〈m1,m3〉 intersects the conic at m2 and m4. We can use

Bookstein’s method for conic fitting [11]. Point M8 is mid

point of M2 and M4. Due to perspective distortion m8 would

not be mid point of m2 and m4. Point m6 can be computed

in the similar manner.

III. MEASUREMENT AND LOCATION OF CYLINDERS

A. Measurement of Principal Cylinder

The vanishing points of X and Z axes are computed as

follows:

vx = (m1×m3)× (m5×m7), vz = (m3×m7)× (m1×m5)

Since M8 is mid point of M2 and M4, 1D homography is

used to compute the vanishing point of Y axis, vy [10]. Point

v0 is image of world origin.

v0 = (m6 × vx)× (m7 × vy)

To find measurements of principal cylinder, 3D coordinates

of M1 = (X1, Y1, Z1) should be computed. Point M5 =
(X1, Y1, 0) is projection of M1 on XY -plane. The camera

projection matrix can be chosen as P =
(

vx vy vz v0
)

[10][7]. The projection of M5 in terms of P is written as

follows

λ5m5 = X1vx + Y1vy + v0

Taking scalar product of above equation with lxy yields λ5.

λ5 =
(v0.lxy)

(m5.lxy)

Similarly, m1 can be expressed in terms of m5.

λ1m1 = X1vx + Y1vy + Z1vz + v0 = λ5m5 + Z1vz

Taking vector product of above equation with m1 yields Z1.

Z1 = −λ5

||m5 ×m1||

||vz ×m1||

Similarly, after taking scalar product of equation for m5 with

lzx and lyz , we get Y1 and X1, respectively.

Y1 =
λ5(m5.lzx)− (v0.lzx)

(vy.lzx)
, X1 =

λ5(m5.lyz)− (v0.lyz)

(vx.lyz)

We assumed that principal cylinder is vertically oriented,

though not necessary, and its height H and diameter D are

known. The X1, Y1 and Z1 are affine measurements. The

constants αx = X1

D
, αy = 2Y1

D
and αz = Z1

H
are fixed for

the chosen world coordinate system [7]. So, the position of

camera center, TC = (TCX TCY TCZ)
T , is computed using

vanishing points and these three constants [7][10].

B. Measurements and Pose of Auxiliary Cylinders

Position of auxiliary cylinder is computed with respect

to principal cylinder. The key idea is not to use vanishing

points of auxiliary cylinder. In this context, two different

configurations are considered.

1) Vertical Orientation: Vertically oriented auxiliary cylin-

der may have translational or affine repetition. To find the

measurement and location of auxiliary cylinder, 3D coordi-
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Using λ′

5
in the equation for m′

5
, we get expressions for X ′

1

and Y ′

1
,

X ′

1
=

λ′

5
(m′

5
.lyz)− (v0.lyz)

(vx.lyz)
, Y ′

1
=

λ′

5
(m′

5
.lzx)− (v0.lzx)

(vy.lzx)

In the similar fashion, we can solve equations for m′

3
and m′

7

and get expressions for X ′

3
and Y ′

3
.

λ′

7
m′

7
= X ′

3
vx + Y ′

3
vy + v0 ⇒ λ′

7
=

(v0.lxy)

(m′

7
.lxy)

Y ′

3
=

λ′

7
(m′

7
.lzx)− (v0.lzx)

(vz.lzx)
, X ′

3
=

λ′

7
(m′

7
.lyz)− (v0.lyz)

(vx.lyz)

2) Random Orientation: In this configuration cylinders are

placed horizontally, as shown in figure (6). It is another case

of affine repetition. The XY -plane is a tangent plane to the

auxiliary cylinder and touches in a line segment. One end point

of this segment is M ′

9
= (X ′

10
, Y ′

10
, 0). The diameter through

M ′

9
intersects the conic at M ′

10
= (X ′
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, Y ′

10
, Z ′

10
). Another

hypothetical plane, which is parallel to XY -plane, touches

cylinder in a line segment 〈M ′

10
,M ′

11
〉. The coordinates of

point M ′

11
are (X ′

11
, Y ′

11
, Z ′

10
). To find the measurement and

location of auxiliary cylinder, 3D coordinates of M ′

10
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11

should be computed.

The line vz ×m′
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9
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We need to use Z ′

10
to compute expression for X ′
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IV. VIRTUAL CAMERA CONFIGURATION

The proposed virtual camera configuration framework cor-

roborates the previous discussion and provide an alternate

method to compute 3D-box of auxiliary cylinders. A single

perspective image of repeated cylinders can be considered

as multiple images of one cylinder. This is called isometry

property. Axis plane and orthogonal axis plane are dependent

on camera center. Virtual camera for auxiliary cylinder is

placed such that virtual axis plane and virtual orthogonal axis

Fig. 3. Virtual Camera Configuration

Fig. 4. Location of Affinely Repeated Cylinder

plane are parallel to axis plane and orthogonal axis plane of

principal cylinder, respectively, as shown in figure (3). This

configuration of planes can be used to find the position of

auxiliary cylinder with respect to principal cylinder.

A. Vertical Orientation

1) Translational Repetition: The position of auxiliary cylin-

der with respect to principal cylinder is represented by 3-

vector T ′ =
(

X ′ Y ′ 0
)T

, as shown in the figure (4) (top

view). If M5 =
(

X5 Y5 0
)

and M ′

5
=

(

X ′

5
Y ′

5
0
)

is a pair of corresponding point, length of line segments

〈M ′

5
,M ′

5vx〉 and
〈

M ′

5
,M ′

5vy

〉

are X and Y coordinates of

vector T ′. Points M ′

5vx =
(

X5 +X ′ Y5 0
)

and M ′

5vy =
(

X5 Y5 + Y ′ 0
)

are projection of point M ′

5
on the planes

which pass through point M5 and are parallel to Y Z and ZX

planes, respectively.

m′

5vx = (m5 × vy)× (m′

5
× vx)

m′

5vy = (m5 × vx)× (m′

5
× vy)

Once image coordinates m′

5vx and m′

5vy are computed, X ′ and

Y ′ can be computed by using similar calculus as discussed in

section III.

2) Affine Repetition: In case of affine repetition, 3-vector

T ′ =
(

X ′ Y ′ Z ′
)T

has non-zero Z coordinate, as shown

in figure (4) (Front View). The X ′ and Y ′ coordinates are

computed same as for translational repetition and expression

for Z ′ is

Z ′ =
||λ′

1
(m′

1
× lxy)− (v0 × lxy)||

||vz × lxy||

where

λ′

1
=

||(X5 +X ′)(vx × lyz) + (v0 × lyz)||

||m′

1
× lyz||



B. Random orientation

In this case, pose along with position is required for com-

puting 3D box of auxiliary cylinder with respect to principal

cylinder. The vector T ′ is computed as per section III-B2.

Pose, which is rotation transformation, is computed using set

of vanishing points of both cylinders. Geometry is shown in

the figure (3).
(

v′x v′y v′z
)

= R3×3

(

vx vy vz
)

Given metric measurements of principal cylinder (distances

along X , Y and Z axes), R3×3 can be computed [9][8].

V. EXPERIMENTAL RESULTS

In our experiment, we considered two real images (figure (5)

and (6)). Table I and II display the measurements (centimeter)

of cylinders computed using methods discussed in section

III-B1 and III-B2, respectively. The deviation of experimental

measurements from scene measurements is acceptable. Those

can be further improved by using efficient image processing

techniques for finding point correspondences and computing

vanishing points. There is a possibility of further improvement

by employing uncertainly analysis as discussed in [7].

TABLE I
EXPERIMENTAL RESULTS FOR FIGURE (5)

Cylinder Orientation Type Scene Experiment Error

Diameter 3.1 2.8 -0.3
C1 Vertical

Height 5.0 4.5 -0.5

Diameter 2.6 2.9 0.3
C2 Vertical

Height 4.1 4.6 0.5

Diameter 2.6 2.5 -0.1
C3 Vertical

Height 6.1 5.8 -0.3

TABLE II
EXPERIMENTAL RESULTS FOR FIGURE (6)

Cylinder Orientation Type Scene Experiment Error

Diameter 3.1 3.3 0.2
C1 Vertical

Height 5.0 5.3 0.3

Diameter 2.6 2.6 0.0
C2 Horizontal

Height 4.1 5.2 1.1

Diameter 2.6 2.8 0.2
C3 Horizontal

Height 6.1 7.9 1.8

VI. CONCLUSION

We extended previous work on single view metrology

and effectively utilized rotational symmetry for three di-

mensional reconstruction of repeated objects. The proposed

method showed acceptable results with the scope of further

improvements. The 360◦-rotational symmetry based virtual

camera configuration framework can be further extended for

view synthesis, motion analysis - segmentation and tracking.

As well, proposed framework can be extended for vision

tasks related to individual or repeated objects with reflection

symmetry, uniform finite rotational symmetry and skewed

symmetry.

Fig. 5. Cylinders with Vertical Orientations

Fig. 6. Cylinders with Random Orientation
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