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230 space groups
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The interplay between symmetry and topology leads to a rich variety of electronic topological

phases, protecting states such as the topological insulators and Dirac semimetals. Previous

results, like the Fu-Kane parity criterion for inversion-symmetric topological insulators,

demonstrate that symmetry labels can sometimes unambiguously indicate underlying band

topology. Here we develop a systematic approach to expose all such symmetry-based

indicators of band topology in all the 230 space groups. This is achieved by first developing

an efficient way to represent band structures in terms of elementary basis states, and then

isolating the topological ones by removing the subset of atomic insulators, defined by the

existence of localized symmetric Wannier functions. Aside from encompassing all earlier

results on such indicators, including in particular the notion of filling-enforced quantum band

insulators, our theory identifies symmetry settings with previously hidden forms of band

topology, and can be applied to the search for topological materials.
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The discovery of topological insulators (TIs) has reinvigo-
rated the well-established theory of electronic band
structures (BSs)1, 2. Exploration along this dimension has

led to an ever-growing arsenal of topological materials, which
include, for instance, topological (crystalline) insulators3–5,
quantum anomalous Hall insulators6 and Weyl and Dirac
semimetals7. Such materials possess unprecedented physical
properties, like quantized response and gapless surface states, that
are robust against all symmetry-preserving perturbations as long
as a band picture remains valid1, 2, 7.

Soon after these developments, it was realized that
symmetries of energy bands, a thoroughly studied aspect of
band theory, is also profoundly intertwined with topology.
This is exemplified by the celebrated Fu-Kane criterion for
inversion-symmetric materials, which demarcates TIs from trivial
insulators using only their parity eigenvalues8. This criterion,
when applicable, greatly simplifies the topological analysis of
real materials, and underpins the theoretical prediction and
subsequent experimental verification of many TIs8–12.

It is of fundamental interest to obtain results akin to the
Fu-Kane criterion in other symmetry settings. Early general-
izations in systems without time-reversal (TR) symmetry in
two-dimensional (2D) constrained the Chern number (C). The
eigenvalues of an n-fold rotation were found to determine
C modulo n13–15. This is characteristic of a symmetry-based
indicator of topology—when the indicator is nonvanishing, band
topology is guaranteed, but certain topological phases (i.e., C a
multiple of n in this context) may be invisible to the indicator. In
three-dimensional (3D) systems, it was also recognized that
spatial inversion alone can protect nontrivial phases. A feature
here is that these phases do not host protected surface states, since
inversion symmetry is broken at the surface, but they do
represent distinct phases of matter. For example, they possess
nontrivial Berry phase structure in the Brillouin zone, which leads
to robust entanglement signatures13, 14, 16, 17 and, in some cases,
quantized responses13, 14, 18. Interestingly, in the absence of TR
invariance the inversion eigenvalues can also protect Weyl
semimetals13, 14, which informed early work on materials
candidates19. Hence, these symmetry-based indicators are
relevant both to the search for nontrivial insulating phases, and
also to the study of topological semimetals. It is also important to
note that the goal here is to identify signatures of band topology
in the symmetry transformations of the state, which is distinct
from the full classification of topological phases.

An important open problem is to extend these powerful
symmetry indicators for band topology to all space groups (SGs).
Earlier studies have emphasized the topological perspective,
which typically rely on constructions that are specifically tailored
to particular band topology of interest8, 15, 20, 21. While some
general mathematical frameworks have been developed22–24,
obtaining a full list of concrete results from such an approach
faces an inherent challenge stemming from the sheer multitude of
physically relevant symmetry settings—there are 230 SGs in 3D,
and each of them is further enriched by the presence or absence
of both spin–orbit coupling and TR symmetry.

A complementary, symmetry-focused perspective leverages the
existing exhaustive results on band symmetries25, 26 to simplify
the analysis. Previous work along these lines has covered
restricted cases13, 14, 27, 28. For instance, in ref. 28, which focuses
on systems in the wallpaper groups without any additional
symmetry, such an approach was adopted to help develop a more
physical understanding of the mathematical treatment of ref. 22.
However, the notion of nontriviality is a relative concept in these
approaches. While such formulation is well-suited for the study of
phase transitions between different systems in the same symmetry
setting, it does not always indicate the presence of underlying

band topology. As an extreme example, such classifications
generally regard atomic insulators (AIs) with different electron
fillings as distinct phases, although all the underlying BSs are
topologically trivial.

Here, we adopt a symmetry-based approach that focuses on
probing the underlying band topology. At the crux of our analysis
is the observation that topological BSs arise whenever there is a
mismatch between momentum-space and real-space solutions to
symmetry constraints29, 30. To quantitatively expose such
mismatches, we first develop a mathematical framework to
efficiently analyze all possible BSs consistent with any symmetry
setting, and then discuss how to identify the subset of BSs arising
from AIs, which are formed by localizing electrons to definite
orbitals in real space. The mentioned mismatch then follows
naturally as the quotient between the allowed BSs and those
arising from real-space specification. We compute this quotient
for all 230 SGs with or without spin–orbit coupling and/or TR
symmetry. Using these results, we highlight symmetry
settings suitable for finding topological materials, including both
insulators and semimetals. In particular, we will point out that, in
the presence of inversion symmetry, stacking two strong 3D TIs
will not simply result in a trivial phase, despite all the Z2 indices
have been trivialized. Instead, it is shown to produce a quantum
band insulator (QBI)30, which can be diagnosed through its
robust gapless entanglement spectrum.

Results
Overview of strategy and results. Our major goal is to system-
atically quantify the mismatch between momentum-space and
real-space solutions to symmetry constraints in free-electron
problems30. While AIs, which by definition possess localized
symmetric Wannier orbitals, can be understood from a real-space
picture with electrons occupying definite positions as if they
were classical particles, topological BSs (that are intrinsic to
dimensions greater than one) do not admit such a description.
Whenever there is an obstruction to such a real-space reinter-
pretation for a band insulator, the insulating behavior can only be
understood through the quantum interference of electrons, and
we refer to such systems as QBIs. While all topological phases
such as Chern insulators, weak and strong Z2 TIs and topological
crystalline insulators with protected surface states in d> 1 are
QBIs, more generally, QBIs may not have nontrivial surface states
when the protecting symmetries are not compatible with any
surface termination. Nonetheless, they represent distinct phases
of matter and showcase nontrivial Berry phase in the Brillouin
zone31, robust entanglement signatures13, 14, 16, 30, and sometimes
quantized responses13, 14, 18.

Building on this insight, we develop an efficient strategy for
identifying topological materials indicated by symmetries. We
will first outline a simple framework to organize the set of all
possible BSs using only their symmetry labels. By extending the
ideas in refs 13, 28 and allowing for both addition (stacking) as
well as formal subtractions of bands, we show that BSs can be
conveniently represented in terms of a special type of Abelian
group, which is simply called a lattice in mathematical
nomenclature. Next, to isolate topological BSs we quotient out
those that can arise from a Wannier description. Since such band
topology is uncovered from the symmetry representations of the
bands, we will refer to it as being represented-enforced. In this
work, we present the results of this computation for all of the 230
SGs, 80 layer groups, and 75 rod groups, covering all cases with or
without TR symmetry and spin–orbit coupling. Our scheme
automatically encompasses all previous results concerning
symmetry indicators of band topology, including in particular
the Fu-Kane criterion, the relation between Chern numbers and
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rotation eigenvalues, and the inversion-protected nontrivial
phases.

We will utilize the results and identify representation-enforced
QBIs (reQBIs). We will also discuss a more constrained approach
where one first specifies the microscopic lattice degrees of
freedom. This is relevant to materials where a hierarchy of energy
scales isolates a group of atomic orbitals. We find examples where
these constraints lead to semimetallic behavior, despite band
insulators at the same filling are symmetry-allowed. We will refer
to these as lattice-enforced semimetals (leSMs) and give a
concrete tight-binding example of them. Generalizations of these
approaches should aid in the discovery of experimentally relevant
topological semimetals and insulators.

Finally, we make two remarks. First, we ignore
electron–electron interactions. Second, while our approach is
applicable in any dimension, in the special case of
one-dimensional (1D) problems even topological phases are
smoothly connected to AIs32, and therefore are regarded as trivial
within our framework. These states, and their descendants in
higher dimensions, are collectively known as frozen-polarization
insulators13, and will be absent from our discussion on
topological phases.

BSs form an Abelian group. Here, we argue that the possible set
of BSs symmetric under an SG G can be naturally identified as the
group ZdBS � Z ´Z ´ ¼ ´Z, where dBS is a positive integer that

depends on both G and the spin of the particles (Fig. 1). We will
first set aside TR symmetry, and later discuss how it can be easily
incorporated into the same framework. The discussion in
this section follows immediately from well-established results
concerning band symmetries25, and the same set of results was
recently utilized in ref. 28 to discuss an alternative way to
understand the more formal classification in ref. 22. Although
there is some overlap between the discussion here and that in
ref. 28, we will focus on a different aspect of the narration: instead
of being solely concerned with the values of dBS, we will be more
concerned with utilizing this framework to extract other physical
information about the systems.

We begin by reviewing some basic notions using a simple
example. Consider free electrons in a 1D, inversion-symmetric
crystal. The energy bands Em(k) are naturally labeled by the band
index m and the crystal momentum k∈ (−π, π). Since inversion
P flips k↔ −k, the Bloch Hamiltonian H(k) is symmetric under
PH(k)P−1=H(−k), which implies Em(k)= Em(−k), and the
wavefunctions are similarly related. The two momenta k0= 0
and π are special as they satisfy P(k0)= k0 (up to a reciprocal
lattice vector). As such, the symmetry constraint imposed by
P becomes a local constraint at k0, which implies the wavefunc-
tions ψm(k0) (generically) furnish irreducible representations
(irreps) of P: ψ†

m k0ð ÞPψm k0ð Þ ¼ ζm k0ð Þ, with ζm(k0)=±1.
The parities ζm(k0)=±1 can be regarded as local

(in momentum space) symmetry labels for the energy band
Em(k), and such labels can be readily lifted to a global one
assigned to any set of bands separated from others by a band gap.
We will refer to such sets of bands as BSs, although, as we will
explain, caution has to be taken when this notion is used in higher
dimensions. Insofar as symmetries are concerned, we can label
the BS by its filling, ν, together with the four non-negative
integers, n±

k0
, corresponding to the multiplicity of the irrep ± at k0

(Fig. 1a). Generally, such labels are not independent, since the
assumption of a band gap, together with the continuity of the
energy bands, casts global symmetry constraints on the symmetry
labels. These constraints are known as compatibility relations. For
our 1D problem at hand, there are only two of them, which
arise from the filling condition: ν ¼ nþ0 þ n�0 ¼ nþπ þ n�π .
Consequently, the BS is fully specified by three non-negative
integers, which we can choose to be nþ0 , n

þ
π , and ν.

This discussion to this point is similar to that of ref. 28, but
we now depart from the combinatorics point of view of that
work. Instead, similar to ref. 13 we develop a mathematical
framework to efficiently characterize energy bands in terms
of their symmetry transformation properties, and then show that
it provides a powerful tool for analyzing general BSs. To begin,
we first note that any BS in this 1D inversion-symmetry
problem can be represented by a five-component “vector”
n � nþ0 ; n

�
0 ; n

þ
π ; n

�
π ; ν

� � 2 Z5
�0, where Z�0 denotes the set

of non-negative integers. In addition, n is subjected to the two
compatibility relations. We can arrange these relations into
a system of linear equations and denote them by a 2 × 5 matrix C.
The admissible BSs then satisfy Cn ¼ 0, and hence ker C, the
solution space of C, naturally enters the discussion. For
the current problem, ker C is 3D, which echoes with the claim
that the BS is specified by three non-negative integers.

At this point, it is natural to make a mathematical abstraction
and lift the physical condition of non-negativity. We define

BSf g� ker C \ ZD;
ð1Þ

where for the 1D problem at hand we have D= 5. The main
advantage of this abstraction is that, unlike ZD

�0, Z
D is an Abelian

group, which greatly simplifies our forthcoming analysis.
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Fig. 1 Symmetry-based indicators of band topology. a Symmetry labeling of
bands in a 1D inversion-symmetric example. k0= 0, π are high-symmetry
momenta, where the bands are either even (+) or odd (−) under inversion
symmetry (orange diamonds). From a symmetry perspective, a target set of
bands (purple and boxed) separated from all others by band gaps can be
labelled by the multiplicities of the two possible symmetry representations,
which we denote by the integers n±

k0
. Note that such labeling is insensitive

to the detailed energetics within the set. In addition, the set is also
characterized by the number of bands involved, which we denote by ν.
Altogether, the set is characterized by five integers, which are further
subjected to the constraints ν ¼ nþ0 þ n�0 ¼ nþπ þ n�π . b Symmetry labels
like those described in a can be similarly defined for systems symmetric
under any of the 230 space groups in three dimensions. Using such labels,
one can reinterpret the set of band structures as an Abelian group. This is
schematically demonstrated through the two labels ν and nα, which
organize the set of all possible band structures into a two-dimensional
lattice. Note that the dimensionality of this lattice is given by the number of
independent symmetry labels, and is a property of the symmetry setting at
hand. Organized this way, the band structures corresponding to atomic
insulators, which are trivial by our definition, will generally occupy a
sublattice. Any band structure that does not fall within this sublattice
necessarily possesses nontrivial band topology
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In particular, {BS} so defined can be identified with ZdBS , where
dBS= 3 is the dimension of the solution space ker C. Physically,
the addition in ZdBS corresponds to the stacking of energy bands.

Next, we generalize the discussion to any SG G in three
dimensions. We call a momentum k a high-symmetry momen-
tum if there is any g 2 G other than the lattice translations such
that g(k)= k (up to a reciprocal lattice vector). We define a BS
as a set of energy bands isolated from all others by band gaps
above and below at all high-symmetry momenta. Note that, in
3D, the phrase “all high-symmetry momenta” includes all high-
symmetry points, lines, and planes. The discussion for the 1D
example carries through, except that one has to consider a much
larger zoo of irreps and compatibility relations25 (see Methods
and Supplementary Notes 1 and 2 for a detailed discussion).

While Eq. 5 follows readily from definitions, it has interesting
physical implications. As a group, ZdBS is generated by dBS
independent generators. In the additive notation, natural for an
Abelian group, we can write the generators as {bi : i= 1, …, dBS},
and for any given BS we can expand it similar to elements in a
vector space

BS ¼ PdBS
i¼1

mibi;
ð2Þ

where mi 2 Z are uniquely determined once the basis is fixed.
Therefore, full knowledge of {BS} is obtained once the dBS
generators bi are found.

So far, we have not addressed the effect of TR symmetry,
which, being anti-unitary, does not lead to new irreps when it is
incorporated25. Instead, TR symmetry could force certain irreps
to become paired with either itself or another, giving rise to
additional constraints on n. Nonetheless, these constraints can be
readily incorporated into the definition of C, and therefore does
not affect our mathematical formulation (Methods).

AIs and mismatch classification. While we have provided a
systematic framework to probe the structure of {BS}, much
insight can be gleaned from a study of AIs. AIs correspond to
band insulators constructed by first specifying a symmetric set of
lattice points in real space, and then fully occupying a set of
orbitals on each of the lattice sites. The possible set of AIs can be
easily read off from tabulated data of SGs26, 33 (Supplementary
Note 2). In addition, once the real-space degrees of freedom are
specified, one can compute the corresponding element in {BS}.

As stacking two AIs lead to another AI, we see that {AI}≤ {BS} as
groups. Any subgroup of ZdBS is again a free, finitely generated
Abelian group, and therefore we conclude

AIf g ’ ZdAI �
XdAI
i¼1

miai :mi 2 Z

( )
; ð3Þ

where we denote by {ai} a complete set of basis for {AI}.
Once {BS} and {AI} are separately computed, it is straightfor-

ward to evaluate the quotient group (Supplementary Note 3)

XBS � BSf g
AIf g :

ð4Þ

Physically, an entry in XBS corresponds to an infinite class of BSs
that, while distinct as elements of {BS}, only differ from each other
by the stacking of an AI. By definition, the entire subgroup {AI}
collapses into the trivial element of XBS. Conversely, any nontrivial
element of XBS corresponds to BSs that cannot be be interpreted as
AIs, and therefore XBS serves as a symmetry indicator of topological
BSs. One can further show that every element of XBS can be realized
by a physical BS (Methods), and therefore XBS indeed corresponds
to indicators of band topology in physical systems.

Following the described recipe, we compute {AI}, {BS}, and XBS

for all 230 3D SGs in the four symmetry settings mentioned.
Results for spinful fermions with TR symmetry, relevant for real
materials with or without spin–orbit coupling and no magnetic
order, are tabulated in Tables 1–4. The results for other symmetry
settings and dimensions (Methods) are presented in Supplemen-
tary Tables 5–20.

An interesting observation from this exhaustive computation is
the following: for all the symmetry settings considered, we found
dBS= dAI, and therefore XBS is always a finite Abelian group.
Equivalently, when only symmetry labels are used in the
diagnosis, a BS is nontrivial precisely when it can only be
understood as a fraction of an AI. In addition, dBS= dAI implies
that a complete set of basis for {BS} can be found by studying
combinations of AIs, similar to Eq. 3 but with a generalization of
the expansion coefficients mi 2 Z to qi 2 Q, subjected to the
constraint that the sum remains integer-valued. Although the full
set of compatibility relations is needed in our computation
establishing dBS= dAI, using our results the basis of {BS} can be
readily computed directly from {AI} (Supplementary Note 3).
Since {BS} can be easily found this way, we will refrain from
providing a lengthy list of all the bases we found.

Table 1 Characterization of band structures for systems with time-reversal symmetry and significant spin–orbit coupling

d Space groups

1 1, 3, 4, 5, 6, 7, 8, 9, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 76, 77, 78, 80,
91, 92, 93, 94, 95, 96, 98, 101, 102, 105, 106, 109, 110, 144, 145, 151, 152, 153, 154, 169, 170, 171, 172, 178, 179, 180, 181

2 79, 90, 97, 100, 104, 107, 108, 146, 155, 160, 161, 195, 196, 197, 198, 199, 208, 210, 212, 213, 214
3 48, 50, 52, 54, 56, 57, 59, 60, 61, 62, 68, 70, 73, 75, 89, 99, 103, 112, 113, 114, 116, 117, 118, 120, 122, 133, 142, 150, 157, 159, 173, 182, 185, 186,

209, 211
4 63, 64, 72, 121, 126, 130, 135, 137, 138, 143, 149, 156, 158, 168, 177, 183, 184, 207, 218, 219, 220
5 11, 13, 14, 15, 49, 51, 53, 55, 58, 66, 67, 74, 81, 82, 86, 88, 111, 115, 119, 134, 136, 141, 167, 217, 228, 230
6 69, 71, 85, 125, 129, 132, 163, 165, 190, 201, 203, 205, 206, 215, 216, 222
7 12, 65, 84, 128, 131, 140, 188, 189, 202, 204, 223
8 124, 127, 148, 166, 193, 200, 224, 226, 227
9 2, 10, 47, 87, 139, 147, 162, 164, 176, 192, 194
10 174, 187
11 225, 229
13 83, 123
14 175, 191, 221

d the rank of the Abelian group formed by the set of band structures
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To illustrate the ideas more concretely, we discuss a simple
example concerning non-TR-symmetric spinless fermions
symmetric under SG 106. In this setting, dBS= dAI= 3, and a1,
one of the three generators of {AI}, has the property that all
irreps appear an even number of times, while the other two
generators contain some odd entries. Now consider b1≡a1/2,
which is still integer-valued. Clearly, by linearity b1 satisfies
all symmetry constraints, and therefore b1∈{BS}. However,
b1=2 AIf g � P3

i¼1 miai : mi 2 Z
� �

, and therefore b1 corresponds
to a quantum BS, and indeed it is a representative for the
nontrivial element of XBS¼Z2. In addition, if we consider a tight-
binding model with a representation content corresponding to a1,
the decomposition a1= b1 + b1 implies that it is possible to open a
band gap at all high-symmetry momenta at half filling, and
thereby realizing the quantum BS b1. It turns out that, in fact, b1
corresponds to a filling-enforced QBI (feQBI)30. We will
elaborate further on this point in the Supplementary Note 4.

Before we move on to concrete applications of our results, we
pause to clarify some subtleties in the exposition. Recall that the
notion of BS is defined using the presence of band gaps at all
high-symmetry momenta. Generally, however, there can be
gaplessness in the interior of the Brillouin zone that coexist with
our definition of BS. While in some cases such gaplessness is
accidental in nature, in the sense that it can be annihilated
without affecting the BS, in some more interesting cases it is
enforced by the specification of the symmetry content. This was
pointed out in refs 13, 14 for inversion-symmetric systems without
TR symmetry, where certain assignments of the parity eigenva-
lues ensure the presence of Weyl points at some generic
momenta. When a nontrivial element in XBS can be insulating,
we refer to it as as a reQBI; when it is necessarily gapless, we call it
a representation-enforced semimetal (reSM). We caution that XBS

will naturally include both reQBIs and reSMs, although

some symmetry settings naturally forbid the notion of reSMs.
In fact, one can show that their individual diagnoses are related
by XSM= XBS/XBI (Supplementary Note 5). Hence, given an entry
of XBS one has to further decide whether it corresponds to a reSM
or a reQBI. In Supplementary Note 5, we provide general
arguments on the existence of reSMs for systems with significant
spin–orbit coupling.

In addition, we also note that, while every BS belonging to a
nontrivial class of XBS is necessarily nontrivial, some systems in
the trivial class can also be topological. By definition, the
representation content of a BS belonging to the trivial class of XBS

can be constructed by stacking of AIs. However, if the stacking
necessarily involves negative coefficients, the BS cannot be
attained from stacking physical AIs, and therefore is still
topologically nontrivial. Some of the feQBIs discussed in ref. 30

also fall into this category. Alternatively, when the topological
nature of a system is undetectable using only symmetry labels, say
for the tenfold-way phases in the absence of any spatial
symmetries beyond the lattice translations, the system belongs
to the trivial element of XBS despite it is topological. The
general relation between XBS and the conventional tenfold-way
classification depends on the symmetry setting at hand, and its
understanding is an important open question (Methods).

Quantum Band Insulators in conventional settings. Having
derived a general theory for finding symmetry-based indicators of
band topology, we now turn to applications of the results. As a
first application, we utilize the results in Table 3 to look for
reQBIs that are not diagnosed by previously available topological
invariants. In particular, we will focus on a result concerning one
of the most well-studied symmetry setting: materials with sig-
nificant spin–orbit coupling symmetric under TR, lattice trans-
lations and inversion (SG 2).

As shown in Table 3, XBS ¼ Z2ð Þ3 ´Z4 for SG 2. Using the
Fu-Kane criterion8, one can verify that the strong and weak TIs,
respectively, serve as the generators of the Z4 and Z2 factors. This
identification, however, fails to account for the nontrivial nature
of the doubled strong TI, which being a nontrivial element in Z4
corresponds to a reQBI. It is also not covered in the earlier lines

Table 3 Symmetry-based indicators of band topology for
systems with time-reversal symmetry and significant
spin–orbit coupling

XBS Space groups

Z2 81, 82, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,
122, 215, 216, 217, 218, 219, 220

Z3 188, 190
Z4 52, 56, 58, 60, 61, 62, 70, 88, 126, 130, 133, 135, 136,

137, 138, 141, 142, 163, 165, 167, 202, 203, 205, 222,
223, 227, 228, 230

Z8 128, 225, 226
Z12 176, 192, 193, 194
Z2 ´Z4 14, 15, 48, 50, 53, 54, 55, 57, 59, 63, 64, 66, 68, 71,

72, 73, 74, 84, 85, 86, 125, 129, 131, 132, 134, 147,
148, 162, 164, 166, 200, 201, 204, 206, 224

Z2 ´Z8 87, 124, 139, 140, 229
Z3 ´Z3 174, 187, 189
Z4 ´Z8 127, 221
Z6 ´Z12 175, 191
Z2 ´Z2 ´Z4 11, 12, 13, 49, 51, 65, 67, 69
Z2 ´Z4 ´Z8 83, 123
Z2 ´Z2 ´Z2 ´Z4 2, 10, 47

XBS the quotient group between the group of band structures and that of atomic insulators

Table 2 Characterization of band structures for systems
with time-reversal symmetry and negligible spin–orbit
coupling

d Space groups

1 1, 4, 7, 9, 19, 29, 33, 76, 78, 144, 145, 169, 170
2 8, 31, 36, 41, 43, 80, 92, 96, 110, 146, 161, 198
3 5, 6, 18, 20, 26, 30, 32, 34, 40, 45, 46, 61, 106, 109, 151, 152, 153,

154, 159, 160, 171, 172, 173, 178, 179, 199, 212, 213
4 24, 28, 37, 39, 60, 62, 77, 79, 91, 95, 102, 104, 143, 155, 157, 158,

185, 186, 196, 197, 210
5 3, 14, 17, 27, 42, 44, 52, 56, 57, 94, 98, 100, 101, 108, 114, 122, 150,

156, 182, 214, 220
6 11, 15, 35, 38, 54, 70, 73, 75, 88, 90, 103, 105, 107, 113, 142, 149, 167,

168, 184, 195, 205, 219
7 13, 22, 23, 59, 64, 68, 82, 86, 117, 118, 120, 130, 163, 165, 180, 181,

203, 206, 208, 209, 211, 218, 228, 230
8 21, 58, 63, 81, 85, 97, 116, 133, 135, 137, 148, 183, 190, 201, 217
9 2, 25, 48, 50, 53, 55, 72, 99, 121, 126, 138, 141, 147, 188, 207,

216, 222
10 12, 74, 93, 112, 119, 176, 177, 202, 204, 215
11 66, 84, 128, 136, 166, 227
12 51, 87, 89, 115, 129, 134, 162, 164, 174, 189, 193, 223, 226
13 16, 67, 111, 125, 194, 224
14 49, 140, 192, 200
15 10, 69, 71, 124, 127, 132, 187
17 225, 229
18 65, 83, 131, 139, 175
22 221
24 191
27 47, 123

d the rank of the Abelian group formed by the set of band structures
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of work focusing on inversion-symmetric insulators13, 14, 16. This
reQBI possesses a trivial magnetoelectric response (θ= 0) and is
not expected to have protected surface states.

Nonetheless, the nontrivial nature of the reQBI can be seen
from its entanglement spectrum, which exhibits protected
gaplessness related to the parity eigenvalues of the filled bands
(Fig. 2a). In the present context, we define the entanglement
spectrum as the collection of single-particle entanglement
energies arising from a spatial cut, which contains an inversion
center and is perpendicular to a crystalline axis. Refs 13, 14, 16

showed that the entanglement spectrum of TR and inversion
symmetric insulators generally have protected Dirac cones at the
TR invariant momenta of the surface Brillouin zone. These Dirac
cones carry effective integer charges under inversion symmetry,
and as a result they are symmetry-protected. The doubled strong
TI phase has twice the number of Dirac cones as the regular
strong TI (Fig. 2b).

Yet, one must use caution in interpreting the nontrivial nature
of such entanglement, since inversion-symmetric AIs also have
protected entanglement surface states whenever the center of
mass of an electronic wavefunction is pinned to the entanglement
cut. The presence of these entanglement signatures, however, is
dependent on the arbitrary choice of the location of the cut, and
therefore is not as robust as the other topological characteriza-
tions. In contrast, since we have already quotient out all AIs in the
definition of XBS, the reQBI at hand must have a more topological
origin. This is verified from the pictorial argument in Fig. 2a–c,
where we contrast the entanglement spectrum of the doubled
strong TI with those that can arise from AIs. Importantly, we see
that the total Dirac-cone charge of an AI is always 0 mod 4,
whereas the doubled strong TI has a charge of 2 mod 4. This

implies that the entanglement gaplessness is independent of the
arbitrary choice of the cut, and in fact shows that the bulk
computation of XBS can be reproduced by considering the
entanglement spectrum for this symmetry setting. Note that, if
TR is broken, Kramers paring will be lifted and the irrep content
of this reQBI becomes achievable with an AI. This suggests that
the reQBI at hand is protected by the combination of TR
and inversion symmetry. It is an interesting open question to
study whether or not this reQBI has any associated quantized
physical response13.

We note that, since the strong TI is compatible with any
additional spatial symmetry, the argument above is applicable to
any centrosymmetric SGs. Indeed, as can be seen from Table 3, all
of them have |XBS|≥ 4, consistent with our claim. Therefore, the
doubled strong TI phase could be realizable in a large number of
materials classes. Finally, we remark that the same XBS is found
for SG 2 in all the other symmetry settings, although their
physical interpretations are different. In particular, the generators
of Z4<XBS correspond to a reSM in the other settings. This
observation also shows that the doubled strong TI phase remains
nontrivial in the absence of spin–orbit coupling.

Lattice-enforced semimetals. As another application of our
results, we demonstrate how the structure of {BS} exposes
constraints on the possible phases of a system arising from the
specification of the microscopic degrees. We will in particular
focus on the study of semimetals, but a similar analysis can be
performed in the study of, say, reQBIs.

As a warm-up, recall the physics of (spinless) graphene, where
specifying the honeycomb lattice dictates that the irrep at the K
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Fig. 2 Examples of topological band structures. a–c A representation-enforced quantum band insulator of spinful electrons with time-reversal and inversion
symmetries, dubbed the “doubled strong TI”. a Using the Fu-Kane parity criterion8, the strong and weak Z2 indices can be computed from the the parities
of the occupied bands, which we indicate by ± at the eight time-reversal invariant momenta. Shown are the parities of one state from each Kramers pair for
a doubled strong TI with four filled bands. b The entanglement spectrum at a spatial cut, parallel to the x–y plane and containing an inversion center,
features two Dirac cones at Γ13, 14, 16. Such Dirac cones are known to possess integer-valued charges under the inversion symmetry, and we denote the
positively charged and negatively charged cones, respectively, by blue and red. c Inversion-symmetric atomic insulators feature entanglement surface Dirac
cones in general, but their presence depends on the arbitrary choice of the cut. We find that the possible Dirac-cone arrangement arising from atomic
insulators can only be a linear combination of four basic configurations, illustrated as a sum with the integral weights mi. The arrangement in b cannot
be reconciled with those in c, confirming the nontriviality of the doubled strong TI. d, e Example of a lattice-enforced semimetal for spinful electrons with
time-reversal symmetry. d We consider a site (red sphere) under a local environment (beige) symmetric under the point group T, and suppose the relevant
local energy levels form the four-dimensional irreducible representation, which is half-filled (boxed). e When the red site sits at the highest-symmetry
position of space group 219, the specified local energy levels and filling gives rise to a half-filled eight-band model (each band shown is doubly degenerate).
Such (semi-)metallic behavior is dictated by the specification of the microscopic degrees of freedom in this model
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point is necessarily 2D, and therefore the system is guaranteed to
be gapless at half filling. Using the structure of {BS} we described,
this line of reasoning can be efficiently generalized to an arbitrary
symmetry setting: any specification of the lattice degrees of
freedom corresponds to an element A∈ {AI}, and one simply asks
if it is possible to write A= Bv + Bc, where Bv,c∈ {BS} satisfies the
physical non-negative condition, such that Bv corresponds to a BS
with a specified filling ν. Whenever the answer is no, the system is
guaranteed to be (semi-)metallic. We refer to any such system as a
leSM. Note that a stronger form of symmetry-enforced gaplessness
can originate simply from the electron filling, and such systems
were dubbed as filling-enforced semimetal (feSMs)34, 35. We will
exclude feSMs from the definition of leSMs, i.e., we only call a
system a leSM if the filling ν is compatible with some band
insulators in the same symmetry setting, but is nonetheless gapless
because of the additional lattice constraints.

A preliminary analysis reveals that leSMs abound, especially for
spinless systems with TR symmetry. This is in fact anticipated
from the earlier discussions in refs 36–38. Instead, we will turn our
attention to TR-invariant systems with significant spin–orbit
coupling, which lies beyond the scope of these earlier studies and
oftentimes leads to interesting physics1, 7, 30. A systematic survey
of them will be the focus of another study. Here, we present a
proof-of-concept leSM example we found, which arises in systems
symmetric under SG 219 (F43c). We will only sketch the key
features of the model, and the interested readers are referred to
the Methods section for details of the analysis.

We consider a lattice with two sites in each primitive unit cell,
and that each site has a local environment corresponding to the
cubic point group T (Fig. 2d). We suppose the relevant on-site
degrees of freedom transform under the four-dimensional
irreducible co-representation of T under TR symmetry25, and
that the system is at half filling, i.e., the filling is ν= 4 electrons
per primitive unit cell. Although the local orbitals are partially
filled, generically a band gap becomes permissible once electron
hopping is incorporated. Naively, for the present problem this
may appear to be the likely scenario, since the momentum-space
irreps all have dimensions ≤425 and band insulators are known to
be possible at this filling34, 35. However, using our framework
one can prove that no BS is possible for this system at ν= 4,
implying that there is irremovable lattice-enforced gaplessness
at some high-symmetry line. This is indeed verified in Fig. 2e,
where we plot the BS obtained from an example tight-binding
model (Methods).

Discussion
In this work, we present a simple mathematical framework for
efficiently analyzing BSs as entities defined globally over the
Brillouin zone. We further utilize this result to systematically

quantify the mismatch between the momentum-space and real-
space descriptions of free electron phases, obtaining a plethora of
symmetry settings for which topological materials are possible.

Our results concern a fundamental aspect of the ubiquitous
band theory. For electronic problems, we demonstrated the power
of our approach by discussing three particular applications,
predicting both QBIs and semimetals (see also Supplementary
Note 4). We highlight four interesting future directions below:
first, to incorporate the tenfold-way classification into our
symmetry-based diagnosis of topological materials28; second, to
discover quantized physical responses unique to the phases we
predicted13, 14, 18; third, to extend the results to magnetic SGs25;
and lastly, to screen materials database for topological materials
relying on fast diagnosis invoking only symmetry labels39. More
broadly, we expect our analysis to shed light on any other fields of
studies, most notably photonics and phononics, where the
interplay between topology, symmetry, and BSs is of interest.

Note added: Recently, ref. 40 appeared, which has some overlap
with the present work, in that it also identifies topological band
insulators by contrasting them with AIs. However, the present
work differs from ref. 40 in important ways in the formulation of
the problem and the mathematical approach adopted.

Methods
Glossary of abbreviations. For brevity, we have introduced several abbreviations
in the text. For the readers’ convenience, we provide a glossary of the less-standard
ones here.

AI (atomic insulator): band insulators possessing localized symmetric Wannier
functions.

BS (band structure): a set of energy bands separated from all others by band
gaps above and below at all high-symmetry momenta.

fe (filling-enforced): referring to attributes that follow from the electron filling
of the system.

le (lattice-enforced): referring to attributes that follow from the specification of
the microscopic degrees of freedom in the lattice.

QBI (quantum band insulators): band insulators, with or without protected
surface states, that do not admit any atomic limit provided the protecting
symmetries are preserved.

re (representation-enforced): referring to attributes that follow from knowledge
on the symmetry representations of the energy bands.

SG (space group): any one of the 230 spatial symmetry groups of crystals in
three dimensions.

SM (semimetals): filled bands with gap closings that are stable to infinitesimal
perturbations.

TI (topological insulator): Z2 TIs in two or three dimensions for spin–orbit-
coupled system with TR symmetry (note that we use this phrase in a restricted
sense in this work).

Three-dimensional BSs. In the main text, we have illustrated the definition and
interpretation of {BS} using a simple 1D example. In the following we summarize
the key generalizations required to address 3D systems. A more detailed discussion
is presented in Supplementary Notes 1 and 2.

Similar to the 1D example, in the general 3D setting a collection of integers,
corresponding to the multiplicities of the irreps in the BS, is assigned to each
high-symmetry momentum. By the gap condition imposed in the definition of a
BS, these integers are invariant along high-symmetry lines. In addition, any pair of
symmetry-related momenta will share the same labels. Altogether, we see that the
symmetry content of a BS, together with the number of bands ν, is similarly
specified by a finite number of integers, which we call D. Therefore, these symmetry
labels can be identified as elements of the group ZD , where group addition
corresponds to the physical operation of stacking BSs. As discussed, however, these
integers are again subjected to the compatibility relations, which arise whenever a
high-symmetry momentum is continuously connected to another with a lower
symmetry. By continuity, the symmetry content of the BS at the lower-symmetry
momentum is fully specified by that of the higher-symmetry one, giving rise to
linear constraints we denote collectively by the matrix C. The group {BS} is then
defined as in Eq. 1, and again we find

BSf g � ker C \ ZD ’ ZdBS ;
ð5Þ

where as before dBS ¼ dim ker C. Note that this result has a simple geometric
interpretation: from the definition Eq. 1, we can picture ker C as a dBS-dimensional
hyperplane slicing through the hypercubic lattice ZD embedded in RD

(Supplementary Note 3). This gives rise to the sublattice ZdBS (Fig. 1b).

Table 4 Symmetry-based indicators of band topology for
systems with time-reversal symmetry and negligible
spin–orbit coupling

XBS Space groups

Z2 3, 11, 14, 27, 37, 48, 49, 50, 52, 53, 54, 56, 58, 60, 66,
68, 70, 75, 77, 82, 85, 86, 88, 103, 124, 128, 130, 162,
163, 164, 165, 166, 167, 168, 171, 172, 176, 184, 192,
201, 203

Z2 ´Z2 12, 13, 15, 81, 84, 87
Z2 ´Z4 147, 148
Z2 ´Z2 ´Z2 10, 83, 175
Z2 ´Z2 ´Z2 ´Z4 2

XBS the quotient group between the group of band structures and that of atomic insulators
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Effect of TR symmetry. Being anti-unitary, TR alone does not modify the irreps.
However, under the action of TR an irrep can be paired to either a distinct copy of
itself, or to another irrep25. The constraints arising from both cases can be readily
incorporated into the definition of C: when under TR an irrep α at k is paired with
a different irrep β at k′, where k′ = k or k′= −k, we simply add to C an additional
compatibility relation nαk¼nβk′; when α is paired with itself, we demand α to be an
even integer, which can be achieved by redefining ~nαk � nαk=2 and a corresponding
rewriting of C in terms of ~n.

Note that, although TR is not included in our definition of high-symmetry
momenta, we will always take Kramers degeneracy in spin–orbit-coupled systems
into account.

Physical aspects of the mathematical treatment. While we have shown in the
main text that {BS} is a well-defined mathematical entity and identified its general
structure, it remains to connect it to the study of physical BSs. Here, we first argue
that as long as B∈ {BS} satisfies the physical condition of non-negativity, namely
all entries of B are non-negative integers, then B corresponds to a physically
realizable BS. Next, we will show that all entries of XBS have physical
representatives. Below, we will only sketch the arguments involved. Interested
readers are referred to Supplementary Note 3 for a more elaborated discussion.

Recall that in motivating the definition Eq. 1, in order to obtain a group
structure we have lifted the physical condition that all irreps must appear a
non-negative number of times. This implies that any physical BS must correspond
to elements in the subset BSf gP � ker C \ ZD

�0 � BSf g. However, one should
question whether all elements in {BS}P indeed correspond to some physical BSs.
This can be reasoned by noting that as {BS} is defined as the solution of all
compatibility relations, all necessary band crossings and degeneracies have been
taken into account. Therefore, by adjusting the energetics of a sufficiently general
physical model one can realize any element of {BS}P, up to accidental degeneracies
that can be removed by symmetry-preserving perturbations.

Next, we argue that all entries in XBS have physical representatives. Suppose an
element of XBS is represented by a B∈ {BS}, which does not satisfy the physical
condition of non-negativity. Using a small technical corollary we discuss in the
Supplementary Note 2, one can show that the representation content of any B can
be rectified by stacking with some A∈ {AI}, i.e., B +A∈ {BS}P. Since B +A belongs
to the same class as B in XBS, we arrive at a physical representative of the same
element of XBS.

Extension to other symmetry settings. Results for TR-symmetric systems in any
of the 230 SGs are presented in the main text, and the corresponding ones for
systems without TR symmetry are presented in Supplementary Tables 5–8. Here,
we remark that the corresponding results for quasi-1D and 2D systems, described,
respectively, by rod and layer group symmetries26, 41, can be readily obtained
(Supplementary Note 3). The results are presented in Supplementary Tables 9–20.
In particular, we found XBS ¼ Z1, the trivial group, for all quasi-1D systems. This is
consistent with the picture that topological BSs in 1D can be understood as frozen
polarization states, which are AIs and hence trivial in our definition.

Relation to K-theory-based classifications. As discussed, band topology
identified within the K-theory framework may not be detectable using only
symmetry labels. As an example, consider a 2D system with only lattice translation
symmetries. For such systems, the K-theory classification of band insulators in
refs 22, 24, 28 gives Z2, where the two factors correspond, respectively, to the
electron filling (i.e., number of bands) and the Chern number. In contrast, within
our approach we find fBSg ¼ fAIg ¼ Z, since in this setting the only symmetry
label is the filling, which cannot detect the Chern number of the bands.
Furthermore, as there exists an AI for any filling ν, we find XBS ¼ Z1, the
trivial group.

However, in some other cases using symmetry labels alone one can also detect
the tenfold-way phases, as in cases where the Fu-Kane parity criterion applies8. As
a related problem, one can readily study how a centrosymmetric SG constrains the
possible weak TI phases using our results in Table 3. This is related to the number
of factors in XBS, i.e., the number of independent generators Ng. As one such factor
is reserved for the strong TI, the SG is compatible with at most Ng − 1 independent
weak TI phases. While this has been pointed out for certain cases in the literature42,
our approach automatically encapsulates some of these result in a simple manner.

Example of leSMs. Here, we provide details on the leSM example discussed in the
main text. We consider a TR-symmetric system in SG 219 with significant
spin–orbit coupling. We will establish that for a particular lattice specification, a
semimetallic behavior is unavoidable at a filling ν= 4, although band insulators are
generally possible at this filling for the present symmetry setting34, 35. This arises
from the fact that, given the available symmetry irreps specified by the lattice,
corresponding to an element A∈ {AI}, there is no way to satisfy all the
compatibility relations at the filling ν= 4, i.e., A≠ Bv + Bc for any non-zero
Bv, Bc ∈ {BS} satisfying the physical condition of non-negativity.

We consider a lattice in Wyckoff position a, which contains two sites at
r1≡ (0, 0, 0) and r2≡ (1/2, 0, 0) in the unit cell. The two sites are related by a glide
symmetry, and the site-symmetry group for each site is given by the point group T

(i.e., the orientation-preserving symmetries of a tetrahedron, also known as the
chiral tetrahedral symmetry group). We suppose the physically relevant degrees of
freedom arise from the three px,y,z orbitals on each site, which together with
electron spin leads to a six-dimensional local Hilbert space. We will let L and S,
respectively, denote the orbital and spin angular momentum operators in the
single-particle basis.

As described in the main text, we consider a TR-symmetric system with a
strong crystal-field splitting:

HΔ ¼ Δ
X

r:allsites

c†r L � Sð Þcr; ð6Þ

where cr represents the six-dimensional (column) vector corresponding to the
internal degrees of freedom. One can verify that when Δ> 0, HΔ splits the local
energy levels to a total spin-1/2 doublet lying below the total spin-3/2 multiplet.
While we have chosen HΔ to conserve the total spin L + S for convenience, such
conservation is not required by the local symmetry, which is described by the point
group T < SO(3). Therefore, the total spin quantum numbers are not a priori good
quantum numbers for the problem at hand. However, one can verify that the
spinful, TR symmetric irreps of T coincide with the total spin decomposition
described above25, and hence insofar as symmetries are concerned HΔ is a
sufficiently generic crystal-field Hamiltonian. We also note that, if TR symmetry is
broken, the fourfold degenerate states originating from the total spin-3/2 states can
be further split.

As discussed in the main text, we are interested in the systems arising from half
filling the fourfold degenerate local energy levels. To this end, we assume Δ is the
dominant energy scale in the problem, which implies the low-lying doubly
degenerate states can be decoupled from the description of the system as long as
they are fully filled. This leaves behind the fourfold degenerate energy levels, which
we assume are half-filled. As there are two symmetry-related sites in each unit cell,
these considerations altogether imply that the BS around the Fermi energy is
described by an effective eight-band tight-binding model at filling ν= 4.

Next, we consider a nearest-neighbor hopping term

Ht;λ ¼
P
g2G

g c†r1 t þ λ x̂ � ðL ´ SÞð Þcr2
� �

g† þ h:c:; ð7Þ

where h.c. denotes Hermitian conjugate, and the notation
P

g2G g ¼ð Þg† denotes
all the terms generated by transforming the terms in the parenthesis by the
symmetry elements of the SG G.

The BS of the full Hamiltonian H=HΔ +Ht,λ is shown in Fig. 2e, with
parameters (t/Δ, λ/Δ) = (0.01, 0.05). Note that we have only shown the eight bands
near the Fermi energy; four fully filled bands arising from the doubly degenerate
local orbitals are separated in energy by OðΔÞ. As our computation dictates, the
lattice specification gives rise to energy bands that are necessarily gapless along the
high-symmetry lines at filling ν= 4. Interestingly, note that the lattice-enforced
gaplessness is of a more subtle flavor: unlike spinless graphene, where the the
gaplessness is enforced by the dimensions of the irreps involved, here all the irreps
have dimensions ≤4, and therefore the impossibility of finding a BS at ν= 4 is
reflected in the connectivity of the energy bands.

In closing, we remark that the notion of leSM is not as robust as the
other notions we introduced in this work, say feSM or reQBI. Specifically, the
(semi-)metallic behavior of the system is protected by the specification of the
microscopic degrees of freedom, which is only sensible assuming a certain
knowledge about the energetics of the problem. Under stacking of a trivial phase,
say when we incorporate into the description a set of fully filled bands
corresponding to an AI, the enforced gaplessness may become unstable, as these
apparently inert degrees of freedom can also supply the representations needed to
open a gap at the targeted filling. This can be readily seen from the example above:
if we switch the sign of Δ, the same electron filling will now correspond to the full
filling of the fourfold degenerate multiplet on each site, which leads to an AI. Such
instability should be contrasted with, say, the notion of reQBIs, which by definition
remains nontrivial as long as the extra degrees of freedom we introduce are in the
trivial class, i.e., correspond to AIs.

Data availability. All relevant data are available from the authors upon reasonable
request.
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