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1. Introduction 

Over the last few years, the study of the properties of hadronic processes in- 

volving heavy quarks has become a very active field of research [l-31]. In the limit 

of very large quark masses, a number of exact relations can be derived despite of 

the presence of long-range strong interactions. The reason is that for heavy quarks 

QCD exhibits a spin-flavor symmetry which is only softly broken by terms of or- 

der AQco/mQ [5]. Th’ y 1s s mmetry relates the hadronic matrix elements of heavy 

hadrons with different spin or flavor quantum numbers. It becomes explicit in an 

effective-field-theory formulation of QCD [g-lo]. 

The phenomenological applications of this formalism are numerous [32-371. In 

particular, it turns out that the description of current-induced processes like semi- 

leptonic decays of heavy mesons or baryons becomes very simple in the formal 

limit of infinite heavy-quark masses. The large set of hadronic form factors is then 

reduced to a small number of universal functions (the Isgur-Wise functions), which 

are independent of the heavy-quark masses [5]. They contain all long-distance 

dynamics relevant to the hadronic transition. This observation offers the exciting 

possibility to extract in a model-independent way some of the weak mixing angles 

from the measurement of decays of heavy hadrons, without limitations arising from 

the ignorance of long-distance dynamics [3,36,37]. 

Clearly, a thorough establishment of the heavy-quark expansion requires a care- 

ful analysis of symmetry-breaking corrections. Much attention has been devoted 

to this subject [ll-201. Al ready in .leading order in the l/mQ expansion, the sym- 

metry is violated by hard-gluon exchange. These effects allow for a perturbative 

treatment. The corresponding corrections have been calculated first in leading 

logarithmic approximation [4,11], and more recently in next-to-leading order in 

renromalization-group improved perturbation theory [17-201. At subleading order 

in thql/mQ expansion, one is generally forced to introduce additional universal 

form factors. The structures that arise have been worked out for matrix elements 

between two heavy mesons [ 121 or A-baryons [ 141. Some of the subleading form 

factors obey nontrivial constraints arising from the equations of motion. An addi- 

tional complication results from the fact that higher-dimensional operators in the 

effective theory mix under renormalization [13,16]. The pattern of relations among 

matrix elements thus becomes considerably more complex than at leading order. 

Many of the subtle issues related to the l/ mQ expansion can already be studied 

in the simpler case of current matrix elements between a heavy meson and the 

vacuum. These matrix elements define meson decay constants, which are hadronic 

properties of primary theoretical and phenomenological interest. Following the 

analysis of Ref. 12, we derive in Sect. 2 the structure of l/mQ corrections in 

this case. It is shown that three additional universal parameters are induced at 

subleading order. Their behavior under the renormalization group is derived to 
.m 
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one-loop order. In Sect. 3, we estimate these subleading form factors using QCD 

sum rules in the effective theory. At leading order in the l/mQ expansion, sum rules 

have recently been used to calculate the asymptotic value of the scaled pseudoscalar 

decay constant, jpJmp, and the Isgur-Wise form factor [28-30,351. In this paper, 

we estimate the slope of the decay constants with respect to l/mQ, as well as 

the spin-symmetry breaking effects responsible for the vector-pseudoscalar mass 

splitting and differences in fv and jp. The emphasis is to show that the sum 

rule technique can be extended to calculate form factors that appear in subleading 

order of the l/mQ expansion. In particular, we show that the constraints resulting 

from the equations of motion are respected. In Sect. 4, it is demonstrated that also 

the running of the universal form factors is correctly reproduced. Sect. 5 contains 

the conclusion. 

2. Power Corrections to Decay Constants 
in the Heavy-Quark Effective Theory 

A convenient framework for a systematic analysis of the behavior of hadronic 

matrix elements in the limit of large quark masses is provided by an effective-field- 

theory approach, the so-called heavy-quark effective theory [8]. It is based on the 

observation that, in the limit mQ >> AQCD, the velocity v of a heavy quark is 

conserved with respect to soft processes. It is then possible to remove the mass- 

dependent piece of the momentum operator by the field redefinition 

h~(fJ, xc> = exp(img@-x) Q(x) , (24 

such that 

i phQ(w7 5, = (p - mQ;b) hQ(v, x) = fi hQ(?.?, Z) , (2.2) 

where P is the total momentum of the heavy quark, and Ic denotes its residual “off- 

shell” momentum, which is of order AQCD. The fields hi create and annihilate 

heavy quarks and antiquarks with velocity V. We shall furthermore project onto 

quark-states (as opposed to antiquarks) by imposing the condition $ hi = hQ. 

Written in terms of these new fields, the renormalized effective Lagrangian is 

an infinite series of local operators with increa.sing canonical dimension, multiplied 

by powers of l/mQ [8-lo] 

L h ciDj2 eff = Q iv-D + - 
2mQ 1 h + ‘,gs hQ ~~ GpU h + 

Q 4mQ 
” Q *** , (2.3) 

with D, = aP - ig,A, being the gauge-covariant derivative. To leading order in 

the l/mQ expansion, this Lagrangian exhibits the spin and flavor symmetries for 



the heavy quarks. These symmetries are explicitly broken at subleading order, 

however. In particular, the spin symmetry is broken by the “magnetic interaction” 

operator involving the gluonic field-strength tensor G,,. The ellipses in (2.3) stand 

for operators multiplied by l/m;, as well as for an operator whose matrix elements 

are of order l/mQ 2 due to the equations of motion 

(2.4) 

In writing down (2.3) we have chosen a particular renormalization scheme by 

not including a residual mass term bm hQ hQ for the heavy quark [31], nor renor- 

malization factors for the spin-symmetry conserving operators. In moment urn 

space, the associated renormalized heavy quark propagator has a pole with unit 

residue at V. Ic + k2/2mQ = 0, corresponding to P2 = rni. In perturbation theory, 

therefore, the heavy-quark mass mQ in (2.1) coincides with the so-called “physical” 

pole mass, which is a renormalization-group invariant quantity. This is in accor- 

dance with the interpretation of k as an “off-shell” momentum. The coefficient 

of the spin-symmetry breaking operator in (2.3) gets renormalized, however. In 

the modified minimal subtraction (MS) SC h eme, one finds in leading logarithmic 

approximation [ 131 

Zm(y) = [~;~J)]-“‘” ; p = 33 - 2nf , P-5) 

with nf being the number of light-quark flavors. 

Any current operator J = qr Q of the full theory can be expanded in terms of 

local operators of the effective theory. For the vector current, the result reads 

up& -+ Co ( > 
“Q F +YphQ+C1 7 ( > Qv,hQ+ -$Bi(~) Qi+... . (2.6) 

2=1 

In the limit mp = 0, a convenient basis for the subleading operators is [31] 

&I = F-i$i?hQ, QJ = q(-iv.s)-y, hQ , 

&2 = Qv,i@hQ , Q5 = ij(-iv.E)v, hQ , (2.7) 

Q3 = W, hQ , &6 = Q(-itdp) hQ . 

The expansion of the axial vector current ~y~~y5 Q is obtained by simply replacing 

qin (2.6) and (2.7) by -~ys. The coefficients remain unchanged. 
_ ..* 
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The effective current operators renormalize differently from their QCD coun- 

terparts. In particular, they have non-zero anomalous dimensions, such that ma- 

trix elements in the effective theory depend on the renormalization scheme. The 

short-distance coefficients C; and B;, which (in dimensional regularization) contain 

logarithms of mQ/p, ensure that the final results are independent of the renormal- 

ization procedure. At p = mQ, they are obtained from the matching of QCD onto 

the effective theory. Their running below mQ is determined by a renormalization- 

group equation. The coefficients Ci in (2.6) h ave been calculated to next-to-leading 

order in renormalization-group improved perturbation theory [4,17,18]. The coef- 

ficients Bi are known in leading logarithmic approximation only [16,31]. Then, 

in particular, B2 = B3 = 0. Without QCD corrections, Br = l/2 and B; = 0 

otherwise. 

The expansion of currents in terms of operators of the effective theory provides 

a separation of short- and long-distance phenomena. The short-distance physics 

associated with the large mass scale mQ factorizes and can be treated perturba- 

tively. Long-distance effects are mQ-independent and are relevant only to hadronic 

matrix elements of local operators in the effective theory. These matrix elements 

are constrained by the heavy-quark symmetries and can be parametrized in terms 

of a few universal form factors. The number of independent form factors and the 

relations among matrix elements become most transparent in a compact trace- 

formalism [11,33]. T o ea m or 1 d’ g d er in the l/mQ expansion, the matrix elements 

defining .decay constants of heavy mesons are of the generic form [28] 

(01 qrhQ (M(v)) = y Tr{ I’M(v)} (2.8) 

and are all related to a single universal low-energy parameter F(p), which is inde- 

pendent of the heavy-quark mass. The Dirac structure I? of the current is irrelevant. 

In the effective theory, a heavy meson is represented by its spin wave-function 

Jqv)=+y -zy5 -1 ’ 
c . / 7 

(2.9) 

which satisfies ;b M(v) = M(v) = -M(v) $. The normalization in (2.8) is chosen 

such that, apart from QCD corrections, the universal parameter F is related to the 

decay constant of a heavy pseudoscalar meson P by F = fp fi. This is the well- 

known scaling law which states that, up to logarithmic corrections, jp 0: l/m. 

At next-to-leading order in the heavy-quark expansion, one has to include the 

l/mQ corrections to the current [cf. (2.6)] as well as to the hadronic wave-function. 

The method is described in detail in Ref. 12. Concerning the matrix elements of 

the higher-dimensional operators Q; in (2.7) we first note that, because of the 
-, _ . ..m 
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field redefinition in (2.1), current operators in the effective theory carry the total 

external momentum minus mQZJ. Therefore, 

(0 1 iam (Qr hQ) IM(v)) = ( wt4 - mQ) 21, (0 1 qr hQ pqv)) 

= SF(p) Tr{ v,rM(v)} 
(2.10) 

in terms of the mass parameter A = rnM - mQ, which is a non-trivial observable of 

the effective theory [31]. Matrix elements of the operators Qr, Q2, and Q3, which 

contain a covariant derivative acting on the heavy-quark field, have the general 

structure 

(01 qriD,h~ IM(v)) = f Tr{ [J’~(p)v, +h(p)y,] FM(v)} , (2.11) 

where F;(p) are new low-energy parameters. The equations of motion (2.4) imply 

w-4 =Aik;b)- w e can furthermore relate PI(~) to AF(p). To this end, we set 

I = y@ I’ and use the equations of motion iJ9 q = 0 for the light quark to rewrite 

qr” I’iD, hQ = iaa (Qy@ I’hQ). From (2.10) and (2.11) it then follows that 

- 

Fl(P) = F2(p) = -+F(JL) * (2.12) 

Matrix elements of QJ, Q 5, and Q6 can be evaluated along the same lines since 

q(-isa) r hQ = (7r (iDa) hQ - 8, (Qr hQ) . (2.13) 

The l/mQ corrections to the hadronic wave function come from insertions of 

the subleading operators in the effective Lagrangian into matrix elements of the 

leading-order currents. They induce two additional universal parameters Gr(p) 

and Ga(p) defined by matrix elements of the time-ordered products 

(01 iJdyw qrhQ)O, @Q (iDI hQ)y} I%d) = F(P) W-4 Tr { ~WJ) } , 

(01 J i dy 7{ (Qr hQ)o, 4 (hQ QG~” h&} IM(v)) 

= F(p) G2(p) Tr { +I’? @” Mb) } = 26 F(P) G(P) Tr { r M(4 } , 

(2.14) 

with coefficients that are independent of the external states. In particular dv = -1 

and dA = 3 for the vector and axial vector current, respectively. 
.m 
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Using the above relations, the matrix elements relevant to meson decay con- 

stants can be computed to subleading order in the l/m~ expansion. We find, to 

all orders in perturbation theory, 

(01 CQ IJG4) = fC(y) J’(p) Tr{ I’M(v)} 

X [l + dr +Q)] ( 1 + $ [Glb, + 2dr %n (y) G&l]) (2.15) 
- 

- -& [b(y) +drU(y)]} 
with QCD coefficients 

Cl c=co+p, c=$, 

B = & [4B1 - 3B2 - B3 + 3B5 + 2B6] , 

b = & [-B2 + B3 + 4B4 + B5 + 2&] . 

(2.16) 

We use capital letters for coefficients that were equal to one in the absence of QCD 

corrections, and small letters for those which are of order cry,. In next-to-leading 

order of renormalization-group improved perturbation theory the expressions for 

C and c are (in the MS subtraction scheme) [17,18,20] 

c(F) = [ ;;;;)y’@{ 1+ as(;Q) (&, - f) - ?z$ (& + +)} ) 

dmQ) 
c(mQ> = 6T , 

. (2.17) 

where Sm = 2/3 is a scheme-dependent constant, and the coefficient .Znr is de- 

fined in Ref. 28 (24 N -0.894). I n ea mg logarithmic approximation, expressions 1 d’ 

for B and b can be derived from the results of Refs. 16 and 31. Allowing for a 

nonlogarithmic one-loop matching correction, we find 

B(y) =; [;$;j]-g’“-;+Bo~, 

b(F) = 7 ln[~~~~)] +bO:, 

(2.18) 

where Bo and bo are again scheme-dependent. For later purpose,we have computed 

Bo from one-loop matching of QCD and the effective theory. In the MS subtraction 

scheme, the result is Bfs = 35/9. 
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It is convenient to rewrite (2.15) in terms of renormalization-group invariant 

form factors k(mQ) and &i(mQ) which, t o 1 owest order, coincide with the low- 

energy parameters F and G;, i.e. 

-. 

(0 1 ql?Q [M(v)) = ‘(TQ) [l + dr c(~Q)] Tr { r M(v) } 

,+GdmQ) 
- (2.19) 

- 
mQ 

In next-to-leading order of renormalization-group improved perturbation theory, 

we can neglect terms proportional to c2 (mQ) and find 

&mQ) = c(y) F(p) , 

el(mQ) = Gl(p) - [b(y) - k(mQ)B(T)] i , 

&mQ) = 2,(F)Gz(p)- [[ 1 - 2c(mQ)] B(y) - c(mQ)b(y) - I] g . 

(2.20) 

From the fact that these expressions must be p-independent one can deduce the 

scale-dependence of the universal parameters. To first order in oS, we obtain 

pdF=CY”F 
d/l ‘71.” 

dG1 4 a!, - 
‘“~=-$;A, (2.21) 

dG2 3 as 2 a!, - 
P~=-~~G~+~~A. 

These. relations must be obeyed in any sensible calculation of the form factors 

which is sensitive to the p-dependence. 

As an application, we derive a relation for the ratio of the decay constants of 

a heavy vector meson V and a heavy pseudoscalar meson P, defined by 

( 0 1 P/p75 Q P'(4) = i.fpmp vp , 

( 0 I Q’Y~ Q 1% 4) = fvmv cp . 

From (2.19) it follows that 

.fvm:/” 

fpm)‘2 

= 1 _ 2 drnQ) 
3 r ){1-$[G2(mQ)-;]}. 

(2.22) 

(2.23) 

The result involves the renormalized parameter &(mQ), which arises from the 
_ . ..m 
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spin-symmetry breaking “magnetic interaction” operator in the effective Lagran- 

gian (2.3). 

3. Subleading Form Factors from QCD Sum Rules 

After this general discussion of the structure of l/mQ corrections to decay 

constants of heavy mesons, we now present a calculation of the subleading universal 

parameters A, Gr , and G:! using QCD sum rules in the effective theory. Throughout 

this section, we shall not consider QCD corrections. They are discussed in Sect. 4. 

The application of the QCD sum rules developed by Shifman, Vainshtein and 

Zakharov [38] to th e calculation of universal heavy-quark form factors has been 

recently worked out in Refs. 28-30. The idea is to study the analytic properties of 

correlators of heavy-quark currents in the effective theory. Consider, for instance, 

the two-point function 

r = i 
J 

dz cit.’ loI 7{ [Y.rMhQ(")]x~ [hQ(")l'M&} 10) , (3.1) 

where the currents interpolate the heavy meson A4 of interest. We choose 

FM= I -iy5 ; Jp = 0- , 

YP - VCL ; Jp = l- . 
(3.2) 

According to (2.1) the total external momentum in (3.1) is P = mQv + Ic, and in 

QCD the correlator is an analytic function in 

P2 - 
WQ = mt k2 

=2v.k+---- 
mQ mQ 

with a cut on the positive real axis starting at P2 = m&, corresponding to 

pole = 
WQ 

m&--m; 
r;i=aii+o 

mQ 

(3.3) 

(3.4) 

Note that for our particular choice of the dispersive variable WQ there is no left-hand 

cut in the complex wQ-plane. 

The two-point function I can be written as a dispersion integral over a physical 

spectral function. Isolating the pole contribution, one obtains the phenomenologi- 
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cal representation of the correlator in terms of hadronic states 

rphen cwQ) = (c) 
(0 1 QrM hQ I"w bwl hQ rM Q 10 > 

pol. mQ (i - WQ - ie) 

rpole(WQ)=-F2Tr{r~(~+1)r~} 1+ 2 
4 (ii - WQ - ic) { - mQ 

(3.5) 00 
+ J 

dw &h$,s cw> 
lox 

w-WQ-ie 
+ subtractions, 

where one has to sum over polarizations if A4 is a vector meson. For the evaluation 

of the pole contribution, we use (2.8) and (2.14), as well as the relation 

( ) 
c Tr{I’M(v)} Tr{M(v)I’M}=-mMTr{I’($+l)I’M}, (3.6) 

pol. 

which is valid for any matrix I. To subleading order in l/mQ, we find - 
Gl + $ + 2dr G2 . (3.7) 

For large negative values of WQ (Le., AQCD < -WQ << mQ), the two-point 

function can be calculated in perturbation theory. As (-WQ) becomes smaller, 

however, nonperturbative effects start to be important. The idea of QCD sum 

rules is that, at the transition from the perturbative to the nonperturbative regime, 

these can. be taken into account by including the leading power corrections in the 

operator product expansion of the correlator. These nonperturbative corrections 

are proportional to a small set of vacuum expectation values of local quark-gluon 

operators, the so-called condensates [38]. In the calculation of the two-point func- 

tion I we use the Feynman rules of the effective theory [ll] and include insertions 

of the subleading operators in the effective Lagrangian. The leading nonperturba- 

tive power corrections are proportional to the quark condensate (dimension d = 3), 

the gluon condensate (d = 4), and the mixed quark-gluon condensate (d = 5). In 

terms of the dispersive variable WQ defined in (3.3), the result reads 

b&Q) = -k Tr { h! @ + 1) rM } 

(3.8) 

with dr as defined in (2.14). Note that there is no l/mQ correction to the quark 

condensate (apart from the k2/mQ term in WQ), and that the gluon condensate 
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does not contribute in leading order of the l/mQ expansion [28]. Its contribution 

is tiny and will be neglected from here on. 

- 

The QCD sum rule is obtained by matching the phenomenological and theoret- 

ical expressions for the correlator. In doing this, one assumes quark-hadron duality 

to model the contributions of higher-resonance states in (3.5) by the perturbative 

continuum starting at a threshold energy w,. Furthermore, in order to improve 

the convergence and to reduce the importance of higher-resonance states, a Bore1 

transformation WQ + T is applied to both sides of the sum rule [38]. This yields 

to an exponential damping factor in the dispersion integral, and also eliminates 

subtraction terms in the dispersion relation. From the resulting Laplace sum rule, 

the parameters of the effective theory can be determined in a self-consistent way by 

requiring stability with respect to variations of T in a region where the theoretical 

calculation is reliable. Before presenting the result, it is convenient to redefine the 

Bore1 parameter T according to 

1 1 3 --j--+-- 
T T 2mQ ’ 

On the phenomenological side, this adds 3l\/2 to Gr. On the theoretical side, it 

absorbes the l/mQ corrections to the perturbative contribution. The final sum 

rule reads 

F2 I+ { $ [(Gl + 2A) + 2dpG2]> e-‘lT 

WC 
3 

=- 
879 J 

dw w2 e-W/T _ (qq> + a&+Gp”q) 
4T2 

0 

- d 

(3.10) 

Let us first discuss the infinite-quark-mass limit of this expression [28-30,391 

wo 

F2 ,-L/T = 3 

8T2 J 
dw w2 emWIT _ (qq) + a&%~GP”Q) _ 

4T2 
= K(T-l;wo) . (3.11) 

0 

By taking the derivative with respect to the inverse Bore1 parameter, one derives 

the sum rule for the asymptotic value of the mass parameter is [cf. (3.4)] 

ii0 = 2A = - ;y:;;;;; . (3.12) 

The aim is to optimize the value of the threshold energy wg in such a way that 

the right-hand side of this equation becomes independent of T inside the so-called 
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“sum rule window”, where the calculation is reliable. For too small values of T, 

the power corrections blow up, i.e., nonperturbative effects become dominant. We 

use the standard values of the vacuum condensates 

(q(r) = -(230 MeV)3 , 

g,(ijap,Gp”q) = 0.8 GeV2 x (Qq) , 
(3.13) 

and require that the power corrections be less than 30% of the quark-loop con- 

tribution. This yields the lower limit T 2 0.6 GeV. According to (3.11), the 

perturbative spectral density grows like w2, such that higher-resonance contribu- 

tions are important even after the Bore1 improvement. This is a general feature 

of heavy-quark sum rules, which is unavoidable. In order to reduce the sensitivity 

to how well these contributions are approximated by duality, we require that the 

pole contribution of the heavy meson M give at least 30% of the quark loop. For 

typical threshold values wo N 2 GeV, this implies T 5 1 GeV. In Fig. 1 we show 

the behavior of A and F in this region. The stability is very good for values* 

wo N 2.0 f 0.3 GeV , 

ii N 0.50 f 0.07 GeV , (3.14) 

F 21 0.30 f 0.05 GeV3j2 , 

with correlated errors. 

Let us now turn to the analysis of (3.10). The “source term” for l/mQ correc- 

tions on the theoretical side is proportional to the mixed condensate. It induces 

changes in the parameters wC and A with respect to their asymptotic values deter- 

mined. above 

w, = wo 
1 

1+ -&(b +drh^wa)} , 

;;i=2R 1+ 
1 

$(bAl +drbAz)} . 

(3.15) 

Inserting this ansatz into (3.10) and expanding in l/mQ leads to sum rules for 

the subleading parameters SA; and Gi [40]. We first discuss the spin-symmetry 

breaking corrections, which are proportional to the coefficient dr. They obey the 

* Here and in the following estimates the errors only reflect the variations under changes 

of the sum rule paramters. The intrinsic uncertainty of the sum rule approach may be 

somewhat larger, mainly due to the continuum model employed. 
.- 
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sum rules 

&A2 = 
,21i/T 

24F2h gs(q+GpVq) (1 + $) t $ (WO - aA> ~0” emwo'T} , 

- 
,2;ilT 

G2=$6n2-- 
gs (w/wGp”q) gsw2 3 -we/T 

(3.16) 

48F2 T - SWOe . 

- 

.- 

These expressions involve the quantity 6~2, which has to be determined by requir- 

ing optimal stability of 6A2 inside the sum rule window. Using the central values 

for the parameters wg, A and F of the leading-order sum rule, we find good stability 

for Sw2 N -(lo5 f 20) MeV. Th e numerical evaluation of (3.16) in this region is 

shown in Fig. 2. 

One can also analyze the sum rules analytically. The optimal value for Sw2 is 

determined by (d/dT-l)SA2 = 0 for T = T a, where To = 0.8 GeV is the center of 

the sum rule window. The solution is then inserted back into (3.16). We find 

&A2 = g&“~~Gpud 
12F2(wo - 2A) 

{ltws(&t&)}e2’/To, 

G2 = A gs(@+GpYq) 1 + Wo - 11 + Wo(Wo - ai) 
(3.17) 

12F2(wo - 21\)2 To 2T$’ 
,2;ilTo 

These equations show how the subleading corrections depend on the parameters 

ws, A and F. It turns out that most of the numerical uncertainties associated with 

the theoretical-errors in (3.14) cancel if one computes the products wo Sw2, A SA2, 

and F G2 which, according to (2.14) - and (3.15), determine indeed the l/mQ cor- 

rections to ws, A, and F. Our final results are 

. 
~!iw2 N -(lo6 f 20) MeV , 

(0.5keV) 
SA2 N -(173 f 25) MeV , 

(0.3 &3/J 
G2 N -(70 f 10) MeV . 

(3.18) 

This is in agreement with the numerical analysis in Fig. 2. 

An interesting test of the value of 6122 is provided by the calculation of the 

mass difference between a heavy vector and a pseudoscalar meson. From (3.4), one 

obtains in the mQ + 00 limit 

m$ - rn$ = -8 ASA2 N 0.69 f 0.10 GeV2 . (3.19) 

This compares quite well with the mass splittings observed for B and D mesons, 

which are rn& - rni z 0.48 GeV2 [41] and m&. - rn$ 21 0.55 GeV2 [42] with 
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very small errors. Note, in particular, that the sign is unambiguously reproduced 

from our sum-rule analysis. This is an improvement over a recent analysis using 

standard QCD sum rules, where no definite prediction for the mass difference could 

be obtained [43]. 

Using the above value of G2, an estimate of the ratio of vector to pseudoscalar 

decay constants can be obtained from (2.23). With rnb = 4.8 GeV, m, = 1.5 GeV, 

and Am = 0.25 GeV (for nf = 4) we find 

fBe = 1.14 f 0.03 , 
fD*e 
fDn N 1.49 f 0.08 . (3.20) 

._ 

We thus expect large spin-symmetry breaking effects in the case of charmed mesons. 

Radiative corrections will reduce these corrections slightly, as will be shown in 

Sect. 4. 

Because of the structure of the sum rule (3.10), the spin-symmetry conserving 

corrections can be immediately related to the spin-symmetry violating ones 

Swl = 9Sw2 , SAr = 9SAz , 

Gl = 18G2 - 2A 21 -(2.26 f 0.35) GeV . 
(3.21) 

In contrast to (3.18), th ese numbers are by no means small. Even for the b- 

quark, for instance, Gl/mb N 0.5. For charm the corrections are even larger 

than lOd%, indicating a break-down ‘of the l/mQ expansion. The presence of 

large finite-mass corrections to the decay constants fp of pseudoscalar mesons is 

indeed a phenomenon well-known from lattice gauge theory [22-261 and QCD sum 

rules [28]. Th e corrections induced by (3.21) are even larger than those observed 

in these analyses, however. As an example, we compute the slope parameter cp 

which describes the mass-dependence of fp 

fpJmp-Ap 

In terms of the subleading form factors, one finds from (2.19) 

- 

cp = Gl + 6G2 - S N -(2.9 f 0.5) GeV , (3.23) 

(3.22) 

whereas recent lattice and sum rule computations indicate cp N -1 GeV [22,23,28]. 

It is important to notice, however, that these empirical results have not been 

obtained by directly studying matrix elements of higher-dimensional operators in 

the effective theory, but by fitting the mass-dependence observed in the the full 
*- 
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theory, which includes all orders in l/mQ, to (3.22). We are thus led to argue 

that higher-order corrections are important in these computations and mimic an 

e$ective l/mQ behavior in the region of the b and c-quark masses. It is clear, 

for instance, that the effective value of SAr has to be much smaller than given in 

(3.21). Even for SAr = 0 one computes from (3.4), (3.15) and (3.18) rnb N 4.8 

GeV and m, N 1.5 GeV, which are very reasonable values for the pole masses of 

the heavy quarks. There is thus little room for additional corrections. One can 

estimate the effective values of Gr and cp by requiring stability of the sum rule 

(3.10) under the constraint 6Ayff = 0. This leads to 

GTff N -(0.5 f 0.2) GeV , c>ff N -(1.2 f 0.3) GeV . (3.24) 

The effective slope c”prf is in fact consistent with the empirically observed mass- 

dependence of fp. It will be interesting to see if direct lattice computations of Gr 

and cp in terms of matrix elements of subleading operators will confirm the large 

values obtained from our sum-rule analysis in the effective theory. 

Let us briefly also derive the sum rule for the parameters Fl and F2, which 

parametrize matrix elements of operators containing a covariant derivative acting 

on the heavy-quark field [cf. (2.11)]. Th e aim is to show how the constraint (2.12), 

which is a consequence of the equations of motion, is satisfied in the framework of 

QCD sum rules. We start from the two-point function 

i- dx-e 
J 

&” lo 1 7{ [qr ih ~Q(u)].~ [hQ(") rM Qlo } 1 o > , (3.25) 

the pole contribution to which involves the matrix element (2.11). In the theoretical 

calculation we choose k and w parallel, i.e. k, = (ZJ. k)vp. On the phenomenological 

side, we use (3.6) t o combine two traces into one. After applying the Bore1 operator, 

the resulting sum rule reads 

F Tr { ( Fl oc, t F2 rp) r ($ + 1) rM } evxo’T 
wo 

dww3emWiT- 
gs (@+GpYq) 

2T . 

0 

(3.26) 

The right-h an d ‘d si e is proportional to the derivative of the function K = F2e- ;io/T 

defined in (3.11), and with & = 2A it follows that 
- 

Fl = F2 = &, K'(T-';wo) = -; F , (3.27) 

which is indeed relation (2.12). QCD sum rules thus respect the equations of 

motion of the heavy-quark effective theory. 
.* 
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4. Renormalization Group Effects 

We now refine the sum rule analysis of the previous section by including ra- 

diative corrections to the subleading form factors. We restrict ourselves to the 

computation of Go. B es1 ‘d es improving the numerical estimates obtained so far, 

the purpose is to show that QCD sum rules correctly reproduce the running of the 

low-energy parameters as derived in the effective theory. 

- 

.- 

We repeat the calculation of the two-point function defined in (3.1) including 

radiative corrections to the perturbative contribution and to the quark condensate. 

Since we restrict ourselves to spin-symmetry breaking effects, we only consider 

insertions of the “magnetic interaction” operator in (2.3). Let us first present the 

result of the perturbative calculation. In the MS subtraction scheme, we find 

{ [I-~(In$+~~)]F(p)}2{It$G2(~)}e-X~T 

WC 

3 
=- 

87r2 s 
dw w2 emWIT 

0 

+ condensates, 

(4-l) 
where F(p) h as b een multiplied by a factor that cancels its p- and scheme-depen- 

dence. To leading order in l/mQ, the radiative corrections in the effective theory 

have been computed in Refs. 28, 30 and 44. The spin-symmetry breaking correc- 

tions proportional to CYs/mQ are new. They arise from the diagrams depicted in 

Fig. 3. The calculation is outlined in the appendix. It is convenient to bring the 

scheme-dependent terms in (4.1) on the left-hand side. This can be achieved by a 

redefinition of the Bore1 parameter 
_. 

1 
-++t$~(ln~+~), 
T (4.2) 

which, to the order we are working, does not affect the condensate contributions. 

The final sum rule becomes 
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We have introduced the renormalization-group invariant parameters 

(4.4) 

- 

.- 

The choice of the reference scale 2;i is, of course, arbitrary. These quantities are 

related to the renormalized parameters k(mQ) and &?(mQ) defined in (2.20) by 

evolution equations.* 
A 

For F(mQ), the complete next-to-leading order result is 

+(mQ) = 
[ ;;;i;)] “‘{ 1 + as(mQ); dai) Znr _ a.$‘fQ)} kc2;i) . c4.5j 

For &2(mQ), we use &I = 35/9 in (2.18) to obtain 

- 
,&:2 (mQ) = mls{it)) [ 1 .9 -"'&(2ii) + (1 - [zfz)]-"'"+ z} g , (4.6) 

Since &2(2i) is proportional to os or to the mixed condensate, it is sufficient to 

work with the leading logarithmic approximation for 2, in (2.5). 

The evaluation of (4.3) p roceeds along the same lines as discussed in Sect. 3. 

Ignoring first l-/mQ corrections, we find good stability inside the sum rule window 

for wg III 1.85 f 0.3 GeV. In this region, the renormalized low-energy parameters 

are 

12 E 0.49 f 0.07 GeV , 

F 21 0.365 f 0.065 GeV3i2 . 
(4.7) 

Note that radiative corrections have increased the result for P, as compared to 

F in (3.14), by 20%. Th e values of i and ws, on the other hand, remain almost 

unchanged, since these quantities are determined from ratios like (3.12), in which 

most of the radiative corrections cancel. Using (4.5) we can compute the so-called 

static limit of the decay constant of the B meson 

&6) fgat = x 21 192 f 35 MeV . (4.8) 

This is slightly smaller than the value quoted in Ref. 28, which was based on a 

larger value of A. 

* When evaluating the evolution equations for mQ = mb, it is to be understood that the 

number nf of light quarks changes as one crosses the charm threshold. 
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Due to the inclusion of radiative corrections, the analytical expressions for the . 
spin-symmetry breaking corrections &A2 and G2(2A) differ from those given in 

(3.17). As an example, we present the result for SA2 

6112 = 
,$/TO 

12@(2A)(wo - aA> 

-- 
2ct!, w” 

- - / dw w3(wo - 73 w) (z - 1) In 2 emUIT’} . 

0 

W) 

The expression for G2(2A) is more complicated. We do not present it here. In the 

numerical evaluation we use the renormalized parameters from (4.7) together with 

(Y,/x = 0.1. We find [cf. (3.18) and (3.19)] 

rn$ - rn$ ~0.46 f 0.08 GeV2 , 

G2(2A) cz -(55 f 8) MeV . 
(4.10) 

The-vector-pseudoscalar mass splitting is now in excellent agreement with that 

observed for beauty mesons, rn& - rni N 0.48 GeV2 [41]. 

The evolution of ($2 (2A) up to the scale of the heavy quark yields a further 

reduction of this paramter due to’the terms proportional to A in (4.6), which are 

induced by the renormalization group. We find the central values Gz(m,) N -44 

MeV and G2(mb) N -26 MeV. A s a consequence, the spin-symmetry breaking 

effects in the ratio fv/fp are not quite as large as estimated in (3.20). Our final 

numbers are 
. 

fB*e 
fBfiL = I.07 f 0.03 , 

fD*fi 
fDJmD = 1.36 f 0.08 . (4.11) 

The renormalization of G1 (p) can be carried out in a similar way. In this 

case, we restrict ourselves to the leading logarithmic approximation and define the 

renormalized form factors [cf. (2.20)] 
- 

81(2A)=Gr(p)+y: ln&, 
- - 

. 

(4.12) 

In leading logarithmic order, Gr(2A) g a rees with the lowest-order result Gr in 

(3.21) except for the replacement of wg, A and F by their renormalized values. 
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This gives &(2A) N -(2.0 f 0.3) GeV. The effect of the evolution from p = 2A 
A 

up to the heavy-quark mass is rather moderate in this case. Even Gr(mb) differs 

from dr (2A) by 1 ess than 0.1 GeV. Finally, we note that in the slope parameter 

cp defined in (3.23) the logarithms of rn~/A cancel, such that this parameter is 

independent of rn~ to leading logarithmic order. Using &;(2A) as given above, one 

finds cp N -2.6 GeV. 

- 
5. Conclusions 

.- We have presented a detailed analysis of mesonic decay constants in subleading 

order of the l/m~ expansion for heavy quarks. The relevant matrix elements can be 

parametrized in terms of a leading-order low-energy parameter F, two subleading 

parameters Gr and G2, and the ma.ss difference A = rn~ - rn~, where rrz~ is a 

generalization of the “physical” pole mass of the heavy quark. We have derived the 

general structure of the symmetry-breaking corrections using effective-field-theory 

techniques. The renormalization-group improvement of the low-energy parameters 

has been discussed in detail. Numerical values of the form factors have then been 

obtained from QCD sum rules in the effective theory. At the renormalization scale 

,Y = 2A, the results are 

i N 0.50 GeV , 

k(2i) ~0.36 GeV3i2 , 

&(2A) ~'-2.0 GeV , 

&2(2i)z -55 MeV. 

A is the characteristic scale of low-energy parameters in the effective theory. For 

instance, F N A3i2 with good accuracy. G2 N -0.1 A is suppressed since this is 

a spin-symmetry violating form factor. In the framework of QCD sum rules, it 

only receives contributions from condensates of dimension d s 5, or from radiative 

corrections. On the other hand, the large value Gr 21 -4A is unexpected and 

leads to a break-down of the ~/TIZQ expansion for decay constants of pseudoscalar 

mesons, already in the region below the b-quark mass. We have argued that higher- 

order terms in the l/m~ expansion partially compensate this effect and mimic an 

e$ective value which is significantly smaller, Giff 2~ -0.5 GeV. It is important to 

emphasize that Gr does not induce spin-symmetry-breaking effects, which therefore 

can be reliably computed. Including two-loop radiative corrections, we obtain for 

the vector-pseudoscalar mass splitting 

m$ -rn$ N 0.46f0.08 GeV2 

in excellent agreement with experiment. The symmetry-breaking effects to the 
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ratio of decay constants fv/fp are estimated to be - 7% for beauty and - 36% 

for charmed mesons. 

- 

Besides obtaining these numerical results, the purpose of this paper is to present 

a consistent calculation of heavy-quark form factors at subleading order in the 

l/m~ expansion, which respects the equations of motion and correctly reproduces 

the running of the low-energies parameters. The application of the methods devel- 

oped here to the calculation of the subleading form factors that describe transitions 

between two heavy mesons will be presented elsewhere [45]. 
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APPENDIX 

We briefly outline the calculation of the two-loop diagram shown in Fig. 3 (a). 

In momentum.space, the heavy-quark-gluon vertex denoted by a black square is 

given by -(9s/2~Q)~puku, where k is the momentum of the incoming gluon. In 

D space-time dimensions, the diagram is proportional to the two-loop integral 

. Lcupy(% 4 = J dDs dDt 
scf tp (s - t)y 

(w + 2V * s) (w + 2V . t) s2 t2 (s - t)2 
= ; @a spy - “p 9q) $4 , 

where we have used that Io,py is antisymmetric in o and ,8. Using standard reduc- 

tion techniques and the integrals given in Ref. 18, we obtain 

2 

i(w) = w dDs 
(w+2:.s)s2 - 1 J dDsdDt(w+2?J.s;t’(s-t)2 

= ““(gy-” r2(D/2 - 1) [r2(3 - 0) - r(5 - 2D)] . 

One then relates the imaginary part of this integral to that of the bare quark-loop. 

20 



The ratio of imaginary parts is proportional to 

6~0s [r(L) - 4)] 

CD - 1) 

(D-4) 

I’(D/2 - 1) I’(3 - D) - rr(F312Dq) 
I 

- 
where l/i = 2/(D - 4) + YE - ln47r. 

.- 
REFERENCES 

[l] E. Eichten and F. Feinberg, Phys. Rev. D23 (1981) 2724; 

E. Eichten and B. Hill, Phys. Lett. B234 (1990) 511, Phys. Lett. B243 

(1990) 427. 

[2] W.E. Caswell and G.P. Lepage, Phys. Lett. B16’7 (1986) 437; 

G.P. Lepage and B. Thacker, Nucl. Phys. B (Proc. Suppl.) 4 (1988) 119. 

[3] M.B. Voloshin and M.A. Shifman, Yad. Fiz. 45 (1987) 463 [Sov. J. Nucl. 

Phys. 45 (1987) 2921, Yad. Fiz. 47 (1988) 511 [Sov. J. Nucl. Phys. 47 (1988) 

5111. 

[4] H.D. P o 1 zer and M.B. Wise, Phys. Lett. B206 (1988) 681, Phys. Lett. l’t 

B208 (1988) 504. 

[5] N. Isgur and M.B. Wise, Phys. Lett. B232 (1989) 113, Phys. Lett. B237 

(1990) 527, Nucl. Phys. B348 (1991) 276. 

[6] F. Hussain et al., Phys. Lett. B249 (1990) 295; 

F. Hussain, J.G. Kijrner, M. Kramer and G. Thompson, Z. Phys. C51 (1991) 

321. 

[7] .T. Mannel, W. Roberts and Z. Ryzak, Phys. Lett. B255 (1991) 593, Nucl. 

Phys. B355 (1991) 38. 

[8] H. Georgi, Phys. Lett. B240 (1990) 447. 

[9] J.G. Kijrner and G. Thompson, Phys. Lett. B264 (1991) 185. 

[lo] T. Mannel, W. Roberts and 2. Ryzak, Harvard preprint HUTP-91/A017 

(1991). 

[ll] A.F. Falk, H. Georgi, B. G rinstein and M.B. Wise, Nucl. Phys. B343 (1990) 

[12] ME. Luke, Phys. Lett. B252 (1990) 447. 

[13] A.F. Falk, B. G rinstein and M.E. Luke, Nucl. Phys. B357 (1991) 185. 

[14] H. Georgi, B. G rinstein and M.B. Wise, Phys. Lett. B252 (1990) 456. 

[15] M. Neubert and V. Rieckert, Heidelberg preprint HD-THEP-91-6 (1991); 

M. Neubert, Heidelberg preprint HD-THEP-91-4, to appear in Nucl. Phys. 

B. 

21 



[16] A.F. Falk and B. G rinstein, Phys. Lett. B247 (1990) 406. 

[17] X. Ji and M.J. Musolf, Phys. Lett. B257 (1991) 409. 

[18] D.L. Broadhurst and A.G. G rozin, Phys. Lett. B267 (1991) 105. 

[19] G.P. Korchemsky and A.V. Radyushkin, Nucl. Phys. B283 (1987) 342, 

Marseille preprint CPT-91/P.2629 (1991); 

G.P. Korchemsky, Mod. Phys. Lett. A4 (1989) 1257. 

[20] M. Neubert, Heidelberg preprint HD-THEP-91-30 (1991). 

[21] J.D. Bj or k en, I. Dunietz and J. Taron, SLAC preprint SLAC-PUB-5586 

(1991). 

[22] C.R. Allt on et al., Nucl. Phys. B349 (1991) 598. 

[23] A. Abada et al., R ome preprint ROME-823/1991 (1991). 

[24] C. Alexandrou et al., Phys. Lett. B256 (1991) 60. 

[25] C. Bernard, A.X. El-Khadra and A. Soni, Phys. Rev. D43 (1991) 2140. 

[26] L. Maiani, Helv. Phys. Acta 64 (1991) 853. 

[27] L. Maiani, G. Martinelli and C.T. Sachrajda, Southampton preprint SHEP- 

90/91-32 (1991). 

[28] M. Neubert, SLAC preprint SLAC-PUB-5712 (1991), to appear in Phys. 

Rev. D45 (1992). 

[29] A.V. Radyushkin, Phys. Lett. B271 (1991) 218. 

,[3oj E. Bagan, P. Ball, V.M. Braun and H.G. Dosch, Heidelberg preprint HD- 

THEP-91-36 (1991). 

[31] A.F. Falk, M. N eu er and. M.E. Luke, SLAC preprint SLAC-PUB-5771 b t 

(1992). 

[32] J.L. Rosner, Phys. Rev. D42 (1990) 3732, see also talk presented at Con- 

ference Snowmass ‘90, Snowmass, Colorado, June 1990, Chicago preprint 

EFI-90-80 (1990). 

[33] J.D. Bj or k en, invited talk given at Les Rencontres de la Valle d’Aoste La 

‘Thuile, Aosta Valley, Italy, March 1990, SLAC preprint SLAC-PUB-5278 

(1990), Lecture at the 1990 SLAC Summer Institute on Particle Physics, 

SLAC preprint SLAC-PUB-5389 (1990). 

[34] T. Mannel, W. Roberts and Z. Ryzak, Phys. Lett. B248 (1990) 392, Phys. 

Lett. B259 (1991) 359. 

[35] M. Neubert, V. Rieckert, B. Stech and Q.P. Xu, Heidelberg preprint HD- 

THEP-91-28 (1991), to appear in “Heavy Fhvours”, edited by A.J. Buras 

and M. Lindner, Advanced Series on Directions in High Energy Physics, 

World Scientific Publishing Co.; 

M. Neubert, in Proceedings of the Joint International Lepton-Photon Sympo- 

sium and Europhysics Conference on High Energy Physics, Geneva, Switzer- 

land, July 1991, Heidelberg preprint HD-THEP-91-34 (1991). 

[36] M. Neubert, Phys. Lett. B264 (1991) 455. 

22 



[37] N. Isgur and M.B. Wise, Phys. Rev. D42 (1990) 2388. 

[38] M.A. Sh’f 1 man, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B147 (1979) 

385, Nucl. Phys. B147 (1979) 448. 

[39] E.V. Shuryak, Nucl. Phys. B198 (1982) 83. 

[40] Similar sum rules have been derived in: V. Eletsky and E. Shuryak, Stony 

Brook preprint SUNY-NTG-91/41 (1991). There, however, the authors 

set SW; = 0 instead of determining these parameters by requiring optimal 

stability. Their analysis is thus not entirely in accordance with the standard 

procedure. 

[41] J. Lee-Franzini et al., Phys. Rev. Lett. 65 (1990) 2947; 

D.S. Akerib et al., Phys. Rev. Lett. 67 (1991) 1692. 

[42] J.J. Hernandez et al. (Particle Data Group), Phys. Lett. B239 (1990) 1. 

[43] C.A. Dominguez and N. Paver, Cape Town preprint UCT-TP 176/91 (1991). 

[44] D.L. Broadh urs and A.G. Grozin, Phys. Lett. B274 (1992) 421. t 

[45] M. Neubert, in preparation. 

FIGURE CAPTIONS 

1) Numerical evaluation of the sum rules (3.11) and (3.12) for different values 

of the threshold energy ws. The solid lines give A(T) in units GeV, the 

dashed ones F(T) in units GeV / 3 2. In the computation of F we have used 

A = 0.57,0.50,0.43 GeV for wg = 2.3,2.0,1.7 GeV, respectively. 

2) Evaluation of the sum rules (3:16) for different values of Sw2. The solid 

lines refer to &AZ(T), the dashed ones to Ga(T), both in units GeV. In the 

computation of G2 we have used &A2 = -155, -175, -195 MeV for Sw2 = 

-85, -105, -125 MeV, respectively. 

3) Feynman diagrams for the spin-symmetry breaking radiative corrections in 

‘(4.1). The heavy-q uark propagators are represented by double lines. The 

black square denotes the heavy-quark-gluon vertex contained in the “mag- 

netic interaction” operator in (2.3). 
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