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A fundamental task of statistical physics is to start with a microscopic Hamiltonian, predict the system’s
statistical properties and compare them with observable data. A notable current fundamental challenge is to
tell whether and how an interacting Hamiltonian predicts different energy spectra, including solid, liquid
and gas phases. Here, we propose a new idea that enables a unified description of all three states of matter.
We introduce a generic form of an interacting phonon Hamiltonian with ground state configurations
minimising the potential. Symmetry breaking SO(3) to SO(2), from the group of rotations in reciprocal
space to its subgroup, leads to emergence of energy gaps of shear excitations as a consequence of the
Goldstone theorem, and readily results in the emergence of energy spectra of solid, liquid and gas phases.

T
he main general premise of statistical physics is that observable properties of a macroscopic system can be
calculated and explained on the basis of a microscopic Hamiltonian with many degrees of freedom. This has
been implemented as a successful program that, notably, has been applied to each of the three states of matter

(solids, gases, liquids) individually1. For example, the model Hamiltonian of a solid enforces oscillations around
fixed equilibrium positions2,3, resulting in the marked restriction on the sampled volume of phase space. On the
other hand, a gas state is approached by starting with free particles, switching interactions on and predominantly
viewing these as small perturbations. The third state of matter, liquids, occupy an interesting intermediate state
with a combination of strong interactions and cohesive state as in solids and large flow-enabling particle
displacements as in gases. This combination is believed to preclude the calculation of thermodynamic properties
of liquids in general form1.

The general problem represented by liquids is well-known1,4, yet here we begin with asking an even more
fundamental question. The question bears on some deep issues that were recognized long ago5 yet remain
unsolved, those of operating in restricted phase space rather full phase space. As in the example above, most
model Hamiltonians of solids impose restrictions on the phase space where atoms never leave their equilibrium
sites. Even with anharmonicity of interactions properly introduced, modern statistical physics can not predict
whether and under what conditions a given Hamiltonian corresponds to a solid, a liquid or a gas. This is often
illustrated as a story of some best physicists who are gathered on an island, given a Hamiltonian and failed to
analytically find which state of matter it corresponds to, despite being surrounded by water.

Here, we ask whether a Hamiltonian can be proposed that demonstrably describes energy spectra correspond-
ing to solid, liquid and gas phases. To address this challenge we operate in terms of the phonon Hamiltonian.
Ground state configuration breaks the symmetry and the Hamiltonian readily describes energy spectra corres-
ponding to solids, liquids and gases (both interacting and ideal). In this picture, the energy gaps of shear
excitations naturally emerge as a consequence of the Goldstone theorem. The group of rotations in reciprocal
space SO(3) is spontaneously broken to its subgroup SO(2). Consequently, different choices of couplings of fields
correspond to energy spectra of distinct states of matter and it is reassuring and gratifying that our proposed
general approach captures the experimental findings. Phase transitions are common occurrences observed in
nature6,7 and the description of phase transitions in the framework of the proposed formalism (solid/liquid,
liquid/gas and solid/gas) is another remaining challenging task, we discuss it below.

Results
We start with the Hamiltonian describing the dynamics of the phonon field in harmonic approximation8
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Here the small Greek indices run from 1 to 3 labelling three space
directions and k is a multiindex {k1, k2, k3} that denotes the wave
vector of the corresponding harmonics and vD is the Debye fre-
quency. The parameter m that takes values 1 or 0 was introduced
for further convenience. Summation over the repeated space indices
is always assumed and the metric has the signature {1,1,1}. The
collective canonical coordinates Pa

k and Qa
k are introduced as

Qa
k~

ffiffiffiffi
m
p XN

j~1

ei Lj:kxa
j , Pa

k~
_Qa

k, ð2Þ

where xa
j are 3 coordinates of the j-th atom of the lattice, L is the

lattice spacing, N is the total number of atoms, i is the imaginary unit
(i2 5 21) and m is the mass of an atom in the lattice. The coefficient
v2

k gives dispersion relation of a phonon. Normal modes satisfy
Qa

k~Qa�
{k since coordinates of atoms xa

j are real, where star denotes
the complex conjugation.

The Hamiltonian (1) that is quadratic in fields defines a free theory
with no interactions between phonons. To introduce an interaction
one adds a term Hint that is of higher order in fields which leads to
spontaneous symmetry breaking9. The simplest possible interaction
term which does not involve fractional powers is of the sixth order in
fields1 (1In general one may add terms of higher orders in fields.
However in order to have a metastable configuration and a family
of global minima (see Figure 2) one needs terms of powers 2 ? (2n – 1)
and 2n for integer n . 1.)
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where g, l[Rz are some real non-negative coupling constants (see

discussions in conclusions) and Qa
k

		 		~ Qa
kQa

{k

� �1=2
. The total

Hamiltonian H 5 H0 1 Hint is invariant under the following trans-
formations
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The configurations �Qa

k and �Pa
k that minimise energy of the system,

break the SO(3) symmetry to SO(2) for a certain range of frequency
vk. The kinetic energy is minimal at configurations �Pa

k~0 and the
minimum of the potential term can be found in the usual way
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where the potential V Qa
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is defined as
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The equation (5) is of the fifth order in Qa
k

		 		 and therefore has five
solutions. We choose only non-negative roots
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The factor m was omitted here since it takes value 1 for non-trivial
cases (see next section). The solution (7) behave quite differently
when vk . vF and vk , vF. Namely, for the frequencies vk . vF

all three roots coincide and the potential has only one minimum
Qa

k

		 		~0 that is invariant under the SO(3) transformations.

However, for vk , vF the global minimum of the potential is pro-
vided by the family of solutions Qa

k

		 		
z

that is not invariant under
SO(3) and spontaneously breaks the symmetry to SO(2).

When vk , vF the solution Qa
k

		 		
0~0 represents the local meta-

stable minimum. Indeed, two roots Qa
k

		 		
+ correspond to two

extrema of the potential, one of which (with the minus sign) is a
local maximum (see Fig. 1). This means that the pseudo-vacuum
state Qa

k

		 		~0 is stable on the classical level, but becomes metastable
if quantum effects are taken into account. This leads to quantum
tunneling of the state Qa

k

		 		~0 to the true vacuum state given by
�Qa

k

		 		: Qa
k

		 		
z

and symmetry breaking.
According to the Goldstone theorem this leads to two massless

modes Q2,3
k , which we call transverse modes, one for each broken

symmetry generator, and one massive mode Q1
k, which we call lon-

gitudinal mode10,11. Hence, the longitudinal mode is the one that
corresponds to the unbroken symmetry generator. Excitations of
the phonon field around the ground state �Qa

k can be written as
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kzQa

k: ð8Þ

For a particularly chosen vacuum �Qa
k~da

1
�Qkj j we obtain the follow-

ing Hamiltonian:
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Here Qa
k are small excitations around the vacuum state and pa

k~ _Qa
k

are corresponding canonical momenta. The term Vint denotes all
higher order interactions and includes all three modes Qa

k while the
last term is an irrelevant shift of the total energy of the system
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Here the cutoff vk , vF reflects the fact that for vk . vF we have
�Qkj j~0 and the corresponding potential becomes zero.

One should note that the frequencyV2
k of the longitudinal mode Q1

k
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is non-continuous at the point vk 5 vF and m is again set to 1. Since
the symmetry is broken and the system is in the true ground state
Qa

k

		 		=0 the plus sign in (7) should be chosen.

a. b.
VV

|Q||Q|

Figure 1 | When vk . vF, the global minimum is given by Qa
k

		 		~0 (a).
For vk , vF, the global minimum of the potential is provided by the family

of solutions Qa
k

		 		
z

that breaks the symmetry SO(3) R SO(2) (b).
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At the same time, the Goldstone theorem asserts that the trans-
verse modes Q2

k and Q3
k do not contribute to the energy of the system

at the quadratic level for vk # vF. The term Vint that encodes inter-
actions between all three modes involves all frequencies vk g (0,
vD). The detailed analysis of the physical consequences of these facts
is given in the next section.

Finally, it is worth mentioning that the direction of �Qa
k is chosen

spontaneously and the form of the resulting Hamiltonian does not
depend on this choice.

Identifying the field Q1
k with longitudinal normal mode and the

fields Q2,3
k with transverse shear modes one can write energy of the

theory defined by the Hamiltonian (9) as

E~KzPlzPs vkwvFð ÞzEint ð12Þ

where K is the total kinetic energy and Pl and Ps are the potential
energies of longitudinal and shear modes, respectively, and Eint

corresponds to higher-order terms such as an anharmonicity. The
Eq. (12) implies that contributions of transverse modes with frequen-
cies v , vF to linearised energy vanish. This means, that we do not
have free propagating transverse modes with such frequencies.

According to Eq. (12), the system supports one longitudinal mode
and two shear modes with frequency larger than vF. Our theory
therefore predicts a non-trivial and a non-anticipated effect of the
frequency cutoff of shear modes. Remarkably, such a cutoff was
earlier discussed on purely dynamic grounds, a point to which we
return below. Here, we note that our symmetry breaking approach
essentially captures the earlier dynamic idea5.

Discussion
The most intriguing feature of the proposed formalism is albeit the
energy (12) can be interpreted as the energy of a liquid, in fact it
describes all three phases of matter depending on the parameters g, l
and m. This is summarized in Table I.

As follows from the Table I, the parameter m is used to distinguish
the phase of the ideal gas when the potential energy is zero. In
contrast, the couplings g and l are model dependent and can be,
for example, derived from the experiment (see discussion in the next
section). As summarized in the Table, our theory readily gives rise to
the different states of matter as follows:

Ideal gas. The quartic coupling g and the sextic coupling l are set to
be zero as well as the parameter m. This leaves only the kinetic term in
the Hamiltonian. Both longitudinal and transverse modes are non-
interacting and massless which corresponds to the ideal gas.

Interacting gas. The Frenkel frequency vF becomes equal to the
Debye frequency vD which eliminates all transverse shear modes.
However, in contrast to the case of the ideal gas the longitudinal
mode Q1

k is massive and has non-zero couplings.

Liquid. Transverse shear modes Q2,3
k with frequencies vk , vF do

not contribute to the Hamiltonian at the quadratic level while the
longitudinal mode Q1

k does not feel the bound vk 5 vF since its
couplings are continuous.

Notably, our Eq. (12) essentially captures the earlier idea of J.
Frenkel that as far as propagating modes are concerned, the only
difference between a solid and a liquid is that the liquid does not
support shear waves at all frequencies as the solid does, but only those

with frequency vkwvF~
2p
t

5. Here, t is liquid relaxation time, the

average time between two consecutive atomic jumps in one point in
space. With a remarkable physical insight, the argument about the
liquid vibrational states was developed as follows. At times shorter
than t, a liquid is a solid, and therefore supports one longitudinal
mode and two transverse modes, whereas at times longer than t,
liquid flows and loses its ability to support shear stress, and therefore
supports the longitudinal mode only as any elastic medium (in a
dense liquid, the wavelength of this mode extends to the shortest
wavelength comparable to interatomic separations). Derived on
purely theoretical grounds, this idea was later experimentally con-
firmed, although with a significant time lag (for review, see, e.g. Ref.
12).

We therefore find that the Hamiltonian (9) describes solid, liquid
and gas states depending on the choice of coupling constants g and l,
that in general may depend on wavenumber k. The transverse shear
modes Q2,3

k for vk , vF do not contribute to the Hamiltonian on the
quadratic level in the liquid regime. In the coordinate space it may
correspond to atomic jumps with characteristic time t , 1/vF. The
ability of liquids to support high-frequency shear modes with vF as a
lower frequency cutoff originates in our general approach based on
symmetry breaking. This is an unexpected and a highly non-trivial
result. For viscous liquids such as B2O3, the experimental evidence
was available some time ago15. For low-viscous liquids such as Na and
Ga, the experimental evidence came about fairly recently when
powerful synchrotron radiation sources started to be deployed that
mapped dispersion curves in these systems16,17. It is reassuring and
gratifying that our proposed general approach captures the experi-
mental findings12,18–20.

Taking the inverse Fourier transform of both sides of (8), we find

xa tð Þ~�xazja tð Þ ð13Þ

If we associate ja(t) with oscillations around equilibrium positions
and �xa with translations, the symmetry breaking SO(3) R SO(2)
acquires a microscopic meaning in real space. Namely, no symmetry
breaking takes place in solids where atoms do not jump, giving
�xa~0. In liquids and gases, on the other hand, symmetry breaking
is due to particle jumps, i.e. spontaneous translations with ampli-
tudes �xa.

Glass has been widely viewed as not a separate state of matter but
as a slowly flowing liquid, with relaxation time t exceeding obser-
vation time. When t exceeds experimental time scale, the liquid
forms glass21. Therefore, the glass state in our classification scheme
originates when t reaches a certain large value.

Solid. All normal modes are supported and vF is equal to zero,
reflecting the fact that solids are not able to flow. There is no
described symmetry breaking in phonon interactions3.

We now discuss two interesting directions for future work.
Identification of the physical meaning of the couplings g and l from
the experiment is an important task. In general these constants may
depend on the wavenumber k and have to predict known experi-
mental observables such as, for example, melting and boiling tem-
perature.

The form of the potential in particular can be justified by the
following observation. The potential on Figure 2.a in general
describes continuous phase transitions. In contrast, the potential

Table I | States of Matter. Ideal Gas: no elementary excitations;
Interacting Gas: only longitudinal excitations 0ƒvl

kƒvD; Liquid:
both longitudinal (0ƒvl

kƒvD) and shear (vFƒvs,s
k ƒvD) modes;

and Solid: all modes are supported (0ƒvl,s,s
k ƒvD)

Phase Coupling constants Normal modes

Ideal Gas
m 5 0, g R 0, l R 0,

g2

l
?0.

�Qj j~0 no modes

Interacting Gas
m 5 1, g ? 0, l ? 0,

g2

l
~vD.

�Qj j=0, Q1
k

Liquid
m 5 1, g ? 0, l ? 0,

g2

l
=0. �Qj j=0, Q1,2,3

k vs,s
k w

1
t

� �
Solid

m 5 1, g=l, l ? 0,
g2

l
?0.

�Qj j=0, Q1,2,3
k
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on Figure 2.b14, that was used in the suggested formalism, can be
associated with discontinuous phase transitions such as melting (or
freezing). Hence, an intriguing question is a dynamic description of
the switch from the liquid to the solid phase regime by investigating
the RG flow of the couplings g and l13. The description of phase
transitions (solid/liquid, liquid/gas and solid/gas) are another
remaining challenging tasks. These ideas need more rigorous
explanation and connection to the experiment.

The proposed Hamiltonian enables us to describe and predict
energy spectra corresponding to other states of matter. To address
this challenge one can operate in terms of couplings (see Table I). For
instance, from the point of view of energy spectra, plasma does not
support transverse modes in the sense of solid state, and therefore
falls into the ‘‘interacting gas’’ state in our classification scheme.

In summary, we have proposed a general form of phonon
Hamiltonian with non-trivial minima of potential energy that lead
to symmetry breaking. The group of rotations in reciprocal space
SO(3) is spontaneously broken to its subgroup SO(2). The energy
gaps of shear excitations is a consequence of the Goldstone theorem.
Shear modes with vk , vF do not contribute to the Hamiltonian at
the quadratic level in liquids. It is demonstrated how depending on
the couplings g and l, the energy spectra of three basic states of
matter (solid, liquid, gas) readily emerge. It is reassuring and grati-
fying that our proposed general approach captures the experimental
findings.

Methods
In this work we introduce a generic form of an interacting phonon Hamiltonian with
ground state configurations minimising the potential. The energy gaps of shear
excitations naturally emerge as a consequence of the Goldstone theorem which
readily results in the emergence of energy spectra corresponding to solid, liquid and
gas phases.
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Figure 2 | Schematic illustration of ground state behaviour for different potentials. Flow of coefficients changes the form of the corresponding

potentials and leads to descriptions of different types of phase transitions. The global minimum of the potential on Figure 2.(a) can be continuously

translated to local metastable state and in general describes continuous second-order phase transitions. The translation of the global minimum of the

potential on Figure 2.(b) to local metastable state is discontinuous and in general describes discontinuous first-order phase transitions.
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