Prog. Theor. Phys. Vol. 39 (1968), No. 6

Symmetry Breaking
 in the $S U(3)$ Chiral Dynamics

Toshiyuki Minamikawa
Department of Physics
Tokyo University of Education, Tokyo

March 12, 1968

A generalization of the $S U(2)$ nonlinear chiral dynamies ${ }^{1)}$ to the $S U(3)$ has been achieved on the basis of the quark model. ${ }^{2)}$ In this letter we take the $S U(3)$ symmetry breaking into account.
In the $S U(3)$ linear chiral dynamics based on the quark model, the Lagrangian is given by

$$
\begin{align*}
L= & -\bar{q} \gamma_{\mu} \partial_{\mu} q+g \bar{q}\left(\sigma+i \gamma_{5} \pi\right) q \\
& -\frac{1}{2}\left(\partial_{\mu} \pi \partial_{\mu} \pi+\partial_{\mu} \sigma \partial_{\mu} \sigma\right) \tag{1}
\end{align*}
$$

for the quark q, the scalar meson σ and the pseudoscalar meson π, which is invariant under linear chiral transformation. We proceed to nonlinear chiral dynamics by the Weinberg transformation,

$$
\begin{equation*}
q=\frac{1+i r_{5} \phi}{\sqrt{1+\phi^{2}}} \psi . \tag{2}
\end{equation*}
$$

Here we identify the χ and $\varphi=\phi / \alpha$ as actual fields for the $S U(3)$ nonlinear chiral dynamics, (see (7)). We require that the second term of (1) becomes the mass term of ψ with mass difference, that is,

$$
\begin{equation*}
\bar{q}\left(\sigma+i \gamma_{5} \pi\right) q=\bar{\psi} \Sigma \psi, \tag{3}
\end{equation*}
$$

where

$$
\left.\begin{array}{c}
\Sigma=-\frac{m}{g}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array} 1+\lambda\right.
\end{array}\right)=-\frac{m}{g}\left(1+\lambda \Lambda_{33}\right), ~(\lambda=\delta m / m .
$$

From (2) and (3) we can define σ and π as follows:

$$
\begin{equation*}
\sigma+i \pi=U^{*} \Sigma U^{*}, \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
U=\frac{1+i \phi}{\sqrt{1+\phi^{2}}} \tag{6}
\end{equation*}
$$

The proportionality coefficients α for ϕ are determined under the normalization condition that the free Lagrangian for mesons becomes $-\frac{1}{2} \partial_{\mu} \varphi \partial_{\mu} \varphi$. The α 's of (7) are different for each field due to symmetry breaking. The $\eta-\eta^{\prime}$ mixing effect can also be taken into account by diagonalization of the free Lagrangian for mesons. Thus, when we define the coefficients α by
$\phi_{\pi}=\alpha_{\pi} \varphi_{\pi}, \phi_{K}=\alpha_{K} \varphi_{K}, \phi_{\eta}=\alpha_{\eta} \varphi_{\eta}, \phi_{\eta^{\prime}}=\alpha_{\eta^{\prime}} \varphi_{\eta^{\prime}}$,
we find that
$\alpha_{\pi}=\frac{g}{2 m}, \frac{\alpha_{\pi}}{\alpha_{K}}=1+\frac{\lambda}{2}, \frac{\alpha_{\pi}}{\alpha_{\eta}}=1, \frac{\alpha_{\pi}}{\alpha_{\eta^{\prime}}}=1+\lambda$.

(i) baryon-meson interactions

We obtain an information on baryonmeson interactions, by substituting (2) into the first term of (1). By sandwiching the quark-meson interaction between the 56 dimensional wave functions of the $S U(6)$, the P-wave baryon-meson interactions are given by

$$
\begin{equation*}
g_{A} \operatorname{Tr}\left(i \bar{b} r_{5} r_{\mu} \partial_{\mu} \phi b+\frac{1}{5} i \bar{b} r_{5} r_{\mu} b \partial_{\mu} \phi\right) \tag{9}
\end{equation*}
$$

where b is the baryon octet, $g_{A}=(5 / 3) \gamma$, and $\gamma \approx 1 / \sqrt{2}$ is the renormalization of π quark vertex. In order for (9) to explain the $\pi-N$ vertex, we find that

$$
\begin{equation*}
\alpha_{\pi}=\sqrt{2} / F_{\pi}, \quad F_{\pi}=2 m_{N} g_{A} / G_{\pi N} . \tag{10}
\end{equation*}
$$

From (7), (8), (9) and (10) we obtain

$$
\begin{align*}
& \frac{G_{K N \Lambda}^{2}}{4 \pi}=\frac{G_{\pi N}^{2}}{4 \pi}\left(\frac{m_{N}+m_{\Lambda}}{2 m_{N}}\right)^{2}\left(\frac{3 \sqrt{3}}{5}\right)^{2} \frac{1}{(1+(\lambda / 2))^{2}}, \\
& \frac{G_{K N \Sigma}^{2}}{4 \pi}=\frac{G_{\pi N}^{2}}{4 \pi}\left(\frac{m_{N}+m_{\Sigma}}{2 m_{N}}\right)^{2}\left(\frac{1}{5}\right)^{2} \frac{1}{(1+(\lambda / 2))^{2}} \tag{11}
\end{align*}
$$

By (8) the coupling constants for vertices relating to K and η^{\prime} become smaller than
the symmetric case by a factor $1 /(1+(\lambda / 2))^{2}$ and $1 /(1+\lambda)^{2}$, respectively. However, the coupling constants relating to π and η are the same as for the symmetric case. In Table I the values of $G_{K N /}^{2} / 4 \pi$ and $G_{K N \Sigma}^{2} / 4 \pi$ are shown for $\lambda=0,1 / 3$ and $2 / 3$. The case $\lambda=1 / 3$ is consistent with the values of Kim. ${ }^{\text {² }}$

Table I. Coupling constants.

λ	0	$1 / 3$	$2 / 3$
$G_{K N /}^{2} / 4 \pi$	16	14	11
$G_{K N \Sigma}^{2} / 4 \pi$	0.60	0.56	0.43

(ii) mass difference of spin-1 meson ${ }^{4)}$

The chiral invariant Lagrangian has previously been obtained, ${ }^{2}$) and it contains terms such as

$$
\begin{align*}
& -\frac{1}{2} m_{\rho}{ }^{2} \operatorname{Tr}\left(V_{\mu}{ }^{2}+P_{\mu}{ }^{2}\right), \tag{13}\\
& -\frac{2 m_{\rho}{ }^{2}}{F_{\pi^{2}}{ }^{2}} \operatorname{Tr}\left[\left(V_{p}{ }^{2}+P_{\mu}{ }^{2}\right)\left(\sigma^{2}+\pi^{2}\right)\right. \\
& \left.\quad-V_{\mu} \sigma V_{\mu} \sigma+P_{\mu} \sigma P_{\mu} \sigma\right], \tag{14}
\end{align*}
$$

where V_{μ} is the vector meson and P_{μ} is the axial-vector meson. (13) is determined so as to fix the mass term of ρ. Now, the term (13) may well be modified by introducing an adjustable parameter n

$$
\begin{equation*}
-\frac{1}{2} m_{\rho}{ }^{2}\left(\frac{8}{F_{\pi}^{2}}\right)^{n} \operatorname{Tr}\left(V_{\mu}{ }^{2}+P_{\mu}{ }^{2}\right)\left(\sigma^{2}+\pi^{2}\right)^{n} \tag{15}
\end{equation*}
$$

since $\sigma^{2}+\pi^{2}=F_{\pi}{ }^{2} / 8$. First, we consider the case $n=1$. Substituting (5) into (14) and (15), we obtain the mass terms with the symmetry breaking:

$$
\begin{align*}
& -\frac{1}{2} m_{\rho}{ }^{2} \operatorname{Tr}\left(V_{\mu}{ }^{2}+2 P_{\mu}{ }^{2}\right) \\
& \quad-\frac{1}{2} m_{\rho}{ }^{2}\left(2 \lambda+\lambda^{2}\right) \operatorname{Tr}\left(V_{\mu}{ }^{2}+P_{\mu}{ }^{2}\right) \Lambda_{33} \\
& \quad-\frac{1}{4} m_{\rho}{ }^{2} \operatorname{Tr}\left[\lambda^{2} V_{\mu}{ }^{2} \Lambda_{33}-\lambda^{2} V_{\mu} \Lambda_{33} V_{\mu} \Lambda_{33}\right. \\
& \left.\quad+\left(4 \lambda+\lambda^{2}\right) P_{\mu}{ }^{2} \Lambda_{33}+\lambda^{2} P_{\mu} \Lambda_{33} P_{\mu} \Lambda_{33}\right] . \tag{16}
\end{align*}
$$

We take into account $\omega-\phi$ mixing and $D-E$ mixing by diagonalization of (16). Finally
we obtain

$$
\begin{align*}
& m_{A 1}^{2}=2 m_{\rho}{ }^{2} \\
& m_{R^{*}}^{2}=\left(1+\lambda+\frac{3}{4} \lambda^{2}\right) m_{\rho}{ }^{2}, \\
& m_{K_{A}}^{2}=\left(2+2 \lambda+\frac{3}{4} \lambda^{2}\right) m_{\rho}{ }^{2}, \\
& m_{\Phi}{ }^{2}=m_{\rho}{ }^{2}, \quad m_{D}{ }^{2}=2 m_{\rho}{ }^{2}, \\
& m_{\phi}{ }^{2}=(1+\lambda)^{2} m_{\rho}{ }^{2}, \\
& m_{E^{2}}{ }^{2}=2(1+\lambda)^{2} m_{\rho}{ }^{2} . \tag{17}
\end{align*}
$$

Predicted mass levels for $\lambda=1 / 3$ are shown in Table II, and are consistent with experiment. The case $n=0$ is inconsistent with experiment; for example, $m_{\omega}=m_{\phi}=m_{\rho}$.

Table II. Mass levels.

	$\lambda=1 / 3(\mathrm{MeV})$	exp. (MeV)
$m_{K^{*}}$	905	890
m_{ω}	760	780
m_{ϕ}	1013	1019
$m_{K_{A}}$	1260	1320
m_{D}	1074	1285
m_{E}	1430	1420

I am grateful to Professor Y. Miyamoto for valuable discussions.

1) S. Weinberg, Phys. Rev. Letters 18 (1967), 188.
J. Schwinger, Phys. Letters 24B (1967), 473.
2) T. Minamikawa and Y. Miyamoto, Prog. Theor. Phys. 38 (1967), 1195.
Y. Yamaguchi, private communication.
T. Shiozaki, Prog. Theor. Phys. 39 (1968), 189, 195.
3) J. K. Kim. Phys. Rev. Letters 19 (1967), 1079.
4) S. Iwao, Prog. Theor. Phys. 39 (1968), 405, 1083.
