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Abstract

We provide upper bounds for the determining number and the metric dimension
of tournaments. A set of vertices S ⊆ V (T ) is a determining set for a tournament
T if every nontrivial automorphism of T moves at least one vertex of S, while S is
a resolving set for T if every two distinct vertices in T have different distances to
some vertex in S. We show that the minimum size of a determining set for an order
n tournament (its determining number) is bounded by bn/3c, while the minimum
size of a resolving set for an order n strong tournament (its metric dimension) is
bounded by bn/2c. Both bounds are optimal.
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1 Introduction

The idea of somehow fixing the vertices of a graph in order to destroy all its nontrivial
automorphisms has captured the attention of reserchers in recent years, leading to theo-
retical results for different graph families (trees [8], Kneser graphs [2], digraphs [7], wheels
[17], or hypercubes [6]) and to applications in areas such as robotics [13] or chemistry [5].

One can distinguish vertices in a graph by considering their distances to a given
subset of fixed vertices: If every two distinct vertices of the graph have different distances
to some vertex in the chosen subset, no nontrivial automorphism can be left. In a more
nonconstructive approach, one can just fix a given set of vertices so that no nontrivial
automorphism is possible in the graph without caring whether it is due to distances or
not. The set fixed in the first approach is known as a resolving set [16, 10], while the
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set fixed in the second one has been called fixing set [8] and determining set [4]. In
both cases, it is desirable to find a set of minimum size which “fixes” or “destroys” all
nontrivial automorphisms in a graph, making the automorphism group of the resulting
structure —say, a labeled graph— trivial. This way, the sizes of the smallest determining
and resolving sets for a graph can be seen as two parameters on its degree of symmetry.

Additional ways for fixing the vertices in a graph have been considered, for example,
by Harary [9] and also by Albertson and Collins [3] who introduced the term symmetry
breaking; this term will be used here to refer to the preceeding approaches as a whole,
while the associated parameters to be minimized will be called symmetry parameters.

Tournament graphs have been extensively studied (for classical references, see [11, 14]).
Some of their well-known properties (for example, the fact that their automorphism groups
have odd order and, hence, are solvable) may help to get stronger conclusions on symmetry
breaking in tournaments than in general directed graphs. In this paper, we consider
determining and resolving sets for tournaments and prove the existence of optimal upper
bounds for their minimum sizes amounting to constant fractions of their order: 1

3
for

determining sets, and 1
2

for resolving sets of strong tournaments.

1.1 Tournaments

If D is a directed graph (digraph for short) V (D) and A(D) will denote the vertex set
and the arc set of D. Given two distinct vertices u, v of D, we will write u ∈ D instead
of u ∈ V (D) and uv ∈ A(D) rather than (u, v) ∈ A(D). The notation dD(x, y) (or just
d(u, v) when D is understood) stands for the directed distance from u to v in D, that is,
the length of the shortest directed path from u to v in D.

A tournament models the outcome of a competition where every player plays against
each other in a 2-player match. Formally, a digraph T is a tournament if between every
pair of distinct vertices u, v ∈ T , we have uv ∈ T or vu ∈ T but not both. For any
tournament T , define the following subsets of its vertices for any u, v ∈ T :

• Tu→ = {w ∈ T | uw ∈ T}

• T→u = {w ∈ T | wu ∈ T}

• Tuv→ = Tu→ ∩ Tv→

• Tu→j = Tu→ ∩ T→v

• T→uv = T→u ∩ T→v

The indegree of a vertex u is |T→u| while its outdegree is |Tu→|. A tournament T is regular
if the indegree (and, consequently, the outdegree) of all vertices is the same. In the case
of a regular tournament T of order 2n + 1, it is easy to see that |Tu→| = |T→u| = n for
every vertex u ∈ T .

A tournament T is transitive if its vertices can be numbered from 1 up to n in such
a way that every arc ij in T satisfies i < j. Therefore, there is a unique transitive
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tournament of order n up to isomophism, which is denoted by TTn. Since the existence
of a directed 3-cycle —which we will denote by C3— contradicts the condition in the
definition of TTn, a characterization of transitive tournaments, then, is precisely that
they do not contain the subtournament C3.

A tournament is strong if all directed distances between vertices are defined. It is
obvious that while TTn is not strong, the almost transitive tournament of order n > 3,
TT ∗n , consisting of a copy of TTn with the arc from 1 to n reversed is strong.

1.2 Symmetry Parameters

Given a digraph D, we denote by Γ(D) the automorphism group of D and by S1 the
trivial group. We note the well-known fact that every automorphism in Γ(D) is an
isometry, that is, for any u, v ∈ D and φ ∈ Γ(D), d(u, v) = d(φ(u), φ(v)). We say that an
automorphism φ fixes a vertex u if φ(u) = u and that it fixes a set S ⊆ V (D) if it fixes
every u ∈ S. The set of automorphisms of D that fix the set S is a subgroup of Γ(D)
called pointwise stabilizer of S in D, and we denote it by StabΓ(D)(S) (or just Stab(S)
when D is understood). Given a vertex u of D, the set OD(u) = {φ(u) | φ ∈ Γ(D)} is
called the orbit of u in D. Orbits of D induce a partition in the set of vertices. Note that
no automorphism can move a vertex from an orbit to another.

Definition 1. A set S ⊆ V (D) for which StabΓ(D)(S) = S1 is called a determining set of
D, and the minimum cardinality of a determining set for D, denoted by Det(D), is called
determining number of D.

A digraph with no nontrivial automorphisms is called rigid. Determining sets (also
known as fixing sets) have been introduced independently by Erwin and Harary [8] and
by Boutin [4]. As a simple example, a determining set for C3 is any set containing one
vertex, while the empty set is a determining set for TTk, for any k, since any transitive
tournament is rigid. Also note that any set with n− 2 vertices of a tournament of order
n is a determining set, since no automorphism can exchange the remaining two vertices
(tournaments do not have involutions).

In a different approach introduced separately by Harary and Melter [10], and by Slater
[16], the vertices in a graph can be distinguished according to their distances to a given
subset of vertices.

Definition 2. We say that a vertex u of a digraph D resolves a pair of vertices v, w ∈ D
if d(v, u) 6= d(w, u). We also say that S ⊆ V (D) is a resolving set for D if every pair of
vertices in D can be resolved by some vertex in S. The minimum size of a resolving set
for D is referred to as the metric dimension of D, and is denoted by Dim(D).

While the metric dimension of a digraph does not need to be defined, the situation
in the case of tournaments is different. We would like to stress the fact that Definition 2
does not require all directed distances to be defined (not even the directed distances to
all vertices in the resolving set), but only the distances to the vertices which resolve each
pair of distinct vertices.
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Proposition 3. For any order n tournament T , Dim(T ) 6 n− 1.

Proof. It is well known that every tournament has a Hamiltonian path [15]. Suppose,
then, that u1 . . . un is a Hamiltonian path for a tournament T . Then, given two vertices
ui, uj such that i < j, they can be resolved by uj since d(ui, uj) > d(uj, uj) = 0. Therefore,
{u2, . . . , un} is a resolving set.

We observe that the upper bound of Proposition 3 is best possible for general tourna-
ments.

Proposition 4. For every integer n, Dim(TTn) = n− 1.

Proof. Let V (TTn) = {1, . . . , n} be the numbering of the vertices from the definition
of TTn given in Subsection 1.1 (that is, every arc ij satisfies i < j), and let S be a
determining set for TTn. Then, given two vertices i, j such that i < j, we have that

• vertex j resolves the pair since d(i, j) = 1 and d(j, j) = 0,

• no vertex k < j can resolve it since distance d(j, k) is undefined, and

• no vertex k > j can resolve it neither since d(i, k) = d(j, k) = 1.

We conclude that j is the only vertex which resolves a pair i, j such that i < j, and then,
must belong to S. Therefore, the only vertex that can be left out of S is 1, and we have
Dim(TTn) > n − 1. On the other hand, Dim(TTn) 6 n − 1 by Proposition 3, and the
result is proved.

To establish the relation between resolving and determining sets, we just follow the
proof by Erwin and Harary ([8], Lemma 2), which can be applied without changes to
digraphs and we reproduce here for completeness.

Proposition 5. Every resolving set for a digraph is also a determining set. Therefore,
for any digraph D, Det(D) 6 Dim(D).

Proof. Let S be a resolving set for a digraph D. To get a contradiction, suppose that S
is not a determining set for D and, then, Stab(S) 6= S1. In this case, there must be a
vertex v and an automorphism φ ∈ Stab(S) such that v 6= φ(v). Since S is a resolving
set for D, there must be a vertex u ∈ S for which d(v, u) 6= d(φ(v), u). However,

d(v, u) = d(φ(v), φ(u)) = d(φ(v), u)

where the first equality holds because φ is an isometry, and the second one because φ fixes
u, and we have a contradiction.
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1.3 Outline

In Section 2, we prove that the determining number of every tournament of order n is
tightly bounded by bn/3c.

Section 3 is devoted to the metric dimension. We derive a tight upper bound of bn/2c
in the case of strong tournaments of order n (as we have just seen, there is no constant
fraction upper bound in the general case). In order to prove this bound, we first answer
a conjecture posed by Kannan, Naor, and Rudich on their concept of anchor ([12]), and
link it to the metric dimension. We also show in Section 3 that resolving sets and anchors
are exactly the same concept in regular tournaments.

2 The Determining Number

The determining number is 0, for exemple, for the transitive tournament of k vertices,
TTk, (in fact, for any rigid tournament) but how large can it be for a general tournament?

Proposition 6. For every n > 0, there is an order n tournament Tn such that Det(Tn) >
bn/3c.

Proof. If n = 3k for some integer k, let Tn be the order n tournament obtained from any
tournament of order k where each vertex has been subtituted by a copy of C3. Observe
that any determining set of cardinality smaller than k would fail to contain all three
vertices from at least one of the copies of C3, and that would make it possible to rotate it
independently of the rest of the vertices. Therefore, the determining number of Tn must
be at least k.

If n ≡ d modulo 3 with d = 1 or d = 2, we take Tn as the tournament Tn−d defined
above plus d new vertices pointing to all vertices in Tn−d. Since the new vertices must
be fixed in any nontrivial automorphism of Tn, Det(Tn) = Det(Tn−d) > (n − d)/3 =
bn/3c.

Now we will see that there is always a determining set with at most bn/3c vertices for
an n order tournament. In the proof, we exploit the fact that an automorphism cannot
move vertices between different orbits and, then, in order to construct a determining
set for a tournament, it is enough to construct determining sets for the subtournaments
induced by its orbits and then merge them. We will need the following proposition for
digraphs, which is the direct translation of a similar one stated in [4] for graphs and does
not require a separate proof.

Proposition 7. Let O1, . . . ,Ok be the vertex orbits of a digraph D. Let H1, . . . , Hk be
the associated induced subtournaments. Let S1, . . . Sk be determining sets for H1, . . . , Hk.
Then, S = S1 ∪ · · · ∪ Sk is a determining set for D.

Now, we can state the main theorem of this section.

Theorem 8. For every order n tournament T , Det(T ) 6 bn/3c.
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Proof. Given a tournament T of order n, we will show that the subtournament T [O]
induced by an orbit O of T has a determining set SO of size at most b|O|/3c. Therefore,
the union of all determining sets for the different orbits S =

⋃
O is an orbit of T SO will satisfy

that |S| 6 bn/3c while, by Proposition 7, S is a determining set for T . Thus, it is enough
to prove the statement separately for each orbit.

Suppose then that O is an orbit of T , and that |O| = m. Let H = T [O] be the
subtournament of T induced by O. The fact that O is an orbit implies that H must be
vertex transitive (there exists φ ∈ Γ(H) such that φ(u) = v for any u, v ∈ H) and, hence,
regular.

We will proceed by induction on m. For m 6 2, the determining set can be empty
since there is no nontrivial automorphism. For the inductive step, we will suppose that
m > 3, but note that in the case m = 3, the only tournaments are TT3 (which is already
rigid) and C3 (which can be made rigid by fixing one vertex). Now, for m > 3, we consider
three cases depending on the remainder of m when dividing by 3. All congruencies in the
rest of the proof are taken modulo 3.

Case 1: m ≡ 0.

Let u be any vertex in H. Since H is regular, |H→u| = |Hu→|, which together with the
fact that |H→u|+ |Hu→|+ 1 = m ≡ 0 leaves the only possibility that |H→u| = |Hu→| ≡ 1.

Therefore, there exists an integer r such that |H→u| = |Hu→| = 3r + 1. By induction
hypothesis, both H→u and Hu→ have determining sets of size r. Their union plus vertex
u form a determining set for H of size 2r + 1. Since |H| = m = 2(3r + 1) + 1 = 6r + 3,
the determining set has at most (in this case, exactly) bm/3c vertices as expected.

Case 2: m ≡ 2.

Let u be any vertex in H. As in the previous case, |H→u| = |Hu→|, which now
implies that |H→u| = |Hu→| ≡ 2. Therefore, there exists an integer r such that |H→u| =
|Hu→| = 3r + 2. By induction hypothesis, both H→u and Hu→ have determining sets
of size r. Their union plus vertex u form a determining set for H of size 2r + 1. Since
|H| = m = 2(3r + 2) + 1 = 6r + 5, the determining set has at most (in this case, less
than) bm/3c vertices.

Case 3: m ≡ 1.

In this case, for any u ∈ H, |H→u| = |Hu→| ≡ 0. A determining set for H constructed
inductively as in the previous cases would have more than bm/3c vertices. However, we
can complete the proof using two subcases:

• Subcase 3.1: For every arc uv ∈ H, |Hu→v| ≡ 2.

Since we are assuming that m > 3, let u, v, w be three vertices in H. Moreover,
we can select them in such a way that uv, vw, and wu are in H, the reason being
that H cannot be transitive in this subcase and, therefore, it must contain a 3-cycle.
Now, H can be split into the following subsets:

– Hu→v, Hv→w, and Hw→u, whose cardinalities are all congruent with 2 modulo
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3. Let |Hu→v| = 3r + 2, |Hv→w| = 3s + 2, and |Hw→u| = 3t + 2 for some
r, s, t > 0,

– the set {u, v, w}, and

– the remaining vertices in H, say H ′. Note that since m ≡ 1 and the number of
vertices counted so far is multiple of 3, |H ′| ≡ 1, say |H ′| = 3z + 1 for some z.

u

vw

Hv w

Hw u
Hu v

Figure 1: Subcase 3.1: |Hu→v| ≡ |Hv→w| ≡ |Hw→u| ≡ 2.

Summing up the previous numbers, we have:
m = |Hu→v|+ |Hv→w|+ |Hw→u|+ |{u, v, w}|+ |H ′| =
= (3r + 2) + (3s+ 2) + (3t+ 2) + 3 + (3z + 1) =
= 3(r + s+ t+ z) + 10.

On the other hand, we can assume the existence of determining sets for Hu→v, Hv→w,
Hw→u, and H ′ by induction hypothesis, of sizes r, s, t, and z, respectively. Their
union plus the vertices u, v, and w is a determining set for H with less than bm/3c
vertices.

• Subcase 3.2: There is an arc uv ∈ H for which |Hu→v| 6≡ 2.

Let u, v be two such vertices. Now, we consider the partition of H into the sets:
Hu→v, H→uv, Hv→u, Huv→, and {u, v}. Using the assumption (of Case 3) that for
any w ∈ H, |H→w| = |Hw→| ≡ 0, we can observe the following:

i. |Hu→v ∪H→uv| ≡ 2, since the previous union plus v is exactly H→v.

ii. |H→uv ∪Hv→u| ≡ 0, since the previous union is exactly Hv→.

iii. |Hv→u ∪Huv→| ≡ 2, since the previous union plus v is exactly Hu→.

Now, we can see that there are only two possibilities:
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Hu�–�›v

Huv�–�›

Hv�–�›u

H�–�›uv u v

2

Figure 2: Subcase 3.2: For some arc uv ∈ H, Hu→v| 6≡ 2.

– |Hu→v| ≡ 1. Then, by i, |H→uv| ≡ 1; by ii, |Hv→u| ≡ 2; and by iii, |Huv→| ≡ 1.
There must be some r, s, t, z in this case such that |Hu→v| = 3r + 1, |H→uv| =
3s+ 1, |Hv→u| = 3t+ 2, and |Huv→| = 3z + 1.

– |Hu→v| ≡ 0. Then, by i, |H→uv| ≡ 2; by ii, |Hv→u| ≡ 1; and by iii, |Huv→| ≡ 2.
There must be som r, s, t, z in this case such that |Hu→v| = 3r, |H→uv| = 3s+2,
|Hv→u| = 3t+ 1, and |Huv→| = 3z + 2.

In any of the above two possibilities, H contains the four previous subsets plus
u and v, giving |H| = 3(r + s + t + z) + 7. The union of the determining sets
given by the induction hypothesis plus u and v gives a determining set for H of size
r + s+ t+ z + 2, which is less than bm/3c.

Note that the upper bound bn/3c given in Theorem 8 is tight by Proposition 6.

3 The Metric Dimension

As we have seen in Section 1, if we do not consider any additional condition on a tour-
nament of order n, its metric dimension can be as large as n − 1. In this section, we
show that just requiring a tournament to be strong, its metric dimension drops to at most
bn/2c.

We start with the observation that some strong tournaments of order n have metric
dimension at least bn/2c.

Proposition 9. For n = 3 and for all n > 5, there is an order n strong tournament Tn
such that Dim(Tn) > bn/2c.
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Proof. For n = 3, there is only one strong tournament up to isomorphism and its metric
dimension is 1. Suppose, then, that n > 5.

If n is even, let k > 3 be such that n = 2k and let Tn be the order n tournament
obtained from any strong tournament of order k where each vertex has been substituted
by a copy of TT2 (each arc in the initial tournament generates four arcs in Tn). Observe
that Tn is strong and, furthermore, any resolving set for Tn with cardinality smaller than
k would fail to contain the two vertices from one of the copies of TT2 and then no vertex
in the resolving set would be able to resolve them.

If n is odd, let k > 3 be such that n = 2k − 1. We construct Tn from any strong
tournament of order k by duplicating k − 1 of its vertices (as before, we substitute each
vertex by TT2). Again, Tn must be strong and any resolving set for Tn must contain at
least one of the duplicated vertices, that is, a total of k − 1 vertices.

In any of the two above cases, we have that Dim(Tn) > bn/2c.

Kannan, Naor, and Rudich [12] introduced the notion of anchors for tournaments in
order to get a simple algorithm for tournament isomorphism. Anchors can be seen as a
sort of simplification of resolving sets having the advantage that they are always defined.

An anchor in a tournament T is a subset S ⊆ V (T ) such that for all vertices u, v ∈
V (T )−S, u 6= v, there exists a vertex w ∈ S such that exactly one of uw and vw is an arc
of T , in which case we say that w distinguishes the pair u, v. Thus, if the vertices in an
anchor are fixed, all vertices in the tournament would be fixed and no automorphism other
than the identity would be possible; in this respect, the concept is similar to the other
symmetry breaking concepts seen so far. Let Anchor(T ) denote the size of the smallest
anchor for T .

In [12], it is shown that for any order n tournament T , Anchor(T ) 6 b2n/3c, and the
authors conjecture that, in fact, Anchor(T ) 6 bn/2c. We start proving here that their
conjecture is correct.

Theorem 10. For every order n tournament T , Anchor(T ) 6 bn/2c.

Proof. Let T be a tournament with n vertices. We will preceed by induction on n. The
statement is trivially true for n 6 2 by the definition of anchor. Now, suppose that n > 3
and consider two cases depending on the parity of n:

Case 1: n is even.
Select a vertex u from T . Now, V (T )−{u} can be split into the disjoint sets of vertices

T→u and Tu→. Since |V (T )− {u}| is odd, one of |T→u| and |Tu→| is even and one is odd.
Suppose without loss of generality that the first quantity is odd and equal to 2r + 1 and
the second one is even and equal to 2s, for integers r, s. Then, by induction hypothesis,
T→u has an anchor A of size r, and Tu→ has an anchor B of size s.

Note that the set of vertices S = A ∪B ∪ {u} has size r + s+ 1 = n/2. Furthermore,
S is an anchor since for any x, y /∈ S, we can consider three possibilities:

• x, y ∈ T→u. In this case, x and y are distinguished by some vertex in A.

• x, y ∈ Tu→. Symmetrically, x and y are distinguished by some vertex in B.
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uv

Tuv

Tv u

T v-{u}

Figure 3: Subcase 2.1: |Tuv→|, |Tv→u|, and |T→v − {u}| are odd.

• x ∈ Tu→ and y ∈ T→u or viceversa. In this case, vertex u distinguishes x and y.

Case 2: n is odd.
Consider the parity of the sets Tu→, for u ∈ V . If some of these sets has odd cardinality,

then the corresponding set T→u must have odd cardinality too; suppose the respective
cardinalities are 2r + 1 and 2s + 1 for some integers r, s. By induction hypothesis, these
two sets of vertices must have anchors of sizes r and s, respectively. Similarly to the
previous case, the union of the anchors plus vertex u form an anchor for T of size r+s+1.
Note that, in this case, n = (2r + 1) + (2s+ 1) + 1 = 2(r + s+ 1) + 1, so the anchor has
size bn/2c, as required.

Consider now the case in which all sets Tu→, for u ∈ V , have even cardinality. Now,
we consider two subcases:

• Subcase 2.1: There are two distinct vertices u, v in T s.t. |Tuv→| is odd.

We can assume, without loss of generality, that uv ∈ T . We can now split the set
of vertices Tv→ into two sets:

Tv→ = Tv→u ∪ Tuv→

Since the above union is disjoint, |Tuv→| is odd, and |Tv→| is even, then |Tv→u| must
be odd. We can classify all the vertices in T different from u and v into the disjoint
sets T→v − {u}, Tv→u, and Tuv→.

Since the last two sets have odd cardinality and the union of all three sets has
cardinality n−2, which is odd, the first one must have odd cardinality too. Suppose
that, for some integers r, s, and t,

|T→v − {u}| = 2r + 1, |Tv→u| = 2s+ 1, |Tuv→| = 2t+ 1.

By induction hypothesis, T→v−{u}, Tv→u, and Tuv→ must have anchors of respective
sizes r, s, and t which we will call A, B, and C, resp. Note that the set S = A∪B∪
C∪{u, v} contains r+s+t+2 vertices. Since n = 2(r+s+t)+5 = 2(r+s+t+2)+1,
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|S| is exactly bn/2c. Now, we will argue that S is an anchor for T . Given x, y /∈ S,
we have the following possibilities for x and y:

– In the case that both x and y belong to one of the sets T→v − {u}, Tv→u, or
Tuv→, they can be distinguished by some vertex in the respective anchor: A,
B, or C.

– If x or y is in T→v − {u} and the other one is in either Tv→u or Tuv→, they are
distinguished by v.

– If x or y is in Tv→u and the other one in Tuv→, they are distinguished by u.

• Subcase 2.2: For all distinct vertices u, v in T , |Tuv→| is even.

Note that, in this case, the tournament T cannot be transitive since we can always
select two “consecutive” vertices u, v in a transitive tournament such that |Tuv→|
is odd. Then, T must contain a 3-cycle, similarly to Subcase 3.1 in the proof of
Theorem 8.

Let u, v, and w be three vertices such that uv, vw, and wu are three arcs in T . Note
that we can partition the vertices in Tu→, Tv→, and Tw→ as follows:

Tu→ = Tu→v ∪ Tuv→ ∪ {v}
Tv→ = Tv→w ∪ Tvw→ ∪ {w}
Tw→ = Tw→u ∪ Twu→ ∪ {u}

Our assumptions on cardinalities in this subcase applied to the above relations imply
that the cardinalities of the sets Tu→v, Tv→w, and Tw→u must be odd, say

|Tu→v| = 2r + 1, |Tv→w| = 2s+ 1, and |Tw→u| = 2t+ 1

for some integers r, s, and t. Note too that all three sets are disjoint. We now apply
the induction hypothesis to the above sets and get an anchor A for Tu→v with size
r, an anchor B for Tv→w with size s, and an anchor C for Tw→u with size t. Let now
T ′ be the set containing the rest of the vertices, that is

T ′ = V (T )− (Tu→v ∪ Tv→w ∪ Tw→u ∪ {u, v, w}).

The set T ′ must have odd cardinality, say |T ′| = 2m+ 1, and (by induction hypoth-
esis) an anchor D of size m.

Consider the set S = A∪B∪C ∪D∪{u, v, w}. Its size is r+ s+ t+m+ 3, whereas
n = 2(r+ s+ t+m) + 7 = 2(r+ s+ t+m+ 3) + 1; therefore, |S| = bn/2c. Now, we
will argue that S constitutes an anchor for T . Given x, y /∈ S, we have the following
possibilities for x and y:

– In the case that both x and y belong to one of the sets Tu→v, Tv→w, Tw→u, or
T ′, they can be distinguished by some vertex in the respective anchor: A, B,
C, or D.
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u

vw

Tv w

Tw u
Tu v

Figure 4: Subcase 2.2: |Tu→v|, |Tv→w|, and |Tw→u| are odd.

– In the case that x and y belong to different sets from Tu→v, Tv→w, Tw→u, then
u, v, or w must distinguish x and y. For example, if x ∈ Tu→v and y ∈ Tv→w,
they are distinguished by v, the rest of the cases being similar.

– In the case that one of x, y is in T ′ and the other one is in Tu→v, Tv→w, or
Tw→u, then u, v, or w will distinguish x and y. For example, suppose that
x ∈ T ′ and y ∈ Tu→v. Since vertices in T ′ are not in y ∈ Tu→v, it means that
either ux or xv cannot be an arc in T , which means that either xu or vx is an
arch in T : in the first case, x and y are distinguished by u, in the second one,
by v. The rest of the cases are similar.

The previous upper bound for the size of anchors has some implications regarding
the metric dimension. In the first place, we note the following relation between the two
notions.

Proposition 11. Every anchor in a strong tournament is a resolving set.

Proof. Suppose that S is an anchor in a strong tournament T , and take two distinct
vertices u, v ∈ V (T ) − S which are distinguished by a vertex w ∈ S. According to the
definition of anchor, T contains exactly one of the arcs uw and vw. If it contains uw (and
then, wv), we have d(u,w) = 1 while d(v, w) exists (because T is strong) but must be
greater than 1. Then, d(v, w) > d(u,w). The case when T contains the arc vw but not
uw similarly implies that d(v, w) < d(u,w). In either case, d(u,w) 6= d(v, w), and so w
resolves u and v.
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Since a resolving set for T must resolve any pair u, v of distinct vertices in T (not only
in V (T )− S), suppose that at least one of them, say u, belongs to S. In this case, vertex
u itself resolves the pair since d(u, u) = 0 < d(v, u).

Now, combining Theorem 10 with Proposition 11, we get our main conclusion on the
metric dimension of tournaments.

Corollary 12. For every order n strong tournament T , Dim(T ) 6 bn/2c.

Note that the upper bound of bn/2c for the metric dimension of strong tournaments
is tight by Proposition 9 for all n 6= 4.

It is interesting to observe that resolving sets and anchors become the same notion
when applied to regular tournaments.

Proposition 13. Let T be a regular tournament. Then:

1. Every anchor in T is a resolving set.

2. Every resolving set in T is an anchor.

Proof.

1. By the fact that regular tournaments are strong [1] and Proposition 11.

2. Alspach proved in [1] that each arc of a regular tournament of order n is contained
in a cycle of each length k, k = 3, . . . , n. Taking k = 3, we can conclude any two
distinct vertices u, v in T belong to a directed 3-cycle, and so we can assure that
either d(u, v) = 1 or d(u, v) = 2. Then, a vertex w in a resolving set for T can
only resolve two other vertices u, v by keeping distance 1 to one of them and 2 to
the other; this means that T contains exactly one of the arcs uw, vw and, then, w
distinguishes u and v. Thus, any resolving set is, in fact, an anchor.

In the case of regular tournaments, we can also add a lower bound due to the fact that
any anchor of an order n tournament must have at least dlog ne − 1 vertices [12]. Then,
Dim(T ) > dlog ne − 1 for every regular tournament T of order n.

Acknowledgements

The motivation for this research started while the author was visiting the LRI at Université
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