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Many physical problems containing rotating symmetry exhibit azimuthal waves, from
electromagnetic waves in nanophotonic crystals to seismic waves in giant stars. When
this symmetry is broken, clockwise (CW) and counter-clockwise (CCW) waves are
split into two distinct modes which can become unstable. This paper focuses on
a theoretical study of symmetry breaking in annular cavities containing a number
N of flames prone to azimuthal thermo-acoustic instabilities. A general dispersion
relation for non-perfectly-axisymmetric cavities is obtained and analytically solved to
provide an explicit expression for the frequencies and growth rates of all azimuthal
modes of the configuration. This analytical study unveils two parameters affecting
the stability of the mode: (i) a coupling strength corresponding to the cumulative
effects of the N flames and (ii) a splitting strength due to the symmetry breaking
when the flames are different. This theory has been validated using a 3D Helmholtz
solver and good agreement is found. When only two types of flames are introduced
into the annular cavity, the splitting strength is found to depend on two parameters:
the difference between the two burner types and the pattern used to distribute the
flames along the azimuthal direction. To first order, this theory suggests that the most
stable configuration is obtained for a perfectly axisymmetric configuration. Therefore,
breaking the symmetry by mixing different flames cannot improve the stability of an
annular combustor independently of the flame distribution pattern.

Key words: acoustics, instability

1. Introduction

A wide range of physical problems, from nanophotonic crystals (Borisnika 2006)
and molecules (Creighton 1982) to giant stars (Lavely 1983), take place in tori or
disks: they contain rotating symmetries and can therefore exhibit azimuthal/transverse
oscillations such as electromagnetic waves (Pang, Tetz & Fainman 2007), acoustic

† Email address for correspondence: bauerheim@cerfacs.fr
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FIGURE 1. (a) Sketch of a configuration with rotating symmetries (top) and its associated
spectrum (bottom). Two waves (CW and CCW) can exist and have the same frequency
f0: the mode is ‘degenerate’. When the rotating symmetry is broken (b), the degenerate
mode at f0 is split into two distinct waves with different yet close frequencies f1 and f2

(bottom).

waves (Krebs et al. 2002; Noiray, Bothien & Schuermans 2011; Parmentier et al.

2012; Bauerheim et al. 2014c), surface waves (Feng & Sethna 1989; Simonelli &
Gollub 1989), magnetostatic spin waves (i.e. propagating disturbances in the ordering
of magnetic materials) (Hoffmann et al. 2007; Guslienko et al. 2008; Barman et al.

2010; Kammerer et al. 2011) or solid vibrations (Perrin & Charnley 1973; Creighton
1982; Lin & Parker 2000a,b; Kumar & Krousgrill 2012). When the rotating symmetry
is perfect, these modes occur in doubly degenerate pairs with two independent
oscillations (a clockwise (CW) and a counter-clockwise (CCW) wave) at the same
frequency (figure 1a). However, when systems with rotational symmetry are modified
either in their geometry or by spatially varying their properties or their boundary
conditions, degenerate pairs can split into two distinct modes with different yet close
frequencies (figure 1b). In some applications, the splitting frequency 1f can be fairly
large and therefore cannot be ignored (e.g. 1f = 0.25 GHz for spin-wave modes in
small ferromagnetic elements (Hoffmann et al. 2007)).

In many applications, this splitting can lead to catastrophic effects, requiring
studies to understand their underlying nature and methods to suppress them. For
instance, photonic crystals (i.e. devices where several electromagnetic microcavities
are coupled with a specific pattern to form ‘photon molecules’) with high quality
factors are essential for the development of the next generation of optoelectronic
components, but undesired symmetry breaking and associated non-degenerate modes
reduce their overall performance. To tackle this problem, Borisnika (2006) proposed
arrangement patterns with enhanced symmetry characteristics which reduce the effects
of non-degenerate modes and improve the quality factors of the devices.

In applications based on magnetic disks which exhibit spin waves (Hoffmann et al.

2007; Guslienko et al. 2008; Barman et al. 2010; Kammerer et al. 2011), theoretical
models show that the splitting is a consequence of the interaction of the azimuthal
mode with the vortex-core gyrotropic motion. Both simulations and experiments have
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confirmed that removing the vortex core from the disk suppresses mode splitting
(Hoffmann et al. 2007). This suggests that theory, simulations or experiments can
unveil the splitting origins and offer methods to suppress them.

In configurations where symmetry breaking is well described theoretically (Mazzei
et al. 2007), scientists can readily perform symmetry breaking to analyse the
phenomenon responsible for this splitting. For example, in ultra-high-quality-factor
whispering-gallery-mode resonators (WGMs), a small imperfection (similar to the
case b in figure 1) or a deposited particle can scatter light from one of the two
cavity modes (CCW for instance) into free space as well as in the opposite direction
(i.e. CW). Scientists can then exploit this splitting to accurately determine particle
sizes (Mazzei et al. 2007; Kippenberg 2010). A similar methodology is used in
helioseismology (Lavely 1983; Kosovichev 1999; Tripathy, Jain & Bhatnagar 2000),
where the internal solar structure and dynamics can be inferred from observed
frequencies which can be split by either rotation, asphericity or the magnetic field of
the star.

In the particular field of fluid mechanics, symmetry breaking phenomena are less
studied due to complex geometries, high nonlinear levels and complex physics. In
simple configurations (square and quasi-square channels), such a splitting effect has
been studied for surface waves (Feng & Sethna 1989; Simonelli & Gollub 1989).
Results show that the symmetry of the configuration has dramatic effects on the
dynamics. The degenerate case yields no time-dependent patterns. However, set-ups
where the two components are separated in frequency, even by a small amount
(approximately 1 %), can lead to chaotic states (Simonelli & Gollub 1989). Similarly,
Davey et al. (Davey & Salwen 1994) investigated the linear stability of the first
circumferential mode in both a circular and an elliptic pipe. They showed analytically
that the circular problem has a doubly degenerate eigenvalue f0 while the ellipticity of
the latter configuration splits the doublets into two distinct eigenvalues f0 ±1f /2. The
imaginary part of the splitting frequency 1f is non-zero and thus the ellipticity of
the cross-sectional area always makes the flow less stable. This splitting mechanism
induced by the symmetry reduction (from the axisymmetry group S1 of the circular
problem to the mirror symmetry group Z2 associated with the elliptic cross-section)
is briefly discussed in its fundamental mathematical aspects in Guckenheimer &
Mahalov (1992) and applied to the instability of a vortex filament in a non-circular
cylinder. Such a symmetry reduction also plays a crucial role on the oscillations of
droplets due to asphericity (Cummings & Blackburn 1991) and/or Coriolis forces if
the droplet is rotating (Busse 1984).

Recently, symmetry breaking has also been investigated in complex annular gas
turbines (figure 2) (Noiray et al. 2011; Parmentier et al. 2012), which exhibit
azimuthal acoustic waves produced by thermo-acoustic instabilities (O’Connor
& Lieuwen 2014). Such combustion instabilities remain a severe problem in the
development of modern gas turbines. Lean premixed combustors, designed to reduce
nitric oxide emissions significantly, are especially prone to these oscillations which
can lead to vibrations and structural damage (Krebs et al. 2002; Schuermans, Bellucci
& Paschereit 2003; Lieuwen & Yang 2005). These unsteady phenomena come from
the interaction between acoustics and heat-release fluctuations which act as a volume
acoustic source (Strahle 1972). In annular combustion chambers (figure 2), these
instabilities often take the form of azimuthal modes (Krebs et al. 2002; Schuermans
et al. 2003; Parmentier et al. 2012; Worth & Dawson 2013a,b; Bauerheim et al.
2014c).

In real engines, usually, identical burners are distributed regularly along the
azimuthal direction (figure 2). Therefore, perfectly axisymmetric configurations have
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FIGURE 2. (Colour online) (a) A typical 3D configuration of an industrial annular
combustion chamber equipped with a number N = 24 of burners with or without
cylindrical burner outlets (CBOs) and (b) network model of the annular chamber (—–)
with N = 24 burners. The annular plenum (- - -) is removed for the sake of simplicity.

been intensively investigated using theoretical (Stow & Dowling 2001; Pankiewitz
& Sattelmayer 2003; Stow & Dowling 2003; Parmentier et al. 2012; Bauerheim
et al. 2014c), acoustic and large eddy simulation (LES) tools (Evesque & Polifke
2002; Kopitz et al. 2005; Staffelbach et al. 2009; Wolf et al. 2012) and more rarely
experiments (Krebs et al. 2002; Bourgouin et al. 2013; Worth & Dawson 2013a,b).
Annular chambers exhibit specific azimuthal modes which can be standing or spinning
in the azimuthal direction (Evesque, Polifke & Pankiewitz 2003; Sensiau, Nicoud &
Poinsot 2009). Azimuthal modes are often ‘degenerate’: two modes are found at
the same frequency (two counter-rotating spinning modes, for example). These two
modes can combine and switch, leading to combustors that exhibit standing, spinning
or mixed modes for various times, changing from one mode to another one at random
instants. The simultaneous existence of these modes has been observed numerically
(Wolf et al. 2012) and experimentally in laboratory set-ups (Bourgouin et al. 2013;
Worth & Dawson 2013b) and even in real gas turbines (Krebs et al. 2002). Mode
switching has been postulated to be due to random turbulent fluctuations (Noiray
& Schuermans 2013). Azimuthal modes are not necessarily degenerate, leading
to a more complicated situation where the configuration is strongly affected by
symmetry modifications, as shown by studies of sound produced by bells (Perrin
& Charnley 1973), where non-degenerate but very close azimuthal modes (also
called ‘non-degenerate singlets’) lead to ‘warble’, an undesired modulation due to the
coupling of two modes with different but very close frequencies.

The effect of asymmetry on the eigenfrequencies and nature of azimuthal modes in
annular chambers is still an open question. Earlier work by Oefelein & Yang (1993)



Symmetry breaking of azimuthal thermo-acoustic modes

focused on symmetry breaking using baffles to prevent combustion instabilities
in the F-1 rocket engines. They suggested that asymmetry can be introduced to
control unstable modes using passive techniques. Stow & Dowling (2003) applied
azimuthal variations using Helmholtz resonators on an annular academical test bench.
Similarly, Krueger et al. (2000) and Berenbrink & Hoffmann (2001) (reviewed by
Culick & Kuentzmann (2006)) broke the symmetry of an annular engine by using
CBOs (figure 2a, bottom) to modify the time delay τi of some of the 24 flames
and control instabilities in an N = 24 burner industrial combustor. They varied the
number of CBOs installed among the 24 burners, showing that the addition of CBOs
improved stability. However, it was not clear whether the stabilization was due to
the CBO devices rather than, as argued by the authors, symmetry breaking in this
particular case. Recently, Moeck, Paul & Paschereit (2010) and Gelbert et al. (2012)
carried out an annular Rijke experiment with heating grids acting like flames. They
introduced circumferential variations through asymmetric power distributions of the
grids to modify the azimuthal mode behaviour and noticed that the staging pattern can
split degenerate azimuthal modes (doublets) into non-degenerate pairs (singlets), as
suggested in Perrin & Charnley (1973) for bells, if the system’s symmetry is changed.
Recently, experimental (Worth & Dawson 2013a,b) and theoretical (Bauerheim,
Cazalens & Poinsot 2014a) studies have shown that the azimuthal flow itself can
break the rotating symmetry. This flow gyration can be generated by the compressor
or diffuser outlet, by the swirlers or even by effusive plates in modern gas turbines.
Worth & Dawson (2013a,b) have shown that changing the rotating direction of some
swirlers can modify the stability and the structure of the observed acoustic mode.
This mean flow effect has been analytically unveiled by Bauerheim et al. (2014a),
demonstrating that the mean azimuthal Mach number is one parameter controlling
the symmetry breaking affecting both the stability and the mode nature.

A few theories consider the effect of asymmetry on the existence and nature of
azimuthal modes (standing, spinning or mixed). Schuermans, Paschereit & Monkewitz
(2006) suggested that standing modes are observed for low amplitudes but that, at
higher amplitudes, one of the two rotating modes eventually dominates. However,
Sensiau et al. (2009) have shown that even in the linear regime, any change in
symmetry can lead to the appearance of one rotating mode dominating the other one:
when the symmetry of the configuration is broken, the standing azimuthal mode is
changed into two counter-rotating azimuthal modes with different growth rates so
that one of them eventually dominates the other. Noiray et al. (2011) have proved
that the 2pth Fourier coefficient of the heat release, temperature or even acoustic
loss azimuthal distribution (where p is the order of the azimuthal mode considered)
strongly impacts the frequency as well as the mode nature on an annular rig. Dawson
et al. (Worth & Dawson 2013a,b) have also shown that the mode nature can result
from the interaction with the mean flow by breaking symmetry thanks to CW/CCW
swirlers: they observed a strong correlation between the bulk swirl direction and the
direction of spin.

Noiray et al. (2011) used an analytical formulation to study the effect of asymmetry
on a annular rig with a circumferential distribution of heat release, temperature and
acoustic losses. However, for the sake of simplicity, this annular rig was simplified and
contained no burner at all: no study was conducted on annular chambers connected to
burners, a configuration which is more realistic for real gas turbines but more difficult
to formulate analytically.

The present paper describes an analytical approach to investigate the effects of
symmetry breaking on azimuthal modes in an annular chamber fed by N identical
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FIGURE 3. The BC configuration to study unstable modes in annular chambers.

or non-identical burners. This configuration, called BC (burner + chamber, figure 3),
allows the investigation of the effect of asymmetry on eigenfrequencies and the nature
of circumferential modes. The model is based on a network description (figure 2) of
the combustion chamber where only plane acoustic waves travel and interact with
flames (Parmentier et al. 2012). It allows one to take into account the effects of
burners and of complex flame models while providing a solution that remains almost
fully analytical. This analytical formulation reveals which parameters control the
growth and the nature of the modes, something which would be impossible with a
numerical approach.

This paper is organized as follows. Section 2 briefly describes the principle of
the acoustic network model called ‘analytical tool to analyse and control azimuthal
modes in annular combustors’ (ATACAMAC) and how an analytical dispersion
relation can be obtained in such a configuration (Parmentier et al. 2012). In § 3,
analytical calculations of eigenfrequencies are presented for both an ‘unperturbed’ case
(an annular cavity without flames) and a general non-symmetric BC configuration
(figure 3). Section 4 describes the test cases as well as the 3D Helmholtz solver
used to validate the ATACAMAC results. Two application cases are presented: an
academic chamber with N = 3 burners and a real configuration with N = 24 burners
(figure 2). In § 5, ATACAMAC is applied to a BC configuration with N = 3 identical
burners (§ 5.1) and then N = 3 different burners (§ 5.2), highlighting the effect of
circumferential patterns on eigenfrequencies and mode nature. ATACAMAC results
are systematically compared with those provided by a 3D acoustic code solving the
complete acoustic equations in three dimensions in the low-Mach-number case (Selle
et al. 2006; Nicoud et al. 2007; Sensiau et al. 2009; Silva et al. 2013). Finally, § 6
presents the effects of asymmetry on instabilities in an N = 24 burner configuration
typical of real engines. The results are compared with observations made in real gas
turbine engines (Krueger et al. 2000; Berenbrink & Hoffmann 2001).

2. A network model for a BC non-symmetric configuration

2.1. Model description

This study focuses on a BC configuration where an annular chamber is fed by N
burners (figure 3). An impedance Z is imposed at the upstream end of each burner.
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The mean density and sound speed are denoted ρ0 and c0 in the annular chamber
and ρ0

u and c0
u for the unburnt mixture in the N burners. The perimeter and the cross-

sectional area (perpendicular to the azimuthal direction) of the annular chamber are
denoted 2Lc = 2πRc and Sc respectively. The length and section of the ith burner are
Li and Si. The position along the annular cavity is given by the angle θ , defining an
abscissa xc = Rcθ . The location of the flame is similar in all burners and is given by
the normalized abscissa α = zf ,i/Li (figure 3).

This model corresponds to situations where pressure fluctuations in the combustion
chamber depend on the angle θ (or the azimuthal position x) but not on the axial
direction z in the chamber (they depend on the coordinate z only in the burners). This
case can be observed in combustors terminated by choked nozzles which acoustically
behave almost like a rigid wall (i.e. u′ = 0 under the low-upstream-Mach-number
assumption (Marble & Candel 1977)). Since the chamber inlet is also close to a
velocity node, modes which have no variation along z can develop in the chamber,
as shown by recent LES in real engines (Wolf et al. 2009).

The model provides the analytical expression of eigenfrequencies for a general
asymmetric case for any mode order p and any number of burners N as well as
general rules on stability for annular combustors. Results on the structure and nature
of azimuthal modes (spinning, standing or mixed) will be derived using this analytical
study to show how asymmetry can promote specific modes and control instabilities
(Moeck et al. 2010; Noiray et al. 2011; Gelbert et al. 2012; Worth & Dawson
2013a,b).

2.2. Annular network reduction

Network models that account for one annular cavity connected to N burners usually
require a large number of unknown variables (acoustic pressure and velocity in each
network tube) and a large matrix describing the system (typically a 2N × 2N matrix).
To reduce the size of the system (i.e. a matrix of size 2 × 2, independent of the
number N of burners), the ANR (annular network reduction) methodology proposed
in Bauerheim et al. (2014c) is applied: the full annular combustor is split into N
sectors which differ only in the burner/chamber junction (figures 4 and 5). Between
each sector, the propagation of azimuthal waves (along θ or x) can be modelled by a
transfer matrix Ri, as proposed by Parmentier et al. (2012) (figure 5, propagation),

[
q+

q−

]

i+1/2

=
[
Ri

]
[

q+

q−

]

i

, where
[
Ri

]
=





W 0

0
1

W



 . (2.1)

Here, q± = p′ ± ρ0c0u′, W = e2jkLc/N and the wavenumber k = ω/c0.
The area where the ith burner is connected to the annular chamber (- - - in figure 4b)

was investigated by O’Connor et al. (O’Connor & Lieuwen 2012a,b,c) and can be
assumed to be compact: a ≪ λ, where a = 2

√
Si/π is the burner diameter and λ =

2Lc/p is the acoustic wavelength, leading to the compactness criterion p ≪ Lc

√
π/Sc ≃

116. As shown in figure 6, using the equations of acoustic propagation in the cold
(0 < z < αLi) and hot (αLi < z < Li) parts of the burner as well as the jump conditions
through the ith flame (z = αLi), the effect of the whole ith burner on the annular
chamber can be obtained by a translated impedance from z = 0 (impedance Z) to
the burner/chamber junction at z = Li (impedance Ztr = (p′

b,i(z = Li)/ρ
0c0w′

b,i(z = Li))
(Blimbaum et al. 2012; Bauerheim et al. 2014c):

Ztr =
FSk

1−α[ jCku
α − Sku

α Z] + Ck
1−α[Cku

α Z + jSku
α ]

FCk
1−α[ jSku

α Z + Cku
α ] + Sk

1−α[ jCku
α Z − Sku

α ]
, (2.2)
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FIGURE 4. 3D view of a BC configuration with N = 4 burners (a), zoom on the ith sector
(b) and model of the whole BC configuration (c), where Γi represents the burner/chamber
interaction (Parmentier et al. 2012).
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FIGURE 5. The ANR methodology: each sector is decomposed into a free propagation of
azimuthal waves (characteristic length 2Lc/N) and a compact burner/chamber interaction
(characteristic length a ≪ λ) modelled by the coupling parameter Γi.

where F = (ρ0c0/ρ0
u c0

u)(1 + nie
jωτi), the notations for the sine and cosine functions

are Cku
α = cos(αkuLi), Sku

α = sin(αkuLi), Ck
1−α = cos((1 − α)kLi), Sk

1−α = sin((1 − α)kLi)

and the wavenumbers are k = ω/c0 and ku = ω/c0
u. It should be noted that the n–τ

model can be replaced by more complex flame descriptions such as flame describing

functions (FTFs) (Noiray et al. 2008) or transfer matrices (Polifke et al. 2001).

The jump conditions at the burner/chamber junction at null Mach number read

(Davies 1988; Dowling 1995; Poinsot & Veynante 2011; Bauerheim, Nicoud &
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FIGURE 6. Equivalent impedance of the whole ith burner (which includes the ith active
flame) near the burner/chamber interaction zone (figure 5). The translated impedance Ztr

at z = Li takes into account the upstream impedance Z at z = 0, the propagation in the
cold (0 < z < αLi) and hot (αLi < z < Li) parts of the burner as well as the active flame
effect via the FTF (ni, τi).

Poinsot 2014b)

p′
i+1/2 = p′

i+1 = p′
b,i(z = Li) (2.3)

u′
i+1/2Sc + w′

b,i(z = Li)
︸ ︷︷ ︸

=
p′

i+1/2

ρ0c0Ztr

Si = u′
i+1Sc. (2.4)

Consequently, a transfer matrix T
∗
i for the interaction part of figure 5 can be

deduced:
[

p′

ρ0c0u′

]

i+1

=
[
T

∗
i

]
[

p′

ρ0c0u′

]

i+1/2

=
[

1 0
2jΓi 1

] [
p′

ρ0c0u′

]

i+1/2

, (2.5)

where the coupling parameter Γi (Palies 2010; Parmentier et al. 2012; Schuller et al.
2012; Bauerheim et al. 2014c) (figure 5, burner/chamber interaction) is directly linked
to the equivalent admittance 1/Ztr of the whole ith burner:

Γi = −
j

2

Si

ScZtr

. (2.6)

When a velocity node (Z = ∞) or a pressure node (Z = 0) is imposed at the
upstream end of each burner and flames are located at the burner/chamber junction
(α = 1), the coupling parameters Γi reduce to (using (2.2) and (2.6))

Γi =
1

2

Siρ
0c0

Scρ0
u c0

u

tan(kuLi)
(
1 + nie

jωτi
)

when Z = ∞ (2.7)
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or

Γi = −
1

2

Siρ
0c0

Scρ0
u c0

u

cotan(kuLi)
(
1 + nie

jωτi
)

when Z = 0, (2.8)

where ku = ω/cu and (ni, τi) are the interaction index and the time delay of the FTF
for the ith flame (Crocco 1951). It should be noted that the coupling term in (2.5)
is 2jΓip

′
i+1/2, thus burners and flames located at a pressure node have no effect on

the acoustic mode, except in specific situations where Γi takes infinite values. For
instance, Γi → ∞ in (2.8) when the burner length Li goes to zero. This corresponds
to the Blimbaum exception case (Blimbaum et al. 2012) where the burner impedance
attempts to force a pressure node at the burner/chamber junction. These specific
situations require 3D acoustic considerations and are out of the scope of this study:
since Γi → ∞, the low-coupling-factor assumption ‖Γi‖ ≪ 1 (further described in
(3.3)) is not satisfied meaning that no analytical solution can be provided.

Finally, (2.5) can be recast to relate characteristic waves q± = p′ ± ρ0c0u′ instead of
primitive variables p′ and u′ leading to the scattering matrix T i:

[
q+

q−

]

i+1

=
[
T i

]
[

q+

q−

]

i+1/2

, where
[
T i

]
=

[
1 + jΓi jΓi

−jΓi 1 − jΓi

]

. (2.9)

The waves at both ends of the ith sector are connected by the M i = T iRi scattering
matrix using (2.1) and (2.9) (figure 5):

[
q+

q−

]

i+1

=
[
T i

]
[

q+

q−

]

i+1/2

=
[
T i

] [
Ri

]

︸ ︷︷ ︸
M i

[
q+

q−

]

i

. (2.10)

Use of the periodicity condition

[
q+

q−

]

N+1

=
[

q+

q−

]

1

and (2.10) leads to

(
1∏

i=N

M i

)[
q+

q−

]

1

=
[

q+

q−

]

1

. (2.11)

The system defined by (2.11) has non-trivial solutions only if its determinant is null.
Therefore, the ANR methodology provides an implicit analytical dispersion relation for
the pulsation ω for a general non-symmetric BC configuration:

det

(
1∏

i=N

M i − Id

)

= 0, (2.12)

where Id is the 2 × 2 identity matrix.

3. Analytical calculation of eigenfrequencies and mode structures

The analytical dispersion relation (2.12) provides the frequencies and the structure
of the modes of the annular chamber. It allows the study of symmetry breaking by
investigating the effects of the N burner responses (modelled by the N parameters
Γi, i ∈ [1, N] defined by (2.6)) on the growth rate and the nature of the azimuthal
modes. Several configurations are considered here (figure 7) to understand the effect
of symmetry breaking on combustion instabilities.

3.1. Unperturbed annular cavity (without burners and flames)

First, an annular chamber with no burner (i.e. Γi = 0, for all i ∈ [1, N]) is studied as a
reference case (figure 7a). The sound speed field corresponds to a reactive case: c = c0
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(a) (b)

(c) (d )

FIGURE 7. Typical configurations: unperturbed (a), symmetric with identical burners (b),
pseudo-symmetric configuration (c) and the general non-symmetric configuration (d).

in the annular chamber. The transfer matrix of each sector (2.10) reduces to M i = Ri

since T i = Id: only azimuthal propagation occurs. Consequently (2.11) reduces to





WN 0

0
1

WN





[
q+

q−

]

1

=
[

q+

q−

]

1

. (3.1)

The dispersion relation is therefore WN = 1, where W = e2jkLc/N . The N solutions
of (3.1) are W0 = e2jpπ/N and correspond to real eigenfrequencies of the unperturbed
problem:

kLc = pπ, so that f =
pc0

2Lc

, for all p ∈N. (3.2)

As expected, (3.2) corresponds to a family of azimuthal modes where the first one
( p = 1) is the first azimuthal mode at frequency c0/2Lc which is the mode observed in
many practical cases. Equation (3.1) also provides the eigenvectors V associated with
the eigenfrequencies f given by (3.2). In this situation, the generated eigenspace {V}
is two-dimensional: all azimuthal modes are degenerate and can be either standing,
spinning or mixed. All modes are neutral since no acoustic dissipation is included
(zero growth rate: Im( f ) = 0).

3.2. Non-symmetric BC configuration with active flames in the low-coupling limit

The use of a combustor with non-identical burners is a promising approach for the
control of azimuthal modes (figure 7d). An asymptotic expansion of the dispersion
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relation (2.12) can be used to study this case. Since all burners can be different,

all coupling parameters Γi (2.6) can be different. A fully analytical solution can be

formulated when the solution is ‘close’ to the unperturbed annular cavity case of § 3.1.

This is obtained by assuming small coupling parameters Γi:

Γi ≪ 1, for all i ∈ [1, N]. (3.3)

Under this assumption, a Taylor expansion of the transfer matrix of the whole

system (M =
∏1

i=N T iRi) at second order gives

M =









WN[1 + jΣ − Q(1)] + Q(W) + o(Γ 2
i ) j

N∑

i=1

Γi

(
1

W

)N−2i+2

+ o(Γi)

−j

N∑

i=1

ΓiW
N−2i+2 + o(Γi)

1

WN
[1 − jΣ − Q(1)] + Q

(
1

W

)

+ o(Γ 2
i )









,

(3.4)

where

Σ =
N∑

i=1

Γi,

Q(x) =
N−1∑

i=1

N∑

j=i+1

ΓiΓjx
N−2(j−i)







(3.5)

and the Landau notation o(x), called ‘little-o’, is used to designate any quantity that

is negligible compared with x.

From (3.4), the dispersion relation at second order is

det (M − Id) ≈ −
W2N − 2WN + 1

WN
−

jΣ(W2N − 1)

WN

+
N−1∑

i=1

N∑

j=i+1

ΓiΓj[W2N − WN−2(j−i) − W2(j−i) + 1] = 0. (3.6)

Equation (3.6) is a dispersion relation which involves terms (W = e2jkLc/N and Γi(k))

depending on the wavenumber k =ω/c0. Under the low-coupling assumption (3.3), the

wavenumber k is close to the wavenumber of the unperturbed problem k0 = pπ/Lc

(§ 3.1): k ≈ k0 + ǫ/Lc. A proper asymptotic expansion of W± = e2jkLc/N = e2j(pπ+ǫ±)/N ≈
e2jpπ(1 + 2jǫ±/N) in terms of the wavenumber perturbations ǫ+ and ǫ− gives

W± = (1 + E
±)W0 + o(E ±), i.e. kLc = pπ + ǫ± or f ± =

pc0

2Lc

+
c0

2πLc

ǫ±. (3.7)

Here, W0 = e2jpπ/N is the solution of the unperturbed problem and corresponds to

kLc = pπ (i.e. f = pc0/2Lc), where p is the mode order, E ± = 2j(ǫ±/N) and j2 = −1.

It should be noted that the two components V+ and V− of the azimuthal mode do

not necessarily have the same wavenumber perturbation ǫ±. Therefore, the notation

W± is used since the azimuthal propagation of waves W depends on the wavenumber

perturbation ǫ±.
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The coupling parameters Γi also depend on the frequency and therefore on W±

(or ǫ±) and can be approximated by

Γi(W) ≈ Γi(W = W0)
︸ ︷︷ ︸

Γ 0
i

+ E
±W0

(
∂Γi

∂W

)

W=W0
︸ ︷︷ ︸

Γ 1
i

≈ Γ 0
i +

2jǫ±W0

N
Γ 1

i . (3.8)

Using (3.7) and (3.8), a Taylor expansion of the terms W(ǫ±) and Γi(ǫ
±) in the

dispersion relation (3.6) at second order (o(ǫ2), knowing that Γ 0
i is of order ǫ±) gives

A − 4Bǫ± + 4Cǫ±2 = 0, (3.9)

where
A = −

[
W2N

0 − 2WN
0 + 1

]
− jΣ0

[
W2N

0 − 1
]

+
N−1∑

i=1

N∑

j=i+1

Γ 0
i Γ 0

j

[
W2N

0 − W
N−2(j−i)

0 − W
2(j−i)

0 + 1
]
,

B =
j

2

[
W2N

0 − 1
]
[

1 +
Σ1

N

]

−
Σ0

2

[
W2N

0 + 1
]
,

C =
1

N2

[(
N

N − 2

)

W2N
0 +

(
N + 1

N − 1

)]

.







(3.10)

Here, Σ0 =
∑N

i=1 Γ 0
i and Σ1 =

∑N

i=1 Γ 1
i , knowing that Γ ±

i (ω) ≃ Γ 0
i + (2jǫ±/N)W0Γ

1
i

(see (3.8)). It should be noted that the analytical resolution of the dispersion relation
will lead to the solution ǫ± ∝Γ 0

i , which proves that Γ 0
i is a first-order term and Γ 0

i Γ 0
j

and Γ 0
i ǫ± are second-order terms.

From § 3.1, WN
0 = 1, which leads to simplifications of the coefficients A, B and C:

A = 4

N−1∑

i=1

N∑

j=i+1

Γ 0
i Γ 0

j

[

sin

(
2pπ

N
(j − i)

)]2

,

B = −Σ0,

C = 1.







(3.11)

Eigenfrequencies are deduced from the quadratic equation (3.9):

ǫ± =
B ±

√
B2 − AC

2C
, (3.12)

which leads to a simple expression for the wavenumber perturbations in the case of
a general non-symmetric BC configuration:

ǫ± = −
1

2

(

Σ0 ±
√

Σ2
0 − A

)

, (3.13)

where Σ0 =
∑N

i=1 Γ 0
i will be called the ‘coupling strength’ while A is the non-

symmetric part defined in (3.11) depending on the number of burners N and the
mode order p.

The term S0 =
√

Σ2
0 − A in (3.13) is called the ‘splitting strength’ because

it separates the two eigenvalues ǫ+ and ǫ−. It can be recast for simplification
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(see appendix A) and highlights the key role of the 2pth complex Fourier coefficients
γ (±2p) of the azimuthal coupling factor distribution Γ 0 = [Γ 0

1 , . . . , Γ 0
N ]:

S
2

0 = Σ2
0 − A =

N∑

i,j=1

Γ 0
i Γ 0

j cos

(
4pπ

N
( j − i)

)

= γ (2p) × γ (−2p), (3.14)

where γ (k) =
∑N

i=1 Γ 0
i e−j2kπi/N is the kth Fourier coefficient of the coupling factor

azimuthal distribution Γ 0.
Equation (3.13) is a generalization of the results of Noiray et al. (2011) and

Parmentier et al. (2012) to an annular chamber connected by N burners with active
flames. It shows the following.

(i) The stability of the N burner combustor is controlled to first order by the

imaginary part of the coupling strength Σ0 =
∑N

i=1 Γ 0
i . This coupling strength

depends only on the sum of the individual coupling parameters Γi, not on the
pattern used to distribute these burners when they differ.

(ii) The splitting strength S0 defined by (3.14) controls the nature of the modes: if
S0 = 0 the modes are degenerate (i.e. ǫ+ = ǫ−) and if S0 6= 0 they are not.

Noiray et al. (2011) obtained a similar result where the mode was controlled by
γHR(2p), the 2pth Fourier coefficient of the heat-release distribution. Equation (3.14)
is a generalization of such a result: the present network model developed in this
paper shows that the mode is controlled by the azimuthal distribution of the coupling
parameter Γ 0

i , which includes the active flame (n–τ model), but also by the geometry
characteristics, the upstream impedance Z of the burners as well as the density and
temperature differences between cold and burnt gases. All these features can affect
the asymmetry of the system and therefore the stability; they cannot be neglected
when studying combustion instabilities in annular chambers.

A summary of this analytical method providing the frequencies and the stability
map of the pth azimuthal mode in a chamber with N burners is given in appendix B.

4. Application to a simplified multi burner annular chamber

Analytical expressions of the eigenfrequencies (3.13) of azimuthal modes are
compared with results obtained with AVSP (Nicoud et al. 2007), a full 3D Helmholtz
solver, for two cases:

(i) a simplified academic configuration with N = 3 burners (§ 5):

(ii) a realistic case with N = 24 burners (§ 6).

4.1. Description of the configurations

The 3D geometries correspond to BC set-ups with N = 3 or N = 24 burners
(figure 8), similar to figure 3 (the physical and geometrical parameters are defined in
table 1). The burner/chamber interfaces are placed at z = 0 and the flames are on the
burner side. The flame width is equal to 2 mm, which guarantees its compactness
with respect to the acoustic wavelength. The boundary conditions correspond to
impermeable walls everywhere except at the upstream end of the burners where an
impedance Z = 0 (i.e. p′ = 0) is imposed to mimic a connection to a large plenum.
For the N = 3 burner configuration, two cases are investigated (table 2): first with
identical burners and then with two types of burners with different time delays τ1
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FIGURE 8. Toy models to validate the ATACAMAC methodology. (a) Perfect annular
chamber with N = 3, (b) N = 24 cylindrical burners, (c) burner/chamber configuration.

and τ2. The interaction index of the flames is set to the same value n = 1.0 (knowing
that typical low-frequency values for n are around T0/T0

u − 1 ≃ 1.57 here (Poinsot &
Veynante 2011)) in each burner.

For the N = 24 configuration (figure 8b), two types of burners with different time
delays are mixed to mimic the combustion chamber where burners can be equipped
(or not) with CBOs to modify their flame response (Krueger et al. 2000; Berenbrink
& Hoffmann 2001). Table 2 displays the circumferential patterns (u for CBO burners
andE for burners without CBOs) that are considered.

4.2. Description of the 3D acoustic code

The assumptions and results of ATACAMAC can be validated using a full 3D acoustic
solver called AVSP (Selle et al. 2006; Nicoud et al. 2007; Sensiau et al. 2009; Silva
et al. 2013), which solves the Helmholtz equation in a reactive flow without the
assumptions used in ATACAMAC (Nicoud et al. 2007), but of course at a higher cost.
The AVSP solver takes into account the interaction between combustion and acoustics.
It solves the eigenvalue problem issued from the discretization on unstructured meshes
of the Helmholtz equation at zero Mach number. The meshes contain approximately
two million cells (corresponding to the ratio of the wavelength to the longest cell
length λ/1hmax ≃ 250), which is sufficient considering the simplicity of the geometry
and the wavelength of the first azimuthal mode. Source terms due to flames are
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Chamber

Half perimeter Lc 6.59 m

Section Sc 0.6 m2

Burner

Number N 3 or 24 —

Length L0
i 0.6 m

Section Si 0.01 m2

Fresh gases

Mean temperature T0
u 700 K

Mean density ρ0
u 9.79 kg m−3

Mean sound speed c0
u 743 m s−1

Burnt gases

Mean temperature T0 1800 K

Mean density ρ0 3.81 kg m−3

Mean sound speed c0 1191 m s−1

Flame parameters

Interaction index ni 1.0 —

Time delay τi variable s

TABLE 1. The parameters used for numerical applications. They correspond to a typical
large-scale industrial gas turbine.

Name N CBO Asymmetry pattern

B3_C0 3 0 EEE
B3_C1 3 1 EuE
B24_C0 24 0 EEEEEEEEEEEEEEEEEEEEEEEE
B24_C20_P1 24 20 uuuuuuuuuuEEEEuuuuuuuuuu
B24_C20_P2 24 20 uuuuuEuuuuEuuuuuuEuuuuuE
B24_C20_P3 24 20 uuuuuuuuEEuuuuEEuuuuuuuu
B24_C20_P4 24 20 uuuuuEuuuuuEuuuuuEuuuuuE
B24_C24 24 24 uuuuuuuuuuuuuuuuuuuuuuuu

TABLE 2. The BC configurations investigated with both the 3D Helmholtz solver AVSP
and the analytical approach ATACAMAC.E: burner without CBO;u: burner with CBO.

modelled using FTFs (Crocco 1951). The local heat-release fluctuations in the burner
i are expressed as

q′
i = nu,i ejωτi

u
′(xref ,i) · nref ,i, (4.1)

where xref ,i is a reference point upstream of the flame in burner i.
The local interaction index nu,i describes the local flame–acoustic interactions. The

values of nu,i are assumed to be constant in the flame zone i (figure 8) and are chosen
to recover the global value of the interaction index ni corresponding to the infinitely
thin flame when integrated over the flame zone i (Nicoud et al. 2007). For the sake of
simplicity, they are also assumed to be independent of frequency. These assumptions
allow one to use AVSP to check the precision of the analytical techniques developed
in ATACAMAC.
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(a) (b)

FIGURE 9. Schematic view of the BC configuration with N = 3 burners for the validation
of numerical and analytical resolutions of (2.12); (a) symmetric case (all interaction terms
Γi (2.6) are equal); (b) asymmetric case (two identical burners with the same Γ1 and one
burner with Γ2).

In annular configurations with multiple burners, the heat-release fluctuations in
burner i are assumed to be driven by velocity fluctuations at the reference point
xref ,i. This assumption, called ISAAC (independence sector assumption in annular
combustor) in Sensiau et al. (2009), was validated by an LES of a full annular
combustor (Staffelbach et al. 2009) and is used in the present study. In the infinitely
thin flame model used in ATACAMAC the reference points are chosen at the flame
locations zf ,i. The normalized abscissa of the flame is set to α ≃ 0.91 (Bauerheim
et al. 2014c). Three-dimensional effects near the burner/chamber junctions can be
accounted for (Pierce 1981) using a standard length correction in the low-frequency
range for a flanged tube (Silva et al. 2009), which is applied at the downstream burner
end (1Li = 0.4

√
4Si/π). In AVSP, the reference points are placed a few millimetres

upstream of the flames (figure 8) due to numerical accuracy issues (Silva et al. 2013).

5. Symmetry breaking with N = 3 burners

Analytical expressions for the frequency of azimuthal modes (3.13) can be obtained
for a generic annular BC configuration with N burners. First, the symmetric case
(figure 9a) with N = 3 identical burners is studied (§ 5.1). Then, the effect of
circumferential variations on combustion instabilities is investigated (§ 5.2) and
validated on an asymmetric BC configuration where one type 1 burner is replaced by
a type 2 (figure 9b).

5.1. Symmetric case with N = 3 identical burners

In an axisymmetric configuration where the burners are the same for all sectors (i.e.
Γi = Γ , for all i ∈ [1, 3]), only two different mode types exist. Indeed, the splitting
strength S0 in (3.14) simplifies depending on the mode order p and the number of
burners N (appendix A):

if p = 3m, for m ∈N then S0 = 3Γ 0,

for any other mode of order p: S0 = 0.

}

(5.1)

Consequently, only two different classes of modes can develop in annular BC
configurations with N = 3 identical burners.

(i) Non-degenerate singlets. If p = 3m, m ∈N the splitting strength is not null (S0 =
Σ0 = 3Γ 0, (3.14)) and the azimuthal mode is split into two components V−
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Burner locations

First burner repeated by

periodicty
First burner

FIGURE 10. (Colour online) The pressure structure of the two components of the
azimuthal mode in an N = 3 burner configuration: a standing mode imposing a pressure
node at every burner location (—–, f −) and a standing mode imposing a pressure anti-node
at every burner location (- - -, f +).

and V+ with different wavenumber perturbations (ǫ±) and frequencies (f ±) (3.7):

ǫ− = 0,

ǫ+ = −3Γ 0,

}

corresponding to

f − =
pc0

2Lc

,

f + =
pc0

2Lc

−
3

2

c0Γ 0

πLc

.







(5.2)

Figure 10 displays the mode structure associated with f + and f −: due to

symmetry considerations, these modes (e.g. p = 3) can lock on burners (N = 3)

(see Bauerheim et al. (2014a) for an analytical proof). Their wavelength

corresponds to the chamber perimeter (or half of it in the case of a configuration

with an even number of burners). The first mode V− with frequency f − is

standing and imposes a pressure node at every burner; therefore, it is unperturbed

by them (ǫ− = 0); the mode is neutral. The second mode V+ at the frequency

f + is also standing but imposing an azimuthal velocity node (i.e. a pressure

anti-node) at every burner (ǫ+ = −3Γ 0).

(ii) Degenerate doublets. All other azimuthal modes (p 6= 3m, m ∈N) are composed of

two eigenmodes V± which have the same frequencies (degenerate modes) because

the splitting strength S0 = 0:

ǫ− = −
3

2
Γ 0,

ǫ+ = −
3

2
Γ 0,







corresponding to

f − =
pc0

2Lc

−
3

4

c0Γ 0

πLc

,

f + =
pc0

2Lc

−
3

4

c0Γ 0

πLc

.







(5.3)

In this configuration, the transfer matrix of the whole system (M defined in (3.4))

is equivalent to the null matrix. The mode nature is undetermined, as pointed out

by Noiray et al. (2011): a standing, spinning or mixed mode can develop. Noiray

et al. (2011) have shown that nonlinearities on the FTF can, however, promote

one of these natures, a phenomenon that cannot be described by ATACAMAC

since it is based on linear FTFs.
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FIGURE 11. (a) Real and (b) imaginary parts of the frequencies f + and f − of the two
components of the first mode ( p = 1) in the B3_C1 configuration with the pattern 121
(EuE) and a fixed τ2/τ

0
c = 0.23. —–: ATACAMAC (numerical resolution of (2.12)); �:

ATACAMAC (analytical formula (5.6)); ×: AVSP; - - -: trajectory of the mode average
( f + + f −)/2; u: symmetric case where τ1/τ

0
c = τ2/τ

0
c = 0.23, τ 0

c corresponds to 1/f0 ≃
11 ms.
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FIGURE 12. (a) Real and (b) imaginary parts of the frequencies f + and f − of the two
components of the first mode ( p = 1) in the B3_C1 configuration with the pattern 121
(EuE) and a fixed τ2/τ

0
c = 68. —–: ATACAMAC (numerical resolution of (2.12)); �:

ATACAMAC (analytical formula (5.6)); ×: AVSP; - - -: trajectory of the mode average
( f + + f −)/2; u: symmetric case where τ1/τ

0
c = τ2/τ

0
c = 0.68, τ 0

c corresponds to 1/f0 ≃
11 ms.

Figures 11 and 12 provide two validation points (marked by u) of ATACAMAC
for symmetric configurations using the full 3D acoustic solver AVSP: modes denoted
A± when τ1/τ

0
c = τ2/τ

0
c = 0.23 and E± when τ1/τ

0
c = τ2/τ

0
c = 0.68. Good agreement is

obtained between the acoustic code (AVSP) and ATACAMAC.

5.2. Symmetry breaking with N = 3 different burners

This section discusses the behaviour of azimuthal modes when one of the three
burners has a different FTF corresponding to a different value of Γ 0

i (see figure 9b).
In particular, the observation in Perrin & Charnley (1973) and Sensiau et al. (2009)
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will be investigated: circumferential variations with specific patterns obtained by
distributing different burner types along the azimuthal direction could split nominally
degenerate doublets into non-degenerate singlets, as observed by Sensiau et al. (2009).
If two burners have a coupling factor Γ 0

1 and the third one Γ 0
2 , (3.13) can be solved

with N = 3 and gives the following solution.

(i) Non-degenerate singlets. Azimuthal modes with p = 3m, m ∈N are non-degenerate
singlets characterized by S0 = Σ0 = 2Γ 0

1 + Γ 0
2 (3.14) with wavenumber

perturbations:

ǫ− = 0,

ǫ+ = −Σ0 = −2Γ 0
1 − Γ 0

2 ,

}

corresponding to

f − =
pc0

2Lc

,

f + =
pc0

2Lc

−
c0(2Γ 0

1 + Γ 0
2 )

2πLc

,







(5.4)
where Σ0 =

∑N

i=1 Γ 0
i . These modes, as in the symmetric cases, impose a pressure

node or pressure anti-node at each burner location leading to two modes with
different frequencies: f + 6= f −.

(ii) Nearly degenerate singlets. For other azimuthal modes (p 6= 3m, m ∈ N),
(3.13) leads to nearly degenerate singlets (Perrin & Charnley 1973): the
degenerate doublet encountered in symmetric configurations (denoted DD with
ǫDD = −Σ0/2 = −Γ 0

1 − Γ 0
2 /2, (5.3)) is split depending on the splitting strength

S0 = Γ 0
1 − Γ 0

2 (3.14) for the N = 3 case with the pattern 121 (EuE, table 2):

ǫ± = − 1

2
Σ0

︸ ︷︷ ︸
ǫDD

± 1

2
S0

︸︷︷︸

Splitting

, (5.5)

so that
ǫ− = − 1

2

(
Γ 0

1 + 2Γ 0
2

)
and ǫ+ = − 3

2
Γ 0

1 . (5.6a,b)

These results were validated in figures 11 and 12 for the first azimuthal mode
( p = 1) of the configuration B3_C1 with the pattern 121 (EuE, table 2), where the
coupling parameters are defined by (2.8).

When S0 6= 0, the nominally doublet mode is split into two dissimilar azimuthal
modes (e.g. modes denoted B+ and B− in figure 11, corresponding to τ1/τ

0
c = 0.55

and τ2/τ
0
c = 0.23) with close frequencies and different growth rates, as mentioned in

Perrin & Charnley (1973) and Sensiau et al. (2009). The term S0 = Γ 0
1 − Γ 0

2 for
the pattern 121 (EuE) measures the differences in flame response between the two
burner types and controls the degree of degeneracy of the azimuthal mode. It should
be noted that some asymmetry could still give degenerate doublets (i.e. S0 = 0); for
instance, the first-order mode ( p = 1) of an N = 6 burner BC configuration with the
pattern (uEuEuE) or (uuuEEE) is a doublet with ǫ = − 3

2
(Γ 0

1 + Γ 0
2 ).

Figure 13 displays the associated mode structure of the symmetric (mode A) and
asymmetric (mode B) cases. For symmetric configurations, the mode structure is
undetermined so that both spinning and standing modes can occur (figure 13a, top).
However, breaking the symmetry using two different burner types (e.g. mode B with
τ1/τ

0
c = 0.55 and τ2/τ

0
c = 0.23) leads to standing modes only (figure 13a, bottom).

5.3. Conclusion on symmetry breaking in the N = 3 case

Sections 5.1 and 5.2 show that the splitting strength S0 defined by (3.14) controls
both the stability and the mode structure of an annular chamber (N = 3) where two
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FIGURE 13. Three-dimensional representation and isolines of the pressure modulus (a)
and modulus and phase of the acoustic pressure (b) of the first azimuthal modes ( p = 1) of
the asymmetric case B3_C1 with the pattern 121 (EuE, table 2) in two situations: mode
A (τ1/τ

0
c = τ2/τ

0
c = 0.23) and mode B (τ1/τ

0
c = 0.55 and τ2/τ

0
c = 0.23). E:A± (spinning);

u: A± (standing); —–: B± (standing).

types of burners are installed. Nevertheless, a ‘necessary condition’ for stability can
be derived independently of the splitting strength value. Indeed, the imaginary part of
the mode average Im(ǫ+ + ǫ−)/2 does not depend on the splitting strength S0 but

only on the total coupling strength Σ0 =
∑N

i=1 Γ 0
i , yielding a necessary condition for

stability:
1

2
Im(ǫ+ + ǫ−) = − 1

2
Im(Σ0) < 0. (5.7)

If this condition is not fulfilled (figure 14a), there is no hope of stabilizing the mode
since at least one of the two components of the azimuthal mode (V+ or V−) will
remain unstable (e.g. A± and B+ in figure 11).

For a symmetric case where the splitting strength S0 is zero, (5.7) is a necessary
and sufficient condition to have a stable mode. However, when the symmetry is
broken, satisfying condition (5.7) cannot guarantee stability (figure 14b,c). In this
case, the necessary and sufficient condition becomes

max(Im(ǫ+), Im(ǫ−)) < 0, (5.8)

because the splitting introduced by symmetry breaking (measured by the splitting
strength S0) has to be taken into account. For weak splitting (figure 14b) the two
modes V+ and V− remain stable (e.g. eigenmodes D± in figure 12), but for higher
splitting (figure 14c) one mode can become unstable (e.g. mode C+ in figure 12).
It should be noted that max(Im(ǫ+), Im(ǫ−)) > Im(ǫ+ + ǫ−)/2 and for a symmetric
configuration ǫ+ = ǫ−.
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Low splitting High splitting

(a)

0

0 0

(b) (c)

strengthstrength

FIGURE 14. Mode stability for an annular chamber with N burners depending on the
condition (5.7) and the splitting strength Im(S0)/2. ×: ǫ−; �: ǫ+. The splitting strength

is S
2

0 =
∑N

i,j=1 Γ 0
i Γ 0

j cos((4pπ/N)(j − i)) (3.14) and measures the difference between the
two burner types 1 and 2. Shaded areas correspond to unstable zones. (a) All modes are
unstable, (b) all modes are stable and (c) symmetry breaking makes one mode unstable:
the splitting strength S0 must be reduced to stabilize both modes as in the situation (b).

6. Symmetry breaking in an N = 24 burner BC configuration

The conclusions of § 5.3 obtained with N = 3 burners suggest a strategy to
stabilize the pth mode of a general N burner configuration, as described in figure 15.
Axisymmetric configurations (left part of figure 15) only have one degree of freedom
to stabilize the pth mode, which is the time delay τ1: if τ1 is such that condition
(5.7) is met, then the configuration is stable.

For non-symmetric configurations (right part of figure 15), however, satisfying (5.7)
does not guarantee the stabilization of the configuration. In this case, the asymmetry
pattern is an additional degree of freedom and two options are available to ensure the
stability of the pth azimuthal mode.

(i) Symmetrize the configuration (option 1). If the condition (5.7) is satisfied, at least
one kind of injector satisfies −Im(Γ 0

i )< 0: this kind of burner can be used for all
sectors which leads to stabilization of the mode. This option is the most efficient
method to stabilize an azimuthal mode since no splitting occurs.

(ii) Reduce the asymmetry effect (option 2). Another solution is to keep the same
kind of burners (Γ 0

1 , . . . , Γ 0
N ) but rearrange them to reduce the splitting of the

azimuthal mode and stabilize it. Optimization can be performed to find the best
pattern which leads to the smallest value of the splitting strength S0.

As an example, symmetry breaking is studied here for an N = 24 burner
configuration (Krueger et al. 2000; Berenbrink & Hoffmann 2001) representative
of real industrial gas turbines. First, the stability of the first azimuthal mode ( p = 1)
of the symmetric configuration is studied as a function of the time delay τ (which is
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FIGURE 15. (Colour online) Strategy to stabilize an annular combustor.

the same for all burners), with the interaction index n = 1.0. The results (figure 16)
show a very good agreement between the numerical and analytical solutions given by
the 3D Helmholtz solver AVSP and ATACAMAC.

To break the symmetry two different burners are then mixed, characterized by
different time delays, τ1 and τ2 (figure 16). A time delay τ1 = 3.25 ms corresponds
approximately to the most unstable burner (Im( fAVSP) = 2.98 s−1 in figure 16b),
which is assimilated here to the baseline case, a burner without CBO (E in table 2).
Cylindrical burner outlet devices can be mounted on some of the burners (Krueger
et al. 2000; Berenbrink & Hoffmann 2001) to modify the flame time delay and to
stabilize the chamber. The length of the cylinder is such that the time lag τ2 from the
injection port to the flame front is increased by approximately a quarter of an acoustic
period: τ2 = τ1 + (1/4f 0) ≃ 6 ms (since the first azimuthal mode has a frequency
f 0 ≃ 90 Hz). This corresponds to a stable burner where Im( fAVSP) = −1.01 s−1 in
figure 16 (u in table 2). It should be noted that the use of 20 burners with τ2 = 6 ms
and four burners with τ1 = 3.25 ms respects the necessary stability condition given
by (5.7) (- - - for the configuration C20 in figure 17). The stability of the four patterns
proposed in table 2 is studied using ATACAMAC and AVSP. The results are plotted
in figure 17 (growth rates).

(i) B24_C0. This configuration corresponds to the unstable baseline case: the
necessary condition (5.7) is not satisfied. Some burners have to be changed in
order to get a stable combustor.
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FIGURE 16. (Colour online) Stability map depending on the τ of the first azimuthal mode

( p = 1) of the symmetric BC configuration with 24 burners. Here, τ 0
c is the period of the

first azimuthal mode, τ 0
c = 1/f 0 = (2Lc/pc0) ≃ 11 ms.
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FIGURE 17. (Colour online) Growth rate of the first azimuthal mode ( p = 1) for
various asymmetry combinations of burners with and without CBOs: B24_C0 (24 no-CBO
burners), B24_C24 (24 CBO burners) and the four patterns B24_C20 (see table 2); - - -:
imaginary part of the mode average −Im(Σ0)/2 depending on the configuration (C0, C20

and C24).

(ii) B24_C20_P1. Twenty CBO devices have been mounted to try to stabilize the
mode. The necessary condition (5.7) is satisfied. However, this pattern has a large
splitting strength S0. Consequently it splits azimuthal modes into two singlets
with different growth rates, making the first azimuthal mode unstable. This case
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Name Asymmetry pattern K

P1 uuuuuuuuuuEEEEuuuuuuuuuu
1

2

√

3
√

3 + 6 ≃ 1.67

P2 uuuuuEuuuuEuuuuuuEuuuuuE
1

2

√

2 −
√

3 ≃ 0.26

P3 uuuuuuuuEEuuuuEEuuuuuuuu 0

P4 uuuuuEuuuuuEuuuuuEuuuuuE 0

TABLE 3. Analytical expressions of the reduced splitting strength K for the four
patterns described in table 2.

is an excellent example of how, for asymmetric circumferential patterns, one can
use stable burners that match the condition −Im(Σ0)/2 < 0 and yet, due to the
asymmetry term S0, have an unstable mode, as shown in figure 14(c).

(iii) B24_C20_P2. As suggested by figure 15, a solution to stabilize the mode is to
find asymmetry patterns like B24_C20_P2 with a lower splitting strength S0 for
which both singlets remain stable, as shown in figure 14(b).

(iv) B24_C20_P3 and B24_C20_P4. The pattern B24_C20_P2 induces a low splitting
strength and stabilizes the mode. However, optimal asymmetry patterns can be
found which lead to no or very low splitting and therefore ensure the mode
stabilization. The patterns B24_C20_P3 and B24_C20_P4 give stable degenerate
doublets. In these cases, S0 = 0 and therefore (5.7) becomes a necessary and
sufficient condition for stability. The mode is stable: Im( f ±) ≃ −0.25 s−1.

(v) B24_C24. As explained in figure 15, the most efficient option to stabilize a mode
is to symmetrize the annular combustor with burners that all satisfy the necessary
condition (5.7), i.e. 24 burners with a CBO. The mode is very stable: Im( f ±) ≃
−1.0 s−1 (figure 17).

Considering the average imaginary part of the modes −Im(Σ0)/2 (- - - in figure 17),
it is interesting to notice that, independently of the asymmetry patterns, combining
20 CBO and four no-CBO burners gives potentially less stable modes than using 24
CBOs: breaking symmetry has a limited interest here compared with adding CBOs
to all burners. Nevertheless, if for any reason (ignition, pollution, construction, etc.)
one must keep the two types of burner, the present analytical model offers an easy
way to optimize the circumferential distribution of the burners by minimizing the
imaginary part of the splitting strength Im(S0). To illustrate this idea, figure 18
displays the effect of several asymmetry patterns on the splitting strength (S0) using
a configuration with 20 CBO–four no-CBO burners. Appendix A shows that the use
of two kinds of burners (with coupling parameters Γ 0

1 and Γ 0
2 respectively) yields a

splitting strength of the form

S0 =
Imposed by the pattern

︷︸︸︷

2K (Γ 0
1 − Γ 0

2 )
︸ ︷︷ ︸

Imposed by the difference between burner types 1 and 2

, (6.1)

where the reduced splitting strength K depends only on the asymmetry pattern (see
table 3 for the analytical expression of K for the four patterns studied). In (6.1),
Γ 0

1 and Γ 0
2 are fixed by the burner characteristics so that minimizing S0 to increase

stability is equivalent to minimizing K .
Consequently, an optimization process appears to be a promising approach to

find patterns with the minimal value of the reduced splitting strength K . This also
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FIGURE 18. The reduced splitting strength (K ) for several patterns where three no-CBO
burners are kept together at the same place and the last no-CBO burner’s place is changed
azimuthally. The splitting is then moderately affected by the asymmetry pattern.
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FIGURE 19. Distribution of the reduced splitting strength K versus Nno-CBO, the number
of burners without CBOs. All possible asymmetry patterns are used to compute each
distribution: 23 patterns for Nno-CBO = 2 (a), 2275 for Nno-CBO = 4 (b) and 77 804 for
Nno-CBO = 6 (c).

highlights the potential of low-order models to perform optimization processes of

large problems (here, approximately 1800 patterns are possible at very low cost).

Finally, the enumeration and distributions of the reduced splitting strengths K

(obtained numerically using (3.14) and (6.1) for the first azimuthal mode p = 1)

are displayed in figure 19 depending on Nno-CBO, the number of no-CBO burner

types (Nno-CBO = 2, 4 and 6). All possible asymmetry patterns are computed, where

Nno-CBO burners are chosen as burners without CBOs while the N − Nno-CBO other ones

correspond to burners with CBOs. The first burner of the pattern is always without a

CBO to avoid circular similarities. Figure 19 shows that more numerous and higher

reduced splitting strength values are obtained when the number of no-CBO burners

(Nno-CBO) is increased; these situations are more complex to analyse and optimize.

Moreover, only a few patterns lead to a small splitting strength.

Symmetry breaking can also modify the dynamic nature of the acoustic modes.

The modulus and phase of the acoustic pressure of the first azimuthal mode ( p = 1)

are plotted in figure 20 for the four studied patterns (table 2), showing two distinct
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FIGURE 20. Effect of the asymmetry pattern on the azimuthal mode nature. Three-
dimensional representation and isolines of the pressure modulus (a,c) and modulus and
phase of the acoustic pressure over the circumference (b,d). P1 or P3: necessarily standing
(u); P3 or P4: any combination of standing (u) or spinning (—–).

behaviours. It should be noted that only one of the two components of a given
azimuthal mode is shown in figure 20.

(i) Patterns P1 and P2. Patterns P1 and P2 give non-degenerate doublets: the two
components V+ and V− of the azimuthal mode are standing (u in figure 20) and
oscillate in opposite phase with different (yet very close) frequencies (e.g. 90.3
and 91.3 Hz for the pattern P1). Figure 17 shows that for pattern P1, one mode
is amplified whereas the other one is damped, resulting in an unstable standing
mode.

(ii) Patterns P3 and P4. On the other hand, asymmetry patterns leading to degenerate
doublets have an undetermined mode structure: the two components V+ and V−

of the azimuthal modes have the same frequencies so that they can be combined
to obtain either a spinning (—– in figure 20), a standing (u in figure 20) or a
mixed mode.

7. Conclusion

The present work describes a fully analytical approach, completed by a 3D
numerical validation, to study the stability of azimuthal thermo-acoustic modes
in annular chambers. The analytical model is based on a quasi-one-dimensional zero-
Mach-number natural formulation where N burners are connected to a downstream
annular chamber. Flames are supposed to be compact and are modelled using an FTF,
characterized by a coupling factor and a phase shift. Manipulation of the corresponding
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acoustic equations yields a simple dispersion relation which can be solved analytically

in specific situations where the coupling factors are small (weak coupling). This

analytical approach allows one to predict the stability of azimuthal modes in

symmetric cases where all burners are identical but also to study cases where

different burner types are mixed in a chamber, using a predefined pattern. The

analytical method highlights the importance of two parameters:

(i) a ‘coupling strength’ Σ0, which is the sum of the individual coupling factors Γ 0
i

of each burner and controls the stability at first order;

(ii) a ‘splitting strength’ S0 defined in (3.14), which affects the stability and the

mode structure and depends on a combination of the coupling parameters of each

burner.

First, a symmetric configuration with N identical burners with null inlet impedances

(i.e. p′ = 0) was studied. Only two mode behaviours were observed: degenerate

doublets and non-degenerate singlets, the latter being capable of generating warbles

(low-frequency oscillations due to a non-degenerate mode (Perrin & Charnley 1973)).

Then, a non-symmetric case where two different types of burners were distributed in

the chamber was studied: symmetry breaking was proved to modify the azimuthal

mode behaviour in a simple case with only three burners in an annular chamber. The

staging patterns could split nominally degenerate azimuthal modes (doublets) into

non-degenerate pairs (singlets), a situation already mentioned in the literature and

observed in recent Helmholtz simulations (Sensiau et al. 2009).

Finally, the effect of the asymmetry pattern was investigated in an N = 24 burner

case representative of industrial gas turbines. Very good agreement was found for all

cases between analytical and numerical results, obtained with a 3D Helmholtz solver.

The results were compared with experimental observations where CBOs were added

to certain burners to control combustion instabilities. A simple criterion was derived to

provide a necessary condition to stabilize an annular combustor. Since the asymmetry

pattern does not appear in this criterion and the splitting strength is the only control

parameter, this shows that symmetry breaking can modify the mode nature but has

no real impact on mitigating combustion instabilities in annular chambers. The best

method to control a chamber with N = 24 sectors is to use 24 identical burners

with FTFs, leading to stable azimuthal modes. However, if keeping only one type

of burner is not possible, a strategy to stabilize the mode is proposed: find an

optimal pattern that leads to a low splitting of the corresponding azimuthal mode.

The general character of this conclusion is limited by the low-coupling assumption,

which implies no interaction between burners. (A summary of this method is provided

in appendix B; this summary allows the computation of the ‘coupling strength’, the

‘splitting strength’, the frequency and the growth rate of all modes as soon as the FTF

of each burner is known.) Strongly coupled situations where burners interfere (Worth

& Dawson 2013b; Bauerheim et al. 2014c) may lead to an effect of the asymmetry

pattern on the overall stabilization of the annular engines.

Appendix A. Analytical expression of the splitting strength

The general analytical expression of the splitting strength S0 is

S
2

0 =
N∑

i,k=1

Γ 0
i Γ 0

k cos

(
4pπ

N
[k − i]

)

. (A 1)
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Using cos(a − b)= cos(a) cos(b)+ sin(a) sin(b), one may recast the splitting strength
as

S
2

0 =

[
N∑

i=1

Γ 0
i cos(4pπi/N)

]2

+

[
N∑

i=1

Γ 0
i sin(4pπi/N)

]2

. (A 2)

The above equation can be recast using the identity a2 + b2 = (a + jb)(a − jb) where
j2 = −1:

S
2

0 =

[
N∑

i=1

Γ 0
i ej4pπi/N

]

×

[
N∑

i=1

Γ 0
i e−j4pπi/N

]

= γ (−2p) × γ (2p). (A 3)

Here, γ (k) is the kth Fourier coefficient of the asymmetry pattern Γ 0 defined as

γ (k) =
∑N

i=1 Γ 0
i e−j2πki/N .

Finally, the splitting strength is

S0 =
√

γ (2p) × γ (−2p). (A 4)

The splitting strength obtained in (A 4) gives some useful results.

(i) Noiray et al. (2011) obtained a similar result where the splitting strength is
controlled only by γHR(2p), the 2pth Fourier coefficient of the heat-release
distribution. Equation (A 4) is a generalization of such a result: the network
model developed in this paper retains more geometry and flow features than the
simple annular rig considered in Noiray et al. (2011). In particular, it is shown
here that the mode is controlled by the azimuthal distribution of the coupling
parameter (which includes the active flame (n–τ model) but also the geometry
characteristics, the upstream impedance Z of the burners as well as the difference
between cold and burnt gases). It appears that all these features can affect the
whole asymmetry of the system and therefore the stability and, consequently,
cannot be neglected when studying combustion instabilities.

(ii) If all coupling factors are the same (symmetric configuration), then the spectrum
γ (k) is null everywhere except for k = 0 or k = N (where γ (0) = γ (N) =
Σ0 =

∑N

i=1 Γ 0
i is the total coupling of the system), which leads to two types of

azimuthal modes.

(a) If p is not N/2, N, 3N/2 etc., then γ (±2p) = 0 and the splitting strength is
null:

S0 = 0. (A 5)

These modes are characterized by no splitting: the two components of the
azimuthal mode have the same frequencies and growth rates. They are called
‘degenerate doublets’.

(b) However, if p = N/2, N, 3N/2 etc., then γ (±2p) =
∑N

i=1 Γ 0
i = NΓ 0, which

gives

S0 = NΓ 0. (A 6)

These modes are characterized by a strong splitting: the two components of
the azimuthal mode have different frequencies and growth rates. They are
called ‘non-degenerate singlets’.
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(iii) If only two types of burner are introduced into the combustion chamber (i.e.
coupling factors can only take the value Γ 0

1 or Γ 0
2 for i ∈ [1, N]), then for a

mode satisfying p 6= N/2, N, . . ., the splitting strength S0 can be decomposed as

S0 =
Imposed by the pattern

︷︸︸︷

2K (Γ 0
1 − Γ 0

2 )
︸ ︷︷ ︸

Imposed by the difference between burner types 1 and 2

, (A 7)

where the reduced splitting strength K depends only on the asymmetry pattern
and (Γ 0

1 − Γ 0
2 ) is fixed by the burner characteristics.

Proof. The Fourier coefficient γ (k) can be viewed as a polynomial of degree one
with N indeterminates (or variables) Γ 0

i and coefficients depending on the asymmetry
pattern. When considering only two burner types (corresponding to coupling factors
Γ 0

1 and Γ 0
2 ), γ (k) reduces to a polynomial of only two variables. The previous

point (ii) proves that for modes satisfying p 6= N/2, N, . . ., the splitting strength and
therefore γ (±2p) is null when Γ 0

1 = Γ 0
2 . As Γ 0

1 − Γ 0
2 is a common root of γ (±2p),

which are one-degree polynomials, they can be recast as

γ (2p) = α2p(Γ
0

1 − Γ 0
2 ) and γ (−2p) = α−2p(Γ

0
1 − Γ 0

2 ), (A 8a,b)

where α2p and α−2p depend only on the asymmetry pattern. Consequently, using (A 4),
the splitting strength reads

S0 =
√

α2p(Γ
0

1 − Γ 0
2 ) × αN−2p(Γ

0
1 − Γ 0

2 ) = √
α2pαN−2p

︸ ︷︷ ︸

2K

(Γ 0
1 − Γ 0

2 ). (A 9)

Appendix B. Summary of the analytical method providing the stability map of

the pth azimuthal mode

This appendix summarizes the analytical method to provide the stability map of the
pth azimuthal mode of a chamber with N burners.

(i) Compute the coupling factors of each burner:

Γ 0
i = −

j

2

Si

Sc

F
0Ck0

1−α

[
jSk0

u
α Z + Ck0

u
α

]
+ Sk0

1−α

[
jCk0

u
α Z − Sk0

u
α

]

F0Sk0

1−α

[
jC

k0
u

α − S
k0

u
α Z

]
+ Ck0

1−α

[
C

k0
u

α Z + jS
k0

u
α

] , (B 1)

where F
0 = (c0ρ0/c0

uρ
0
u)(1 + nie

jω0τi), Cy
x = cos(xyLi), Sy

x = sin(xyLi), k0 =
ω0/c0, k0

u = ω0/c0
u, Z is the upstream impedance and ω0 = pπc0/Lc.

(ii) Compute the total ‘coupling strength’ Σ0 =
∑N

i=1 Γ 0
i .

(iii) Compute the ‘splitting strength’ S0:

S0 =

√
√
√
√

N∑

i,j=1

Γ 0
i Γ 0

j cos

(
4pπ

N
(j − i)

)

=
√

γ (−2p)γ (2p), (B 2)

where γ (k) is the kth Fourier coefficient of the asymmetry pattern.

(iv) The pth azimuthal mode is composed of two modes V+ and V− with the same
order p but different wavenumber perturbations ǫ± given by

ǫ+ = − 1

2
(Σ0 + S0) and ǫ− = − 1

2
(Σ0 − S0) . (B 3a,b)
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(v) Then compute the complex frequency of the system from the definition of the
wavenumber perturbation (k±Lc = ((2πf ±)/c0)Lc = pπ + ǫ±) and (B 3):

f ± =
pc0

2Lc

−
c0 (Σ0 ± S0)

4πLc

. (B 4)

(vi) Finally, the two components of the pth azimuthal mode can have different
frequencies (f + 6= f −, non-degenerate singlets) if S0 6= 0 or the same frequencies
( f + = f −, degenerate doublets) if S0 = 0. The growth rate of each mode is
obtained from the imaginary part of the complex frequency obtained in (B 4):

Growth rate± = Im( f ±) = −
c0

4πLc

Im(Σ0 ± S0). (B 5)

Nomenclature

αi Normalized abscissa of the ith flame

ǫ Wavenumber perturbation

γ (±2p) ±2pth Fourier coefficient of the FTF distribution

Γi Coupling parameter of the ith burner

λ Acoustic wavelength

K Reduced splitting strength

S0 Splitting strength

ω Angular frequency

ρ0 Mean density of the hot gas

ρ0
u Mean density of the cold gas

Σ0 Coupling strength

τi FTF time delay of the ith burner

θ Azimuthal angle in the annular cavity

c0 Mean sound speed in the hot gas

c0
u Mean sound speed in the cold gas

f Complex frequency

k = ω/c0 Wavenumber

Lc Half perimeter of the annular chamber

Li Length of the ith burner

N Number of burners

ni FTF amplitude of the ith burner

p Azimuthal mode order

p′
i Pressure fluctuations in the annular cavity

p′
b,i Pressure fluctuations in the ith burner

q± = p′ ± ρ0c0u′ Acoustic propagating waves

Rc Radius of the annular chamber

Ri Propagation matrix of the ith annular sector

Sc Cross-section of the annular chamber

Si Section of the ith burner

T i Interaction matrix
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u′
i Azimuthal velocity fluctuations in the annular cavity

w′
b,i Axial velocity fluctuations in the ith burner

z Axial coordinate in the burners

Zi Upstream impedance of the ith burner

Ztr Translated or equivalent impedance of the burner and flame

ANR Annular network reduction

ATACAMAC Analytical tool to analyse and control azimuthal modes in annular

combustors

FTF Flame transfer function
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