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1 Introduction

Beyond the Standard Model (bSM) constructions often use multiple Higgs fields or other

scalars [1–10]. A large number of scalar fields with equal quantum numbers allows one to

equip these models with extra global symmetries such as Higgs-family, generalized-CP , or

flavour symmetries. Existence of these symmetries and their spontaneous breaking upon

minimization of the scalar potential has strong impact on phenomenology in the scalar and

flavour sectors, as well as astroparticle consequences.

Any bSM model built on an extended scalar sector — especially with multiple Higgs

doublets — must also specify how scalars interact with fermions in order to be complete and

to claim its relevance to the experiment. This issue requires much care. Generic Yukawa
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couplings between different scalar doublets and the fermions will lead to unacceptably large

flavour-changing neutral currents (FCNC) and violate electroweak precision and flavour

physics constraints. A popular way to naturally suppress FCNC is to impose discrete

flavour-blind symmetries not only on the scalar but also on Yukawa sector of the theory [11].

The two-Higgs-doublet model (2HDM) [12] with its four types of the Z2 symmetry in the

Yukawa sector is one well-known example of the interplay between the scalar sector and

flavour observables via discrete symmetries. With several Higgs doublets, one has more

freedom in imposing discrete symmetries both on the scalar potential and on the Yukawa

sector. One key result here is that if quark masses and mixing are supposed to come

from coupling to several active Higgs doublets via symmetry-related Yukawa textures, only

complete breaking of the flavour symmetry by the Higgs potential can lead to a viable

quark masses and the CKM matrix [13, 14].

To balance previous arguments, we remark that certain multi-doublet models can easily

avoid restrictions coming from flavour observables. For example, one can assume that new

scalars are fermiophobic, so that the bSM sector of the model is limited to interaction

between various scalars. The model can then exhibit a very SM-like collider phenomenology,

possibly with non-trivial scalar dark matter implications. A simple example of such a

situation is given by models with one additional inert doublet [2–5]. Another opportunity,

driven by the fact the newly found boson seems to have the SM Yukawa couplings to the

third family of fermions, is that additional Higgs states which couple to ligher fermions are

much heavier. What are the scalar mass eigenstates, how they interact with each other,

does the interactions stabilize some of these states: all these questions rely on the symmetry

breaking patterns.

We also want to stress that very similar issues arise in flavour models, which make use

not of several Higgs doublets but of multiple electroweak singlet fields (flavons) which carry

flavour charges [6–10]. In general, such a flavour symmetry must have some (irreducible or

not) three-dimensional representation to accommodate the three fermion families. In this

case the Higgs sector can be that of the SM or its minimal supersymmetric extension, and

flavour symmetry breaking is communicated to the SM through higher order operators.

The flavour symmetry is then expected to be broken at much higher energies than when

Higgs doublets carry flavour. FCNC effects through flavon exchange are also expected to be

very much suppressed because of their large masses and observable flavour violating effects,

when it exists, should be induced from other sectors of the theory lying at intermediate

energy scales. This is another instance where the patterns of symmetry breaking by a

scalar potential are crucial.

All these examples underline the important role played by (discrete) symmetries in

various multi-scalar models, which necessitates their systematic investigation in each class

of models. In this work, we report the symmetry breaking analysis for the three-Higgs-

doublet model (3HDM). Although we will use the notation and nomenclature of the 3HDM,

the results we obtain are relevant not only to the 3HDM per se, but also to other models

with three scalar fields carrying the same SM quantum numbers and additional conserved

U(1) charges.

Multi-Higgs-doublet models represent a rather conservative class of bSM models which

has several remarkable phenomenological consequences for CP -violation [15–20] and in the
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scalar, flavour, and neutrino sectors [21–39]. The full list of discrete symmetry groups

allowed in the 3HDM scalar sector was presented recently in [40], and an efficient geometric

method suitable for minimization of highly symmetric potentials was developed in [41].

Building on these results, we present an exhaustive case by case investigation of how each

of the allowed discrete symmetry group in 3HDM can break by vacuum expectation values

(vev) alignments.

The purpose of this study is two-fold. First, 3HDMs with various symmetries are often

used in bSM model-building. Although some specific breaking patterns for some groups

have already been explored previously, we present the first exhaustive list of all possibilities

offered in pure 3HDMs (that is, three Higgs doublets without any extra scalars) with

renormalizable potentials. Second, this exhaustive list hints at certain tendencies, which

might hold for models with N Higgs doublets (NHDM) or even for more elaborate Higgs

sectors. Thus, this work represents a step towards establishing general properties of discrete

symmetry breaking patterns in multi-scalar models.

The structure of this paper is the following. In the next section we provide the context

for our study by discussing relevant symmetry-related results in multi-Higgs-doublet mod-

els. Sections 3 and 4 contains detailed analyses of symmetry breaking options available

for each discrete group in 3HDM, without and with triplet irreducible representations. In

section 5 we summarize the emerging picture, discuss its implications for more complicated

Higgs sector, and draw conclusions. Mathematical details on minimization of the Higgs

potential for certain symmetry groups are given in appendices.

2 Overview of symmetry-related results

2.1 Preliminary technical remarks

In order to avoid possible misunderstanding, let us start with two technical but important

remarks on what kind of symmetry groups we consider in the NHDM scalar sector.

First, when we work with N Higgs doublets φi with identical quantum numbers, we

can perform a unitary (Higgs family) or anti-unitary (generalized CP , GCP) global trans-

formation in the N -dimensional space of Higgs doublets: φi 7→ Uijφj or φi 7→ Uijφ
∗
j , with

Uij ∈ U(N), see more details and references in [12]. These transformations respect elec-

troweak symmetry and bring a chosen potential to another viable potential. If such a

transformation leaves the potential invariant, we say that we have a symmetry. By con-

struction, any Higgs potential is symmetric under the simultaneous and equal rephasings

of all doublets, φi 7→ eiαφi, which form the group U(1). We are interested not in this trivial

symmetry but in additional symmetries which some potentials can also have. When we

talk about non-trivial symmetries of the potential, we mean symmetries up to this over-

all rephasing. Technically, we search for symmetry groups G which are subgroups not of

U(N), and not even of SU(N), but of PSU(N) ≃ U(N)/U(1) ≃ SU(N)/ZN .

Second, when we say that a potential has symmetry group G, we mean that G contains

all symmetry content of the given potential. This is somewhat different from the usual

approach when one just imposes a symmetry group on the model. Here, we additionally

check that there is no other symmetry transformation which could possibly arise. All the
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{e}

Z2

Z2 × Z2 Z3Z4

D4 A4

S4

S3

∆(54)/Z3

Σ(36)

Figure 1. Tree of finite realizable groups of Higgs-family transformations in 3HDM. Groups leading

to automatic explicit CP-conservation are underlined. An arrow from A to B indicates that A ⊂ B.

groups we mention below pass this check. In terminology of [40, 42], we are interested only

in realizable groups. It also means that the Higgs doublets are always assumed to be in a

faithful (but not necessarily irreducible) representation of the group G.

2.2 Symmetries in 3HDM

With these remarks in mind, let us summarize the symmetry results in the scalar sector of

the two-Higgs-doublet model (2HDM), focusing on discrete symmetry groups (for a more

detailed exposition, see [12] and reference therein). The 2HDM scalar potential can have

only three discrete realizable symmetry groups: Z∗
2, Z2×Z

∗
2, or (Z2)

2×Z
∗
2, where Z

∗
2 denotes

a GCP symmetry. In other words, it is impossible to have an explicitly CP -violating 2HDM

potential with some Higgs family symmetry. Minimization of the Higgs potential leads to

a vev alignment which either keeps the symmetry intact or removes just one Z2-factor:

(Z2)
k → (Z2)

k−1, k = 1, 2, 3, including GCP symmetries [43, 44]. This result already

illustrates the important feature that sufficiently large symmetry groups cannot be broken

completely.

In 3HDM, we can have larger discrete symmetries, including several non-abelian

groups. The complete classification of realizable finite symmetry groups in 3HDM was

achieved only very recently, [40]. If we focus on unitary transformations only, then there

are ten realizable groups:

Z2, Z3, Z4, Z2 × Z2, D3 ≃ S3, D4, T ≃ A4, O ≃ S4 ,

(Z3 × Z3)⋊ Z2 ≃ ∆(54)/Z3, (Z3 × Z3)⋊ Z4 ≃ Σ(36) . (2.1)

This list is complete: trying to impose any other finite symmetry group of Higgs-family

transformations leads to a potential with continuous symmetry. Figure 1 should help

visualize relations among different groups from this list.
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The same work [40] also investigated the relation between GCP symmetries and the

Higgs-family symmetry groups. It was found that, unlike in 2HDM, certain finite groups

do not automatically lead to the explicit CP -conservation. These are Z2, Z3, Z2 × Z2,

S3, and ∆(54)/Z3. 3HDM models based on them can be either explicitly CP -conserving

or CP -violating. However, the presence of Z4 or A4 symmetry unavoidably leads to the

explicit CP -conservation.

In what concerns symmetry breaking, we first remark that minimization of generic mul-

ticomponent scalar potentials is a challenging task. In 3HDM, although the minimization

problem can be formulated algebraically [31, 45] or geometrically [46], no known method

is capable of solving it analytically in the general case. For the case of symmetric 3HDMs,

only specific examples tractable with straightforward algebra have been considered in lit-

erature. Beyond this case-by-case treatment, no systematic and exhaustive study for all of

these groups in 3HDM exists. It is the purpose of the present paper to fill this gap.

2.3 Group-theoretic properties of breaking discrete symmetries

Let us now mention some group-theoretical observations which accompany breaking of a

discrete symmetry group G to its subgroup Gv preserved by the vacuum.

First, electroweak symmetry breaking (EWSB) can lead to three outcomes: either (i)

the group is fully conserved by the vev alignment, Gv = G, or (ii) the group is broken to

a proper subgroup: {e} ⊂ Gv ⊂ G, or (iii) the symmetry is broken completely, Gv = {e}.
Our goal in this paper is to establish all possible options for Gv for each G allowed in

3HDM. Put simply, we want to establish the minimal and maximal amount of symmetry

breaking for each G. We will find that, for sufficiently large groups G, only option (ii)

is available.

Second, there exists a relation between the number of degenerate global minima and

the orders of the groups G and Gv. Suppose the discrete symmetry group G is broken

to Gv ⊂ G. Let us denote the vev alignments corresponding to the global minima of

the potential by xa ≡ (〈φ0
1〉, . . . , 〈φ0

N 〉)a, where a runs from 1 to the total number of

degenerate global minima n. The set of all xa is denoted as X, on which the group G

acts by permutations. We can take any xa and observe that transformation g ∈ G either

keeps xa invariant, if g ∈ Gv, or sends it to another vev alignment xb, if g 6∈ Gv. In

group-theoretic terms, Gv, being the subgroup of G which keeps the chosen xa invariant,

is known as the stabilizer (or little-group) of xa.

If we start with a given alignment xa and act with all g ∈ G, we obtain a G-orbit

of length ℓ to which xa belongs. The entire set X is then partitioned into one or several

disjoint orbits. All xa’s lying within any single orbit share the property that their stabilizers

are isomorphic: Gv(xa) ≃ Gv(xb), although they can, in general, be different subgroups

of G. Stabilizers of vev alignments belonging to distinct orbits can be non-isomorphic.

Finally, within any single orbit, the following relation holds:

ℓ = |G|/|Gv| , (2.2)

which is known in basic group theory as the orbit-stabilizer theorem. If it happens that the

set of global minima X is covered by a single orbit, then |G|/|Gv| is equal to the number

of minima n. If X contains more than one orbit, then n =
∑

i ℓi.
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{e}

〈σ23〉

〈σ23, σ12〉 〈a3〉〈a4〉

〈a4, c〉 〈σ12, σ23, b〉

〈σ12, σ23, b, c〉

〈a3, c〉

〈a3, c, b〉

〈a3, c, b, d〉

Figure 2. Generating sets for the groups from figure 1 in terms of generators given in eqs. (3.1), (3.2)

and (3.3). In a slight abuse of notation, we show not the minimal generating sets but the sets that

should help visualize the construction of each group. Note also that these sets are not unique.

3 Symmetry breaking in 3HDM: groups without triplet irreps

In this section, we discuss the symmetry breaking features for discrete symmetry groups

with Higgses in the singlet or doublet irreducible representations (irreps). To present

them in a uniform fashion, we first introduce the notation for the group generators. It is

convenient to present each group in the basis where one of its abelian subgroups corresponds

to rephasing transformations. In this basis, we will use the following generators:

order 2: σ12 = diag(−1, −1, 1) , σ23 = diag(1, −1, −1) , c = −







1 0 0

0 0 1

0 1 0






, (3.1)

order 3: a3 = diag(1, ω, ω2) with ω = exp

(

2πi

3

)

, b =







0 1 0

0 0 1

1 0 0






, (3.2)

order 4: a4 = diag(1, i, −i) , d =
i√
3







1 1 1

1 ω2 ω

1 ω ω2






. (3.3)

One can see that all abelian symmetries, Z2,Z3,Z4,Z2 × Z2 are represented by diagonal

matrices. Note also that σ13 = σ12σ23, a
2
4 = σ23, and d2 = c. The usual CP -transformation

φi 7→ φ∗
i will be denoted simply by CP . GCP transformations will be defined as CP acting

first, and then followed by a unitary transformation.
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3.1 Abelian Higgs-family groups

We begin with models based on abelian Higgs-family symmetry groups, both with and

without explicit CP -violation:

CP -violating: Z2, Z3, Z2 × Z2 ,

CP -conserving: Z
∗
2, Z2 × Z

∗
2, Z

∗
4, Z3 ⋊ Z

∗
2, Z4 ⋊ Z

∗
2, Z2 × Z2 × Z

∗
2 . (3.4)

Here, an asterisk indicates that the generator of the corresponding group is a GCP trans-

formation. In the groups above, Z∗
2 is generated by the usual CP transformation. Usually

Z
∗
2 will denote the presence of usual CP symmetry if otherwise not stated. Such a distinc-

tion is relevant as the inclusion of different GCP symmetries leads to different groups. For

example, the GCP transformation c ·CP commutes with Z3 and Z4 so that we could define

direct products Z3×Z
∗
2 and Z4×Z

∗
2, respectively. These two groups, however, are shown to

be non-realizable in 3HDM [42], that is, they automatically leads to a larger Higgs family

symmetry group.

The Higgs potentials can be generically written as V = V0+Vph, where V0 is invariant

under any phase rotation of individual doublets,

V0 = −
∑

1≤i≤3

m2
i (φ

†
iφi) +

∑

1≤i≤j≤3

λij(φ
†
iφi)(φ

†
jφj) +

∑

1≤i<j≤3

λ′
ij(φ

†
iφj)(φ

†
jφi) (3.5)

with generic free parameters, while the phase-sensitive part Vph depends on the symmetry

group G. When evaluated at a generic neutral point with 〈φ0
i 〉 = vie

iξi/
√
2, V0 can be

expressed in terms of real non-negative quantities ri = v2i and with an obvious redefinition

of the free parameters:

V0 = −Miri +
1

2
Λijrirj =

1

2
Λij(ri − ai)(rj − aj) + const , ai = (Λ−1)ijMj . (3.6)

The latter expression makes it clear that by appropriately choosing free parameters and

adjusting the vector ai, one can obtain V0 whose global minimum has any values of v1, v2,

v3. In particular, vev alignments such as (v, 0, 0) and (v1, v2, 0) are always possible.

The phase-sensitive part Vph selects out specific phases ξi, and it can also shift the

values of vi just obtained. However, in all cases of symmetry groups G, it is possible to

identify a doublet, say φ1, such that no quartic term in Vph contains three φ1’s and no

quadratic term contains a single φ1. As a result, the vev alignment of type (v, 0, 0), found

by minimizing V0 only, remains stable upon inclusion of Vph. If we work with a symmetry

group G under which φ1 is a singlet, we conclude that such a vev alignment conserves the

entire G. For the alignment (v1, v2, 0) this argument does not work, and one needs to resort

to other methods.

3.1.1 Small groups

The CP -violating abelian groups, Z2, Z3, Z2 × Z2 (the latter is known as Weinberg’s

3HDM [15]), can be broken, fully or partially, by choosing appropriate vi, which is made

possible by the large number of free parameters. As for CP -conserving models, breaking of

– 7 –
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Z
∗
2 3HDM (no Higgs-family symmetry, just explicit CP -conservation) and Z2 × Z

∗
2 3HDM

can be verified by straightforward calculations and follows from the fact that these models

possess phase-sensitive terms both in quadratic and in quartic parts of the potential.

The group Z
∗
4, despite being small, is somewhat special because it features a GCP

transformation whose square is not unity but a sign flip, for example, σ23. The generator

of this transformation can be written as q · CP , where

q =







1 0 0

0 0 1

0 −1 0






. (3.7)

Since q is non-diagonal, it places certain restrictions on the parameters of V0, but the

phase-sensitive part of the potential Vph is still sufficiently rich [42]. The overall number

of free parameters remains large, two of them being complex with arbitrary phases, which

allows for any pattern of symmetry breaking of this group: the symmetry can be conserved,

it can break to Z2, or it can break completely.

3.1.2 Group Z2 × Z2 × Z
∗

2

This is the CP -conserving version of the Weinberg’s 3HDM [15], which was first investigated

in detail by Branco [16]. Still, we present here a detailed discussion of its breaking patterns

to facilitate exposition of more complicated symmetries.

This group is based on sign flips and CP and can be implemented via the following

phase-sensitive part of the potential:

Vph = λ1(φ
†
2
φ3)

2 + λ2(φ
†
3
φ1)

2 + λ3(φ
†
1
φ2)

2 + h.c. (3.8)

with non-zero real λi. Writing the generic vev alignment and differentiating it with respect

to the phases ξi yields:

λ1r2r3 sin(2ξ2 − 2ξ3) = λ2r3r1 sin(2ξ3 − 2ξ1) = λ3r1r2 sin(2ξ1 − 2ξ2) . (3.9)

Now, several situations are possible.

• If two vevs are zero, the phase condition is irrelevant, and we get the alignment of

type (v, 0, 0) which conserves the full group G.

• If one of vevs is zero, r1 = 0, then we have a freedom of shifting ξ2 + ξ3. We can

set it to zero, and then obtain ξ2 = −ξ3 = πk/4. The values of k corresponding to a

minimum depend on the sign of λ1: if λ1 > 0, then k must be odd, if λ1 < 0, then k

must be even. In each of these two cases, we obtain only two distinct vev alignments:

if λ1 > 0 : (0, v2e
iπ/4, ±v3e

−iπ/4) ; if λ1 < 0 : (0, v2, ±v3) . (3.10)

Each minimum is symmetric under σ23 and a GCP symmetry, and the generator

corresponding to the broken symmetry, σ12, links the two minima. The residual

symmetry group is Gv = Z2 × Z
∗
2; the two minima form a single orbit of length

ℓ = |G|/|Gv| = 2.
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• Another possibility is that all vi 6= 0 but the sines are zero. Then (3.9) can still be

satisfied when all ξi = πki/2. Again, the specific choices for ki depend on the signs

of λi. Still, in each case, the residual symmetry group is just Gv = Z
∗
2 (either CP or

a GCP transformation), and we have four minima sitting on a single orbit.

• Finally, we can search for non-zero solutions of (3.9). These equations can be viewed

as the law of sines written for the triangle with sides Li = ri/|λi| and angles α1 =

π − (2ξ2 − 2ξ3), α2 = π − (2ξ3 − 2ξ1), α3 = π − (2ξ1 − 2ξ2), for positive λi; for

negative λi, one should subtract π from the expression of αi. Notice also that the

angles αi should be taken modulo 2π. If the sides satisfy the obvious inequalities,

the angles αi are determined uniquely, and one then finds the phases ξi. Since these

phases are generic, they completely break the symmetry group: Gv = {e}. As a

result, we obtain eight minima lying on a single orbit of length ℓ = |G|/|Gv| = 8.

The possibility of spontaneous CP -violation in this model was already mentioned in

the original Weinberg’s paper [15].

In short, we find that all symmetry breaking patterns are possible for G = Z2 × Z2 × Z
∗
2.

3.1.3 Group Z3 ⋊ Z
∗

2

The Z3-symmetric 3HDM is based on generic V0 and on the following Vph:

Vph = λ1(φ
†
2
φ1)(φ

†
3
φ1) + λ2(φ

†
3
φ2)(φ

†
1
φ2) + λ3(φ

†
1
φ3)(φ

†
2
φ3) + h.c. (3.11)

The Z3 symmetry group is generated by a3. When all λi are real, the model is also CP -

conserving, and the full symmetry group is extended to Z3 ⋊ Z
∗
2 ≃ S3. Whether Z3 is

broken at the minimum or not depends on non-zero values vi. Either variant is possible

with a suitable V0. However it remains to be studied what phases ξi the vevs can acquire,

and whether the vacuum is invariant under any GCP transformation.

Evaluating the potential at a generic vev alignment and differentiating with respect to

phases ξi, we obtain two equalities

λ1v
2
1v2v3 sin(2ξ1−ξ2−ξ3) = λ2v

2
2v1v3 sin(2ξ2−ξ1−ξ3) = λ3v

2
3v1v2 sin(2ξ3−ξ1−ξ2) . (3.12)

which resemble (3.9) but have different phase arrangements. If all three vi are non-zero,

we can again search for zero and non-zero solutions of (3.12). To get non-zero solutions,

we interpret (3.12) as the law of sines for a triangle with side Li = (|λi|vi)−1 and angles

α1 = π−2ξ1+ξ2+ξ3 (for positive λ1), etc. Once again, the values of Li fix αi, which in turn

give the values of ξi. These values are determined uniquely, up to group transformations.

They are not rigid, as they continuously change upon variation of free parameters, and

they break the CP -symmetry. Thus, in this case we obtain six minima differing by phases

with no residual symmetry. They lie on a single orbit of length ℓ = |G|/|Gv| = 6.

Zero solutions to (3.12) arise when vi’s are such that the triangle with given sides does

not exist. Then, the phases of vevs are aligned, up to the group transformation, and the

minimum conserves the CP symmetry.

In short, the symmetry group Z3⋊Z
∗
2 can be either conserved, or broken, either to Z

∗
2

or completely. Note that there is no way to break only CP but keep the Z3 symmetry.
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3.1.4 Group Z4 ⋊ Z
∗

2

The Z4-symmetric 3HDM is based on generic V0 and on the following Vph:

Vph = λ1(φ
†
2
φ1)(φ

†
3
φ1) + λ2(φ

†
3
φ2)

2 + h.c. (3.13)

The Z4 symmetry group is generated by a4. Since we have only two free parameters here,

we can rephase the doublets in such a way that λ1 and λ2 become real. Thus, this model

is also CP -conserving, and the full symmetry group is extended to Z4 ⋊ Z
∗
2 ≃ D4.

Also, since we now have two, not three free parameters in Vph, differentiating in ξi gives

v21v2v3 sin(ξ2 + ξ3) = 0 , v22v
2
3 sin(2ξ2 − 2ξ3) = 0 . (3.14)

In these equations, we already set ξ1 = 0. Suppose first that v1 = 0 and v2, v3 6= 0. We

then obtain exactly the same situation as was considered as the second option for the

group Z2 × Z2 × Z
∗
2. We get a vev alignment with phases which are certain multiples of

π/4 depending on the sign of λ2. Each minimum will be symmetric under σ23 and a GCP

transformation, which generate Gv = Z2 × Z
∗
2. There are two minima linked by a4, which

sit on a single orbit of length two: (0, v2, v3), (0, v2,−v3).

If all vi 6= 0, the situation does not change much. We still get ξ2 = πk/4, ξ3 = −ξ2+πp.

The signs of λ1 and λ2 fix whether integers k and p are even or odd, and in each case we

still find that the vev alignment is symmetric under a GCP transformation. However, the

non-zero value of v1 makes difference: the σ23 symmetry is now absent and it links instead

distinct pairs of minima. Thus, we get Gv = Z
∗
2 and a single orbit with four minima:

(v1,±v2e
±iξ2 ,∓v3e

∓iξ2).

The last possibility is when v1, v2 6= 0, while v3 = 0. It leads to the alignment

(v1, v2e
iξ2 , 0) with arbitrary ξ2. However the structure of the hessian makes it a saddle

point rather than a minimum, due to ∂2V/∂ξ22 = 0 but ∂2V/∂v3∂ξ2 6= 0.

In short, we find the following breaking patterns for the group G = Z4⋊Z
∗
2: G can be

conserved, or it can be broken, either to Z2 × Z
∗
2 or to Z

∗
2. Similarly to the Z3 ⋊ Z

∗
2 case,

there is no way to break the CP -symmetry keeping the Higgs-family symmetry intact.

In contrast to that case, it is now impossible to break Z4 ⋊ Z
∗
2 completely, and a GCP

symmetry is always preserved by the vacuum. This leads us to the following conclusion:

Z4 Higgs-family symmetry protects the 3HDM scalar sector from any form of CP -violation,

either explicit or spontaneous.

3.2 Groups S3 and D4

List (2.1) contains two non-abelian Higgs-family groups, S3 and D4, whose irreducible

representations are only singlets and doublets. Note that S3-symmetric 3HDM can be

CP -violating and CP -conserving; in the latter case the full symmetry group of the model

is S3 × Z
∗
2. In contrast, D4-symmetric 3HDM can only be CP -conserving, with symmetry

group D4 × Z
∗
2. Note that semidirect products of groups became direct products with the

aid of a Z
∗
2 generator c · CP : for example, (c · CP )−1a3(c · CP ) = a3.

Let us start with observations applicable to all these groups. Since they contain a

singlet, for example φ1, we can repeat the arguments of section 3.1: by adjusting the
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coefficients of the potential, one can guarantee that the vev alignment (v, 0, 0) becomes

the global minimum and conserves the entire group G. Thus, for each of these groups, the

minimal amount of symmetry breaking is no breaking at all.

These symmetry groups can be viewed as extension of models considered above ex-

tended by the additional generator c. The irreducible representations correspond to 10+2

for both S3 and D4 (10 is the trivial invariant) but all representations 1i+2 with nontrivial

singlet 1i are equivalent by basis change when we can factor the global U(1). Invariance

under c imposes restrictions both on V0 and Vph. The phase-invariant part of the potential

can be written as

V0 = −m2
1(φ

†
1
φ1)−m2

2

(

φ†
2
φ2 + φ†

3
φ3

)

+
1

2
λ1(φ

†
1
φ1)

2 +
1

2
λ2

[

(φ†
2
φ2)

2 + (φ†
3
φ3)

2
]

+λ3(φ
†
1
φ1)

(

φ†
2
φ2 + φ†

3
φ3

)

+ λ4(φ
†
2
φ2)(φ

†
3
φ3) + λ′

3(z12 + z13) + λ′
4z23 , (3.15)

where zij ≡ (φ†
iφi)(φ

†
jφj) − (φ†

iφj)(φ
†
jφi), and all three zij ≥ 0 are algebraically indepen-

dent [47]. The Vph part of the potential must also incorporate the φ2 ↔ φ3 symmetry. In

the case of D4, Vph is the same as in (3.13), while for the S3 we have a simplified version

of (3.11):

Vph =
1

2
λ5(φ

†
2
φ1)(φ

†
3
φ1) +

1

2
λ6

[

(φ†
3
φ2)(φ

†
1
φ2) + (φ†

1
φ3)(φ

†
2
φ3)

]

+ h.c. (3.16)

We get the CP -conserving version of the S3 model when λ5 and λ6 are real.

Next, let us check whether these groups can be broken completely by minimization

of the potential. In an attempt to do so, we need to break, among other, two order-2

symmetries: φ2 ↔ φ3 and CP . These symmetries interact via Vph, and it is not clear a

priori that there exists a minimum which breaks both of them. In appendix A, using a

geometric reinterpretation of the extremization problem, we show that either we get trivial

phases which protect CP , or we get v2 = v3 and correlated (equal or opposite) phases,

which results in a Z2 or GCP residual symmetry. Thus, these alignments break the groups

D4 × Z
∗
2 and S3 × Z

∗
2 to Gv = Z2 or Z

∗
2. In each case, we have 8 or 6 minima lying on a

single orbit, and the complete breaking of these symmetry groups is not feasible in 3HDM.

Since the CP -conserving S3 3HDM allows for a minimum with v2 6= v3, such a solution

is also possible for its explicitly CP -violating version. In this case, the phases are irrelevant,

and the entire symmetry group S3 is broken. A partial breaking to Z2 by alignment v2 = v3,

ξ2 = ξ3, or to Z3 by alignment (0, v, 0) are also possible; for cross-check, we verified these

possibilities with numerical examples.

4 Groups with triplet irreps

4.1 A4 and S4

The group A4 has received a lot of attention in the bSM literature [26–30], in part because

it is the smallest finite group possessing a three-dimensional irrep. Following [41], we write

– 11 –



J
H
E
P
0
1
(
2
0
1
5
)
0
2
1

the A4-symmetric 3HDM potential in the following way:

V = −M0√
3

(

φ†
1
φ1 + φ†

2
φ2 + φ†

3
φ3

)

+
Λ0

3

(

φ†
1
φ1 + φ†

2
φ2 + φ†

3
φ3

)2

+
Λ3

3

[

(φ†
1
φ1)

2 + (φ†
2
φ2)

2 + (φ†
3
φ3)

2 − (φ†
1
φ1)(φ

†
2
φ2)− (φ†

2
φ2)(φ

†
3
φ3)− (φ†

3
φ3)(φ

†
1
φ1)

]

+Λ1

[

(Reφ†
1
φ2)

2 + (Reφ†
2
φ3)

2 + (Reφ†
3
φ1)

2
]

+Λ2

[

(Imφ†
1
φ2)

2 + (Imφ†
2
φ3)

2 + (Imφ†
3
φ1)

2
]

+Λ4

[

(Reφ†
1
φ2)(Imφ†

1
φ2) + (Reφ†

2
φ3)(Imφ†

2
φ3) + (Reφ†

3
φ1)(Imφ†

3
φ1)

]

, (4.1)

with generic real parametersM0 and Λi. It is symmetric under the group A4 of Higgs-family

transformations generated by independent sign flips of individual doublets σ12, σ23 and by

the cyclic permutation b. It is also automatically symmetric under GCP transformation

generated, for example, by c · CP . The full symmetry group of this potential is therefore

G = A4 ⋊Z
∗
2 of order 24. For generic values of the parameters, this potential has no other

Higgs-family or GCP symmetries.

Minimization of this potential was investigated in full detail in [41], with the aid of

a geometrical method. The global minima can have the following four vev alignments

(v1, v2, v3):

A = (1, 0, 0) , B = (1, 1, 1) , C = (±1, ω, ω2) , D = (0, 1, eiα) , (4.2)

where the overall vev scale is factored out and

sin 2α = − Λ4
√

(Λ1 − Λ2)2 + Λ2
4

, cos 2α = − Λ1 − Λ2
√

(Λ1 − Λ2)2 + Λ2
4

. α 6= π

3
k . (4.3)

The values of α equal to multiples of π/3 are excluded because in these cases point D leads

to an unwanted massless scalar. Among the four cases, the first three are rigid in the sense

that the global minimum is insensitive to moderate variation of the free parameters, while

the last one is flexible. To avoid misunderstanding, in all cases we imply not only the

specific vev alignment written explicitly, but also other alignments which can be obtained

from them by the broken symmetry generators.

Setting Λ4 = 0 in eq. (4.1) leads to the 3HDM symmetric under G = S4 × Z
∗
2 of order

48, which is generated by σ12, σ23, b, c, and CP . The global minima are almost identical

to (4.2):

A = (1, 0, 0) , B = (1, 1, 1) , C = (±1, ω, ω2) , D = (0, 1, i) . (4.4)

However since the symmetry groups G are different in the two cases, the remaining sym-

metries Gv at each vacuum might also differ.

Let us now take a closer look at the group-theoretic properties at each of these

four minima.

• Point A is invariant under all sign flips, under CP and c, but not under cyclic

permutations generated by b. For the A4 3HDM, the remaining group is Gv =
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Figure 3. Graphic representations of the vev alignments on the complex plane for points C+ (left)

and C− (right).

〈σ12, σ23, c · CP 〉 of order |Gv| = 8. For the S4 3HDM, Gv = 〈σ12, σ23, c, CP 〉 with
|Gv| = 16. In both cases there are n = 3 minima of type A all linked to each other

by the broken generator b, which form a single orbit: (1, 0, 0), (0, 1, 0), (0, 0, 1) with

n = ℓ = |G|/|Gv|.

• Point B is invariant under all permutations as well as CP , but not under sign flips.

The remaining group is Gv = 〈b, c · CP 〉 of order |Gv| = 6 for the A4 3HDM and

Gv = 〈b, c, CP 〉 of order |Gv| = 12 for the S4 3HDM. There are n = 4 distinct

degenerate minima (1,±1,±1) which form a single orbit of length ℓ = |G|/|Gv| =
4 and which are obtained from point B by individual sign flips. Note that vev

alignments (1, −1, −1) and (−1, 1, 1) are considered the same because they differ by

an overall phase factor −1.

• Point C includes two seemingly different sorts of vev alignments,

C+ = (1, ω, ω2) , C− = (−1, ω, ω2) , (4.5)

which are graphically shown on the complex plane in figure 3. These pictures facilitate

counting the number of minima and their residual symmetries. Up to the overall

phase factor, there are only two points of type C+, the one given in eq. (4.5) and

its conjugate, and six points of type C− which differ by permutations. Despite an

apparent difference, these two classes of points have isomorphic groups Gv. C+ is

invariant under Gv = 〈b, c · CP 〉, while C− conserves Gv = 〈σ13 · b, c · CP 〉. In both

cases, Gv ≃ S3 of order 6, and its order-2 elements are GCP transformations.

A non-trivial fact is that these Gv’s apply to both A4 and to S4 symmetries. Under

G = S4×Z
∗
2, these eight minima form a single orbit of length ℓ = |G|/|Gv| = 8, while

under G = A4 ⋊Z
∗
2, they split into two disjoint orbits of length ℓ = 4, which add up

to n = 2ℓ = 8 minima: (1,±ω,±ω2) and (1,±ω2,±ω).

• PointD is invariant under one sign flip, and an exchange of two doublets accompanied

either by the CP transformation or by another sign flip (the latter possibility appears

only in S4). The remaining group is Gv = 〈σ23, c ·CP 〉 of order 4 for the A4 3HDM,
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label Ĝ ⊂ SU(3) |Ĝ| G ⊂ PSU(3) |G|
∆(27) group ∆(27) 27 Z3 × Z3 9

CP -violating ∆(54) 3HDM ∆(54) 54 (Z3 × Z3)⋊ Z2 18

CP -conserving ∆(54) 3HDM ∆(54)⋊ Z
∗
2 108 (Z3 × Z3)⋊ (Z2 × Z

∗
2) 36

Σ(36) 3HDM Σ(36φ)⋊ Z
∗
2 216 Σ(36)⋊ Z

∗
2 72

Table 1. Conventions for the symmetry groups from the ∆(27)-family.

and Gv = 〈σ23, c · σ13, c · CP 〉 with |Gv| = 8 for the S4 3HDM. In both cases, we

have six minima of type D linked by the permutations and forming a single orbit

[(0, 1,±i) and cyclic permutations] of length ℓ = |G|/|Gv| = 6.

Note that for all four types of symmetry breaking, the vacuum is still invariant under a

GCP symmetry, which is a manifestation of the well-known fact that A4 or S4 symmetric

3HDM does not offer possibility neither for explicit nor spontaneous CP -violation [26–30].

4.2 ∆(27) family

The three remaining symmetry groups in 3HDM are

G = (Z3 × Z3)⋊ Z2 ≃ ∆(54)/Z3 , (Z3 × Z3)⋊ (Z2 × Z
∗
2) , Σ(36)⋊ Z

∗
2 , (4.6)

of orders |G| = 18, 36, and 72, respectively. Here, as usual, an asterisk in Z2 denotes a

GCP transformation. We stress that, according to our discussion in section 2, these are

subgroups of PSU(3) ≡ SU(3)/Z(SU(3)), where Z(SU(3)) = Z3 is the center of SU(3).

In order to keep the notation more familiar, we will call such models as “CP -violating

∆(54)”, “CP -conserving ∆(54)”, and “Σ(36)” 3HDMs, — that is, we will refer to their

full preimages Ĝ ⊂ SU(3) rather than groups G ⊂ PSU(3) themselves. The accurate

correspondence between them is listed in table 1. Collectively, we will call these groups the

“∆(27) family” because the corresponding SU(3) preimages contain ∆(27) as a subgroup.

Note that the group ∆(27) itself is absent from the list (4.6) because it is not realizable: the

scalar potential symmetric under ∆(27) is always symmetric under the larger group ∆(54).

There exists a basis in which the group ∆(27) is generated by a3 and b, and the

∆(27)-symmetric potential takes the form

V1 = −m2
[

φ†
1
φ1 + φ†

2
φ2 + φ†

3
φ3

]

+ λ0

[

φ†
1
φ1 + φ†

2
φ2 + φ†

3
φ3

]2

+
λ1

3

[

(φ†
1
φ1)

2 + (φ†
2
φ2)

2 + (φ†
3
φ3)

2 − (φ†
1
φ1)(φ

†
2
φ2)− (φ†

2
φ2)(φ

†
3
φ3)− (φ†

3
φ3)(φ

†
1
φ1)

]

+λ2

[

|φ†
1
φ2|2 + |φ†

2
φ3|2 + |φ†

3
φ1|2

]

+
(

λ3

[

(φ†
1
φ2)(φ

†
1
φ3) + (φ†

2
φ3)(φ

†
2
φ1) + (φ†

3
φ1)(φ

†
3
φ2)

]

+ h.c.
)

, (4.7)

with generic real m2, λ0, λ1, λ2 and a complex λ3. It can be checked that this potential

is also symmetric under c, so that the resulting symmetry group is ∆(54) = 〈a3, b, c〉. We

refer to this model as CP -violating ∆(54) 3HDM.
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If the free parameters in (4.7) are generic, the potential is not symmetric under any

other transformation, be it a Higgs-family or GCP transformation. If λ3 is real or can

be made real by rephasing, which is possible when its phase is a multiple of π/3, then

the potential (4.7) becomes invariant under the usual CP transformation, and the sym-

metry group is then promoted to ∆(54) ⋊ Z
∗
2. We refer to this model as CP -conserving

∆(54) 3HDM.

Finally, if λ3, apart from just being real, satisfies λ3 = (λ1 − λ2)/2, the symmetry

group of (4.7) is enlarged to Σ(36φ)⋊Z
∗
2 generated by a3, b, CP and the order-4 generator

d given in (3.3).

We can find the global minima of the potentials in the ∆(27) family with the same

geometric method which was used in [41] for the A4 and S4 groups. Details of this analysis

are given in appendix B; here we just summarize the results.1 The possible global minima

can have the following vev alignments:

point A: (ω, 1, 1) , (1, ω, 1) , (1, 1, ω) ,

point A′: (ω2, 1, 1) , (1, ω2, 1) , (1, 1, ω2) ,

point B: (1, 0, 0) , (0, 1, 0) , (0, 0, 1) .

point C: (1, 1, 1) , (1, ω, ω2) , (1, ω2, ω) . (4.8)

The three realizable groups from the ∆(27) family listed in table 1 can have the global min-

ima only at these values. These minima can be degenerate, and the higher the symmetry,

the stronger is the degeneracy:

CP -violating ∆(54) 3HDM : A , A′ , B , C , (4.9)

CP -conserving ∆(54) 3HDM : A+A′ , B , C , (4.10)

Σ(36) 3HDM : A+A′ , B + C . (4.11)

Here, symbol + means that two points merge to a single point in the corresponding lower-

dimensional orbit space, and therefore the global minima at these points are denegerate.

Let us now investigate the residual symmetry groups Gv for each of the three groups

from the ∆(27) family.

• In the case of CP -violating ∆(54), it turns out that each possible vev alignment listed

in (4.8) is invariant, up to an overall phase factor, under a certain Gv ≃ S3. For

example, the first vev alignment of point A in (4.8) is invariant under Gv = 〈c, a3b2〉,
the first A′ point is invariant under Gv = 〈c, a3b〉, the first B point is invariant

under Gv = 〈a3, c〉, and the first C point is invariant under any permutation of

doublets, Gv = 〈b, c〉. In all four cases, the minima form a single orbit of length

ℓ = |G|/|Gv| = 3.

Thus, spontaneous breaking of this symmetry group looks remarkably simple in

group-theoretic terms. It correspond to removal of one of the four Z3 generators

present in G = (Z3 × Z3) ⋊ Z2: a3, a3b, a3b
2, or b. This broken Z3 symmetry links

together the three global minima.

1Our results disagree with those obtained in [48] where the same problem was addressed.
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• In the case of CP -conserving ∆(54), we have an additional symmetry generator: CP .

Simultaneously, the points A and A′ fuse to a single point in the corresponding orbit

space, see details in appendix B. These points have the same Gv as before but now

they form a single G-orbit of length ℓ = |G|/|Gv| = 6. In contrast, points B and

C stay separately, each comprising one orbit of length ℓ = 3. In these cases, each

vev alignment possesses an additional GCP symmetry. Thus, the residual symmetry

group for points B or C has |Gv| = 12, so that ℓ = |G|/|Gv| = 3. In group-theoretic

terms, spontaneous breaking of G = (Z3×Z3)⋊ (Z2×Z
∗
2) can proceed via removal of

either one Z3 generator (pointsB or C), or one Z3 and one Z2 generator (point A+A′).

Points A + A′ for this model serve as the prototypical case of the phenomenon of

geometric CP -violation [17, 18]. These minima spontaneously violate CP -symmetry

of the model, but the relative phase between vevs is fixed by geometric requirements

and does not change as the parameters of the potential continuously change. This

behaviour is quite distinct from the (0, 1, eiα) alignment of the A4 model, where

the phase α depends on the values of the parameters but where there is not true

spontaneous CP -violation.

We also note the curious fact that this relative phase is even more robust than we

could naively expect. Indeed, it was already present in the CP -violating ∆(54) model

with an arbitrary value of the phase of λ3. This fact goes in line with the general

observation made in [41] that the orbit spaces of highly symmetric potentials tend to

be very cuspy, and their minimization leads to very rigid structures in vev alignments.

• In the case of Σ(36) 3HDM, we have a new symmetry d at our disposal. When acting

in the orbit space, it links together points B and C, for example

d (1, 1, 1)T =
√
3(1, 0, 0)T . (4.12)

It also provides a second link between points A and A′, complementing CP and

enlarging the residual symmetry group Gv. Thus, we are left with only two sets of

degenerate minima, A+ A′ or B + C, each of them having |Gv| = 12 and forming a

single orbit with length ℓ = |G|/|Gv| = 6.

It is also remarkable to note that the Z4 subgroup of G generated by d is always

broken to Z2. At first sight, it defies the intuition developed with the D4 and S4

cases, where the Z4 subgroup could be broken or could survive. Of course, one can

write down vev alignments invariant under d, but it happens that the additional

structures in the Σ(36) potential preclude them from being a viable global minimum.

5 Discussion

5.1 The overall picture

Let us now bring together all the results obtained in form of a list of the strongest and

weakest breaking possible for each discrete symmetry in 3HDM. This list is presented in

table 2. The maximal amount of symmetry breaking of a given group G corresponds to
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group |G| |Gv|min |Gv|max sCPv possible?

abelian 2, 3, 4, 8 1 |G| yes

Z3 ⋊ Z
∗
2 6 1 6 yes

S3 6 1 6 —

Z4 ⋊ Z
∗
2 8 2 8 no

S3 × Z
∗†
2

12 2 12 yes

D4 × Z
∗†
2

16 2 16 no

A4 ⋊ Z
∗†
2

24 4 8 no

S4 × Z
∗
2 48 6 16 no

CP -violating ∆(54) 18 6 6 —

CP -conserving ∆(54) 36 6 12 yes

Σ(36) 72 12 12 no

Table 2. The amount of residual symmetry possible after EWSB for each discrete symmetry group

of the 3HDM scalar potential (see text for details). Z∗

2 denotes either the usual CP symmetry or a

GCP transformation (marked with †); see the main text for details on each group.

the smallest residual symmetry group Gv, whose order is denoted by |Gv|min, while the

minimal breaking corresponds to the largest residual symmetry group, with order |Gv|max.

The groups in the upper block, being suffiently small, allow for all types of symmetry

breaking: complete, partial, or no breaking at all. The groups in the middle block can

remain intact at the global minimum, but if they are broken, their breaking is only partial.

The last block contains groups which can neither remain unbroken nor break completely.

They are always broken to a proper subgroup. Thus, for sufficiently large groups, only

option (ii) mentioned in section 2.3 is available.

For symmetry groups with explicit CP -conservation, it is indicated in last column of

table 2 whether spontaneous CP -violation can occur upon minimization of the potential.

It is curious to note that explicit and spontaneous CP -violations always come in pairs.

Spontaneous CP -violation of a G-symmetric 3HDM can happen only for those groups G,

for which there exists an explicitly CP -violating counterpart. If a Higgs-family symme-

try protects the 3HDM from explicit CP -violation, it also protects it from spontaneous

CP -violation. Whether this is just a coincidence or reveals a generic fact in NHDM is not

yet known. The general pattern, however, remains: for suffiently large symmetries con-

taining accidental CP, the latter cannot be broken spontaneously. As a related example,

supersymmetric multi-Higgs extensions of the SM cannot break CP spontaneously [49].

5.2 Towards the N-doublet case

The results obtained in 3HDM on the basis of explicit calculations can provide hints at

discrete symmetry breaking properties in NHDM, with general N . We already noticed

above that explicit and spontaneous CP -violation seems to come in pairs, and it would be

interesting to check whether this feature is generic.
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Another observation made above is that sufficiently large discrete symmetries must

be broken partially. Although “sufficiently large” is a vague term, the tendency itself has

solid algebraic and group-theoretic grounds. Indeed, suppose we work in NHDM with N

Higgs doublets in an irrep of G. Then the only bilinear term in the potential compatible

with this symmetry is
∑

i φ
†
iφi. In this case, there exists no neutral vacuum conserving this

symmetry for N ≥ 2, and no vacuum at all, including the charge-breaking one, for N > 2.

Such symmetry groups are always broken upon EWSB.

On the other hand, large symmetry breaking cannot be arbitrarily strong. Indeed, if

the group G breaks down to a small subgroup Gv, then there must be at least |G|/|Gv|
separate degenerate global minima in the orbit space. However, as explained for 2HDM

in [43, 44] and adapted for NHDM in [46, 47], search for the global minimum of the Higgs

potential can be cast in pure geometric terms. In this picture, the global minima arise as

the contact points of two algebraic manifolds of certain degrees defined in the real space

R
N2

. The number of such contact points must be bounded from above by some sort of

multi-dimensional generalization of the Bézout’s theorem. Let us denote the maximum

number of such contact points for NHDM as pN . Then, if |G| > pN , the group G cannot

break completely.

For 2HDM, p2 = 2, and for 3HDM, as suggested by the present work, p3 ≥ 8. For

general N , the exact value of pN is unknown. Developing the algebraic-geometric meth-

ods to the point when pN can be found, would constitute a significant step forward in

understanding symmetry breaking patterns in their general set up.

The above geometric reinterpretation of the minimization problem also makes it very

plausible that symmetry breaking patterns strongly depend on the algebraic degree of

the potential. Indeed, the usual renormalizable Higgs potential can be represented as a

quadric (degree-2 algebraic manifold) in the space of N2 real bilinears. Adding sextic terms

makes it a degree-3 manifold. Since Bézout’s theorem for intersection of planar curves

explicitly depends on their degrees, the same can readily be expected for its conjectured

higher-dimensional generalization. Thus, G-symmetric potentials with sextic terms can

have more degenerate minima than a renormalizable potential with the same symmetry

group G. The increased amount of global minima opens a possibility for stronger symmetry

breaking than what was possible only with quadratic and quartic potentials. It would

be very interesting to build an explicit realizable of this possibility and investigate its

phenomenological consequences.

To summarize, in this paper, we systematically investigated how discrete symmetry

groups G of the 3HDM scalar potential break upon minimization of the potential. We

checked one by one all G’s allowed in 3HDM and all vev alignment which can arise for

each G, and listed the residual symmetry groups Gv. Table 2 summarizes the strongest

and weakest symmetry breaking for each G, as well as the possibility of spontaneous CP -

violation. These result led us to a number of observations, which might hold for more than

three Higgs doublets and, perhaps, for more general Higgs sectors. However, checking them

will require yet additional algebraic-geometric or group-theoretic tools.
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A Absence of complete symmetry breaking in D4 and CP -conserving S3

3HDM

Here we prove that symmetry groups G = D4×Z
∗
2 or S3×Z

∗
2 cannot be broken completely

in 3HDM via minimization of a renormalizable potential. To show it, we will evaluated the

Higgs potential at the classical field values (v1, v2e
iξ2 , v3e

iξ3) with non-zero vi and will find

that extremization either (1) sets the phases ξi to zero, up to a rephasing transformation

from G, or (2) sets v2 = v3 and ξ3 = ξ2 or −ξ2. In either case, the extremum remains

invariant under a residual symmetry from group G.

We find it instructive to start with the D4 case. Although we already know that the

presence of Z4 subgroup implies CP conservation for the potential and a GCP symmetry

in the vacuum, we will rederive it in another way to demonstrate a technique to be used

for the S3 × Z
∗
2 model.

D4 3HDM. As usual, we write the most general D4-symmetric potential as VD4
=

V0 + Vph, with V0 given by (3.15) and the phase-dependent part written as

Vph. =
1

2
λ5

[

(φ†
1
φ2)

2 + (φ†
1
φ3)

2
]

+
1

2
λ6(φ

†
2
φ3)

2 + h.c. (A.1)

where all parameters are real. Since D4 ×Z
∗
2 contains as subgroups two groups we studied

previously, namely Z2×Z2×Z
∗
2 and Z4⋊Z

∗
2, we could write Vph in the form of (3.8) or (3.13).

Our choice is based on (3.8) and it differs from (3.13) by a basis change. The symmetry

group of VD4
is generated by independent sign flips, by c, and by the CP transformation.

Positive coefficients λ′
3 and λ′

4 in (3.15) guarantee that the minimum is neutral. As

usual, we write 〈φ0
i 〉 = vie

iξi/
√
2, which makes 〈zij〉 = 0. Now, we also define three 2D

vectors

~ri ≡
v2i
2
(cos 2ξi, sin 2ξi), (A.2)

so that

(φ†
iφi) = ri ≡ |~ri| ,

1

2

[

(φ†
iφj)

2 + (φ†
jφi)

2
]

= ~ri · ~rj . (A.3)

With this notation, the full D4-symmetric potential takes the following form:

V = −m2
1r1 −m2

2(r2 + r3) +
1

2
λ1r

2
1 +

1

2
λ2(r

2
2 + r23) + λ3r1(r2 + r3) + λ4r2r3

+λ5(~r1 · ~r2 + ~r1 · ~r3) + λ6~r2 · ~r3 . (A.4)

In order to check whether the group can be broken completely, we search for extrema with

non-zero vi. The extremization problem can then be formulated in terms of gradients:
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~∇iV = 0. Recalling that ~∇r2 = 2~r and ~∇r = ~r/r, we obtain:

[λ1r1 + λ3(r2 + r3)]~r1 + λ5r1(~r2 + ~r3) = m2
1~r1 , (A.5)

[λ2r2 + λ3r1 + λ4r3]~r2 + λ5r2~r1 + λ6r2~r3 = m2
2~r2 , (A.6)

[λ2r3 + λ3r1 + λ4r2]~r3 + λ5r3~r1 + λ6r3~r2 = m2
2~r3 . (A.7)

Note that these are vectorial equalities. From (A.5) we conclude that either λ5 = 0 or

~r2 + ~r3 is parallel to ~r1. We exclude the former choice because it leads to continuous

symmetries in the potential, so we write

~r1 = −c(~r2 + ~r3) (A.8)

with the coefficient c to be determined. Using this relation, we replace ~r1 in (A.6) and (A.7)

and obtain:

[λ2r2 + λ3r1 + λ4r3 − λ5cr2]~r2 + (λ6 − cλ5)r2~r3 = m2
2~r2 , (A.9)

[λ2r3 + λ3r1 + λ4r2 − λ5cr3]~r3 + (λ6 − cλ5)r3~r2 = m2
2~r3 . (A.10)

We have here two options: either all three vectors ~ri are aligned (case A) or not (case

B). In case B we then have c = λ6/λ5.

In case A, the alignment of ~ri means that the phases ξ2 and ξ3 are multiples of π/2.

Even if all three vevs are different, these phases lead to a residual symmetry: in the case

(v1, v2, v3) it is just CP , in the case (v1, v2, iv3), it is the GCP transformation σ23 · CP .

In case B, non-trivial phases are still allowed. Equations (A.9) and (A.10) can be

simplified as equations on coefficients in front of ~r2 and ~r3 and lead to

(λ2 − λ6)r2 + λ3r1 + λ4r3 = m2
2 , (λ2 − λ6)r3 + λ3r1 + λ4r2 = m2

2 . (A.11)

Their difference leads to

(λ2 − λ4 − λ6)(r2 − r3) = 0 . (A.12)

Once again, we have two options. If λ2−λ4−λ6 = 0, the potential acquires a flat direction

because it now depends only on r1, r2+r3, and ~r2+~r3, but not on r2−r3. This means that

there is a continuum of global minima (an ellipse) with the same r1, r2 + r3, and ~r2 + ~r3,

but different r2 − r3. We disregard this situation. The only remaining possibility is to set

r2 = r3. The vev alignment is now of type

(v1, ±v2e
iξ, ±v2e

−iξ) , (A.13)

where ± signs are independent. This alignment also possesses a residual symmetry: c ·CP

times sign flips when necessary. Thus, in either case, the full symmetry group G = D4×Z
∗
2

is broken not completely but down to the Z
∗
2 group generated by a GCP transformation.
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CP -conserving S3 3HDM. We will now apply the same method to the S3×Z
∗
2 3HDM.

We use the same V0 and the phase-dependent part Vph in the form (3.16) with real λ5 and

λ6. Now, we introduce another set of 2D vectors

~si =

√
2

vi
(cosαi, sinαi) , (A.14)

where

α1 = ξ2 − ξ3 , α2 = ξ3 − ξ1 , α3 = ξ1 − ξ2 . (A.15)

Then V0 takes the same form as in the first line of (A.4) with ri = 1/~s 2
i , while Vph can be

written as

Vph = r1r2r3 [λ5~s2 · ~s3 + λ6~s1 · (~s2 + ~s3)] . (A.16)

Thus, the potential is now written in terms of three vectors ~si. We can again cast the

extremization problem in terms of conditions ~∇iV = 0. The calculations become a bit

more cumbersome, powers of ri floating around, but we nevertheless encounter the same

options: either all ~si are aligned, or ~s2+~s3 is parallel to ~s1 and v2 = v3. In terms of phases

ξi, the former case leads to real vevs (v1, v2, v3), up to a rephasing by a3, while the latter

case produces alignment (v1, v2e
iξ2 , v2e

iξ2). In either case we get a residual symmetry in

the vacuum: either a GCP symmetry, or the φ2 ↔ φ3 symmetry. Thus, S3 × Z
∗
2 is broken

to Z2 or Z∗
2.

Finally, the existence of a solution with v2 6= v3 in CP -conserving S3 3HDM means

that such a solution is also possible for its CP -violating version. In this case, phases are

irrelevant, and the entire symmetry group S3 is broken.

B Global minima of the ∆(27)-family potentials

Here, we use the geometric method of [41] to find all possible vev alignments for the ∆(27)-

family of symmetry groups in 3HDM.

The first step is to construct the orbit space in terms of suitable variables. Let us

introduce the following real quantities:

r0 =
1√
3

(

φ†
1
φ1 + φ†

2
φ2 + φ†

3
φ3

)

,

X =

{

1

3

[

(φ†
1
φ1)

2 + (φ†
2
φ2)

2 + (φ†
3
φ3)

2 − (φ†
1
φ1)(φ

†
2
φ2)− (φ†

2
φ2)(φ

†
3
φ3)− (φ†

3
φ3)(φ

†
1
φ1)

]

+ |φ†
1
φ2|2 + |φ†

2
φ3|2 + |φ†

3
φ1|2

}

,

X ′ = |φ†
1
φ2|2 + |φ†

2
φ3|2 + |φ†

3
φ1|2 ,

Y =
1

3

[

|φ†
1
φ2 − φ†

2
φ3|2 + |φ†

2
φ3 − φ†

3
φ1|2 + |φ†

3
φ1 − φ†

1
φ2|2

]

, (B.1)

Y ′ =
2√
3
Im

[

(φ†
1
φ2)(φ

†
1
φ3) + (φ†

2
φ3)(φ

†
2
φ1) + (φ†

3
φ1)(φ

†
3
φ2)

]

, (B.2)

as well as the corresponding rescaled variables

x = X/r20 , x′ = X ′/r20 , y = Y/r20 , y′ = Y ′/r20 . (B.3)
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The potential (4.7) can be written as a linear combination of these quantities:

V1 = −M2r0 + r20
(

Λ0 + Λ1x+ Λ′
1x

′ + Λ2y + Λ′
2y

′
)

, (B.4)

where M2 =
√
3m2, Λ0 = 3λ0, Λ1 = λ1, Λ′

1 = λ2 − λ1 + 2Reλ3, Λ2 = −3Reλ3, and

Λ′
2 = −

√
3Imλ3. It is known that 1/4 ≤ x ≤ 1 in 3HDM [47], and the neutral vevs

correspond to x = 1. Setting x = 1 in (B.4), we rewrite the potential as a linear function

defined in the 3D space (x′, y, y′).

Next, we find inequalities these variables satisfy. From definitions, we have 0 ≤ x′ ≤ 1

and 0 ≤ y ≤ x′, where the last inequality comes from

X ′ − Y =
|(φ†

1
φ2) + (φ†

2
φ3) + (φ†

3
φ1)|2

3
≥ 0 . (B.5)

In addition, we notice that

Y − Y ′ =
2

3

{

|φ†
1
φ2|2 + |φ†

2
φ3|2 + |φ†

3
φ1|2

+2Re
[

ω(φ†
1
φ2)(φ

†
1
φ3) + ω(φ†

2
φ3)(φ

†
2
φ1) + ω(φ†

3
φ1)(φ

†
3
φ2)

]

}

=
2

3

∣

∣

∣φ
†
1
φ2 + φ†

2
(ωφ3) + (ωφ3)

†φ1

∣

∣

∣

2

≥ 0 , (B.6)

and similarly for Y + Y ′:

Y + Y ′ =
2

3

∣

∣

∣
φ†
1
φ2 + φ†

2
(ω2φ3) + (ω2φ3)

†φ1

∣

∣

∣

2

≥ 0 . (B.7)

So, summarizing all restrictions, we have:

0 ≤ x′ ≤ 1 , 0 ≤ y ≤ x′ , |y′| ≤ y . (B.8)

These inequalities define a tetrahedron in the (x′, y, y′) space shown in figure 4. The orbit

space must lie inside or on the boundaries of this tetrahedron., but it does not have to fills

it completely.

The next step is to make sure that the four vertices of this tetrahedron, labeled in

figure 4 by A, A′, B, and C, do belong to the orbit space. Here is the explicit derivation.

• Point A is at (x′, y, y′) = (1, 1, 1). From x− x′ = 0 we deduce that |v1| = |v2| = |v3|.
From (B.5) we deduce that (φ†

1
φ2) + (φ†

2
φ3) + (φ†

3
φ1) = 0. These two conditions,

together with the positive sign of y′, are satisfied only by the following three vev

alignments (v1, v2, v3):

point A: (1, 1, ω) , (1, ω, 1) , (ω, 1, 1) . (B.9)

• Point A′ is at (x′, y, y′) = (1, 1,−1). The conditions are the same but y′ is now

negative, which is possible only at

point A′: (1, 1, ω2) , (1, ω2, 1) , (ω2, 1, 1) . (B.10)
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Figure 4. The tetrahedron in the (x′, y, y′) space for the ∆(27)-family of symmetries.

• Point C is at (x′, y, y′) = (1, 0, 0). Again, we have |v1| = |v2| = |v3| plus certain

conditions on phases, which can be all satisfied only at

point C: (1, 1, 1) , (1, ω, ω2) , (1, ω2, ω) . (B.11)

• Point B is at (x′, y, y′) = (0, 0, 0), which is possible only at

point B: (1, 0, 0) , (0, 1, 0) , (0, 0, 1) . (B.12)

The key statement now is that the four points A, A′, B, and C are the only options

where the global minimum can be, provided we require that there be no massless physical

Higgs bosons.

The proof follows from the geometric methods of [41] and also resembles what is known

as linear programming in mathematics. Since all four vertices of the tetrahedron belong to

the orbit space, there can be no global minimum lying strictly inside the tetrahedron for

any combination of the free parameters Λi, What remains to be checked is whether there

are additional isolated points of the orbit space lying on the edges or faces of the tetra-

hedron. Although this should be doable algebraically, we use here a numerical shortcut.

Namely, we scan the orbit space by randomly choosing the three complex vi’s, calculating

the corresponding (x′, y, y′) points, and then checking very thin slices lying at the faces.

Figure 5, left, shows the results of this exercise for the ABC face of the tetrahedron; other

faces lead to similar results. One sees that the points densely cover an astroidlike shape.

There are no points lying on the edges, and there are no isolated points lying on the face.

This means that if a point on a face happens to be a global minimum, then the entire face

will also correspond to the global minimum, and this implies massless physical Higgses.

The above construction describes the orbit space of the CP -violating ∆(54) 3HDM,

the minimal realizable symmetry from the ∆(27)-family. In what concerns higher sym-

metry groups from this family, they are obtained by the simple projection of the entire
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Figure 5. Left : the projection of one face of the ∆(54) orbit space on the (x′, y) plane; shown are

the points with y − y′ ≤ 0.001 out of 107 points randomly selected from the neutral orbit space.

Right : the orbit space in the (x′, y) space for ∆(54)⋊ Z2 (random scan with 20, 000 points).

construction from the (x′, y, y′) space onto subspaces. Namely, the orbit space of the CP -

conserving ∆(54) model is the projection on the y′ = 0 plane, and the entire neutral orbit

space has the shape shown in figure 5, right. For the Σ(36)-symmetric 3HDM, we set Λ′
1 to

zero, and the potential does not depend on x′. The orbit space is then obtained by further

projecting the shape of figure 5, right, onto the y axis (the vertical line), and is represented

by the line segment 0 ≤ y ≤ 1.

These two projections satisfy the following properties: they map vertices to vertices,

and they do not map anything else to vertices. Therefore, the global minima in these

cases are the same points A, A′, B, and C, some of them merged, but nothing extra. The

CP -conserving ∆(54) model can have global minima at points B, C, or A and A′ taken

simultaneously. The Σ(36) model can have only two kinds of global minima: either B and

C simultaneously, or A and A′ simultaneously.
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