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SYMMETRY CLASSES FOR EVEN-ORDER TENSORS

MARC OLIVE AND NICOLAS AUFFRAY

We give a complete general answer to the problem, recurrent in continuum

mechanics, of determining of the number and type of symmetry classes of an

even-order tensor space. This kind of investigation was initiated for the space of

elasticity tensors, and since then different authors have solved this problem for

other kinds of physics, such as photoelectricity, piezoelectricity, flexoelectricity,

and strain-gradient elasticity. All these problems were treated using the same

computational method, which, though effective, has the drawback of not pro-

viding general results. Furthermore, its complexity increases with the tensorial

order. Here we provide general theorems that directly give the desired results

for any even-order constitutive tensor. As an illustration of this method, and for

the first time, the symmetry classes of all even-order tensors of Mindlin second

strain-gradient elasticity are provided.

1. Introduction

Physical motivation. In the last years there has been increased interest in gener-

alized continuum theories; see, for example, [Forest 1998; dell’Isola et al. 2009;

2012; Lebée and Sab 2011]. These works, based on the pioneering articles [Toupin

1962; Mindlin 1964; 1965], propose extended kinematic formulations, to take into

account size effects within the continuum. The price to be paid for this is the

appearance of tensors of order greater than four in the constitutive relations. These

higher-order objects are difficult to handle and extracting physically meaningful

information from them is not straightforward. The aim of this paper is to provide

general results concerning the type and number of anisotropic systems an even-

order tensor can have.

Such results have important applications, at least, for the modeling and numeri-

cal implementation of nonclassical linear constitutive laws:

Modeling: The purpose of modeling is, given a material and a set of physical

variables of interest, to construct the more general constitutive law (a linear

one, in the present context) that describes the behavior of that material. An

example of such a method is provided in [Thionnet and Martin 2006], where,
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given a set of variables V and the material symmetry group S, the authors

derive mechanical behavior laws using the theory of invariants and continuum

thermodynamics. In such regard our results will say, without making any

computation whether or not S is contained in the set of symmetry classes of

L(v, v′) the space of linear maps from v ∈ V to v′ ∈ V .

Numerical implementation: To implement a new linear constitutive law in a

finite-element code, one has to know the complete set of matrices needed

to model the associated anisotropic behavior. In that regard, our result is

a precious guideline, as it tells you how many matrices there are and how

to construct them. This is illustrated in the case of three-dimensional strain

gradient elasticity in [Auffray et al. 2013].

Constitutive tensors symmetry classes. In mechanics, constitutive laws are usually

expressed in terms of tensorial relations between the gradients of primary variables

and their fluxes [Gu and He 2011]. As is well known, this feature is not restricted

to linear behaviors, since tensorial relations appear in the tangential formulation

of nonlinear ones [Triantafyllidis and Bardenhagen 1996]. It is also known that

a general tensorial relation can be divided into classes according to its symmetry

properties. Such classes are known in mechanics as symmetry classes [Forte and

Vianello 1996], and in mathematical physics as isotropic classes or strata [Abud

and Sartori 1983; Auffray et al. 2011].

In the case of second-order tensors, the determination of symmetry classes is

rather simple. Using spectral analysis it can be concluded that any second-order

symmetric tensor1 can either be orthotropic ([D2]), transverse isotropic ([O(2)]),

or isotropic ([SO(3)]). Such tensors are commonly used to describe, for example,

heat conduction and electric permittivity.

For higher-order tensors, the determination of the set of symmetry classes is

more involved, and is mostly based on an approach introduced in [Forte and Vianello

1996] for the case of elasticity. Let us briefly detail this case.

The vector space of elasticity tensors, denoted by Ela throughout this paper, is

the subspace of fourth-order tensors endowed with the following index symmetries:

Minor symmetries: Ei jkl = Ej ikl = E j ilk .

Major symmetry: Ei jkl = Ekli j .

Symmetries will be specified using notation such as E(i j) (kl), where (. .) indi-

cates invariance under permutation of the indices in parentheses, and . . . . indicates

invariance with respect to permutations of the underlined blocks. Index symmetries

encode the physics described by the mathematical operator. The minor symmetries

1Such a tensor is related to a symmetric matrix, which can be diagonalized in an orthogonal basis.

The stated result is related to this diagonalization.
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stem from the fact that rigid body motions do not induce deformation (the symme-

try of ε), and that the material is not subjected to volumic couple (the symmetry

of σ ). The major symmetry is the consequence of the existence of free energy.

An elasticity tensor, E, can be viewed as a symmetric linear operator on T(i j), the

space of symmetric second-order tensors. According to [Forte and Vianello 1996],

for the classical action of SO(3), Ela is divided into eight symmetry classes (see

page 183 for the notation):

[Ela] = {[✶], [Z2], [D2], [D3], [D4], [O(2)], [O], [SO(3)]},

which correspond, respectively, to the following physical classes:2 triclinic, mon-

oclinic, orthotropic, trigonal, tetragonal, transverse isotropic, cubic, and isotropic.

Besides this fundamental result, the interest of the Forte and Vianello paper was to

provide a general method to determine the symmetry classes of any tensor space

[Auffray et al. 2011]. Other results have been obtained by this method since then:

Property Tensor
Number
of classes Action Studied in

Photoelasticity T(i j)(kl) 12 SO(3) [Forte and Vianello 1997]

Piezoelectricity T(i j)k 15 O(3) [Geymonat and Weller 2002]

Flexoelectricity T(i j)kl 12 SO(3) [Le Quang and He 2011]
A set of tensors

of order six Ti jklmn 14 or 17 SO(3) [Le Quang et al. 2012]

The limitations of the Forte–Vianello approach. The method introduced by Forte

and Vianello is actually the most general.3 But, at the same time, it suffers from at

least two limitations:

(1) The computation of the harmonic decomposition.

(2) The specificity of the study for each kind of tensor.

In its original setting, the method requires the computation of the explicit har-

monic decomposition of the studied tensor, that is, its decomposition into the sum

of its SO(3)-irreducible components, also known as harmonic tensors4. Its explicit

computation, which is generally based on an algorithm introduced by Spencer

[1970], turns out to be intractable in practice as the tensorial order increases. But

2These symmetry classes are subgroups of the group SO(3) of space rotations. This is because

the elasticity tensor is of even order. To treat odd-order tensors, the full orthogonal group O(3) has

to be considered.
3Some other methods can be found in the literature, such as counting the symmetry planes [Chad-

wick et al. 2001], or studying the SU(2)-action on Ela [Bóna et al. 2004], and others, but these

methods are difficult to generalize to arbitrary vector spaces.
4Harmonic tensors are completely symmetric and traceless. They inherit this name because of a

well-known isomorphism in R
3 between these tensors and harmonic polynomials [Backus 1970].
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this is not a real problem, since the only information needed is the number of

different harmonic tensors of each order appearing in the decomposition, that is,

the isotypic decomposition. Based on arguments presented in [Jerphagnon et al.

1978], there exists a direct procedure to obtain this isotypic decomposition from

the tensor index symmetries [Auffray 2008]. Such an approach has been used in

[Le Quang et al. 2012] to obtain the symmetry classes of sixth-order tensors.

As each kind of tensor space requires specific study, this specificity constitutes

the other limitation of the method. This remark has to be considered together

with the observation that, for even-order tensors it seems that there exist only two

possibilities. Namely, a tensor space has as many classes as

• the full symmetric tensor space (for example, Ela is divided into eight classes,

like the full symmetric tensor space [Forte and Vianello 1996]), or

• the generic tensor space5 (other fourth-order tensor spaces such as those of

photoelasticity [Forte and Vianello 1997], flexoelectricity [Le Quang and He

2011], etc., are divided into 12 classes, like the generic tensor space).

The same observation can also be made for second and sixth-order tensors

[Le Quang et al. 2012]. Understanding the general rule behind this observation

would be an important result in mechanics. Its practical implication is the direct

determination of the number and the type of symmetry classes for any constitu-

tive law, no matter its order. This result is valuable for understanding generalized

continuum theories, in which higher-order tensors are involved in constitutive laws.

Organization of the paper. In Section 2, the main results of this paper, Theorems I,

II, and III, are stated. As an application, the symmetry classes of the even-order con-

stitutive tensor spaces of Mindlin second strain-gradient elasticity are determined.

Results concerning the sixth-order coupling tensor and the eighth-order second

strain-gradient tensor are given for the first time. Obtaining the same results with

the Forte–Vianello approach would have been much more difficult. Other sections

are dedicated to the construction of our proofs. In Section 3, the mathematical

framework used to obtain our result is introduced. Thereafter, we study the sym-

metry classes of a couple of harmonic tensors, which is the main purpose of the

tool named the clips operator. We then give the associated results for couples of

SO(3)-closed subgroups (Theorem 4.6 and Table 2). Thanks to these results, and

with the help of previous work on the topic [Ihrig and Golubitsky 1984], we obtain

in Section 5 some general results concerning symmetry classes for general even-

order tensors. In Section 6 our main results are finally proved. The Appendix is

devoted to proofs and the calculus of clips operations.

5The n-th order generic tensor is a n-th order tensor with no index symmetry.
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2. Main results

In this section, our main results are stated. In the first subsection, the construction

of constitutive tensor spaces (CTS) is discussed. This construction allows us to

formulate our main results in the next subsection. Finally, the application of these

results to Mindlin second strain-gradient elasticity (SSGE) is considered. Precise

mathematical definitions of the symmetry classes are given in Section 3.

Construction of CTS. Linear constitutive laws are linear maps between the gradi-

ents of primary physical quantities and their fluxes. Each of these physical quanti-

ties (see Table 1 on the next page) is in fact related to subspaces6 of tensors spaces;

these subspaces will be called state tensor spaces (STS). These STS will be the

primitive notion from which the CTS will be constructed.

Notation. L(F, G) will indicate the vector space of linear maps from F to G.

Now we consider two STS, E1 = TG and E2 = Tf , respectively of order p

and order q, possibly with index symmetries. As a consequence, they belong to

subspaces of
⊗p

R
3 and

⊗q
R

3. A constitutive tensor C is a linear map between

E1 and E2, that is, an element of the space L(E1, E2). This space is isomorphic,

modulo the use of an euclidean metric, to E1 ⊗ E2. Physical properties lead to

some index symmetries on C ∈ E1 ⊗ E2; thus the vector space of such C is some

vector subspace TC of E1 ⊗ E2.

Now, each of the spaces E1, E2, and E1 ⊗ E2 has natural O(3) actions. In this

paper, we are concerned with cases in which p + q = 2n. In such a situation, it is

known that the O(3)-action on E1 ⊗E2 reduces to that of SO(3) [Forte and Vianello

1996]. We therefore have

L(E1, E2) ≃ E1 ⊗ E2 ⊂ T
p ⊗ T

q = T
p+q=2n.

Here are some examples of this construction:

Property E1 E2
Tensor product Number

for CTS of classes

Elasticity T(i j) T(i j) Symmetric 8

Photoelasticity T(i j) T(i j) Standard 12

Flexoelectricity T(i j)k Ti Standard 12

First-gradient elasticity T(i j)k T(i j)k Symmetric 17

This table shows two kinds of CTS, describing respectively:

• coupled physics (tensors such as photoelasticity and flexoelectricity, encoding

the coupling between two different physics), and

6Because of some symmetries.
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Physical notion Mathematical object Mathematical space

Gradient Tensor state T1 ∈
⊗p

R
3

TG : tensor space with

index symmetries

Fluxes of gradient Tensor state T2 ∈
⊗q

R
3

Tf : tensor space with

index symmetries

Linear constitutive law C ∈ L(TG, Tf ) TC ⊂ L(TG, Tf )

Table 1. Physical and mathematical links.

• proper physics (tensors such as classical and first-gradient elasticities, describ-

ing a single physical phenomenon).

On the mathematical side this implies:

• Coupled physics: the spaces E1 and E2 may differ, and when E1 = E2 linear

maps are not self-adjoint.

• Proper physics: we have E1 = E2 and linear maps are self-adjoint.7

Therefore, the elasticity tensor is a self-adjoint linear map between the vector

space of deformation tensors and the vector space of stress tensors. These two

spaces are modeled on T(i j). The vector space of elasticity tensors is therefore

completely determined by T(i j) and the symmetric nature of the tensor product,

that is, Ela = T(i j) ⊗S
T(kl), where ⊗S denotes the symmetric tensor product. On

the side of coupling tensors, flexoelectricity is a linear map between E1 = T(i j)k ,

the space of deformation gradients, and E2 = Tl , the electric polarization; therefore

Flex = T(i j)k ⊗ Tl .

Symmetry classes of even-order tensor spaces. Consider an even-order CTS T
2n .

It is known [Jerphagnon et al. 1978] that this space can be decomposed orthogo-

nally8 into a full symmetric space and a complementary one which is isomorphic

to a tensor space of order 2n − 1, that is:

T
2n = S

2n ⊕ C
2n−1.

Let us introduce:

S
2n: the vector space of 2n-th order completely symmetric tensors.

G
2n: the vector space of 2n-th order tensors with no index symmetries.9

The following observation is obvious:

S
2n ⊆ T

2n ⊆ G
2n,

7This is a consequence of the assumption of the existence of a free energy.
8The related dot product is constructed by 2n products of the R

3 canonical one.
9Formally this space is constructed as G

2n =
⊗2n

R
3.
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and therefore, if we denote by I the operator which gives to a tensor space the set

of its symmetry classes, we obtain:

I(S2n) ⊆ I(T2n) ⊆ I(G2n).

The symmetry group of even-order tensors is conjugate to SO(3)-closed subgroups

[Zheng and Boehler 1994; Forte and Vianello 1996]. Classification of SO(3)-closed

subgroups is a classical result that can be found in many references [Ihrig and

Golubitsky 1984; Sternberg 1994]. These subgroups are, up to conjugacy:

Lemma 2.1. Every closed subgroup of SO(3) is conjugate to precisely one group

from the following list:

{✶, Zn, Dn, T, O, I, SO(2), O(2), SO(3)}.

Among these groups, we can distinguish:

Planar groups: {✶, Zn, Dn, SO(2), O(2)}, which are O(2)-closed subgroups.

Exceptional groups: {T, O, I, SO(3)}, of which the first three are rotational sym-

metry groups of Platonic polyhedra.

Let us detail first the set of planar subgroups. We fix a base (i; j; k) of R
3, and

denote by Q(v; θ) ∈ SO(3) the rotation about v ∈ R
3, with angle θ ∈ [0; 2π).

• ✶ is the identity.

• Zn (n ≥ 2) is the cyclic group of order n, generated by the n-fold rotation

Q(k; θ = 2π/n). which is the symmetry group of a chiral polygon.

• Dn (n ≥ 2) is the dihedral group of order 2n generated by Zn and Q(i; π),

which is the symmetry group of a regular polygon.

• SO(2) is the subgroup of rotations Q(k; θ) with θ ∈ [0; 2π).

• O(2) is the subgroup generated by SO(2) and Q(i; π).

The classes of exceptional subgroups are: T, the tetrahedral group of order

12 which fixes a tetrahedron, O, the octahedral group of order 24 which fixes an

octahedron (or a cube), and I, the subgroup of order 60 which fixes an icosahedron

(or a dodecahedron).

In Section 6, the symmetry classes of S
2n and G

2n are obtained:

Lemma 2.2. The symmetry classes of S
2n are:

I(S2) = {[D2], [O(2)], [SO(3)]},

I(S4) = {[✶], [Z2], [D2], [D3], [D4], [O(2)], [O], [SO(3)]},

I(S2n) = {[✶], [Z2], . . . , [Z2(n−1)], [D2], . . . , [D2n], [O(2)], [T], [O], [I], [SO(3)]},

if n ≥ 3.
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Lemma 2.3. The symmetry classes of G
2n are:

I(G2)={[✶],[Z2],[D2],[SO(2)],[O(2)],[SO(3)]},

I(G4)={[✶],[Z2],[Z3],[Z4],[D2],[D3],[D4],[SO(2)],[O(2)],[T],[O],[SO(3)]},

I(G2n)={[✶],[Z2],...,[Z2n],[D2],...,[D2n],[SO(2)],[O(2)],[T],[O],[I],[SO(3)]},

if n ≥ 3.

The following table lists how many classes there are for each n:

n = 1 2 ≥ 3

#I(S2n) 3 8 2(2n + 1)

#I(G2n) 6 12 4n + 5

The symmetry classes of T
2n are clarified by the following theorem:

Theorem I. Let T
2n be a tensor space. Then either I(T2n) = I(S2n) or I(T2n) =

I(G2n).

In other words, the number and type of classes are the same as those of

• S
2n , the space of 2n-order completely symmetric tensors, in which case the

number of classes is minimal, or

• G
2n , the space of 2n-order generic tensors, in which case the number of classes

is maximal.

In fact, as specified by the following theorems, in most situations the number of

classes is indeed maximal.

Theorem II (coupling tensors). Let us consider T
2p the space of coupling tensors

between two physics described by two tensor vector spaces E1 and E2. If these

tensor spaces are of orders greater than or equal to one, then I(T2p) = I(G2p).

Theorem III (proper tensors). Let us consider T
2p, the space of tensors of a proper

physics described by the tensor vector space E. If this tensor space is of order p ≥ 3,

and is solely defined in terms of its index symmetries, then I(T2p) = I(G2p).

Remark 2.4. Exceptions occur for

p = 1, when the space of symmetric second-order tensors is obtained, and

p = 2, when, in the case of T(i j), the space of elasticity tensors is obtained.

In each of these situations the number of classes is minimal. There is no other

situation where this case occurs. It should therefore be concluded that the space of

elasticity tensors is exceptional.
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Second strain-gradient elasticity (SSGE). Application of the former theorems will

be made on the even-order tensors of SSGE. First, the constitutive equations will

be summed up, and then the results will be stated. It worth noting that obtain-

ing the same results with the Forte–Vianello approach would have been far more

complicated.

Constitutive laws. In the second strain-gradient theory of linear elasticity [Mindlin

1965; Forest et al. 2011], the constitutive law gives the symmetric Cauchy stress

tensor10 σ (2) and the hyperstress tensors τ (3) and ω(4) in terms of the infinitesimal

strain tensor ε(2) and its gradients η(3) = ε(2) ⊗∇ and κ(4) = ε(2) ⊗∇ ⊗∇ through

the three linear relations:

σ (2) = E(4) : ε(2) + M(5)
∴ η(3) + N(6) :: κ(4),

τ (3) = MT (5) : ε + A(6)
∴ η(3) + O(7) :: κ(4),

ω(4) = NT (6) : ε(2) + OT (7)
∴ η(3) + B(8) :: κ(4),

(2-1)

where : , ∴ , and :: denote, respectively, the double, third, and fourth contracted

products. Above,11 σ(i j), ε(i j), τ(i j)k , η(i j)k = ε(i j),k , ω(i j)(kl), and κ(i j)(kl) = ε(i j),(kl)

are, respectively, the matrix components of σ (2), ε(2), τ (3), η(3), ω(4), and κ(4) rela-

tive to an orthonormal basis (i; j; k) of R
3. And E(i j) (lm), M(i j)(lm)n , N(i j)(kl)(mn),

A(i j)k (lm)n , O(i j)k(lm)(no), and B(i j)(kl) (mn)(op) are the matrix components of the

related elastic stiffness tensors.

Symmetry classes. The symmetry classes of the elasticity tensors and of the first

strain-gradient elasticity tensors has been studied in [Forte and Vianello 1996;

Le Quang et al. 2012]. Hence, here we solely consider the spaces of coupling

tensors N(6) and of second strain-gradient elasticity tensors B(8).

• We define Ces to be the space of coupling tensors between classical elasticity

and second strain-gradient elasticity:

Ces = {N(6) ∈ G
6 | N(i j)(kl)(mn)}.

A direct application of Theorem II leads to the result that

I(Ces)={[✶],[Z2],. . .,[Z6],[D2],. . .,[D6],[SO(2)],[O(2)],[T],[O],[I],[SO(3)]}.

Therefore Ces is divided into 17 symmetry classes.

• We define Sgr to be the space of second strain-gradient elasticity tensors:

Sgr = {O(8) ∈ G
8 | O(i j)(kl) (mn)(op)}.

10In this subsection only, tensor orders will be indicated by superscripts in parentheses.
11The comma classically indicates the partial derivative with respect to spatial coordinates. Su-

perscript T denotes transposition. Transposition is defined by permuting the p first indices with the

q last, where p is the tensorial order of the image of a q-order tensor.
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A direct application of Theorem III leads to the result that

I(Sgr)={[✶],[Z2],. . .,[Z8],[D2],. . .,[D8],[SO(2)],[O(2)],[T],[O],[I],[SO(3)]}.

Therefore Sgr is divided into 21 symmetry classes.

3. Mathematical framework

In this section the mathematical framework of symmetry analysis is introduced. In

the first two subsections the notions of symmetry group and class are introduced;

the last is devoted to the introduction of irreducible spaces. The presentation is

rather general, and will be specialized to tensor spaces only at the end of the section.

Isotropy/symmetry groups. Let ρ be a representation of a compact real Lie group12

G on a finite dimensional R-linear space E:

ρ : G → GL(E).

This action will also be denoted by

g · x = ρ(g)(x),

where g ∈ G and x ∈ E. For any element of E, the set of operations g in G leaving

this element invariant is defined as

6x := {g ∈ G | g · x = x}.

This set is known to physicists as the symmetry group of x and to mathematicians as

the stabilizer or isotropy subgroup of x. Owing to G-compactness, every isotropy

subgroup is a closed subgroup of G. Conversely, a dual notion can be defined for

G-elements. For any subgroup K of G, the set of K-invariant elements in E is

defined as

E
K := {x ∈ E | k · x = x for all k ∈ K }.

Such a set is referred to as a fixed point set and is a linear subspace of E. In this

context we will set d(K ) = dim E
K . It has to be observed that fixed-point sets

are group inclusion reversing, that is, for subgroups K1 and K2 of G, we have the

property

K1 ⊂ K2 =⇒ E
K2 ⊂ E

K1 .

For a given isotropy group K , the former sets are linked by the property

x ∈ E
K =⇒ K ⊂ 6x.

12In the following G will always represent a compact real Lie group, so this specification will

mostly be omitted.
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Isotropy/symmetry classes. We aim to describe objects that have the same sym-

metry properties but may differ by their orientations in space. The first point is to

define the set of all the positions an object can have. To that aim we consider the

G-orbit of an element x of E:

Orb(x) := {g · x | g ∈ G} ⊂ E.

Due to G-compactness this set is a submanifold of E. Elements of Orb(x) will

be said to be G-related. A fundamental observation is that G-related vectors have

conjugate symmetry groups. More precisely,13

Orb(x) = Orb(y) =⇒ 6x = g6yg−1 for some g ∈ G. (3-1)

Let us define the conjugacy class of a subgroup K ⊂ G by

[K ] = {K ′ ⊂ G | K ′ = gK g−1 for some g ∈ G}. (3-2)

An isotropy class (or symmetry class) [6] is defined as the conjugacy class of an

isotropy subgroup 6. This definition implies that there exists a vector x ∈ E such

that 6 = 6x and 6′ ∈ [6]; furthermore 6′ = g6g−1 for some g ∈ G. The notion

of isotropy class is a good notion to define the symmetry property of an object

modulo its orientation: a symmetric group is related to a specific vector, but we

deal with orbits, which are related to isotropy classes because of (3-1). Due to G-

compactness there is only a finite number of isotropy classes [Bredon 1972], and

we introduce the notation

I(E) := {[✶]; [61]; . . . ; [6l]},

the set of all isotropy classes. In the case G = SO(3) this result is known as

Hermann’s theorem [Herman 1945; Auffray 2008]. The elements of I(E) are

conjugate to SO(3)-closed subgroups; this collection was introduced in Lemma 2.1.

Irreducible spaces. For every linear subspace F of E, we set

g · F := {g.x | g ∈ G, x ∈ F}

and we say that F is G-stable if g ·F ⊂ F for every g ∈ G. It is clear that, for every

representation, the subspaces {0} and E are always G-stable. If, for a representation

ρ on E, the only G-invariant spaces are the proper ones, the representation will be

said to be irreducible. For a compact Lie group, the Peter–Weyl theorem [Sternberg

1994] ensures that every representation can be split into a direct sum of irreducible

13With the classical coset notation, if H is a subgroup of G and g ∈ G is not in the subgroup H ,

then a left coset of H in G is defined

gH = {gh : h ∈ H},

and symmetrically for a right coset.



188 MARC OLIVE AND NICOLAS AUFFRAY

ones. Furthermore, in the case G = SO(3), those irreducible representations are

explicitly known.

There is a natural action of SO(3) on the space of R
3-harmonic polynomials.

If p is a harmonic polynomial and x ∈ R
3, then for every g ∈ SO(3) we write

g · p(x) = p(g−1 · x).

Harmonic polynomials form a graded vector space, and to each subspace of a

given degree is associated an SO(3)-irreducible representation. H
k will be the

vector space of harmonic polynomials of degree k, with dim H
k = 2k + 1. If we

take a vector space V to be an SO(3)-representation, it can be decomposed into

SO(3)-irreducible spaces:

V =
⊕

H
ki .

Grouping together irreducible spaces of the same order, one obtains the SO(3)-

isotypic decomposition of a representation:

V =

n
⊕

i=0

αi H
i ,

where αi is the multiplicity of the irreducible space H
i in the decomposition, and

n is the order of the highest-order irreducible space of the decomposition.

Application to tensor spaces. In mechanics, V is a vector subspace of
⊗p

R
3. In

R
3 there exists an isomorphism, φ, between harmonic polynomial spaces and har-

monic tensor spaces [Backus 1970; Forte and Vianello 1996]. Therefore all that

has been said for harmonic polynomials can be translated in terms of harmonic

tensors. A detailed discussion on this isomorphism can be found in [Backus 1970].

Therefore H
k = ϕ(Hk) is the space of harmonic tensors, that is, the space of

completely symmetric and traceless tensors. According to this isomorphism, any

tensor space T
n can be decomposed into SO(3)-irreducible tensors:

T
n =

n
⊕

i=0

αi H
i .

The symmetry group of T ∈ T
n is the intersection of the symmetry groups of all

its harmonic components:14

6T =

n
⋂

i=0

( αi
⋂

j=0

6Hi, j

)

.

14In the notation Hi, j , the first superscript refers to the order of the harmonic tensor, while the

second indexes the multiplicity of Hi in the decomposition.



SYMMETRY CLASSES FOR EVEN-ORDER TENSORS 189

In the same way, I(Tn) will be obtained as a function of the symmetry classes of

the irreducible representations involved in the harmonic decomposition of T
n . The

symmetry classes of SO(3)-irreducible representations are explicitly known [Ihrig

and Golubitsky 1984; Golubitsky et al. 1988]; what is unknown is how to combine

these results to determine the symmetry classes of V (or T
n).

4. The clips operation

The aim of this section is to construct symmetry classes of a reducible representa-

tion from irreducible ones. With that goal a new class-operator, named the clips

operator, will be defined. The main result of this section is given in Table 2,

which contains all clips operations between SO(3)-closed subgroups. It is worth

noting that this table contains more results than strictly needed for the proofs of our

theorems. Nevertheless, we believe that these results are interesting on their own

and may find application in other problems. The explicit proofs of these results

can be found in the Appendix.

Here we consider the intersection of two symmetry classes only. Extensions to

more general reducible representations will be treated in Section 5. Let us start

with the following lemma:

Lemma 4.1. Let E be a representation of a compact Lie group G that splits into a

direct sum of two G-stable subspaces:

E = E1 ⊕ E2, where g · E1 ⊂ E1 and g · E2 ⊂ E2 for all g ∈ G.

If we denote by I the set of all isotropy classes associated with E and by Ii the set

of all isotropy classes associated with Ei (i = 1, 2), then [6] ∈ I if and only if there

exist [61] ∈ I1 and [62] ∈ I2 such that 6 = 61 ∩ 62.

Proof. If we take [61] ∈ I1 and [62] ∈ I2, we know there exist two vectors x1 ∈ E1

and x2 ∈ E2 such that 6i = 6xi
(i = 1, 2). Then, let x := x1 + x2.

For every g ∈ 61 ∩62 we have g ·x1 + g ·x2 = x1 +x2 = x; thus 61 ∩62 ⊂ 6x.

Conversely for every g ∈ 6x we have

g · x = x = g · x1 + g · x2.

But, since the Ei are G-stable and form a direct sum, we conclude that g · xi = xi

(i = 1, 2). The reverse inclusion is proved.

The other implication is similar: if we take [6] ∈ I then we have 6 = 6x for

some x ∈ E, and x can be decomposed into x1 +x2. The same proof as above shows

that 6 = 6x1
∩ 6x2

. �

Lemma 4.1 shows that the isotropy classes of a direct sum are related to inter-

sections of isotropy subgroups. But as intersection of classes is meaningless, the
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results cannot be directly extended. To solve this problem, a tool called the clips

operator will be introduced. We will make sure of a lemma:

Lemma 4.2. For every two G-classes [6i ] (i = 1, 2), and for every g1 and g2 in

G, there exists g = g−1
1 g2 in G such that

[g161g−1
1 ∩ g262g−1

2 ] = [61 ∩ g62g−1].

Proof. Let g = g−1
1 g2 and

6 = g161g−1
1 ∩ g262g−1

2 .

For every γ ∈ 6 we have γ = g1γ1g−1
1 = g2γ2g−1

2 for some γi ∈ 6i (i = 1, 2);

then

g1γ g−1
1 = γ1 ∈ 61 and g1γ g−1

1 = gγ2g−1 ∈ g62g−1.

Thus we have g16g−1
1 ⊂ 61 ∩g62g−1, and conversely. Since g16g−1

1 is conjugate

to 6, we have proved the lemma. �

Definition 4.3 (clips operator). We define the action of the clips operator ⊚ on

G-classes [61] and [62] by setting

[61]⊚ [62] := {[61 ∩ g62g−1] | g ∈ G},

which is a subset of G-classes.

If we denote by ✶ the identity subgroup, we have some immediate properties:

Proposition 4.4. For every G-class [6] we have

[✶]⊚ [6] = {[✶]} and [G]⊚ [6] = {[6]}.

Given two G-representations E1 and E2, if we denote by Ii the set of all isotropy

classes of Ei , the action of the clips operator can be extended to these sets via

I1 ⊚ I2 :=
⋃

61∈I1
62∈I2

[61]⊚ [62].

Then, by Lemma 4.1, we obtain:

Corollary 4.5. For every two G-representations E1 and E2, if I1 denotes the

isotropy classes of E1 and I2 the isotropy classes of E2, then I1 ⊚ I2 are all

the isotropy classes of E1 ⊕ E2.

Theorem 4.6. For any two SO(3)-closed subgroups 61 and 62, we have ✶ ∈

[61] ⊚ [62]. The remaining classes in the clips product [61] ⊚ [62] are given

in Table 2.
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⊚ [Zn] [Dn] [T] [O] [I] [SO(2)] [O(2)]

[Zm] [Zd ]

[Dm]
[Zd2

]

[Zd ]

[Zd2
]

[Zd ′
2
], [Zdz]

[Zd ], [Dd ]

[T]
[Zd2

]

[Zd3
]

[Z2]

[Zd3
], [Dd2

]

[Z2]

[Z3]

[T]

[O]

[Zd2
]

[Zd3
]

[Zd4
]

[Z2]

[Zd3
], [Zd4

]

[Dd2
], [Dd3

]

[Dd4
]

[Z2]

[Z3]

[T]

[Z2]

[D2], [Z3]

[D3], [Z4]

[D4], [O]

[I]

[Zd2
]

[Zd3
]

[Zd5
]

[Z2]

[Zd3
], [Zd5

]

[Dd2
]

[Dd3
], [Dd5

]

[Z2]

[Z3]

[T]

[Z2]

[Z3], [D3]

[T]

[Z2]

[Z3], [D3]

[Z5], [D5]

[I]

[SO(2)] [Zn]
[Z2]

[Zn]

[Z2]

[Z3]

[Z2]

[Z3], [Z4]

[Z2]

[Z3], [Z5]
[SO(2)]

[O(2)]
[Zd2

]

[Zn]

[Z2]

[Dn]

[D2]

[Z3]

[D2]

[D3], [D4]

[D2]

[D3], [D5]

[Z2]

[SO(2)]

[Z2]

[O(2)]

Table 2. Action of the clips operation on SO(3)-subgroups.

Conventions: Z1 := D1 := ✶; d2 := gcd(n, 2); d3 := gcd(n, 3);

d5 := gcd(n, 5); d ′
2 := gcd(m, 2); dz := 2 if d = 1, 1 otherwise;

d4 := 4 if 4 |n, 1 otherwise.

5. Isotropy classes of harmonic tensors

We now turn to the construction of the symmetry classes of a reducible represen-

tation from its irreducible components. The first subsection states the main results

on symmetry classes of irreducible representations. Thereafter we derive from

the results of the previous section the basic properties of reducible representations.

These results will be used in Section 6 to prove the theorems stated in Section 2.

From now on, all results will be expressed in terms of tensor spaces.

Isotropy classes of irreducibles. The following result was obtained in [Ihrig and

Golubitsky 1984; Golubitsky et al. 1988]:
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Theorem 5.1. Let SO(3) act on H
k . The following groups are symmetry classes

of H
k :

(a) ✶ for k ≥ 3.

(b) Zn (n ≥ 2) for n ≤ k when k is odd, n ≤ k/2 when k is even.

(c) Dn (n ≥ 2) for n ≤ k.

(d) T for k = 3, 6, 7 or k ≥ 9.

(e) O for k 6= 1, 2, 3, 5, 7, 11.

(f) I for k = 6, 10, 12, 15, 18 or k ≥ 20 and k 6= 23, 29.

(g) SO(2) for k odd.

(h) O(2) for k even.

(i) SO(3) for any k.

For future purposes, let us introduce some notation. For each integer k, we let:

ŴT(k) :=

{

T if T ∈ I
k,

∅ otherwise;

ŴO(k) :=

{

O if O ∈ I
k,

∅ otherwise;

ŴI(k) :=

{

I if I ∈ I
k,

∅ otherwise;

6(k) :=

{

SO(2) if SO(2) ∈ I
k,

∅ otherwise;

�(k) :=

{

O(2) if O(2) ∈ I
k,

∅ otherwise;

where I
k is the set of symmetry classes of H

k .

Isotropy classes of direct sum. We have this obvious lemma, directly deduced

from Theorem 5.1:

Lemma 5.2. ŴT(k) 6= ∅ =⇒ {[D2], [D3]} ⊂ I
k,

ŴO(k) 6= ∅ =⇒ {[D2], [D3], [D4]} ⊂ I
k,

ŴI(k) 6= ∅ =⇒ {[D2], . . . , [D5]} ⊂ I
k .

We denote by I(k, n) the (n − 1)-fold self clips product of Ik , which is the set

of isotropy classes of a n-tuple of k-th harmonic tensors [Auffray et al. 2011], that

is, nH
k . The basic operations are, for all integers k ≥ 1 and n ≥ 2,

I(k, n) := I
k
⊚ I(k, n − 1) and I(k, 1) := I

k .
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On the simple example of H
2, the following fact can be observed:

I(2, n) := I
2
⊚ I(2, n − 1) = I

2
⊚ I

2 = {[✶], [Z2], [D2], [O(2)], [SO(3)]}.

This result can be generalized:

Corollary 5.3. For all integers n ≥ 2 and k ≥ 2, the isotropy classes of nH
k are

I(k, n) = I
k
⊚ I

k

= {[✶], [Z2], . . . , [Zk],

[D2], . . . , [Dk], [ŴT(k)], [ŴO(k)], [ŴI(k)], [6(k)], [�(k)], [SO(3)]}.

Proof. From Theorem 5.1 we know that [Dl] ∈ I
k for 2 ≤ l ≤ k; furthermore,

[SO(3)] ∈ I
k . Then from Proposition 4.4 we know that, for all integers 2 ≤ l ≤ k

we will have (by induction), for all n ≥ 2, [Dl] ∈ I(k, n). Then, when we compute

I(k, n)⊚I
k we will have [Dl]⊚[Dl]= {[✶], [Zl], [Dl]}. Neither [O(2)] nor [SO(2)],

with cyclic or dihedral conjugacy classes, generates other cases. The same occurs

for the clips product of cyclic groups. Now, because of Lemma 5.2 we also see

that no exceptional conjugacy class generates other cases. �

Corollary 5.4. For all integers 2 ≤ 2p < 2q, we have

I(2p, 2q) :=I
2p

⊚ I
2q

={[✶], [Z2], . . . , [Zmax(q;2p)], [D2], . . . , [D2q ], [ŴT (2p) ∪ ŴT (2q)],

[ŴO(2p) ∪ ŴO(2q)], [ŴI (2p) ∪ ŴI (2q)], [O(2)], [SO(3)]}.

Proof. Because [SO(3)] ∈ I
ki (i = 1, 2), it is clear that we will have all [Dl] for

2 ≤ l ≤ 2q. Then we will have all [Zi ]⊚ [SO(3)], for 1 ≤ i ≤ p. We also have

[Z j ] ∈ [D j ]⊚ [D j ], for 1 ≤ j ≤ 2q; this shows that

{[✶], [Z2], . . . , [Zmax(q;2p)]} ⊂ I[2p, 2q].

Now, we can observe that the clips product of dihedral groups and [O(2)] does not

generate cyclic groups, and Lemma 5.2 shows that no other cases can be generated

with exceptional subgroups. �

6. Isotropy classes of constitutive tensors

The symmetry classes of an even-order tensor space. Let us consider the CTS T
2n .

It is known that this space can be decomposed orthogonally into a full symmetric

space and a complementary one which is isomorphic to a tensor space of order

2n − 1 [Jerphagnon et al. 1978]:

T
2n = S

2n ⊕ C
2n−1.



194 MARC OLIVE AND NICOLAS AUFFRAY

Let us consider the SO(3)-isotypic decomposition of T
2n:

T
2n =

2n
⊕

k=0

αkH
k, with α2n = 1.

The part related to S
2n solely contains even-order harmonic tensors with multiplic-

ity one [Jerphagnon et al. 1978], that is,

S
2n =

n
⊕

k=0

H
2k and C

2n−1 =

2n−1
⊕

k=0

α′
kH

k with α′
k =

{

αk for k odd,

αk − 1 for k even.

Using the clips operator, the symmetry classes of T
2n can be expressed:

I(T2n) := I(S2n)⊚ I(C2n−1).

Let us first determine the symmetry classes of S
2n . Using the results of the previous

section, we have:

Lemma 6.1.

I(S2) = {[D2], [O(2)], [SO(3)]}

I(S4) = {[✶], [Z2], [D2], [D3], [D4], [O(2)], [O], [SO(3)]}

I(S2n) = {[✶], [Z2], . . . , [Z2(n−1)], [D2], . . . , [D2n], [O(2)], [T], [O], [I], [SO(3)]}

if n ≥ 3.

In particular,

#I(S2) = 3, #I(S4) = 8, #I(S2n) = 2(2n + 1).

Proof. The case n = 1 is obtained as a direct application of Theorem 5.1 and

Proposition 4.4. For n ≥ 2, let us consider Corollary 5.4 in the case of k1 = 2(n −1)

and k2 = 2n:

I(2(n − 1), 2n)

:= {[✶], [Z2], . . . , [Z2(n−1)], [D2], . . . , [D2n], [ŴT (2(n − 1)) ∪ ŴT (2n)],

[ŴO(2(n − 1)) ∪ ŴO(2n)], [ŴI (2(n − 1)) ∪ ŴI (2n)], [O(2)], [SO(3)]}.

In the collection of planar isotropy classes, [Z2n−1] and [Z2n] are missing. It should

be observed that the clips product I[2(n − 1), 2n]⊚I
2(n−2) can never complete the

sequence.

For exceptional groups it can be observed that for any n ≥ 3 the SO(3)-irreducible

decomposition will contain H
6. As {[T], [O], [I]} are isotropy classes for H

6, it

would be the same for any space that contains H
6.

Therefore, for n ≥ 3,
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I(S2n)={[✶], [Z2], . . . , [Z2(n−1)], [D2], . . . , [D2n], [O(2)], [T], [O], [I], [SO(3)]}

and #I(S2n) = 2(2n + 1).

For the case n = 2, we obtain the same result but without the classes T and I

and, in such a case, #I(S4) = 8. �

Definition 6.2. For a given SO(3) representation on the tensor space T
2n (n ≥ 3),

we define

C(2n)

= {[✶], [Z2], . . . , [Z2n], [D2], . . . , [D2n], [SO(2)], [O(2)], [T], [O], [I], [SO(3)]}.

We also define

C(2) = {[✶], [Z2], [D2], [SO(2)], [O(2)], [SO(3)]},

C(4) = {[✶], [Z2], . . . , [Z4], [D2], . . . , [D4], [SO(2)], [O(2)], [T], [O], [SO(3)]}.

One can observe that these sets are in fact all the isotropy classes allowed by

Hermann’s theorem, and we clearly have

#C(2) = 6, #C(4) = 12, #C(2n, n ≥ 3) = 4n + 5.

Definition 6.3. Let T
2n be a tensor space which SO(3)-irreducible decomposition

is T
2n ≃

⊕2n
k=0 αkH

k . T
2n is said to be even-harmonic (EH) if α2p+1 = 0 for each

0 ≤ p ≤ (n − 1).

Lemma 6.4. The vector space G
2n of 2n-th order tensors with no index symmetries

is not EH.

Proof. For n ≥ 1, the induced reducible SO(3)-representation on G
2n =

⊗2n
R

3 is

constructed by tensorial products of the vectorial one. Such a construction implies

odd-order tensors in the harmonic decomposition of G
2n . �

Now we can prove Theorem I, which we restate in the following form:

Theorem I. Let T
2n be a tensor space, with n ≥ 3. If T

2n is EH then I(T2n) =

I(S2n); otherwise, I(T2n) = I(G2n).

Proof. We consider the SO(3)-irreducible decomposition of T
2n , which can be

written T
2n ≃ S

2n ⊕ C
2n−1. The following inclusions always hold:

I(S2n) ⊆ I(T2n) ⊆ I(G2n) ⊆ C(2n).

If T
2n is not EH, there exists at least one k ∈ N such that α2k+1 6= 0; then

I(S2n)⊚ [SO(2)] ⊆ I(S2n)⊚ I(C2n−1) = I(T2n),

since, from Theorem 5.1, any odd-order harmonic tensor admits [SO(2)] as a sym-

metry class. From Lemma 6.1, dihedral groups are contained up to 2n in I(S2n),
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so the missing cyclic groups of I(S2n) are obtained by clips products with [SO(2)].

Therefore

I(S2n)⊚ SO(2) = C(2n);

hence I(T2n) = C(2n). Since G
2n is not EH, I(G2n) = C(2n). We conclude, as

desired, that if T
2n is not EH then I(T2n) = I(G2n).

Conversely, if T
2n is EH, C

2n−1 contains only even-order irreducible spaces and

its leading harmonic spaces are, at most, of order 2(n − 1). If the orders of the

leading harmonic spaces are strictly less than 2(n − 1), the same analysis as for

Lemma 6.1 leads to the same conclusion. Now suppose that α′
2(n−1) ≥ 1; using all

the previous results, we have

I(T2n) = I(S2n)⊚ I(C2n−1)

= (I2n
⊚ I

2(n−1))⊚
(

I(2(n − 1), α′
2(n−1))⊚ I(2(n − 2), α′

2(n−2))
)

=
(

I
2n
⊚ I(2(n − 1), 2)

)

= I(S2n)⊚ I
2(n−1).

Since I
2(n−1) does not contain [SO(2)], the missing classes cannot be generated;

therefore I(T2n) = I(S2n). �

We must conclude, then, that for any 2n-order tensor space, the symmetry

classes are the same as those of either S
2n or G

2n . In the next subsection we

investigate under what conditions each of the possibilities holds.

Construction of a CTS. This last subsection will be devoted to the proof of our

main result. The space of constitutive tensors is a subspace of linear maps from E1

to E2. As seen in Section 2,

L(E1, E2) ≃ E1 ⊗ E2 ⊂ T
p ⊗ T

q ≃ T
2n=p+q .

These vector spaces describe the physical quantities involved in the problem under

study. We know, from the previous section, that any CTS has as many symmetry

classes as either the complete symmetric tensor space, or the generic tensor space.

Here we are interested in obtaining the conditions both on E1 to E2 and on the tensor

product (symmetric or not) under which T
2n is even-harmonic, and therefore has a

minimal number of symmetry classes. Distinction will be made between coupling

and proper tensor spaces, in the sense previously defined in Section 2.

Coupling tensor spaces. We consider here two STS given by their SO(3) isotypic

decompositions:

E1 = T
p =

p
⊕

i=0

βi H
i and E2 = T

q =

q
⊕

i=0

γ j H
j ,

with βp = γq = 1.

Lemma 6.5. If E1 6= E2, p > q and if T
p ⊗ T

q is EH, then T
p is EH and T

q = H
0.
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Proof. It is sufficient to consider the tensor product of the two leading irreducible

spaces, and to use the Clebsch–Gordan product for SO(3) [Jerphagnon et al. 1978;

Auffray 2008]. We obtain

H
p ⊗ H

q =

p+q
⊕

i =|p−q|

H
i .

Therefore p must be even, and q = 0. Therefore T
q = γ0H

0, and by hypothesis

γ0 = 1. Thus T
p has to be EH. �

Lemma 6.6. If E1 = E2 (and then p = q) and if T
p ⊗ T

p is EH then βi = γi .

Furthermore, if L(E1) is not self-adjoint then T
p = H

0.

Proof. The demonstration is the same as the preceding proof. �

As a direct application of the two preceding two lemmas, we have:

Theorem II. Consider T
2p, the space of coupling tensors between two physics

described by two tensor vector spaces E1 and E2. If these tensor spaces have order

at least one, then I(T2n) = I(G2n).

Proper tensor spaces. In this case we have:

Lemma 6.7. Let E = E1 = E2 = T
p. Assume T

2p ⊂ L(E) is self-adjoint and EH.

Then:

• If p = 2m + 1, then T
2m+1 = H

2m+1.

• If p = 2m, then T
2m = H

2m ⊕ β0H
0.

Proof. Because L(E) is self-adjoint the tensor product is replaced by the symmetric

tensor product, and if T
p =

⊕p

i=0 βi H
i , the symmetric tensor product T

p ⊗S
T

p

can be decomposed into a direct sum of

β2
i H

i ⊗S
H

i and βiβ j H
i ⊗ H

j , with i < j ∈ {0, . . . , p},

with the following Clebsch–Gordan rule for the symmetric product:

H
k ⊗S

H
k =

k
⊕

i=0

H
2i .

Therefore, we cannot have the tensor product H
i ⊗ H

j for 1 ≤ i ≤ p − 1 and i 6= j ;

thus we deduce that

T
p = β0H

0 ⊕ H
p and T

p ⊗S
T

p = β0H
0 ⊕ (Hp ⊗S

H
p) ⊕ 2β0H

p.

Then either p is odd, and β0 = 0, or p is even, and T
p = β0H

0 ⊕ H
p. �

We therefore obtain:
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Theorem III. Consider T
2p, the space of tensors of a proper physics described

by the tensor vector space E. If this tensor space is of order p ≥ 3, and is solely

defined in terms of its index symmetries, then I(T2n) = I(G2n).

Proof. Any tensor subspace defined in terms of its index symmetries contains, as a

subspace, the space of full symmetric tensors. Since p = 3, the harmonic decom-

position of S
3 does not satisfy the condition of Lemma 6.7. Direct application of

this lemma leads to the conclusion. �

Remark 6.8. It can be observed that CTS having a minimum number of classes

can nevertheless be constructed. They consist in spaces of self-adjoint linear appli-

cations between harmonic spaces, which are defined both from complete symmetry

under index permutations and a traceless property.

7. Conclusion

In this paper the symmetry class determination of even-order tensors has been

studied. Based on a new geometric approach, a complete and general answer to

this recurrent problem in continuum mechanics has been given. Application of our

results solves problems directly that would have been difficult to manage with the

Forte–Vianello method. As an example, and for the first time, the symmetry classes

of the even-order tensors involved in Mindlin second strain-gradient elasticity were

given. To reach this goal a geometric tool, called the clips operator, has been intro-

duced. Its main properties and all the products for SO(3)-closed-subgroups were

also provided. We believe that these results may find applications in other contexts.

Using the geometrical framework introduced in this paper, some extensions of the

current method can be considered:

• Extending this approach to odd-order tensors.

• Taking into account the coexistence of different symmetry properties for the

physical properties of architectured multimaterials.

These extensions will be the objects of forthcoming papers.

Appendix: Clips operation on SO(3)-subgroups

Here we establish results concerning the clips operator on SO(3)-subgroups. The

geometric idea to study the intersection of symmetry classes relies on the sym-

metry determination of composite figures the symmetry groups of which are the

intersection of two elementary figures. As an example we consider the rotation

r = Q(k; π/3); determining D4 ∩ rD4rt is tantamount to establishing the set of

transformations letting the composite Figure 1 invariant.
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i

j

Figure 1. Composite figure associated with D4 ∩ rD4rt , where r = Q(k; π/3).

Parametrization of subgroups. We will define geometric elements for each SO(3)

closed subgroup:

• The cyclic group Zn is characterized by the Oz axis; it will be denoted by

Z0
n := Zn .

• The same convention is retained for the dihedral group Dn , that is, D0
n := Dn .

• For the cube C0 (see Figure 2a) we defined its vertex collection {Ai }i=1...8 =

(±1; ±1 ± 1); C0 is O
0-invariant.

• For the tetrahedron we consider Figure 2a and define T0 to be the tetrahedron

A1 A3 A7 A5; T0 is T
0-invariant.

• For the dodecahedron (see Figure 2b), we denote by D0 the figure with the

following vertices (where φ is the golden ratio):

– twelve vertices of type (±a/2, ±φ2a/2, 0) circularly permuted and

– eight vertices of a cube with coordinates (±φa/2, ±φa/2, ±φa/2).

b

A1

b
A2

b
A7

b
A6b

A5

b
A8

b
A3

b

A4

bO

i

j
k

b
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bD13

bD7

b

D14

b D15

b

D20

b

D19

b

D5

bD1

bD3

bD2

bD8

b

D9

bD17

bD16

b

D12

bD11

b

D18
bD4

bD10

b

O

(a) (b)

Figure 2. Cube C0 (a) and dodecahedron D0 (b).
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Axes and subgroup classes. For every SO(3)-subgroup, we defined its g conju-

gate in the following way: K g = gK 0gt , where the superscript g indicates the

transformation, and 0 the initial configuration. To proceed towards our analysis

we need to introduce the following group decomposition [Ihrig and Golubitsky

1984; Golubitsky et al. 1988].

Definition A.1. Let K1, K2, . . . , Ks be subgroups of 6. Then 6 is the direct union

of the Ki if

6 =

s
⋃

i=1

Ki and Ki ∩ K j = {e} if i 6= j.

In this case we write K =
⊎s

i=1 Ki .

We give some important details about the geometric structure of an SO(3)-

subgroup:

• Z0
n is characterized by the Oz axis, generated by k. For every rotation g ∈

SO(3), we denote by a the axis generated by gk and let Za
n = Z

g
n indicate the

rotation axis.

• D0
n is characterized by its primary axis Oz and several secondary axes bl .

Therefore

D0
n = Z0

n

n−1
⊎

l=0

Z
bl

2 . (A.1)

Each bl is perpendicular to Oz. They are related by the Z0
n generator. D0

n is

chosen such that one bl is generated by i. For every rotation g ∈ SO(3) we

define a — generated by gk — to be the primary axis and b — generated by

gi — to be the secondary one; this is denoted by

Da,b
n = Dg

n .

• The subgroup T
0 can be split into a direct union of cyclic subgroups [Ihrig

and Golubitsky 1984]:

T
0 =

4
⊎

i=1

Z
vti
3 ⊎

3
⊎

j=1

Z
et j

2 , (A.2)

where the vertex axes of the tetrahedron are written vti and the edge axes et j ;

the details of these axes appear in Figure 2a. Each conjugate subgroup T
g

will be characterized by the set of its axes (gvti , geti ), g ∈ SO(3).

• The octahedral subgroup O
0 splits into

O
0 =

3
⊎

i=1

Z
f ci

4 ⊎

4
⊎

j=1

Z
vc j

3 ⊎

6
⊎

l=1

Z
ecl

2 , (A.3)
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Figure 3. Symmetry axes of C0.

where the vertex, edge, and face axes are denoted respectively by vci , ec j ,

and f c j . Details can be found in Figure 3. For every rotation g ∈ SO(3), O
g

is characterized by its set of transformed axes (g f ci , gec j , gvcl).

• The icosahedral group I
0 splits into

I
0 =

6
⊎

i=1

Z
f di

5 ⊎

10
⊎

j=1

Z
vd j

3 ⊎

15
⊎

l=1

Z
edl

2 , (A.4)

where the vertex, edge, and face axes are denoted respectively by vdi , ed j ,

and f d j ; the details can be found in Figure 2b. The vertex axes vd j are

characterized by the vertices D j for j = 1 . . . 10.

Planar subgroups.

Cyclic subgroups. We begin with the following lemma.

Lemma A.2. For every two integers m and n greater than 2, and for every two

axes a and b:

• If a 6= b then Za
n ∩ Zb

m = ✶.

• If a = b then by setting d := gcd(m, n) we will have Za
n ∩ Zb

m = Za
d .

Proof. Let g ∈ Za
n ∩Zb

m , with a 6= b. Both a and b are generated by two noncollinear

eigenvectors for g, with eigenvalue 1. As det g = 1 the third eigenvalue is also 1,

therefore g = e. Thus we have the first point of the lemma. If now we take, for

example, a common rotation of Z0
n and Z0

m , then this rotation corresponds to an
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angle θ = 2lπ/n = 2rπ/m with r and l integers. Thus lm = rn and, setting

m = dm1 and n = dn1, we will have lm1 = rn1. As m1 and n1 are relatively prime,

we deduce that

l = αn1 and then θ =
2lπ

n
=

2απ

d
∈ Z0

d .

The converse inclusion is obvious, so we can conclude the lemma. �

A direct application of Lemma A.2 to the intersection Z0
n ∩Z

g
n leads to the result:

Lemma A.3. For all integers n and m, we set d =gcd(n, m); we have [Zn]⊚[Zm]=

{[✶], [Zd ]}.

Dihedral subgroups. Let us consider first the intersection Ŵ = D0
n ∩ Za

m . As D0
n =

Z0
n

⊎n
l=1 Z

bl

2 the following cases have to be considered:

• When Oz = a, the intersection Ŵ = Z0
n ∩ Za

m and one can apply Lemma A.2.

• When, for some l, we have a = bl , then Z0
n ∩ Za

m = ✶ and one has to consider

Zb
2 ∩ Za

m , which equals the identity as soon as m is odd.

Lemma A.4. For every two integers n and m, we set d := gcd(n, m) and d2(m) :=

gcd(m, 2); then we have

[Dn]⊚ [Zm] = {[✶], [Zd2(m)], [Zd ]}.

Now consider the second kind of intersection:

Ŵ = D0
n ∩ Dg

m =
(

D0
n = Z0

n ⊎

n
⊎

l=1

Z
bl

2

)

∩
(

Dg
m = Za

m ⊎

m
⊎

l=1

Z
gbl

2

)

.

The following cases have to be considered:

• When Oz = a and Ox = gbl0 for some l: if d = 1 then Ŵ = Z
b0

2 , otherwise

Ŵ = D0
m .

• When Oz = a and Ox 6= gbl : Ŵ = Z0
d .

• When Oz = gbl for some l: if n is even then Ŵ = Z2, otherwise Ŵ = ✶. The

results are the same when the primary axis of D
g
m coincides with a secondary

axis of D0
n .

Lemma A.5. For all integers n and m, we set d := gcd(n, m) and

d2(m) := gcd(m, 2), d2(n) := gcd(n, 2), dz :=

{

2 if d = 1,

1 otherwise.

Then we have [Dn]⊚ [Dm] = {[✶], [Zd2(n)], [Zd2(m)], [Zdz], [Zd ], [Dd ].
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Clips operations on exceptional and maximum subgroups. Here we are concerned

with the subgroups T
0, O

0, I
0, SO(2)0, and O(2)0. For these studies, we will

use results concerning their proper subgroups [Ihrig and Golubitsky 1984]. This

information is summed up in the following diagram [Auffray et al. 2011], whose

arrows are to be understood as inclusion of conjugates.

Figure 4. Exceptional subgroups in the poset of the closed sub-

group of SO(3).

Tetrahedral subgroup. We revisit the decomposition (A.2):

T
0 = Z

vt1
3 ⊎ Z

vt2
3 ⊎ Z

vt3
3 ⊎ Z

vt4
3 ⊎ Z

et1
2 ⊎ Z

et2
2 ⊎ Z

et3
2 .

We begin by studying T
0 ∩ Za

n . As a consequence of Lemma A.2, the primary axis

of Za
n must be an edge axis or a face axis of the tetrahedron. We therefore obtain:

Lemma A.6. For every integer n, we set d2(n) := gcd(n, 2) and d3(n) := gcd(3, n);

then we have [Zn]⊚ [T] = {[✶], [Zd2(n)], [Zd3(n)]}.

Now let us consider Ŵ = T
0 ∩ D

g
n . We will use the primary and secondary axes

of the dihedral subgroup:

Dg
n = Za

n

⊎

Zb
2.

We recall that the vertex axes of the tetrahedron are denoted by vti and the edge

axes are denoted by et j . It is clear that Ŵ is a subgroup of T
0. Furthermore:
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• As soon as 3 |n if a = vti then Ŵ = Z3 is maximal.

• When 2|n we can find g such that a = et j . Then if b = et j , Ŵ = D2; otherwise

Ŵ = Z2.

• In any case, when we only have b = et j , then Ŵ = Z2.

Finally we can deduce the lemma:

Lemma A.7. For every integer n we denote d2(n) := gcd(2, n) and d3(n) :=

gcd(3, n); then we have [Dn]⊚ [T] = {[✶], [Z2], [Zd3(n)], [Dd2(n)]}.

Now, for the study of Ŵ = T
0 ∩ T

g the arguments will be based on T subgroups

as well as on the axes.

• First, we can find a g such that all the axes are modified; in this case Ŵ = ✶.

• A rotation around a face or an edge axis can be found such that only this axis

is left fixed. Then Ŵ = Z2 or Ŵ = Z3 depending on the fixed axis.

• If we have Ŵ ⊃ D2 then we can deduce that g carries two edge axes onto two

edge axes. After a given permutation of axes (which leaves fixed T
0) we can

suppose that g leaves fixed axes vt1 and vt2; we then conclude that g fixes

also the axis vt3 and then T
g = T

0. Thus we have here Ŵ = T
0.

We deduce here the following lemma:

Lemma A.8. We have [T]⊚ [T] = {[✶], [Z2], [Z3], [T].

Octahedral subgroup. We begin by taking back the decomposition (A.3):

O
0 =

3
⊎

i=1

Z
f ci

4 ⊎

4
⊎

j=1

Z
vc j

3 ⊎

6
⊎

l=1

Z
ecl

2 .

As in the case of the tetrahedron, we directly get the lemma:

Lemma A.9. For every integer n, we write

d2(n) = gcd(n, 2), d3(n) = gcd(n, 3), d4(n) =

{

4 if 4 |n,

1 otherwise.

Then we have [Zn]⊚ [O] = {[✶], [Zd2(n)], [Zd3(n)], [Zd4(n)].

To study the clips operation with dihedral groups, we proceed in the same way

as for the tetrahedron subgroup. The purpose is to examine axes of the cube and

dihedral group. The arguments are about the same in each case. Therefore we will

only detail the cases where 4 ∤ n, 3 |n and n is odd.

• If a = vc j : then if b = f c j , Ŵ = D3; otherwise Ŵ = Z3.

• If a = f c j : then if b = f c j , Ŵ = Z2; otherwise Ŵ = ✶.

• If a = ec j : then if b = ec j or b = f c j , Ŵ = Z2.
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All these arguments leads us to the following lemma:

Lemma A.10. For every integer n, we set

d2(n) := gcd(n, 2), d3(n) := gcd(n, 3), d4(n) :=

{

4 if 4 |n,

1 otherwise.

Then we have [Dn]⊚ [O] = {[✶], [Z2], [Zd3(n)], [Zd4(n)], [Dd2(n)], [Dd3(n)], [Dd4(n)]}.

Now, we take Ŵ = O
0 ∩T

g and one can observe that if Ŵ is necessarily a common

subgroup of O
0 and T

g, then its class must contain (in the sense of the partial order)

[✶], [Z2], [Z3], [D2], or [T]. After that:

• There exists a rotation g around an edge axis of T
0 (that is, a common face

axis of the cube) such that only this axis is fixed; and then Ŵ = Z2.

• There exists a rotation g around a vertex axis of T
0 (that is, a common vertex

axis of the cube) such that only this axis is fixed; and then Ŵ = Z3.

• As soon as Ŵ ⊃ D2, as in the tetrahedral case, we necessarily have Ŵ = T
0.

We conclude here the lemma:

Lemma A.11. We have [T]⊚ [O] = {[✶], [Z2], [Z3], [T]}.

For the study of Ŵ = O
0 ∩ O

g we will also use arguments based on subgroups.

Some results are nevertheless more subtle:

• First, there exists a rotation g that fixes only one edge axis, and in that case

Ŵ = Z2.

• Then there exists a rotation that leaves fixed only one vertex axis, and in that

case Ŵ = Z3.

• There exists also a rotation that leaves fixed only one face axis, and no other

axis is fixed. See the figure below, which illustrates the case Ŵ = Z4.

b b

bbb

b b

bb

b

b

b

b

b

b

b

b

b

O
0 ∩ O

g = Z4

• We can also find a rotation that leaves fixed a face axis and which brings an

edge axis onto a face axis. Indeed, when we take g = Q(i; π/4) we obtain

Ŵ = Zi
4 ⊎ Zk

2 = D4; see left figure on the next page.
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b
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O
0 ∩ O

g = D4 O
0 ∩ O

g = D2

• If we take g = Q(k; π/4) ◦ Q(i; π/4) we directly obtain Ŵ = D2. We can

exactly compute that g f c3 = ec6, gec1 = f c1, and gec2 = ec5 and no other

axes correspond; see figure above and to the right.

• If we take g = Q(vc1, π) we will find Ŵ = D3 with vc1 as primary axis and

ec5 a secondary axis.

• If Ŵ ⊃ T then, necessarily, g leaves fixed the three edge axes of the tetrahedron,

and then g will fix the cube C0; thus Ŵ = O
0.

Finally we get the lemma:

Lemma A.12. We have [O]⊚ [O] = {[✶], [Z2], [D2], [Z3], [D3], [Z4], [D4], [O]}.

Icosahedral subgroup. We take the decomposition (A.4):

I
0 =

6
⊎

i=1

Z
f di

5 ⊎

10
⊎

j=1

Z
vd j

3 ⊎

15
⊎

l=1

Z
edl

2 .

As in the previous situations, we directly get the lemma:

Lemma A.13. For every integer n, we set

d2 := gcd(n, 2), d3 := gcd(n, 3), d5 := gcd(n, 5).

Then we have [Zn]⊚ [I] = {[✶], [Zd2
], [Zd3

], [Zd5
]}.

Now, for the study of I
0 ∩ D

g
n we again use the arguments about axes:

• If a = f t j or a = vt j , then Ŵ ∈ {Zd3
, Zd5

, Dd3
Dd5

}.

• If a = et j then Ŵ ∈ {Zd2
, Dd2

}.

When we argue on the secondary axis of D
g
n , we see that we can always have Z2.

Finally we get the lemma:
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Lemma A.14. For every integer n, we set

d2 := gcd(n, 2), d3 := gcd(n, 3), d5 := gcd(n, 5).

Then we have

[Dn]⊚ [I] = {[✶], [Z2], [Zd3
], [Zd5

], [Dd2
], [Dd3

], [Dd5
]}}.

For the intersection I
0 ∩T

g it is clear, because of the inclusion T
0 ⊂ I

0, that we

can obtain all the classes of [T]⊚ [T]. If now this intersection contains a subgroup

D2, we will necessarily have

D2 = Z
get1
2 ⊎ Z

get3
2 ⊎ Z

get3
2 ,

where geti are the three edge axis of the tetrahedron gT0. These three axes will

then have to correspond to three perpendicular axes of the dodecahedron. After

permutation of the axes, which leaves the dodecahedron fixed, we can suppose

that these three axes are generated by the three vectors of the basis. But, then, the

vertex axes of the tetrahedron will correspond to vertex axes of the embedded cube

in the dodecahedron. We can then deduce that the intersection will be the whole

T subgroup.

Now we have to study Ŵ = I
0 ∩O

g. For that, we refer to the common subgroups

of [O] and [I]. Such subgroups can clearly be taken from the poset on page 203.

First, it is clear that, when the cube related to O
g is the embedded cube in the

dodecahedron, we will have Ŵ = T.

We also can find a rotation g such that Ŵ contains D3: indeed, g has to bring

the vertex axis of the cube vc1 onto the vertex axis of the dodecahedron vd5 and

the edge axis of the cube ec5 onto the edge axis of the dodecahedron ed7. With the

maximality argument, we can deduce that Ŵ = D3. We now have to examine the

case of D2, Z3, and Z2:

• When Ŵ ⊃ D2, then, after permuting of the axes of the dodecahedron, we can

suppose that g leaves fixed the three axes of the basis vector. But these three

axes are axes of rotation of order 2 of the dodecahedron. Thus, g will fix the

cube C0 and we can deduce that O
g = O

0. We then have Ŵ = T.

• We can find a rotation g around a vertex axis, for example, vd5 such that

Ŵ = Z3.

• As above, we can find a rotation around an edge axis, such that Ŵ = Z2.

We finally conclude with the formula:

[O]⊚ [I] = {[✶], [Z2], [Z3], [D3], [T]}.

For the intersection Ŵ = I
0 ∩I

g we will have to study the case of classes [T], [D3],

[D5], [D2], [Z3], [Z5], and [Z2]:
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• When Ŵ ⊃ T or Ŵ ⊃ D2, it then contains all the three second-order rotations

around each base axis, which will be three edge axes of the dodecahedron.

Thus we can deduce that g, after permutation of these axes, leaves fixed three

perpendicular axes, and then g leaves fixed I
0; finally Ŵ = I.

• There exists a rotation g around an edge axis so that Ŵ = Z2. The same

argument leads us to Z3 and Z5.

• If we take g to be the second-order rotation around the axis vd3, we can

compute that this rotation only leaves fixed the axes vd3, ed6, ed8, and ed15,

and then Ŵ = D3.

• If we take g to be the second-order rotation around the face axis f d1 we can

also compute that it only leaves fixed the axes f d1, ed7, ed11, ed12, and ed14,

thus Ŵ = D5.
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