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Abstract: Building upon Dyson’s fundamental 1962 article known in random-matrix
theory as the threefold way, we classify disordered fermion systems with quadratic Ham-
iltonians by their unitary and antiunitary symmetries. Important physical examples are
afforded by noninteracting quasiparticles in disordered metals and superconductors, and
by relativistic fermions in random gauge field backgrounds.

The primary data of the classification are a Nambu space of fermionic field operators
which carry a representation of some symmetry group. Our approach is to eliminate all
of the unitary symmetries from the picture by transferring to an irreducible block of
equivariant homomorphisms. After reduction, the block data specifying a linear space
of symmetry-compatible Hamiltonians consist of a basic vector space V , a space of
endomorphisms in End(V ⊕V ∗), a bilinear form on V ⊕V ∗ which is either symmetric
or alternating, and one or two antiunitary symmetries that may mix V with V ∗. Every
such set of block data is shown to determine an irreducible classical compact symmetric
space. Conversely, every irreducible classical compact symmetric space occurs in this
way.

This proves the correspondence between symmetry classes and symmetric spaces
conjectured some time ago.

1. Introduction

In a famous and influential paper published in 1962 (“The threefold way: algebraic
structure of symmetry groups and ensembles in quantum mechanics” [D]), Freeman
J. Dyson classified matrix ensembles by a scheme that became fundamental to several
areas of theoretical physics, including the statistical theory of complex many-body sys-
tems, mesoscopic physics, disordered electron systems, and the area of quantum chaos.
Being set in the context of standard quantum mechanics, Dyson’s classification asserted
that “the most general matrix ensemble, defined with a symmetry group that may be
completely arbitrary, reduces to a direct product of independent irreducible ensembles

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL ----------------------------------------
File Options:
     Compatibility: PDF 1.2
     Optimize For Fast Web View: Yes
     Embed Thumbnails: Yes
     Auto-Rotate Pages: No
     Distill From Page: 1
     Distill To Page: All Pages
     Binding: Left
     Resolution: [ 600 600 ] dpi
     Paper Size: [ 595 842 ] Point

COMPRESSION ----------------------------------------
Color Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Grayscale Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Monochrome Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 600 dpi
     Downsampling For Images Above: 900 dpi
     Compression: Yes
     Compression Type: CCITT
     CCITT Group: 4
     Anti-Alias To Gray: No

     Compress Text and Line Art: Yes

FONTS ----------------------------------------
     Embed All Fonts: Yes
     Subset Embedded Fonts: No
     When Embedding Fails: Warn and Continue
Embedding:
     Always Embed: [ ]
     Never Embed: [ ]

COLOR ----------------------------------------
Color Management Policies:
     Color Conversion Strategy: Convert All Colors to sRGB
     Intent: Default
Working Spaces:
     Grayscale ICC Profile: 
     RGB ICC Profile: sRGB IEC61966-2.1
     CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
     Preserve Overprint Settings: Yes
     Preserve Under Color Removal and Black Generation: Yes
     Transfer Functions: Apply
     Preserve Halftone Information: Yes

ADVANCED ----------------------------------------
Options:
     Use Prologue.ps and Epilogue.ps: No
     Allow PostScript File To Override Job Options: Yes
     Preserve Level 2 copypage Semantics: Yes
     Save Portable Job Ticket Inside PDF File: No
     Illustrator Overprint Mode: Yes
     Convert Gradients To Smooth Shades: No
     ASCII Format: No
Document Structuring Conventions (DSC):
     Process DSC Comments: No

OTHERS ----------------------------------------
     Distiller Core Version: 5000
     Use ZIP Compression: Yes
     Deactivate Optimization: No
     Image Memory: 524288 Byte
     Anti-Alias Color Images: No
     Anti-Alias Grayscale Images: No
     Convert Images (< 257 Colors) To Indexed Color Space: Yes
     sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments false
     /DoThumbnails true
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize true
     /ParseDSCCommentsForDocInfo false
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue false
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.2
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends false
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo false
     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /sRGB
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 150
     /EndPage -1
     /AutoPositionEPSFiles false
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 600
     /AutoFilterGrayImages true
     /AlwaysEmbed [ ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 150
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 576.0 792.0 ]
     /HWResolution [ 600 600 ]
>> setpagedevice



726 P. Heinzner, A. Huckleberry, M.R. Zirnbauer

each of which belongs to one of three known types.” These three ensembles, or rather
their underlying matrix spaces, are nowadays known as the Wigner-Dyson symmetry
classes of orthogonal, unitary, and symplectic symmetry.

Over the last ten years, various matrix spaces beyond Dyson’s threefold way have
come to the fore in random-matrix physics and mathematics. On the physics side, such
spaces arise in problems of disordered or chaotic fermions; among these are the Euclidean
Dirac operator in a stochastic gauge field background [V2], and quasiparticle excitations
in disordered superconductors or metals in proximity to a superconductor [A2]. In the
mathematical research area of number theory, the study of statistical correlations in the
values of the Riemann zeta function, and more generally of families of L-functions, has
prompted some of the same extensions [K].

A brief account of why new structures emerge on the physics side is as follows. When
Dirac first wrote down his famous equation in 1928, he assumed that he was writing an
equation for the wavefunction of the electron. Later, because of the instability caused by
negative-energy solutions, the Dirac equation was reinterpreted (via second quantiza-
tion) as an equation for the fermionic field operators of a quantum field theory. A similar
change of viewpoint is carried out in reverse in the Hartree-Fock-Bogoliubov mean-field
description of quasiparticle excitations in superconductors. There, one starts from the
equations of motion for linear superpositions of the electron creation and annihilation
operators, and reinterprets them as a unitary quantum dynamics for what might be called
the quasiparticle ‘wavefunction’.

In both cases – the Dirac equation and the quasiparticle dynamics of a superconduc-
tor – there enters a structure not present in the standard quantum mechanics underlying
Dyson’s classification: the fermionic field operators are subject to a set of conditions
known as the canonical anticommutation relations, and these are preserved by the quan-
tum dynamics. Therefore, whenever second quantization is undone (assuming it can be
undone) to return from field operators to wavefunctions, the wavefunction dynamics is
required to preserve some extra structure. This puts a linear constraint on the allowed
Hamiltonians. A good viewpoint to adopt is to attribute the extra invariant structure to
the Hilbert space, thereby turning it into a Nambu space.

It was conjectured some time ago [A2] that extending Dyson’s classification to the
Nambu space setting, the relevant objects one is led to consider are large families of
symmetric spaces of compact type. Past understanding of the systematic nature of the
extended classification scheme relied on the mapping of disordered fermion problems to
field theories with supersymmetric target spaces [Z] in combination with renormalization
group ideas and the classification theory of Lie superalgebras.

An extensive review of the mathematics and physics of symmetric spaces, cover-
ing the wide range from the basic definitions to various random-matrix applications,
has recently been given in [C]. That work, however, offers no answers to the question
as to why symmetric spaces are relevant for symmetry classification, and under what
assumptions the classification by symmetric spaces is complete.

In the present paper, we get to the bottom of the subject and, using a minimal set
of tools from linear algebra, give a rigorous answer to the classification problem for
disordered fermions. The rest of this introduction gives an overview of the mathematical
model to be studied and a statement of our main result.

We begin with a finite- or infinite-dimensional Hilbert space V carrying a unitary
representation of some compact Lie group G0 – this is the group of unitary symmetries
of the disordered fermion system. We emphasize thatG0 need not be connected; in fact,
it might be just a finite group.
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Let W = V ⊕ V∗, called the Nambu space of fermionic field operators, be equipped
with the induced G0-representation. This means that V is equipped with the given rep-
resentation, and g(f ) := f ◦ g−1 for f ∈ V∗, g ∈ G0. Let C : W → W be the
C-antilinear involution determined by the Hermitian scalar product 〈 , 〉V on V . In phys-
ics this operator is called particle-hole conjugation. Another canonical structure on W
is the symmetric complex bilinear form b : W × W → C defined by

b(v1 + f1, v2 + f2) := f1(v2)+ f2(v1) .

It encodes the canonical anticommutation relations for fermions, and is related to the
unitary structure 〈 , 〉 of W by b(w1, w2) = 〈Cw1, w2〉 for all w1, w2 ∈ W .

It is assumed that G0 is contained in a group G – the total symmetry group of the
fermion system – which is acting on W by transformations that are either unitary or
antiunitary. An element g ∈ G either stabilizes V or exchanges V and V∗. In the latter
case we say that g ∈ G mixes, and in the former case we say that it is nonmixing.

The group G is generated by G0 and distinguished elements gT which act as anti-
unitary operators T : W → W . These are referred to as distinguished ‘time-reversal’
symmetries, or T -symmetries for short. The squares of the gT lie in the center of the
abstract groupG; we therefore require that the antiunitary operators T representing them
satisfy T 2 = ±Id. The subgroupG0 is defined as the set of all elements ofG which are
represented as unitary, nonmixing operators on W .

If T and T1 are distinguished time-reversal operators, then P := T T1 is a unitary
symmetry. P may be mixing or nonmixing. In the latter case, P is in G0. Therefore,
moduloG0, there exist at most two different T -symmetries. If there are exactly two such
symmetries, we adopt the convention that T is mixing and T1 is nonmixing. Furthermore,
it is assumed that T and T1 either commute or anticommute, i.e., T1T = ±T T1.

As explained throughout this article, all of these situations are well motivated by
physical considerations and examples. We note that time-reversal symmetry (and all
other T -symmetries) of the disordered fermion system may also be broken; in this case
T and T1 are eliminated from the mathematical model and G0 = G.

Given W and the representation of G on it, the object of interest is the real vec-
tor space H of C-linear operators in End(W) that preserve the canonical structures b
and 〈 , 〉 of W and commute with the G-action. Physically speaking, H is the space
of ‘good’ Hamiltonians: the field operator dynamics generated by H ∈ H preserves
both the canonical anticommutation relations and the probability in Nambu space, and
is compatible with the prescribed symmetry group G.

When unitary symmetries are present, the space H decomposes by blocks associ-
ated with isomorphism classes of G0-subrepresentations occurring in W . To formalize
this, recall that two unitary representations ρi : G0 → U(Vi), i = 1, 2, are equiva-
lent if and only if there exists a unitary C-linear isomorphism ϕ : V1 → V2 so that
ρ2(g)(ϕ(v)) = ϕ(ρ1(g)(v)) for all v ∈ V1 and for all g ∈ G0. Let Ĝ0 denote the space
of equivalence classes of irreducible unitary representations of G0. An element λ ∈ Ĝ0
is called an isomorphism class for short. By standard facts (recall that every represen-
tation of a compact group is completely reducible) the unitary G0-representation on V
decomposes as an orthogonal sum over isomorphism classes:

V = ⊕λVλ .
The subspaces Vλ are called the G0-isotypic components of V . Some of them may be
zero. (Some of the isomorphism classes of G0 may just not be realized in V .)
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For simplicity suppose now that there is only one distinguished time-reversal sym-
metry T , and for any fixed λ ∈ Ĝ0 with Vλ �= 0, consider the vector space T (Vλ). If
T is nonmixing, i.e., T : V → V , then T (Vλ) ⊂ V must coincide with the isotypic
component for the same or some other isomorphism class. (Since conjugation by gT is
an automorphism of G0, the decomposition into G0-isotypic components is preserved
by T .) If T is mixing, i.e., T : V → V∗, then T (Vλ) = V∗

λ′ , still with some λ′ ∈ Ĝ0.
Now define the block Bλ to be the smallest G-invariant space containing Vλ ⊕ V∗

λ .
Note that if we are in the situation of nonmixing and T (Vλ) �= Vλ, then

Bλ = (Vλ ⊕ T (Vλ)
) ⊕ (Vλ ⊕ T (Vλ)

)∗
.

On the other hand, if we are in the situation of mixing and T (Vλ) �= V∗
λ , then

Bλ = (Vλ ⊕ T (V∗
λ)

) ⊕ (V∗
λ ⊕ T (Vλ)

)
.

The block Bλ is halved if T (Vλ) = Vλ resp. T (Vλ) = V∗
λ .

Note that if there are two distinguished T -symmetries, the above discussion is only
slightly more complicated. In any case we now have the basic G-invariant blocks Bλ.

Because different blocks are built from representations of different isomorphism
classes, the good Hamiltonians do not mix blocks. Thus every H ∈ H is a direct sum
over blocks, and the structure analysis of H can be carried out for each block Bλ sepa-
rately. If Vλ is infinite-dimensional, then to have good mathematical control we truncate
to a finite-dimensional space Vλ ⊂ Vλ and form the associated block Bλ ⊂ W . The
truncation is done in such a way that Bλ is a G-representation space and is Nambu.

The goal now is to compute the space of Hermitian operators on Bλ which commute
with the G-action and respect the canonical symmetric C-bilinear form b induced from
that on V ⊕ V∗; such a space of operators realizes what is called a symmetry class.

For this, certain spaces ofG0-equivariant homomorphisms play an essential role, i.e.,
linear maps S : V1 → V2 between G0-representation spaces which satisfy

ρ2(g) ◦ S = S ◦ ρ1(g)

for all g ∈ G0, where ρi : G0 → U(Vi), i = 1, 2, are the respective representations.
If it is clear which representations are at hand, we often simply write g ◦ S = S ◦ g
or S = gSg−1. Thus we regard the space HomG0(V1, V2) of equivariant homomor-
phisms as the space of G0-fixed vectors in the space Hom(V1, V2) of all linear maps. If
V1 = V2 = V , then these spaces are denoted by EndG0(V ) and End(V ) respectively.

Roughly speaking, there are two steps for computing the relevant spaces of Hermitian
operators. First, the block Bλ is replaced by an analogous block Hλ of G0-equivariant
homomorphisms from a fixed representation space Rλ of isomorphism class λ and/or
its dual R∗

λ to Bλ. The space Hλ carries a canonical form (called either s or a) which is
induced from b. As the notation indicates, although the original bilinear form on Bλ is
symmetric, this induced form is either symmetric or alternating.

Change of parity occurs in the most interesting case when there is a G0-equivariant
isomorphismψ : Rλ → R∗

λ. In that case there exists a bilinear form Fψ : Rλ×Rλ → C

defined by Fψ(r, t) = ψ(r)(t), which is either symmetric or alternating. In a certain
sense the form b is a product ofFψ and a canonical form onHλ. Thus, ifFψ is alternating,
then the canonical form on Hλ must also be alternating.

After transferring to the space Hλ, in addition to the canonical bilinear form s or a
we have a unitary structure and conjugation by one or two distinguished time-reversal
symmetries. Such a symmetry T may be mixing or not, and both T 2 = Id and T 2 = −Id
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are possible. The second main step of our work is to understand these various cases, each
of which is directly related to a classical symmetric space of compact type. Such are
given by a classical Lie algebra g which is either sun, usp2n, or son(R).

In the notation of symmetric spaces we have the following situation. Let g be the Lie
algebra of antihermitian endomorphisms of Hλ which are isometries (in the sense of
Lie algebra elements) of the induced complex bilinear form b = s or b = a. This is
of compact type, because it is the intersection of the Lie algebra of the unitary group
of Hλ and the complex Lie algebra of the group of isometries of b. Conjugation by the
antiunitary mapping T defines an involution θ : g → g.

The good Hamiltonians (restricted to the reduced block Hλ) are the Hermitian oper-
ators h ∈ ig such that at the level of group action the one-parameter groups e−ith satisfy
T e−ith = e+ithT , i.e., ih ∈ g must anticommute with T . Equivalently, if g = k⊕p is the
decomposition of g into θ -eigenspaces, the space of operators which is to be computed
is the (−1)-eigenspace p. The space of good Hamiltonians restricted to Hλ then is ip.
Since the appropriate action of the Lie group K (with Lie algebra k) on this space is
just conjugation, one identifies ip with the tangent space g/k of an associated symmetric
space G/K of compact type.

It should be underlined that there is more than one symmetric space associated to a
Cartan decomposition g = k ⊕ p. We are most interested in the one consisting of the
physical time-evolution operators e−ith; if G (not to be confused with the symmetry
group G) is the semisimple and simply connected Lie group with Lie algebra g, this is
given as the image of the compact symmetric space G/K under the Cartan embedding
into G defined by gK �→ gθ(g)−1, where θ : G → G is the induced group involution.

The following mathematical result is a conseqence of the detailed classification work
in Sects. 3, 4 and 5.

Theorem 1.1. The symmetric spaces which occur under these assumptions are irre-
ducible classical symmetric spaces g/k of compact type. Conversely, every irreducible
classical symmetric space of compact type occurs in this way.

We emphasize that here the notion symmetric space is applied flexibly in the sense
that depending on the circumstances it could mean either the infinitesimal model g/k or
the Cartan-embedded compact symmetric space G/K.

Theorem 1.1 settles the question of symmetry classes in disordered fermion systems;
in fact every physics example is handled by one of the situations above.

The paper is organized as follows. In Sect. 2, starting from physical considerations
we motivate and develop the model that serves as the basis for subsequent mathematical
work. Section 3 proves a number of results which are used to eliminate the group of uni-
tary symmetries G0. The main work of classification is given in Sects. 4 and 5. In Sect.
4 we handle the case where at most one distinguished time-reversal operator is present,
and in Sect. 5 the case where there are two. There are numerous situations that must be
considered, and in each case we precisely describe the symmetric space which occurs.
Various examples taken from the physics literature are listed in Sect. 6, illustrating the
general classification theory.

2. Disordered Fermions with Symmetries

‘Fermions’ is the physics name for the elementary particles which all matter is made of.
The goal of the present article is to establish a symmetry classification of Hamiltonians
which are quadratic in the fermion creation and annihilation operators. To motivate
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this restriction, note that any Hamiltonian for fermions at the fundamental level is of
Dirac type; thus it is always quadratic in the fermion operators, albeit with time-depen-
dent coefficients that are themselves operators. At the nonrelativistic or effective level,
quadratic Hamiltonians arise in the Hartree-Fock mean-field approximation for metals
and the Hartree-Fock-Bogoliubov approximation for superconductors. By the Landau-
Fermi liquid principle, such mean-field or noninteracting Hamiltonians give an adequate
description of physical reality at very low temperatures.

In the present section, starting from a physical framework, we develop the appropri-
ate model that will serve as the basis for the mathematical work done later on. Please
be advised that disorder, though advertised in the title of the section and in the title of
paper, will play no explicit role here. Nevertheless, disorder (and/or chaos) are the indis-
pensable agents that must be present in order to remove specific and nongeneric features
from the physical system and make a classification by basic symmetries meaningful.
In other words, what we carry out in this paper is the first step of a two-step program.
This first step is to identify in the total space of Hamiltonians some linear subspaces that
are relevant (in Dyson’s sense) from a symmetry perspective. The second step is to put
probability measures on these spaces and work out the disorder averages and statistical
correlation functions of interest. It is this latter step that ultimately justifies the first one
and thus determines the name of the game.

2.1. The Nambu space model for fermions. The starting point for our considerations is
the formalism of second quantization. Its relevant aspects will now be reviewed so as to
introduce the key physical notions as well as the proper mathematical language.

Let i = 1, 2, . . . label an orthonormal set of quantum states for a single fermion.
Second quantizing the many-fermion system means to associate with each i a pair of
operators c†

i and ci , which are called fermion creation and annihilation operators, respec-

tively, and are related to each other by an operation of Hermitian conjugation † : ci �→ c
†
i .

They are subject to the canonical anticommutation relations

c
†
i c

†
j + c

†
j c

†
i = 0 , cicj + cj ci = 0 , c

†
i cj + cj c

†
i = δij , (2.1)

for all i, j . They act in a Fock space, i.e., in a vector space with a distinguished vec-
tor, called the ‘vacuum’, which is annihilated by all of the operators ci (i = 1, 2, . . . ).
Applying n creation operators to the vacuum one gets a state vector for n fermions. A
field operator ψ is a linear combination of creation and annihilation operators,

ψ =
∑

i

(
vi c

†
i + fi ci

)
,

with complex coefficients vi and fi .
To put this in mathematical terms, let V be the complex Hilbert space of single-fer-

mion states. (We do not worry here about complications due to the dimension of V being
infinite. Later rigorous work will be carried out in the finite-dimensional setting.) Fock
space then is the exterior algebra

∧V = C ⊕ V ⊕ ∧2V ⊕ . . . ,

with the vacuum being the one-dimensional subspace of constants. Creating a single
fermion amounts to exterior multiplication by a vector v ∈ V and is denoted by ε(v) :
∧nV → ∧n+1V . To annihilate a fermion, one contracts with an element f of the dual
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space V∗. In other words, one applies the antiderivation ι(f ) : ∧nV → ∧n−1V given
by ι(f ) · 1 = 0, ι(f ) v = f (v), ι(f ) (v1 ∧ v2) = f (v1) v2 − f (v2) v1, etc.

In that mathematical framework the canonical anticommutation relations read

ε(v)ε(ṽ)+ ε(ṽ)ε(v) = 0 ,

ι(f )ι(f̃ )+ ι(f̃ )ι(f ) = 0 , (2.2)

ι(f )ε(v)+ ε(v)ι(f ) = f (v) .

They can be viewed as the defining relations of an associative algebra, the so-called
Clifford algebra C(W), which is generated by the vector space W := V ⊕ V∗ over C.
This vector space W is sometimes referred to as Nambu space in physics.

Since we only consider Hamiltonians that are quadratic in the creation and anni-
hilation operators, we will be able to reduce the second-quantized formulation on ∧V
to standard single-particle quantum mechanics, albeit on the Nambu space W carrying
some extra structure. Note that W is isomorphic to the space of field operators ψ .

On W = V ⊕ V∗ there exists a canonical symmetric C-bilinear form b defined by

b(v + f, ṽ + f̃ ) = f (ṽ)+ f̃ (v) =
∑

i
(fi ṽi + f̃i vi) .

The significance of this bilinear form in the present context lies in the fact that it encodes
on W the canonical anticommutation relations (2.1), or (2.2). Indeed, we can view a
field operator ψ = ∑

i (vi c
†
i + fi ci) either as a vector ψ = v + f ∈ V ⊕ V∗, or

equivalently as a degree-one operator ψ = ε(v)+ ι(f ) in the Clifford algebra acting on
∧V . Adopting the operator perspective, we get from (2.2) that

ψψ̃ + ψ̃ψ = f (ṽ)+ f̃ (v) =
∑

i

(
fi ṽi + f̃i vi

)
.

Switching to the vector perspective we have the same answer from b(ψ, ψ̃). Thus

ψψ̃ + ψ̃ψ = b(ψ, ψ̃) .

Definition 2.1. In the Nambu space model for fermions one identifies the space of field
operators ψ with the complex vector space W = V ⊕ V∗ equipped with its canonical
unitary structure 〈 , 〉 and canonical symmetric complex bilinear form b.

Remark. Having already expounded the physical origin of the symmetric bilinear form
b, let us now specify the canonical unitary structure of W . The complex vector space V ,
being isomorphic to the Hilbert space of single-particle states, comes with a Hermitian
scalar product (or unitary structure) 〈 , 〉V . Given 〈 , 〉V define a C-antilinear bijection
C : V → V∗ by

Cv = 〈v, ·〉V ,
and extend this to an antilinear transformationC : W → W by the requirementC2 = Id.
Thus C|V∗ = (C|V )−1. The operator C is called particle-hole conjugation in physics.
Using C, transfer the unitary structure from V to V∗ in the natural way:

〈f, f̃ 〉V∗ := 〈Cf,Cf̃ 〉V = 〈Cf̃ , Cf 〉V .
The canonical unitary structure of W is then given by

〈v + f, ṽ + f̃ 〉 = 〈v, ṽ〉V + 〈f, f̃ 〉V∗ =
∑

i

(
v̄i ṽi + f̄i f̃i

)
.

Thus 〈 , 〉 is the orthogonal sum of the Hermitian scalar products on V and V∗.
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Proposition 2.2. The canonical unitary structure and symmetric complex bilinear form
of W are related by

〈ψ, ψ̃〉 = b(C ψ, ψ̃) .

Proof. Given an orthonormal basis c†
1, c1, c

†
2, c2, . . . this is immediate from

C
∑

i
(vi c

†
i + fi ci) =

∑

i
(v̄i ci + f̄i c

†
i )

and the expressions for 〈 , 〉 and b in components. 
�
Returning to the physics way of telling the story, consider the most general Hamilto-
nian H which is quadratic in the single-fermion creation and annihilation operators.
Assuming H to be Hermitian, using the canonical anticommutation relations (2.1), and
omitting an additive constant (which is of no consequence in physics) this has the form

H = 1
2

∑

ij
Aij

(
c

†
i cj − cj c

†
i

) + 1
2

∑

ij

(
Bij c

†
i c

†
j + B̄ij cj ci

)
,

where Aij = Āji (from H = H †) and Bij = −Bji (from cicj = −cj ci). The Hamil-
toniansH act on the field operators ψ by the commutator, ψ �→ [H,ψ] ≡ Hψ −ψH ,
and the time evolution is determined by the Heisenberg equation of motion,

−i�
dψ

dt
= [H,ψ] ,

with � being Planck’s constant. By the canonical anticommutation relations, this dynam-
ical equation is equivalent to a system of linear differential equations for the coefficients
vi and fi :

−i�v̇i =
∑

j

(
Aij vj + Bij fj

)
,

i�ḟi =
∑

j

(
B̄ij vj + Āij fj

)
.

If these are assembled into a column vector v, the evolution equation takes the form

v̇ = Xv , X = i

�

(
A B

−B̄ −Ā
)
.

To recast all this in concise terms, we need some further mathematical background.
Notwithstanding the fact that in practice we always consider the Fock space represen-
tation C(W) → End(∧V) by w = v + f �→ ε(v) + ι(f ), it should be stated that
the primary (or universal) definition of the Clifford algebra C(W) is as the associative
algebra generated by W ⊕ C with relations

w1w2 + w2w1 = b(w1, w2) (w1, w2 ∈ W) . (2.3)

The Clifford algebra is graded by

C(W) = C0(W)⊕ C1(W)⊕ C2(W)⊕ . . . ,

where C0(W) ≡ C, C1(W) ∼= W , and Cn(W) for n ≥ 2 is the linear space of skew-sym-
metrized degree-n monomials in the elements of W . In particular, C2(W) is the linear
space of skew-symmetric quadratic monomials w1w2 − w2w1 (w1, w2 ∈ W).
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From the Clifford algebra perspective, a quadratic Hamiltonian H is viewed as an
operator in the degree-two component C2(W). Let us therefore gather some standard
facts about C2(W). First among these is that C2(W) is a complex Lie algebra with the
commutator playing the role of the Lie bracket (an exposition of this fact for the case of
a Clifford algebra over R is found in [B3]; the complex case is no different).

Second, in addition to acting on itself by the commutator, the Lie algebra C2(W)

acts (still by the commutator) on all of the components Ck(W) of degree k ≥ 1 of the
Clifford algebra C(W). In particular, C2(W) acts on C1(W).

Third, C2(W) turns out to be canonically isomorphic to the complex orthogonal Lie
algebra so(W, b) which is associated with the vector space W = V ⊕V∗ and its canon-
ical symmetric complex bilinear form b; this Lie algebra so(W, b) is defined to be the
subspace of elements E ∈ End(W) satisfying the condition

b(Ew1, w2)+ b(w1, Ew2) = 0 (for all w1, w2 ∈ W) .

The canonical isomorphism C2(W) → so(W, b) is given by the commutator action of
C2(W) on C1(W) ∼= W , i.e., by sending a ∈ C2(W) to [a, ·] = E ∈ End(W); the latter
indeed lies in so(W, b) as follows from the expression for b(Ew1, w2) + b(w1, Ew2)

given by the canonical anticommutation relations (2.3), from the Jacobi identity

[a,w1]w2 + w2 [a,w1] + w1 [a,w2] + [a,w2]w1 = [a,w1w2 + w2w1] ,

and from the fact that w1w2 + w2w1 lies in the center of the Clifford algebra.
To describe so(W, b) explicitly, decompose the endomorphisms E ∈ End(V ⊕ V∗)

into blocks as

E =
(

A B
C D

)
,

where A ∈ End(V), B ∈ Hom(V∗,V), C ∈ Hom(V,V∗) and D ∈ End(V∗). Let the
adjoint (or transpose) of A ∈ End(V) be denoted by At ∈ End(V∗), and call an element
C in Hom(V,V∗) skew if Ct = −C, i.e., if (Cv1)(v2) = −(C v2)(v1).

Proposition 2.3. An endomorphism E =
(

A B
C D

)
∈ End(V ⊕ V∗) lies in the complex

orthogonal Lie algebra so(V ⊕ V∗, b) if and only if B,C are skew and D = −At.

Proof. Consider first the case B = C = 0, and let D = −At . Then

b
(
E(v + f ), ṽ + f̃

) = b(Av − Atf, ṽ + f̃ ) = f̃ (Av)− Atf (ṽ)

= Atf̃ (v)− f (Aṽ) = −b(v + f,Aṽ − Atf̃ ) = −b(v + f,E(ṽ + f̃ )
)
.

Using Bt = −B and Ct = −C, a similar calculation for the case A = 0 gives

b
(
E(v + f ), ṽ + f̃

) = b(Bf + Cv, ṽ + f̃ ) = Cv(ṽ)+ f̃ (Bf )

= −f (Bf̃ )− Cṽ(v) = −b(v + f,Bf̃ + Cṽ) = −b(v + f,E(ṽ + f̃ )
)
.

Since these two cases complement each other, we see that the stated conditions on
E ∈ End(W) are sufficient in order forE to be in so(W, b). The calculation can equally
well be read backwards; thus the conditions are both sufficient and necessary. 
�
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Let us now make the connection to physics, where C(W) is represented on Fock space
and the elements v + f = w ∈ W become field operators ψ = ε(v) + ι(f ). Fixing
orthonormal bases c†

1, c
†
2, . . . of V and c1, c2, . . . of V∗ as before, we assign matrices

with matrix elements Aij , Bij , Cij to the linear operators A, B, C. A straightforward
computation using the canonical anticommutation relations then yields:

Proposition 2.4. The inverse of the Lie algebra automorphism C2(W) → so(W, b) is
the C-linear mapping given by

(
A B
C −At

)
�→ 1

2

∑

ij
Aij (c

†
i cj − cj c

†
i )+ 1

2

∑

ij
(Bij c

†
i c

†
j + Cij cicj ) .

Now recall that C2(W) acts on the degree-one component C1(W) by the commutator.
By the isomorphisms C2(W) ∼= so(W, b) and C1(W) ∼= W , this action coincides with
the fundamental representation of so(W, b) on its defining vector space W . In other
words, taking the commutator of the Hamiltonian H ∈ C2(W) with a field operator
ψ ∈ C1(W) yields the same answer as viewing H as an element of so(W, b), then

applying H =
(

A B
C −At

)
to the vector ψ = v + f ∈ W by

H · (v + f ) = (Av + Bf )+ (Cv − Atf ) ,

and finally reinterpreting the result as a field operator in C1(W).
The closure relation [C2(W), C1(W)] ⊂ C1(W) and the isomorphism C1(W) ∼= W

make it possible to reduce the dynamics of field operators to a dynamics on the Nambu
space W . After reduction, as we have seen, the generators X ∈ End(V ⊕ V∗) of time
evolutions of the physical system are of the special form

X = i

�

(
A B
B∗ −At

)
,

where B ∈ Hom(V∗,V) is skew, and A = A∗ ∈ End(V) is self-adjoint w.r.t. 〈 , 〉V .

Proposition 2.5. The one-parameter groups of time evolutions t �→ etX in the Nambu
space model preserve both the canonical unitary structure 〈 , 〉 and the canonical sym-
metric complex bilinear form b of W = V ⊕ V∗.

Proof. By Prop. 2.3 the generatorX is an element of the complex Lie algebra so(W, b).
Hence the exponential Ut = etX lies in the complex orthogonal Lie group SO(W, b),
which is defined to be the set of solutions g in End(W) of the conditions

b(gψ, gψ̃) = b(ψ, ψ̃) , and Det(g) = 1 .

Since A = A∗, and B∗ ∈ Hom(V,V∗) is the adjoint of B ∈ Hom(V∗,V), the gen-
erator X is antihermitian with respect to the unitary structure of W . The exponentiated
generator Ut therefore lies in the unitary group U(W), which is to say that

〈Utψ,Ut ψ̃〉 = 〈ψ, ψ̃〉
for all real t . Thus Ut preserves both b and 〈 , 〉. 
�
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Remark. In physical language, the invariance of b under time evolutions means that the
canonical anticommutation relations for fermionic field operators do not change with
time. Invariance of 〈 , 〉 means that probability in Nambu space is conserved. (If the
quadratic HamiltonianH arises as the mean-field approximation to some many-fermion
problem, the latter conservation law holds as long as quasiparticles do not interact and
thereby are protected from decay into multi-particle states.)

We now distill the essence of the information conveyed in this section. The quantum
theory of many-fermion systems is set up in a Hilbert space called the fermionic Fock
space in physics (or the spinor representation in mathematics). The field operators of the
physical system span a vector space W = V ⊕ V∗, which generates a Clifford algebra
C(W) whose defining relations are the canonical anticommutation relations.

Since [C2(W), C1(W)] ⊂ C1(W), the discussion of the field operator dynamics for
the important case of quadratic Hamiltonians H ∈ C2(W) can be reduced to a discus-
sion on the Nambu space W ∼= C1(W). Via this reduction, the vector space W inherits
two natural structures: the canonical symmetric complex bilinear form b encoding the
anticommutation relations, and a canonical unitary structure 〈 , 〉 determined by the Her-
mitian scalar product of V . Both of these structures are invariant, i.e., are preserved by
physical time evolutions. Under the reduction to W , the commutator action of C2(W)

on C1(W) becomes the fundamental representation of so(W, b) on W .

2.2. Symmetry groups. Following Dyson, the classification of disordered fermion sys-
tems will be carried out in a setting that prescribes two pieces of data:

• One is given a Nambu space W = V ⊕ V∗ equipped with its canonical unitary
structure 〈 , 〉 and canonical symmetric C-bilinear form b.

• On W there acts a group G of unitary and antiunitary operators (the joint symmetry
group of a multi-parameter family of fermionic quantum systems).

Given this setup, one is interested in the linear space of HamiltoniansH with the property
that they commute with the G-action on W , while preserving the invariant structures b
and 〈 , 〉 of W under time evolution by e−itH/�. Such a space of Hamiltonians is of course
reducible in general, i.e., the Hamiltonian matrices decompose into blocks. The goal of
classification is to enumerate all the symmetry classes, i.e., all the types of irreducible
blocks which occur in this way.

In the present subsection we provide some information on what is meant by unitary
and antiunitary symmetries in the present context. We begin by recalling the basic notion
of a symmetry group in quantum Hamiltonian systems.

In classical mechanics the symmetry group G0 of a Hamiltonian system is under-
stood to be the group of symplectomorphisms that commute with the phase flow of the
system. Examples are the rotation group for systems in a central field, and the group of
Euclidean motions for systems with Euclidean invariance.

In passing from classical to quantum mechanics, one replaces the classical phase
space by a complex Hilbert space V , and assigns to the symmetry group G0 a (projec-
tive) representation by unitary C-linear operators on V . While the consequences due to
one-parameter continuous subgroups of G0 are particularly clear from Noether’s theo-
rem [A], the components of G0 not connected with the identity also play an important
role. A prominent example is provided by the operator for space reflection. Its eigen-
spaces are the subspaces of states with positive and negative parity, and they reduce the
matrix of any reflection-invariant Hamiltonian to two blocks.
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Not all symmetries of a quantum mechanical system are of the canonical, unitary
kind: the prime counterexample is the operation gT of inverting the time direction –
called time reversal for short. In classical mechanics this operation reverses the sign of
the symplectic structure of phase space; in quantum mechanics its algebraic properties
reflect the fact that the time t enters in the Dirac, Pauli, or Schrödinger equation as
i�d/dt : there, time reversal gT is represented by an antiunitary operator T , which is to
say that T is complex antilinear:

T (zv) = z̄ T v (z ∈ C, v ∈ V) ,

and preserves the Hermitian scalar product up to complex conjugation:

〈v, ṽ〉V = 〈T v, T ṽ〉V .

Another example of such an operation is charge conjugation in relativistic theories.
Further examples are provided by chiral symmetry transformations (see Sect. 2.3).

By the symmetry groupG of a quantum mechanical system with HamiltonianH , one
then means the group of all unitary and antiunitary transformations g of V that leave the
Hamiltonian invariant: gHg−1 = H . It should be noted that finding the total symmetry
group of a quantization of some Hamiltonian system is not always straightforward. The
reason is that there may exist nonobvious quantum symmetries such as Hecke symme-
tries, which are of number-theoretic origin and have no classical limit. For our purposes,
however, this complication will not be an issue. We take the group G and its action on
the Hilbert space to be fundamental and given, and then ask what is the linear space of
Hamiltonians that commute with the G-action.

For technical reasons, we assume the groupG0 to be compact; this is an assumption
that covers most (if not all) of the cases of interest in physics. The noncompact group
of space translations can be incorporated, if necessary, by wrapping the system around
a torus, whereby translations are turned into compact torus rotations.

What we have sketched – a symmetry group G acting on a Hilbert space V – is the
framework underlying Dyson’s classification. As was explained in Sect. 2.1, we wish to
enlarge it so as to capture all examples that arise in disordered fermion physics.

For this, recall that in the Nambu space model for fermions, the Hilbert space is
not V but the space of field operators W = V ⊕ V∗. The given G-representation on V
therefore needs to be extended to a representation on W . This is done by the condition
that the pairing between V and V∗ (and thus the pairing between fermion creation and
annihilation operators) be preserved. In other words, if U : V → V and A : V → V are
unitary resp. antiunitary operators, their induced representations on V∗ (which we still
denote by the same symbols) are defined by requiring that

(Uf )(Uv) = f (v) = (Af )(Av)

for all v ∈ V and f ∈ V∗. In particular the G0-representation on V∗ is the dual one,

U(f ) = f ◦ U−1 .

Equivalently, the G-representation on W is defined so as to be compatible with parti-
cle-hole conjugation C : W → W in the sense that operations commute:

CU = UC , and CA = AC .
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Indeed, if f = Cv then f (ṽ) = 〈v, ṽ〉 and from the invariance of the pairing between V
and V∗ one infers the relations 〈v, ṽ〉 = (Uf )(Uṽ) = 〈U−1C−1UCv, ṽ〉 and 〈v, ṽ〉 =
(Af )(Aṽ) = 〈A−1C−1ACv, ṽ〉.

While the framework so obtained is flexible enough to capture the situations that
arise in the nonrelativistic quasiparticle physics of disordered metals, semiconductors
and superconductors, it is still slightly too narrow to accommodate some much studied
examples that have emerged from elementary particle physics. Let us explain this.

2.3. The Euclidean Dirac operator. An important development in random-matrix phys-
ics over the last ten years was the formulation [V2] and study of the so-called chiral
ensembles, which model Dirac fermions in a random gauge field background, and lie
beyond Dyson’s 3-way classification. From the viewpoint of applications, these random-
matrix models have the merit of capturing some universal features of the Dirac spectrum
of quantum chromodynamics (QCD) in the low-energy limit. In the present subsec-
tion we will demonstrate that, but for one minor difference, they fit naturally into our
fermionic Nambu space model with symmetries.

Let M be a four-dimensional Euclidean space-time (more generally, M could be a
Riemannian 4-manifold with spin structure), and consider overM a unitary spinor bun-
dle S twisted by a module R for the action of some compact gauge groupK . Denote by
V the Hilbert space of L2-sections of the twisted bundle S ⊗ R.

Now letDA be a self-adjoint Dirac operator for V in a given gauge field background
(or gauge connection) A. Although DA is not a Hamiltonian in the strict sense of the
word, it has all the right mathematical attributes in the sense of Sect. 2.1; in particular
it determines a Hermitian form, called the action functional, on differentiable sections
ψ ∈ V . In physics notation this functional is written

ψ �→
∫

M

ψ̄(x) · (DAψ) (x) d4x , DA = iγ µ(∂µ − Aµ) ,

where γ µ = γ (eµ) are the gamma matrices [i.e., the Clifford actionγ : T ∗M → End(S)
evaluated on the dual eµ of an orthonormal coordinate frame eµ of TM], the operators
∂µ are the partial derivatives corresponding to the eµ, and Aµ(x) ∈ Lie(K) are the
components of the gauge field. If the physical situation calls for a mass, then one adds
a complex number im (times the unit operator on V) to the expression for DA.

The Dirac operators of prime interest to low-energy QCD have zero (or small) mass.
To express the massless nature ofDA one introduces an object called the chirality opera-
tor � in mathematics [B3], or γ5 = γ 0γ 1γ 2γ 3 in physics. � = γ5 is a section of End(S)
which is self-adjoint and involutory (�2 = Id) and anticommutes with the Clifford
action (�γµ + γ µ� = 0). By the last property one has

�DA +DA� = 0

in the massless limit. This relation is called chiral symmetry in physics. Note, however,
that chiral ‘symmetry’ is not a symmetry in the sense of the present paper. (Symmetries
always commute with the Hamiltonian, never do they anticommute with it!) Nonethe-
less, we shall now recognize chiral symmetry as being equivalent to a true symmetry,
by importing the Dirac operator into the Nambu space model as follows.

As before, take Nambu space to be the sum W = V ⊕V∗ equipped with its canonical
unitary structure 〈 , 〉 and symmetric complex bilinear form b. The antilinear bijection
C : V → V∗ and C : V∗ → V is still defined by 〈w1, w2〉 = b(Cw1, w2).
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Now extend the Dirac operator DA ∈ iu(V) to an operator DA that acts diagonally
on W = V ⊕ V∗, by requiring DA to satisfy the commutation law C iDA = iDAC, or
equivalently CDA = −DAC. Thus,

DA ∈ End(V)⊕ End(V∗) ↪→ End(W) ,

and DA on End(V∗) is given by −Dt
A. The diagonally extended operator DA lies in the

intersection of so(W, b) with iu(W) – as is required in order for the statement of Prop.
2.5 to carry over to the one-parameter group t �→ eitDA . The property that DA does not
mix V and V∗ can be attributed to the existence of a U1 symmetry group that has V and
V∗ as inequivalent representation spaces.

To implement the chiral symmetry of the massless limit, extend the chirality operator
� to a diagonally acting endomorphism in End(V) ⊕ End(V∗) by C�C−1 = �. The
extended operators still satisfy the chiral symmetry relation �DA + DA� = 0. Then
define an antiunitary operator T by T := C�. Note that this is not the operation of
reversing the time but will still be called the ‘time reversal’ for short.

Because DA anticommutes with both C and �, one has

TDAT
−1 = DA .

Thus T is a true symmetry of the (extended) Dirac operator in the massless limit.
Note that CT = T C from C� = �C. As was announced above, the situation is

the same as before but for one difference: while the time reversal in Sect. 2.2 was an
operator T : V → V and T : V∗ → V∗, the present one is an operator T : V → V∗ and
T : V∗ → V . We refer to the latter type as mixing, and the former as nonmixing.

To summarize, physical systems modelled by the Euclidean (or positive signature)
Dirac operator are naturally incorporated into the framework of Sects. 2.1 and 2.2. The
Hilbert space V here is the space ofL2-sections of a twisted spinor bundle over Euclidean
space-time, and the role of the Hamiltonian is taken by the quadratic action functional
of the Dirac fermion theory. When transcribed into the Nambu space W = V ⊕ V∗, the
chiral ‘symmetry’of the massless theory can be expressed as a true antiunitary symmetry
T , with the only new feature being that T mixes V and V∗.

The most general situation occurring in physics may exhibit, beside T , one or several
other antiunitary symmetries. In the example at hand this happens if the representation
space R carries a complex bilinear form which is invariant under gauge transformations
(see Sects. 6.2.2 and 6.2.3 for the details). The Dirac operator DA then has one extra
antiunitary symmetry, say T1, which is nonmixing. Forming the composition of T1 with
T we get a mixing unitary symmetry P = T T1 : V ↔ V∗. This fact leads us to adopt
the final framework described in the next subsection.

2.4. The mathematical model. The following model is now well motivated.
We are given a Nambu space (W, b, 〈 , 〉) carrying the action of a compact groupG.

The groupG0 is defined to be the subgroup ofG which acts by canonical unitary trans-
formations, i.e., unitary transformations that preserve the decomposition W = V ⊕ V∗.
The full symmetry groupG is generated byG0 and at most two distinguished antiunitary
time-reversal operators. If there is just one, we denote it by T , and if there are two, by T
and T1. In the latter case we adopt the convention that T mixes, i.e., T : V → V∗, while
T1 is nonmixing. The distinguished time-reversal symmetries always satisfy T 2 = ±Id
and T 2

1 = ±Id. In the case that there are two, it is assumed that they commute or an-
ticommute, i.e., T1T = ±T T1. Consequently the unitary operator P = T T1 (which
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mixes) also satisfies P 2 = ±Id. When P is present we let G1 denote the Z2-extension
of G0 defined by P and refer to it as the full group of unitary symmetries.

We emphasize that the original action of G0 on V has been extended to W via its
canonically induced action on V∗. In other words, if f ∈ V∗ then g(f )(v) = f (g−1(v)).
This is equivalent to requiring that a unitary operator U ∈ G0 commutes with particle-
hole conjugation C : W → W . In fact we require that all operators of G commute
with C. Whereas the unitary operators preserve the Hermitian scalar product 〈 , 〉, for
an antiunitary operator A we have that 〈Aw1, Aw2〉 = 〈w1, w2〉 for all w1, w2 ∈ W .

IfU is an operator coming fromG0 and T is a distinguished time-reversal symmetry,
then T UT −1 is unitary and nonmixing, i.e., it is in G0. Thus, for the corresponding
operator gT in G, we assume that gT normalizes G0 and g2

T is in the center of G0.
According to Prop. 2.5 the time evolutions of the physical system leave the structure

of Nambu space invariant. The infinitesimal version of this statement is that the Hamil-
tonians H lie in the intersection of the complex orthogonal Lie algebra so(W, b) with
iu(W), the Hermitian operators on W .

Let us summarize our situation in the language and notation introduced above.

Definition 2.6. The data in the Nambu space model for fermions with symmetries is
(W, b, 〈 , 〉;G), where the compact groupG is called the symmetry group of the system.
G is represented on W = V ⊕ V∗ by unitary and antiunitary operators that preserve
the structure of W; i.e., for every unitary U and antiunitary A one has

〈ψ, ψ̃〉 = 〈Uψ,Uψ̃〉 = 〈Aψ,Aψ̃〉 , b(ψ, ψ̃) = b(Uψ,Uψ̃) = b(Aψ,Aψ̃)

for allψ, ψ̃ ∈ W . The space of ‘good’Hamiltonians is the R-vector space H of operators
H in so(W, b) ∩ iu(W) that commute with the G-action:

UHU−1 = H = AHA−1 .

At the group level of time evolutions this means that

Ue−itH/� = e−itH/�U , Ae−itH/� = e+itH/�A ,

for all unitary U , antiunitary A, H ∈ H, and t ∈ R.

We remind the reader that the subgroup of unitary operators which preserves the
decomposition W = V ⊕ V∗ is denoted by G0, and the full group of unitaries by G1.

Several further remarks are in order. First, for a unitaryU ∈ G1 (resp. antiunitaryA),
the compatibility of b with theG-action is a consequence of Prop. 2.2 and the commuta-
tion law CU = UC and CA = AC. Second, it is possible that the fermion system does
not have any antiunitary symmetries and G = G0. When some antiunitary symmetries
are present, G is generated by G0 and one or at most two distinguished time-reversal
symmetries as explained above. Third, motivated by the prime physics example of time
reversal, we have assumed that the (one or two) distinguished time-reversal symmetries
T satisfy T 2 = ±Id. The reason for this can be explained as follows.

The operator T has been chosen to represent some kind of inversion symmetry. Since
this means that conjugation by T 2 represents the unit operator, T 2 must be a unitary
multiple of the identity on any subspace of W which is irreducible under time evolu-
tions of the fermion system. Thus for all practical purposes we may assume that T is a
projective involution, i.e., T 2 = z× Id with z a complex number of unit modulus.
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Proposition 2.7. If a projective involution T : W → W of a unitary vector space W is
antiunitary, then either T 2 = +IdW or T 2 = −IdW .

Proof. A projective involution T has square T 2 = z × Id with z ∈ C \ {0}. Since T is
antiunitary, T 2 is unitary, and hence |z| = 1. But an antiunitary operator is C-antilinear,
and therefore the associative law T 2 · T = T · T 2 forces z to be real, leaving only the
possibilities T 2 = ±Id. 
�
Since this work is meant to simultaneously handle symmetry at both the Lie algebra and
Lie group level, a final word should be said about the notion that a bilinear form F is
respected by a transformationB.At the group level whenB is invertible and is regarded as
being in GL(W), whereW is the underlying vector space ofF : W×W → C, this means
that B is an isometry in the sense that F(Bw1, Bw2) = F(w1, w2) for all w1, w2 ∈ W .
On the other hand, at the Lie algebra level where B ∈ End(W), this means that for all
w1, w2 ∈ W one has d

dt
F (etBw1, etBw2)|t=0 = F(Bw1, w2)+ F(w1, Bw2) = 0.

3. Reduction to the Case of G0 = {Id}
Recall that our main goal, e.g., on the Lie algebra level, is to describe the space of
G0-invariant endomorphisms which on a block in Nambu space are compatible with the
unitary structure, time reversal and the symmetric C-bilinear form.

Here we prove results which allow us to transfer this space to a certain space of
G0-equivariant homomorphisms. The unitary structure, time reversal and the bilinear
form are transferred canonically, and as before, compatibility with these structures is
required. However, in the new setting G0 acts trivially. This is of course an essential
simplification, and paves the way toward our classification goal.

In this section λ ∈ Ĝ0 denotes a fixed isomorphism class (i.e., an equivalence class
of irreducible representations ofG0), and λ∗ denotes its dual. A block is determined by a
choice of finite-dimensional G0-invariant subspace V = Vλ (in the given Hilbert space
V) such that all of its irreducible subrepresentations have isomorphism class λ. The full
group G of (unitary and antiunitary) symmetries is generated by G0 and at most two
distinguished time-reversal symmetries. Throughout this section (and also in Sects. 4.2,
4.3, 5.1) we assume that these time-reversal operators T stabilize the truncated subspace
W = V ⊕ V ∗ of Nambu space:

TW = W .

The case where one or both time-reversal symmetries do not stabilize W , i.e., where a
larger block is generated, is handled in Sects. 4.4 and 5.2.

3.1. Spaces of equivariant homomorphisms. If 〈 , 〉V is the initial unitary structure on
V , one defines C : V → V ∗ by C(v)(w) = 〈v,w〉V . Taking C|V ∗ to be the inverse
of this map, one obtains the associated C-antilinear isomorphism C : W → W . All
symmetries in G are assumed to commute with C. We remind the reader that G0 acts
on V ∗ by g(f ) = f ◦ g−1.

Let R be a fixed irreducible G0-representation space which is in λ. Denote by d its
dimension. Of course R∗ is a representative of λ∗. We fix an antilinear bijection

ι : R → R∗ ,
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which is defined by a G0-invariant unitary structure 〈 , 〉R on R. (Note the change of
meaning of the symbol ι as compared to Sect. 2.1.)

In the sequel we will often make use of the following consequence of Schur’s Lemma.
(Note the change of meaning of the symbol ψ as compared to Sect. 2.1.)

Proposition 3.1. If two irreducible G0-representation spaces R1 and R2 are equivari-
antly isomorphic by ψ : R1 → R2, then HomG0(R1, R2) = C ·ψ , i.e., the linear space
ofG0-equivariant homomorphisms fromR1 toR2 has complex dimension one and every
operator in it is some multiple of ψ .

The following related statement was essential to Dyson’s classification and will play
a similarly important role in the present article.

Lemma 3.2. If an irreducibleG0-representation spaceR is equivariantly isomorphic to
its dual R∗ by an isomorphism ψ : R → R∗, then ψ is either symmetric or alternating,
i.e., either ψ(r)(t) = ψ(t)(r) or ψ(r)(t) = −ψ(t)(r) for all r, t ∈ R.

Proof. It is convenient to think of ψ as defining an invariant bilinear form B(r, t) =
ψ(r)(t) onR. We then decomposeB into its symmetric and alternating parts,B = S+A,
where

S(r, t) = 1
2

(
B(r, t)+ B(t, r)

)
and A(r, t) = 1

2

(
B(r, t)− B(t, r)

)
.

Both areG0-invariant, and consequently their degeneracy subspaces are invariant. Since
the representation space R is irreducible, it follows that each is either nondegenerate or
vanishes identically. But both being nondegenerate would violate the fact that up to a
constant multiple there is only one equivariant isomorphism in End(R). Therefore B is
either symmetric or alternating as claimed. 
�
Now letH := HomG0(R, V ) be the space ofG0-equivariant linear mappings from R to
V . Its dual space isH ∗ = HomG0(R

∗, V ∗). The key space for our first considerations is
(H ⊗R)⊕ (H ∗ ⊗R∗). (Here, and throughout this paper, tensor products are understood
to be tensor products over the field of complex numbers.) Note that G0 acts on it by

g(h⊗ r + f ⊗ t) = h⊗ g(r)+ f ⊗ g(t) .

We can apply h ∈ H to r ∈ R to form h(r) ∈ V . Since h is G0-equivariant we have
g ·h(r) = h(g(r)). The same goes for the corresponding objects on the dual side. Thus in
our finite-dimensional setting the following is immediate. (Once again, note the change
of meaning of the symbol ε as compared to Sect. 2.1.)

Proposition 3.3. If H = HomG0(R, V ) and H ∗ = HomG0(R
∗, V ∗) the map

ε : (H ⊗ R)⊕ (H ∗ ⊗ R∗) → V ⊕ V ∗ = W ,

h⊗ r + f ⊗ t �→ h(r)+ f (t) ,

is a G0-equivariant isomorphism.

Transferring the unitary structure fromW to (H ⊗R)⊕ (H ∗ ⊗R∗) induces a unitary
structure on H ⊕H ∗. For this, note for example that for h1 ⊗ r1 and h2 ⊗ r2 in H ⊗R

we have

〈h1 ⊗ r1, h2 ⊗ r2〉H⊗R := 〈h1(r1), h2(r2)〉V .
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Observe that for h1 and h2 fixed, the right-hand side of this equality defines aG0-invari-
ant unitary structure onR which is unique up to a multiplicative constant. Thus we define
〈 , 〉H by

〈h1 ⊗ r1, h2 ⊗ r2〉H⊗R = 〈h1, h2〉H · 〈r1, r2〉R .
Given the fixed choice of 〈 , 〉R this definition is canonical.

We will in fact transfer all of our considerations for V ⊕V ∗ to the spaceH ⊕H ∗, the
latter being equipped with the unitary structure defined as above. One of the key points
for this is to understand how to express a G0-invariant endomorphism

S ∈ EndG0(V ⊕ V ∗) ∼=ε EndG0(H ⊗ R ⊕H ∗ ⊗ R∗)

as an element of End(H ⊕H ∗). Also, we must understand the role of time reversal.
In this regard the two cases λ �= λ∗ and λ = λ∗ pose slightly different problems.

Before going into these in the next sections, we note several facts which are independent
of the case.

First, let V1 and V2 be vector spaces where G0 acts trivially, and let R1 and R2 be
arbitrary G0-representation spaces.

Proposition 3.4.

HomG0(V1 ⊗ R1, V2 ⊗ R2) = Hom(V1, V2)⊗ HomG0(R1, R2) .

Proof. Note that Hom(V1 ⊗ R1, V2 ⊗ R2) = Hom(V1, V2) ⊗ Hom(R1, R2), and let
(ϕ1, . . . , ϕm) be a basis of Hom(V1, V2). Then for every element S of Hom(V1, V2)⊗
Hom(R1, R2) there are unique elements ψ1, . . . , ψm so that S = ∑

ϕi ⊗ ψi . If S is
G0-equivariant, then

S = g ◦ S ◦ g−1 =
∑

ϕi ⊗ (g ◦ ψi ◦ g−1) ,

and the desired result follows from the uniqueness statement. 
�
Our second general remark concerns the way in which a distinguished time-reversal sym-
metryT is transferred to an antilinear endomorphism ofH⊗R⊕H ∗⊗R∗. Let us consider
for example the case of mixing where it is sufficient to understandT : H⊗R → H ∗⊗R∗.
For that purpose we view End(H ⊗ R) as End(H) ⊗ End(R), let (ϕ1, . . . , ϕm) be a
basis of End(H) and write

� = CT =
∑

ϕi ⊗ ψi

for ψ1, . . . , ψm ∈ End(R). Now T is equivariant in the sense that T ◦ g = a(g) ◦ T ,
where a is the automorphism of G0 determined by conjugation with gT . Thus, since
the C-antilinear operator C intertwines G0-actions, the C-linear mapping � = CT is
invariant with respect to the twisted conjugation � �→ a(g)�g−1. Consequently, every
ψi is invariant with respect to this conjugation.

This means that the ψi : R → R are equivariant with respect to the originalG0-rep-
resentation on the domain space and the new G0-action, v �→ a(g)(v), on the image
space. But by Prop. 3.1, up to a constant multiple there is only one such element of
End(R), i.e., we may assume that

� = ϕ ⊗ ψ ,

where ψ is unique up to a multiplicative constant.
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Note further that C is also of this factorized form. Indeed, we have

〈h⊗ r, ·〉H⊗R = 〈h, ·〉H 〈r, ·〉R ,

and if γ : H → H ∗ is defined by h �→ 〈h, ·〉H , then C = γ ⊗ ι. Furthermore, since
� and C are pure tensors, so is T = C� = TH ⊗ TR , with the factors being antilinear
mappings TH = γ ◦ ϕ : H → H ∗ and TR = ι ◦ ψ : R → R∗.

Of course we have only considered a piece of T , and that only in the case of mixing.
However, exactly the same arguments apply to the other piece and also in the case of
nonmixing. Thus we have the following observation.

Proposition 3.5. The induced map

T : (H ⊗ R)⊕ (H ∗ ⊗ R∗) → (H ⊗ R)⊕ (H ∗ ⊗ R∗) ,

is the sum T = A1 ⊗ B1 + A2 ⊗ B2 of pure tensors.

In the case of mixing this means that A1 ⊗B1 is an antilinear mapping from H ⊗R

to H ∗ ⊗ R∗ and vice versa for A2 ⊗ B2.
IfT doesn’t mix, thenA1⊗B1 : H⊗R → H⊗R andA2⊗B2 : H ∗⊗R∗ → H ∗⊗R∗.

In this case we impose the natural condition that the Ai and Bi be antiunitary. For later
purposes we note that this condition determines the factors only up to multiplication by
a complex number of unit modulus. Using the formula C = γ ⊗ ι and the fact that C
commutes with T , one immediately computes A2 ⊗ B2 from A1 ⊗ B1 (or vice versa).

The involutory property T 2 = ±Id also adds strong restrictions. Of course there may
be two distinguished time reversals, T and T1, and we require that they commute withC
and T1T = ±T T1. These properties are automatically transferred at this level, because
the transfer process from (H ⊗ R)⊕ (H ∗ ⊗ R∗) to V ⊕ V ∗ is an isomorphism.

Finally, we prove an identity which is essential for transferring the complex bilinear
form. For this we begin with

h⊗ r + f ⊗ t ∈ (H ⊗ R)⊕ (H ∗ ⊗ R∗) ,

apply ε to obtain h(r)+f (t), and then apply the linear function f (t) ∈ V ∗ to the vector
h(r) ∈ V . The result f (t)(h(r)) is to be compared to the product f (h) t (r). Recall that
the dimension of the vector space R is denoted by d.

Proposition 3.6.

f (t)(h(r)) = d−1 f (h) t (r) .

Before beginning the proof, which uses bases for the various spaces, we set the nota-
tion and prove a preliminary lemma. Let m denote the multiplicity of the component V
and fix an identification

V ⊕ V ∗ = R ⊕ . . .⊕ R ⊕ R∗ ⊕ . . .⊕ R∗

with m summands of R and R∗. Let (e1, . . . , ed) be a basis of R and (ϑ1, . . . , ϑd) be
its dual basis. These define bases (ek1, . . . , e

k
d) and (ϑk1 , . . . , ϑ

k
d ) of the corresponding

kth summands above. Let I kR and I kR∗ be the respective identity mappings.
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Lemma 3.7.

I �R∗(I kR) = δk� d .

Proof. Expressing the operators in the bases, i.e.,

I kR =
∑

i
ϑki ⊗ eki and I �R∗ =

∑

j
e�j ⊗ ϑ�j ,

one has

I �R∗(I
k
R) =

∑

i,j
ϑki (e

�
j ) ϑ

�
j (e

k
i ) =

∑

i,j
δk�ij = δk� d ,

which is the statement of the lemma. 
�
Proof of Prop. 3.6. We expand h ∈ H = HomG0(R, V ) as h = ∑

hkI
k
R , and f ∈

H ∗ = HomG0(R
∗, V ∗) as f = ∑

f�I
�
R∗ . If r = ∑

riei and t = ∑
tjϑj , then

h(r) =
∑

i,k
hkri e

k
i and f (t) =

∑

j,�
f�tj ϑ

�
j .

Thus

f (t)(h(r)) =
∑

ijk�
δk�ij f�hktj ri =

(∑

k
fkhk

)
t (r) .

Proposition 3.6 now follows from the above lemma which implies that f (h) =
d

∑
fkhk . 
�

3.2. The case where λ �= λ∗. Recall that our goal is to canonically transfer the data on
V ⊕ V ∗ to H ⊕H ∗, thus removing G0 from the picture. In the case where λ �= λ∗ this
is a particularly simple task.

First, we apply Prop. 3.4 to transfer elements of EndG0(V ⊕V ∗). In the case at hand
HomG0(R,R

∗) and HomG0(R
∗, R) are both zero, and both EndG0(R) and EndG0(R

∗)
are isomorphic to C. Thus it follows from Prop. 3.4 that

EndG0(V ⊕ V ∗) ∼= EndG0(H ⊗ R ⊕H ∗ ⊗ R∗)
∼= End(H)⊕ End(H ∗) ↪→ End(H ⊕H ∗) .

We always normalize operators in EndG0(H ⊗ R) to the form ϕ ⊗ IdR and normalize
operators in EndG0(H

∗ ⊗R∗) in a similar way. Thus we identify EndG0(V ⊕ V ∗) with
End(H)⊕ End(H ∗) as a subspace of End(H ⊕H ∗) and have the following result.

Proposition 3.8. The condition that an operator in EndG0(V ⊕V ∗) respects the unitary
structure onV⊕V ∗ is equivalent to the canonically transferred operator in End(H⊕H ∗)
respecting the canonically transferred unitary structure on H ⊕H ∗.

Now let us turn to the condition of compatibility with a transferred time-reversal
operator T : H ⊗ R ⊕H ∗ ⊗ R∗ → H ⊗ R ⊕H ∗ ⊗ R∗. There are a number of cases,
depending on whether or not T mixes and which of the conditions T 2 = −Id or T 2 = Id
are satisfied. The arguments are essentially the same in every case. Let us first go through
the details in one of them, the mixing case where T 2 = −Id. To be consistent with the
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slightly more complicated discussion in the case where λ = λ∗, let us write this in matrix
notation.

For A ∈ End(H) and D ∈ End(H ∗), we regard

M =
(
A⊗ IdR 0

0 D ⊗ IdR∗

)

as the associated transformation in EndG0(H⊗R⊕H ∗⊗R∗). To construct the transferred
time-reversal operator recall the statement of Prop. 3.5. In the setting under consideration
T squares to minus the identity; it is therefore expressed as

T =
(

0 −α−1 ⊗ β−1

α ⊗ β 0

)
,

where α : H → H ∗ and β : R → R∗ are complex antilinear. Note that since α ⊗ β =
z α ⊗ z−1β, the mappings α and β are determined only up to a common multiplicative
constant z ∈ C \ {0}. Conjugation of M in EndG0(H ⊗ R ⊕H ∗ ⊗ R∗) by T yields

TMT −1 =
(
α−1D α ⊗ IdR 0

0 αAα−1 ⊗ IdR∗

)
.

Clearly, compatibility of M with T here means that D = αAα−1.
Formulating this in a less detailed way gives the appropriate statement: conjugation

of M in EndG0(H ⊗ R ⊕ H ∗ ⊗ R∗) by T yields the same compatibility condition as
conjugating

(
A 0
0 D

)
by

(
0 ∓α−1

α 0

)
.

Here the sign in front of α−1 is arbitrary. For definiteness we choose it in such a way
that the transferred time-reversal operator has the same involutory property T 2 = −Id
or T 2 = Id as the original operator; in the case under consideration this means that we
choose the minus sign.

Proposition 3.9. There is a transferred time-reversal operator T : H ⊕H ∗ → H ⊕H ∗
which satisfies either T 2 = −Id or T 2 = Id. It mixes if and only if the original operator
mixes, and a canonically transferred mapping in End(H ⊕H ∗) commutes with it if and
only if the original mapping in EndG0(V ⊕V ∗) commutes with the original time-reversal
operator.

Proof. It only remains to handle the case of nonmixing, e.g., when T 2 = −Id. As we
have seen, T : H ⊗ R → H ⊗ R is a pure tensor:

T |H⊗R = α ⊗ β ,

which gives T 2|H⊗R = α2 ⊗ β2 = −IdH ⊗ IdR in the case at hand. Since the induced
map β : R → R is antiunitary by convention, we have β2 = z× IdR with |z| = 1. Asso-
ciativity (β2 ·β = β ·β2) then implies z = ±1. Unlike the case of mixing, β now plays a
role through its parity. If β2 = +IdR , the transferred time-reversal operator α onH still
satisfies α2 = −IdH . On the other hand, if β2 = −IdR we have α2 = +IdH instead.
Thus the involutory property T 2 = ±Id is passed on to the transferred time-reversal
operator, but depending on the involutory character of β the parity may change. 
�
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We remind the reader that two distinguished time-reversal symmetries may be present.
The above shows that both can be transferred with appropriate involutory properties.
Further, it must be shown that they can be transferred (along with C) so that T C = CT ,
T1C = CT1, and T1T = ±T T1 still hold. Even if there is just one such operator, it must
be shown that the transferred operator can be chosen to satisfy T C = CT . Since the
discussion for this is the same as in the case where λ = λ∗, we postpone it to Sect. 3.4.

Finally, we turn to the problem of transferring the complex bilinear form on V ⊕V ∗
to H ⊕H ∗. If b denotes the pullback by ε of the canonical symmetric bilinear form on
V ⊕ V ∗, then by Prop. 3.6,

b(h1 ⊗ r1 + f1 ⊗ t1, h2 ⊗ r2 + f2 ⊗ t2) = d−1(f1(h2)t1(r2)+ f2(h1)t2(r1)) .

Now in this case, i.e., where λ �= λ∗, the G0-invariant endomorphisms are acting on

H ⊗ R ⊕H ∗ ⊗ R∗ by

(
A⊗ IdR 0

0 D ⊗ IdR∗

)
, where

A⊕D ∈ End(H)⊕ End(H ∗) ↪→ End(H ⊕H ∗) .

Inserting the operator A⊕D into the above expression for b we have the following fact
involving the canonical symmetric bilinear form s on H ⊕H ∗,

s(h1 + f1, h2 + f2) = f1(h2)+ f2(h1) .

Proposition 3.10. A map in EndG0(V ⊕ V ∗) respects the canonical symmetric bilinear
form if and only if the transferred map in End(H)⊕End(H ∗) ↪→ End(H⊕H ∗) respects
the canonical symmetric bilinear form s on H ⊕H ∗.

In summary, we have shown that if λ �= λ∗, then all relevant structures on V ⊕ V ∗
transfer to data of essentially the same type on H ⊕ H ∗ (the only exception being
that the parity of the transferred time-reversal operator may be reversed). In this case
EndG0(V ⊕ V ∗) is canonically isomorphic to End(H)⊕ End(H ∗) ↪→ End(H ⊕H ∗).
An operator in EndG0(V ⊕ V ∗) respects the original structures if and only if the cor-
responding operator in End(H ⊕ H ∗) respects the transferred structures on H ⊕ H ∗.
The latter are the transferred unitary structure, induced time reversal and the symmetric
bilinear form s.

3.3. The case where λ = λ∗. Throughout this section it is assumed that λ = λ∗, and
ψ : R → R∗ is a G0-equivariant isomorphism. Thus we have the identification

H ⊗ R ⊕H ∗ ⊗ R ∼= H ⊗ R ⊕H ∗ ⊗ R∗,
h⊗ r + f ⊗ t �→ h⊗ r + f ⊗ ψ(t) .

Applying Prop. 3.4 to each component of an operator in EndG0(H ⊗ R ⊕ H ∗ ⊗ R) it
follows that

EndG0(H ⊗ R ⊕H ∗ ⊗ R∗) ∼= End(H ⊕H ∗) .

We therefore identify End(H⊕H ∗)with EndG0(H⊗R⊕H ∗ ⊗R∗) = EndG0(V ⊕V ∗)
by the mapping

M =
(

A B
C D

)
�→

(
A ⊗ IdR B ⊗ ψ−1

C ⊗ ψ D ⊗ IdR∗

)
.
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Recall the induced unitary structure which is defined, e.g., on H ⊗ R by

〈h1 ⊗ r1, h2 ⊗ r2〉H⊗R := 〈h1(r1), h2(r2)〉V = 〈h1, h2〉H 〈r1, r2〉R .
It is easy to verify that this defines a unitary structure on H ⊕ H ∗ with the desired
property: a map in EndG0(V ⊕ V ∗) preserves the given unitary structure on V ⊕ V ∗ if
and only if the transferred map M preserves the induced unitary structure on H ⊕H ∗.

Now let us consider time reversal. For example, take the case of nonmixing where
T1 : H ⊗ R → H ⊗ R. Using Prop. 3.5 we have

T1 =
(
α ⊗ β 0

0 α̃ ⊗ β̃

)
,

and conjugating the transformation

(
A ⊗ IdR B ⊗ ψ−1

C ⊗ ψ D ⊗ IdR∗

)
at the level of operators on

H ⊗ R ⊕H ∗ ⊗ R∗ yields
(

αAα−1 ⊗ IdR αBα̃−1 ⊗ βψ−1β̃−1

α̃Cα−1 ⊗ β̃ψβ−1 α̃Dα̃−1 ⊗ IdR∗

)
.

Now, as has been mentioned in Sect. 3.1, the equivariant antiunitary maps β and β̃
are only unique up to multiplicative constants of unit modulus. They will be chosen in
the next subsection so that the distinguished time-reversal operator(s) and the unitary
structure C commute. These choices having been made, we make a compatible choice
of ψ so that β̃ψβ−1 = ψ . In this way, in the case where T1 is nonmixing as above,
conjugation of the matrix M by T1 is given by

(
A B
C D

)
�→

(
αAα−1 αBα̃−1

α̃Cα−1 α̃Dα̃−1

)
. (3.1)

Thus the transferred time-reversal operator is simply given by T1 = α⊕ α̃ on H ⊕H ∗.
Consider now the case of a mixing time-reversal symmetry T where

T =
(

0 α−1 ⊗ β−1

εT α ⊗ β 0

)

with εT = ±1. In this case the compatibility condition on ψ is βψ−1β = εβψ , with
εβ = ±1. If this holds, conjugation of M by T is given by

(
A B
C D

)
�→

(
α−1Dα εα α−1Cα−1

εα αBα αAα−1

)
(3.2)

with εα = εβεT . In this case the appropriate transferred operator is given by

T =
(

0 α−1

εα α 0

)
.

Given the (essentially unique) choices of the tensor-product representations of T , T1 and
C which are defined by T1T = ±T T1 and by the conditions that T and T1 commute
with C, we show in Sect. 3.4 that there is a unique choice of ψ so that both of these
compatibility conditions (from T1 and T ) on ψ hold.
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If we are in the nonmixing case β : R → R, and it so happens that β isG0-invariant,
then the two alternatives for the involutory property of T (actually, T1) can be distin-
guished by the type of the unitary representation R as follows. Defining ι : R → R∗
by r �→ 〈r, ·〉R as before, consider the unitary mapping ψ : R → R∗ given as the
composition ψ = ι ◦ β. Since β isG0-invariant, ψ isG0-equivariant, and the statement
of Lemma 3.2 applies. Using the antiunitarity of β one has

ψ(r)(t) = 〈βr, t〉R = 〈β2r, βt〉R = ψ(t)(β2r) ,

and therefore the following statement is immediate.

Lemma 3.11. The parity of an antiunitary and G0-invariant mapping β : R → R is
determined by the parity of the irreducible G0-representation space R; i.e., β satisfies
β2 = IdR resp. β2 = −IdR ifR carries an invariant C-bilinear form which is symmetric
resp. alternating.

If β2 = IdR , the transferred time reversal satisfies T 2 = −Id or T 2 = Id if the
original time reversal has these properties. On the other hand, if β2 = −IdR , then the
properties are reversed; e.g., if T 2 = −Id on the original space, then transferred time
reversal satisfies T 2 = Id. We again remind the reader that we must check that the
transferred time-reversal operator(s) and C can be chosen compatibly. It turns out that
there is in fact just enough freedom in the choice of the constants to achieve this (see
Sect. 3.4).

Example. An example of particular importance in physics is the transfer of the (true)
time reversal T in the case where all spin rotations are symmetries. On fundamental
grounds, T is a (nonmixing) operator which commutes with the spin-rotation group
SU2 and satisfies T 2 = (−1)n Id on quantum mechanical states with spin S = n/2.

Let V = H ⊗ C
n+1 be the tensor product of a vector space H with the spin n/2

representation space of SU2. For simplicity assume that there are no further symmetries.
Our Nambu space is already in the form V ⊕ V ∗ = (H ⊗ R) ⊕ (H ∗ ⊗ R∗). Thus

the reduced space is H ⊕ H ∗. Let the time-reversal operator on V = H ⊗ C
n+1 be

written T = α ⊗ β. The SU2-representation space C
n+1 is known to have parity +1

(symmetric invariant form) for n even, and −1 (alternating invariant form) for n odd.
By Lemma 3.11 this implies β2 = (−1)n Id. The situation on the dual space V ∗ is the
same. Thus in this case, since T 2 = (−1)n Id, the transferred time-reversal operator
α : H ⊕H ∗ → H ⊕H ∗ always satisfies α2 = +IdH⊕H ∗ , independent of the spin. �

Now let us turn to the problem of transferring the complex bilinear form. For this
Lemma 3.2 is an essential fact. Earlier we identified H ⊗ R ⊕H ∗ ⊗ R∗ with V ⊕ V ∗
by the map ε : h⊗ r + f ⊗ t �→ h(r)+ f (t). Using this along with Prop. 3.6 we now
transfer the canonical symmetric bilinear form on V ⊕ V ∗ to H ⊕ H ∗. For this let s
(resp. a) denote the canonical symmetric (resp. alternating) form on H ⊕H ∗.

Proposition 3.12. Depending on ψ being symmetric or alternating, a transferred map
in End(H ⊕H ∗) respects the canonical symmetric form s or alternating form a if and
only if the original endomorphism in EndG0(V ⊕V ∗) respects the canonical symmetric
complex bilinear form on V ⊕ V ∗.

Proof. We give the proof for the case whereψ is alternating. The proof in the symmetric
case is completely analogous.
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Let M =
(

A B
C D

)
∈ End(H ⊕H ∗) act as a G0-invariant operator

(
A ⊗ IdR B ⊗ ψ−1

C ⊗ ψ D ⊗ IdR∗

)

on H ⊗ R ⊕H ∗ ⊗ R∗ and let b be the symmetric complex bilinear form on this space
which is induced from the canonical symmetric form on V ⊕ V ∗. We assume that
M ∈ GL(H ⊕H ∗) and give the proof in terms of the isometry property b(Mv,Mw) =
b(v,w). Let us do this in a series of cases. First, for h1 ⊗ r1 and h2 ⊗ r2 in H ⊗ R,

b(M(h1 ⊗ r1),M(h2 ⊗ r2))

= b(Ah1 ⊗ r1 + Ch1 ⊗ ψ(r1),Ah2 ⊗ r2 + Ch2 ⊗ ψ(r2))

= Ch1(Ah2) ψ(r1)(r2)/d + Ch2(Ah1) ψ(r2)(r1)/d

= a(Ah1 + Ch1,Ah2 + Ch2) ψ(r1)(r2)/d .

When M is the identity this becomes

b(h1 ⊗ r1, h2 ⊗ r2) = a(h1, h2) ψ(r1)(r2)/d .

Therefore b(h1 ⊗ r1, h2 ⊗ r2) = b(M(h1 ⊗ r1),M(h2 ⊗ r2)) if and only if a(h1, h2) =
a(M(h1),M(h2)). For f1 ⊗ t1, f2 ⊗ t2 ∈ H ∗ ⊗ R∗ the discussion is analogous.

For h⊗ r ∈ H ⊗ R and f ⊗ t ∈ H ∗ ⊗ R∗ we have a similar calculation:

b(M(f ⊗ t),M(h⊗ r))

= b(Bf ⊗ ψ−1(t)+ Df ⊗ t,Ah⊗ r + Ch⊗ ψ(r))

= Df (Ah) t (r)/d + Ch(Bf )ψ(r)(ψ−1(t))/d

= a(M(f ),M(h)) t (r)/d .

Of course the analogous identity holds for b(M(h⊗ r),M(f ⊗ t)). 
�
Remark. To avoid making sign errors and misidentifications in later computations, we
find it helpful to transfer the particle-hole conjugation operator C along with the com-
plex bilinear form. This is done by insisting that the statement of Lemma 2.2 remains
true after the transfer. Thus the relation b(Cw1, w2) = 〈w1, w2〉 continues to hold in
all cases. By an almost identical variant of the computation that led to Lemma 3.11, the
transferred operator C has parity C2 = +Id or C2 = −Id depending on whether the
transferred bilinear form is symmetric or alternating.

3.4. Precise choice of time-reversal transfer. Recalling the situation of this section, we
have assumed that the distinguished time-reversal operator(s) stabilize the initial block
V ⊕V ∗, and we have transferred all structures to the space (H ⊗R)⊕ (H ∗ ⊗R∗)which
is isomorphic to V ⊕ V ∗.

The time-reversal operator(s) T and the operator C are given by (2 × 2)-matrices of
pure tensors on this space. The space of endomorphisms B that commute with the G0-
action is identified with End(H ⊕ H ∗) or End(H) ⊕ End(H ∗) depending on whether
or not λ = λ∗. The good Hamiltonians B anticommute with C, and commute with
the time-reversal operator(s) T . If the matrix of pure tensors representing the antiunitary
operatorC (resp. T ) has entries γ ⊗δ, this means thatB anticommutes (resp. commutes)
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with the matrices defined by the operators γ . Although the pure tensor decomposition
is not unique, this statement is independent of that decomposition.

It has been shown above that the transferred operators T1, T , and C onH ⊕H ∗, i.e.,
those defined by the operators γ , can be chosen with the desired involutory properties.
It will now be shown that there is just enough freedom to insure that

T C = CT , T1C = CT1 , T1T = ±T T1 ,

still hold after transferral. After these conditions have been met, we show as promised
that ψ : R → R∗ can be chosen in a unique way so that the compatibility conditions of
Sect. 3.3 hold, i.e., so that it makes sense to define the transferred operators by the first
factors of the tensor-product representations.

We carry this out in the case where λ = λ∗ and two distinguished time-reversal
operators are present. All other cases are either subcases of this or are much simpler.

The operatorC always mixes. We will always choose it to be of the formC = γ ⊗ ι :
H ⊗R → H ∗ ⊗R∗ and C = γ−1 ⊗ ι−1 : H ∗ ⊗R∗ → H ⊗R. Of course this is in the
case where b is symmetric. If b is alternating, then we have C2 = −Id, and we make
the necessary sign change.

Here we restrict to the case where T 2 = T 2
1 = Id. The various other involuto-

ry properties make no difference in the argument. Just as in the case of C we choose
T = α⊗β : H ⊗R → H ∗ ⊗R∗ and T = α−1 ⊗β−1 : H ∗ ⊗R∗ → H ⊗R. Similarly,
we choose T1 = α1 ⊗β1 : H ⊗R → H ⊗R and T1 = α2 ⊗β2 : H ∗ ⊗R∗ → H ∗ ⊗R∗.

On (H ⊗ R) ⊕ (H ∗ ⊗ R∗), the operators T and T1 commute with C, and we have
T1T = ±T T1. We now choose the tensor representations so that the same relations hold
for the induced operators on the first factors.

If α, α1, α2, and γ are any choices for the first factors of the tensor-product represen-
tations of T , T1 andC, then there exist constants c1, c2 and c3 so that α2α = c1αα1 (from
T T1 = ±T1T ), γα1 = c2α2γ (from CT1 = T1C), and γα−1γ = c3α (CT = T C).

Let α̃ = ξα, γ̃ = ηγ , and α̃i = ziα (for i = 1, 2), where ξ , η and zi are complex
numbers yet to be determined. Just as the ci , these constants are of modulus one.

The scaled operators satisfy α̃2α̃ = χ1c1α̃α̃1, γ̃ α̃1 = χ2c2α̃2γ̃ , and γ̃ α̃−1γ̃ = χ3c3α̃,
where χ1 = ξ−2z1z2, χ2 = η2(z1z2)

−1, and χ3 = ξ−2η2. Observe that the characters
χi satisfy the relation χ1χ2 = χ3, and that, e.g., χ2 and χ3 are independent.

The constants ci satisfy an analogous relation. For this first use γα1γ
−1 = c2α2

and γα−1γ = c3α to obtain γα1α
−1γ = (c2/c3)α2α. Then compose both sides of this

equation with the inverse of α1 on the right and use the relation α2αα
−1
1 = c1α to obtain

γα1α
−1γα−1

1 = (c1c2/c3)α. Now γα−1
1 = (c2α2)

−1γ . Thus

γα1α
−1γα−1

1 = γα1α
−1α−1

2 c−1
2 γ = c−1

2 γ c1α
−1γ = (c1c2)

−1c3α ,

and hence c1c2/c3 = c3/c1c2, i.e., c2
1c

2
2 = c2

3.
Since χ2 and χ3 are independent, we can choose the scaling numbers so that c2 =

c3 = 1, thereby arranging that CT = T C and CT1 = T1C still hold after transferral.
To preserve these relations we must now keep χ2 and χ3 fixed at unity, which from
χ1χ2 = χ3 implies that χ1 = 1. Since c2

3 = c2
1c

2
2, we then conclude that c1 takes one of

the two values ±1, and further scaling does not change this constant.
In summary we have the following result.

Proposition 3.13. The transferred operators T1, T and C can be chosen so that T1C =
CT1, T C = CT , and T1T = ±T T1. Assuming that the time-reversal operators have
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been transferred to commute with C in this way, the relation T1T = ±T T1 is automatic
and further scaling does not change the sign. Furthermore, the C-linear isomorphism
ψ : R → R∗ can be chosen to meet the compatibility conditions which determine the
conjugation rules (3.1) and (3.2).

Proof. It remains to prove that ψ can be chosen as stated. For the nonmixing operator
T1 the compatibility condition is β2ψβ

−1
1 = ψ . Given some choice ofψ (which we will

modify) there is a constant c ∈ C so that β2ψβ
−1
1 = cψ . This constant c is unimodular

since β1 and β2 are antiunitary. To satisfy the compatibility condition, replace ψ by ξψ ,
where ξ̄ ξ−1c = 1. Note that this choice of ξ only determines its argument.

Turning to the compatibility condition βψ−1β = εβψ for the mixing operator T ,
we start from cψ = βψ−1β for some other c ∈ C, and use the C-antilinearity of β to
deduce ψ−1 = c̄ β−1ψβ−1. Multiplying expressions gives c = c̄ ∈ R. Then, rescaling
ψ to ξψ , the compatibility condition is achieved by setting εβ := c/|c| and solving
|ξ |2 = |c|. Since this rescaling (with ξ ∈ R) does not affect the compatibility condition
for the nonmixing operator, we have determined the desired isomorphism ψ . 
�

Finally, since C is a pure tensor, it follows from our representation of the transferred
bilinear form b that cb(Ch1, h2) = 〈h1, h2〉 for some constant c. Thus we replace b by
cb and obtain the following final transferred setup on H ⊕H ∗:

• The canonical bilinear form b which is either symmetric or alternating.
• A unitary structure 〈 , 〉 which is compatible with b in the sense that b(Ch1, h2) =

〈h1, h2〉. The operatorC : H ↔ H ∗ satisfies eitherC2 = Id orC2 = −Id, depending
on b being symmetric or alternating.

• Either zero, one, or two time-reversal operators. They are antiunitary and commute
with C. In the case of two, T is mixing and T1 is nonmixing. In the case of one, both
mixing and nonmixing are allowed. The same involutory properties hold as before
transfer, but signs might change, i.e., if T 2 = Id holds before transfer, then it is
possible that T 2 = −Id afterwards. Furthermore, T1T = ±T T1, and consequently
the unitary product P := T T1 satisfies P 2 = ±Id.

In the following sections all of the symmetric spaces which occur in our basic model
will be described, using the transferred setup. This means that we describe the subspace
of Hermitian operators in End(H)⊕ End(H ∗) or End(H ⊕H ∗) which are compatible
with b and the T -symmetries. We first handle the case of one or no time-reversal operator
(Sect. 4), and then carry out the classification when both T and T1 are present (Sect. 5).
The final classification result, Theorem 1.1, then follows.

4. Classification: At Most One Distinguished Time Reversal

This section is devoted to giving a precise statement of Theorem 1.1 and its proof in
the case where at most one distinguished time-reversal symmetry is present. Combining
this with the results of Sect. 3, we obtain a precise description of the blocks that occur
in the model motivated and described in Sects. 1 and 2.

4.1. Statement of the main result. Throughout this section, V denotes a finite-
dimensional unitary vector space. The associated space W = V ⊕ V ∗ is equipped
with the canonically induced unitary structure 〈 , 〉 and C-antilinear map C : V → V ∗,
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v �→ 〈v, ·〉. The results of the previous section allow us to completely eliminateG0 from
the discussion so that it is only necessary to consider the following data:

• The relevant space E of endomorphisms. This is either the full space End(W) or
End(V )⊕ End(V ∗) embedded as usual in End(W).

• The canonical complex bilinear form b : W ×W → C. This is either the symmetric
form s which is given by

s(v1 + f1, v2 + f2) = f1(v2)+ f2(v1) ,

or the alternating form a which is given by

a(v1 + f1, v2 + f2) = f1(v2)− f2(v1) .

Equivalently, C : V → V ∗ is extended to a C-antilinear mapping C : W → W by
C2 = +Id resp. C2 = −Id, and b(Cw1, w2) = 〈w1, w2〉 holds in all cases.

• The antiunitary mapping T : W → W , which satisfies either T 2 = −Id or T 2 = Id.
We say that T is nonmixing if T |V : V → V and T |V ∗ : V ∗ → V ∗. If T |V : V →
V ∗, then we refer to T as mixing. In all cases T commutes with C. We also include
the case where T is not present.

Fixing one of these properties each, we refer to (V ,E, b, T ) as block data; e.g., E =
End(W), b = s, T 2 = −Id and T being nonmixing would be such a choice.

Our main result describes the symmetric spaces associated to given block data. Let us
state this at the Lie algebra level, where for convenience of formulation we only consider
the case of trace-free operators. In order to state this result, it is necessary to introduce
some notation.

Given block data (V ,E, b, T ), let g be the subspace of E of antihermitian operators
A which are compatible with b in the sense that

b(Aw1, w2)+ b(w1, Aw2) = 0

for all w1, w2 ∈ W . It will be shown that g is a Lie subalgebra of E which is invariant
under conjugation A �→ TAT −1 with T . This defines a Lie algebra automorphism

θ : g → g , A �→ TAT −1 ,

which is usually called a Cartan involution. If k := Fix(θ) = {A ∈ g : θ(A) = A} and
p is the space {A ∈ g : θ(A) = −A} of antifixed points, then

g = k ⊕ p

is called the associated Cartan decomposition.
The space H = H(V ,E, b, T ) of Hermitian operators which are compatible with

the block data is ip, which is identified with the infinitesimal version p = g/k.
In order to give a smooth statement of our classification result, we recall that the Lie

algebras sun, usp2n, and so2n are commonly referred to as being of type A, C, and D,
respectively. By an irreducible ACD-symmetric space of compact type one means an
(irreducible) compact symmetric space of any of these Lie algebras. With a slight exag-
geration we use the same terminology in Theorem 4.1 below. The exaggeration is that
the case so2n/(sop⊕soq)withp and q odd must be excluded in order for that theorem to
be true. For the overall statement of Theorem 1.1 there is no danger of misinterpretation,
as the case where p and q are odd does occur in the situation where two distinguished
time-reversal symmetries are present (see Sect. 5).
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Theorem 4.1. Given block data (V ,E, b, T ), the space H = H(V ,E, b, T ) ∼= g/k is
the infinitesimal version of an irreducibleACD-symmetric space of compact type. Con-
versely, the infinitesimal version of any irreducible ACD-symmetric space of compact
type can be constructed in this way.

There are several remarks which should be made concerning this statement. First,
as we have already noted, in order to give a smooth formulation, we have reduced to
trace-free operators. As will be seen in the proof, there are several cases where without
this assumption g would have a one-dimensional center.

Secondly, recall that one of the important cases of a compact symmetric space is that
of a compact Lie group K with the geodesic inversion symmetry at the identity being
defined by k �→ k−1. Usually one equips K with the action of G = K ×K defined by
left- and right-multiplication, and views the symmetric space as G/K , where the isot-
ropy group K is diagonally embedded in G. The infinitesimal version is then (k ⊕ k)/k,
and the automorphism θ : g → g is defined by (X1, X2) �→ (X2, X1). In this setting
one speaks of symmetric spaces of type II.

In our case the classical compact Lie algebras do indeed arise from appropriate block
data, but in the situation where T does not leave the original space W invariant. In that
setting, T maps W = W1 = V1 ⊕ V ∗

1 to W2 = V2 ⊕ V ∗
2 , which has different G0-

representations from those inW1. Thus the relevant block isW1 ⊕W2. Using the results
of the previous section, in this case we also remove G0 from the picture.

Nevertheless, we are left with a situation where the block isW1 ⊕W2 and T : W1 →
W2. Thus we wish to allow situations of this type, i.e., where V ⊕V ∗ is not T -invariant,
to be allowed block data. These cases are treated separately in Sect. 4.4.

The case where the symmetric space is just the compact group associated to g also
arises when T is not present, i.e., when there is no condition which creates isotropy.

Finally, as has already been indicated in Sect. 1, the appropriate homogeneous space
version of Theorem 4.1 is given by replacing the infinitesimal symmetric space g/k by
the Cartan-embedded symmetric space M ∼= G/K . Here G is the simply connected
group associated to g, a mapping θ : G → G is defined as the Lie group automorphism
whose derivative at the identity is the Cartan involution of the Lie algebra, andM is the
orbit of e ∈ G of the twisted G-action given by x �→ gx θ(g)−1.

4.2. The associated symmetric space. In this and the next subsection we work in the
context of simple block data (V ,E, b, T ), where W = V ⊕ V ∗ is T -invariant.

In the present subsection we prove the first half of Theorem 4.1, namely that H ∼= g/k
is an infinitesimal version of a classical symmetric space of compact type. This essen-
tially amounts to showing that all the involutions which are involved commute.

Let σ : E → E be the C-antilinear Lie-algebra involution that fixes the Lie algebra
of the unitary group in E. If the adjoint operation A �→ A∗ is defined by

〈Aw1, w2〉 = 〈w1, A
∗w2〉 ,

then σ(A) = −A∗. The transformations S ∈ E which are isometries of the canonical
bilinear form satisfy

b(Sw1, Sw2) = b(w1, w2)

for all w1, w2 ∈ W . Thus the appropriate Lie algebra involution is the C-linear auto-
morphism

τ : E → E , A �→ −At ,
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where A �→ At is the adjoint operation defined by

b(Aw1, w2) = b(w1, A
tw2) .

Finally, let θ : E → E be the C-antilinear map defined by A �→ TAT −1.

Proposition 4.2. The operations A �→ A∗ and A �→ At are related by A∗ = CAtC−1.

Proof. From b(Cw1, w2) = 〈w1, w2〉 and the definition of A �→ A∗ we have

b(Aw1, w2) = 〈C−1Aw1, w2〉 = 〈C−1w1, (C
−1AC)∗w2〉 = b(w1, C

−1A∗Cw2) ,

i.e., At = C−1A∗C, independent of the case b = s or b = a. 
�
Proposition 4.3. The involutions σ , τ and θ commute.

Proof. Using 〈C−1A∗Cw1, w2〉 = 〈w1, C
−1ACw2〉 along with At = C−1A∗C we

have

(At)∗ = C−1AC = (A∗)t ,

and consequently στ = τσ .
Since T is antiunitary, one immediately shows from the definition of A∗ that

〈w1, T A
∗T −1w2〉 = 〈TAT −1w1, w2〉 .

In other words,

θ(σ (A)) = −TA∗T −1 = −(T AT −1)∗ = σ(θ(A)) .

Finally, since θ(A) = TAT −1 and T commutes withC, it follows that θτ = τθ . 
�
Let s := Fix(τ ). Since θ and σ commute with τ , it follows that they restrict to C-
antilinear involutions of the complex Lie algebra s. We denote these restrictions by the
same letters. For future reference let us summarize the relevant formulas.

Proposition 4.4. For A ∈ s it follows that

σ(A) = CAC−1 and θ(A) = TAT −1.

The parity of C is C2 = +Id for b = s symmetric, and C2 = −Id for b = a alternating.

The space g of antihermitian operators inE that respect b is therefore the Lie algebra
of σ -fixed points in s. Since σ defines the unitary Lie algebra in E, it follows that g is a
compact real form of s. Let us explicitly describe s and g.

If E = End(W) and b = s is symmetric, then s is the complex orthogonal Lie
algebra so(W, s) ∼= so2n(C). If E = End(W) and b = a is alternating, then s is the
complex symplectic Lie algebra sp(W, a) ∼= sp2n(C). If E = End(V )⊕ End(V ∗), then
in both cases for b it follows that its isometry group is SLC(V ) acting diagonally by
its defining representation on V and its dual representation on V ∗. In this case we have
s = sl(V ) ∼= sln(C). Note that this is a situation where we have used the trace-free
condition to eliminate the one-dimensional center.

For the discussion of g it is important to note that since σ(A) = CAC−1, it follows
that g just consists of the elements of s which commute with C.



Symmetry Classes of Disordered Fermions 755

In the symmetric case b = s, where C defines a real structure on W , it is appro-
priate to consider the set of real points WR = {v + Cv : v ∈ V }. Thinking in terms
of isometries, we regard G = exp(g) as being the group of R-linear isometries of the
restriction of b = s to WR which are extended complex linearly to W . Note that in this
case b|WR

= 2 Re 〈 , 〉, and that every R-linear transformation of WR which preserves
Re 〈 , 〉 extends C-linearly to a unitary transformation of W . Thus, if E = End(W) and
b = s, then g is naturally identified with so(WR, s|WR

) ∼= so2n(R).
In the alternating case b = a, if E = End(W), then as in the previous case, since σ

defines u(W) ⊂ E, it follows that its set g of fixed points in s is a compact real form of
s. Since s is the complex symplectic Lie algebra sp(W, a) ∼= sp2n(C), it follows that g
is isomorphic to the Lie algebra usp2n of the unitary symplectic group.

It is perhaps worth mentioning that C for b = a defines a quaternionic structure on
the complex vector space W . Thus the condition A = CAC−1 defines the subalgebra
gln(H) in End(W). The further condition A = −A∗ shows that g can be identified with
the algebra of quaternionic isometries, another way of seeing that g ∼= usp2n.

Finally, in the case where E = End(V ) ⊕ End(V ∗) we have already noted that
s = sl(V ) which is acting diagonally. It is then immediate that in both the symmetric
and alternating cases g = su(V ) ∼= sun. Of course g acts diagonally as well.

Let us summarize these results.

Proposition 4.5. In the case where E = End(W) the following hold:

• If b = s is symmetric, then g ∼= so2n(R).
• If b = a is alternating, then g ∼= usp2n.

If E = End(V )⊕ End(V ∗), then g is isomorphic to sun and acts diagonally.

Since θ commutes with σ , it stabilizes g. Hence, θ |g is a Cartan involution which
defines a Cartan decomposition

g = k ⊕ p

of g into its (±1)-eigenspaces. The fixed subspace k = {A ∈ g : θ(A) = A} is a
subalgebra and g/k is the infinitesimal version of a symmetric space of compact type.

Recall that, given block data (V ,E, b, T ), the associated space

H = H(V ,E, b, T ) ∼= ip

of structure-preserving Hamiltonians has been identified with p = g/k. Thus we have
proved the first part of Theorem 4.1. The second part is proved in the next section by
going through the possibilities in Prop. 4.5 along with the various possibilities for T .

It should be noted that if T = ±C, then g = k, i.e., the symmetric space is just a
point. Such a degenerate situation, where the set of Hamiltonians is trivial (consisting
only of the zero Hamiltonian), never occurs in a well-posed physics setting.

4.3. Concrete description: symmetric spaces of type I. Here we describe the possibili-
ties for each set of block data (V ,E, b, T ) under the assumption thatW = V ⊕V ∗ is T -
invariant. The results are stated in terms of the ACD-symmetric spaces, with n :=
dimCV . The methods of proof of showing which symmetric spaces arise also show
how to explicitly construct them. In the present subsection, all of these are compact
irreducible classical symmetric spaces of type I in the notation of [H].
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4.3.1. The case E = End(V ) ⊕ End(V ∗) Under the assumption E = End(V ) ⊕
End(V ∗) it follows that g is just the unitary Lie algebra su(V ) ∼= sun which is acting
diagonally on W = V ⊕ V ∗. This is independent of b being symmetric or alternat-
ing. Thus we need only consider the various possibilities for T . If T is not present, the
symmetric space is g = sun.

1. T 2 = −Id, nonmixing: sun/satisfies uspn.
Since T is nonmixing and satifies T 2 = −Id, it follows that 〈T v1, v2〉 = a(v1, v2)

is a C-linear symplectic structure on V which is compatible with 〈v1, v2〉. Thus the
dimension n of V must be even here. The facts that g is acting diagonally as su(V )
and that the elements of k are precisely those which commute with T , imply that
k = uspn as announced.

2. T 2 = Id, nonmixing: sun/son.
Since T and g are acting diagonally, as in the previous case it is enough to only discuss
the matter on V . In this case T defines a real structure on V with VR = {v+T v : v ∈
V }, and the unitary isometries which commute with T are just those transformations
which stabilize VR and preserve the restriction of 〈 , 〉. Since 〈x, y〉VR

= Re 〈x, y〉V
for x, y ∈ VR, it follows that k = so(VR) ∼= son(R).

3. T 2 = ±Id, mixing: sun/s(up ⊕ uq).
Here it is convenient to introduce the unitary operator P = CT , which satisfies
P 2 = Id or P 2 = −Id, depending on the parity of T . Denote the eigenvalues of P
by u and −u. Since P does not mix, the condition that a diagonally acting unitary
operator commutes with T (or equivalently, with P ) is just that it preserves the P -
eigenspace decomposition V = Vu ⊕ V−u. Since the two eigenspaces Vu and V−u
are 〈 , 〉-orthogonal, we have k = s (u(Vu)⊕ u(V−u)), and the desired result follows
with p = dim Vu and q = dim V−u.
In the case P 2 = −Id, if there existed a subspace VR of real points that was stabi-
lized by P , then P would be a complex structure of VR and the dimensions of Vu
and V−u would have to be equal. In general, however, no such space VR exists and
the dimensions p and q are arbitrary.

4.3.2. The case E = End(W), b = s In this case we have the advantage that we may
restrict the entire discussion to the set of real points

WR = Fix(C) = {v + Cv : v ∈ V } .

Thus k is translated to being the Lie algebra of the group of isometries of 2 Re 〈 , 〉 on V .
Here the Lie algebra g is so(WR). Thus in the case where T is not present, the symmetric
space is so2n(R).

1. T 2 = −Id, nonmixing or mixing: so2n(R)/un.
Independent of whether or not it mixes, T |WR

: WR → WR is a complex structure on
WR. A transformation in SO(WR) commutes with T if and only if it is holomorphic.
Since Re 〈 , 〉 is T -invariant, this condition defines the unitary subalgebra k ∼= un in
g ∼= so2n(R).

2. T 2 = Id, nonmixing: so2n(R)/(son(R)⊕ son(R)).
Since T |WR

: WR → WR, we have the decomposition WR = W+
R

⊕ W−
R

into the
(±1)-eigenspaces of T . We still identify g with the Lie algebra of the group of isom-
etries of WR equipped with the restricted form Re 〈 , 〉. The subalgebra k, which is
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fixed by θ : X �→ TXT −1, is the stabilizer so(W+
R
)⊕ so(W−

R
) of the above decom-

position. Now let us compute the dimensions of the eigenspaces. In the case at hand
T defines a real structure on both V and V ∗. Since C commutes with T , it follows
that Fix(T ) = V

R
⊕ V ∗

R
is C-invariant. Thus W+

R
= {v + Cv : v ∈ VR}. A similar

argument shows that W−
R

= {v + Cv : v ∈ iVR}.
3. T 2 = Id, mixing: so2n(R)/(so2p(R)⊕ so2q(R)).

The exact same argument as above shows that k = so(W+
R
)⊕so(W−

R
). It only remains

to show that the eigenspaces are even-dimensional. For this we consider the unitary
operator P = CT which leaves both V and V ∗ invariant. Its (+1)-eigenspaceW+1 is
just the complexification of W+

R
. The intersections of W+1 with V and V ∗ are inter-

changed by C, and therefore dimCW+1 =: 2p is even. Of course the same argument
holds for W−1.

4.3.3. The case E = End(W), b = a Since in this case g is the Lie algebra of anti-
hermitian endomorphisms which respect the alternating form a on W , it follows that
g ∼= usp2n. Thus if T is not present the associated symmetric space is usp2n.

If T is present, we let P := CT . The unitary operator P always commutes with T ,
and from a(w1, w2) = 〈C−1w1, w2〉 one infers that a(Pw1, Pw2) = a(w1, w2) in all
cases, independent of T being mixing or not.

The classification spelled out below follows from the fact that commutation with T
is equivalent to preservation of the P -eigenspace decomposition of W .

1. T 2 = −Id, nonmixing: usp2n/(uspn ⊕ uspn).
In this case P 2 = Id, and T 2 = −Id forces n to be even. LetW be decomposed into
P -eigenspaces as W = W+1 ⊕W−1. If w1 ∈ W+1 and w2 ∈ W−1, then

a(w1, w2) = a(Pw1, Pw2) = −a(w1, w2) = 0 ,

and we see thatW+1 andW−1 are a-orthogonal. The mixing operator P is traceless.
Therefore the dimensions of W+1 and W−1 are equal, and both of them are sym-
plectic subspaces of W . The fact that the decomposition W = W+1 ⊕W−1 is also
〈 , 〉-orthogonal therefore implies that k = usp(W+1)⊕ usp(W−1).

2. T 2 = −Id, mixing: usp2n/(usp2p ⊕ usp2q).
Here, using the same argument as in the previous case, one shows that theP-eigenspace
decomposition W = W+1 ⊕ W−1 still is a direct sum of a-orthogonal, complex
symplectic subspaces. Since these are also 〈 , 〉-orthogonal, it follows that k =
usp(W+1) ⊕ usp(W−1). Note that in the present case the nonmixing operator P
stabilizes the decomposition W = V ⊕ V ∗. Thus, since P commutes with C, it
follows that W+1 = V+1 ⊕ V ∗

+1 and W−1 = V−1 ⊕ V ∗
−1.

3. T 2 = Id, mixing or nonmixing: usp2n/un.
In this caseP 2 =−Id. Herea(Pw1, Pw2) = a(w1, w2) implies that theP-eigenspace
decompositionW = W+i ⊕W−i is Lagrangian. (This means in particular dimW+i =
dimW−i.) Thus its stabilizer in sp(W) is the diagonally acting gl(W+i). Since the
decomposition is 〈 , 〉-orthogonal, it follows that k = u(W+i) ∼= un.

4.4. Concrete description: symmetric spaces of type II. Recall the original situation
where the symmetry group G0 is still in the picture. As described in Sect. 1 we select
from the given Hilbert space a basic finite-dimensionalG0-invariant subspace V which
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is composed of irreducible subrepresentations all of which are equivalent to a fixed
irreducible representation R.

Although the initial block of interest is W = V ⊕ V ∗, it is possible that it is not
T -invariant and that it must be expanded. Let us formalize this situation by denoting
the initial block by W1 = V1 ⊕ V ∗

1 . We then let P = CT and regard this as a unitary
isomorphism P : W1 → W2, where W2 = V2 ⊕ V ∗

2 is another initial block.
For i ∈ {1, 2}, let Ri be the irreducible G0-representation on Vi which induces the

representation on Wi . The map P is equivariant, but only with respect to the automor-
phism a of G0 which is defined by gT -conjugation: P ◦ g = a(g) ◦ P .

As a brief interlude, let us investigate the consequences of this automorphism a being
inner versus outer. If a is inner there exists A ∈ G0 such that a(g) = A−1gA and hence
AP ◦g = g◦AP for all g ∈ G0. ThusAP : W1 → W2 is aG0-equivariant isomorphism
and we have either R1 ∼= R2 or R1

∼= R∗
2 depending on whether T is mixing or not. In

either case we may build a new block W = V ⊕ V ∗ which is T -invariant so that the
results of the previous section can be applied: if R1 ∼= R2, then we let V := V1 ⊕ V2
and if R1

∼= R∗
2 , then V := V1 ⊕ V ∗

2 .
If the G0-automorphism g �→ a(g) is outer, it may still happen that R1 ∼= R2 or

R1
∼= R∗

2 , and then we may still build a new blockW = V ⊕V ∗ and apply the previous
results.

We assume now that neitherR1 ∼= R2 norR1
∼= R∗

2 , and consider the expanded block
W = W1 ⊕W2. Recall that W1 and W2 are in the Nambu space W which decomposes
as a direct sum of nonisomorphic representation spaces that are orthogonal with respect
to both the unitary structure and the canonical symmetric form. Thus the decomposition
W = W1 ⊕W2 is orthogonal with respect to both of these structures.

Under the assumption at hand it is immediate that

EndG0(W) = EndG0(W1)⊕ EndG0(W2) .

Thus we are in a position to apply the results of Sect. 3.
To do so in the case where R1

∼= R∗
1 , we let ψ1 : R1 → R∗

1 denote an equivariant
isomorphism, and organize the notation so that P : V1 → V2. Of course R1 and R2 are
abstract representations, but we now choose realizations of them in V1 and V2 so that
ψ2 := P ψ1P

−1 : R2 → R∗
2 makes sense. Since

P ψ1P
−1(g(v2)) = P(ψ1(a

−1(g)P−1(v2)))

= P(a−1(g)ψ1(P
−1(v2))) = g(P ψ1P

−1(v2)) ,

it follows that ψ2 : R2 → R∗
2 is a G0-equivariant isomorphism.

Assume for simplicity thatψ1 is symmetric, i.e., thatψ1(v1)(ṽ1) = ψ1(ṽ1)(v1). Then

ψ2(v2)(ṽ2) = P ψ1P
−1(v2)(ṽ2) = ψ1(P

−1(v2))(P
−1(ṽ2))

= ψ1(P
−1(ṽ2))(P

−1(v2)) = P ψ1P
−1(ṽ2)(v2) = ψ2(ṽ2)(v2) .

The computation in the case where ψ1 is odd is the same except for a sign change. Thus
ψ1 and ψ2 have the same parity.

Now let Ei (for i = 1, 2) be the relevant space of endomorphisms that was produced
by our analysis ofWi in Sect. 3. Recall that this is either the space End(Hi)⊕ End(H ∗

i )

or End(Hi ⊕ H ∗
i ). Let gi be the Lie algebra of the group of unitary transformations

which preserve bi . The key points now are that the unitary structure onE := E1 ⊕E2 is
the direct sum structure, the complex bilinear form on E is b = b1 ⊕ b2, and the parity
of b1 is the same as that of b2. Thus g1 ∼= g2.
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For the statement of our main result in this case, let us recall that the infinitesimal
versions of symmetric spaces of type II are of the form g ⊕ g/g, where the isotropy
algebra is embedded diagonally.

Proposition 4.6. IfR1 is neither isomorphic toR2 nor toR∗
2 , then the infinitesimal sym-

metric space associated to the T -invariant block data is a type-IIACD-symmetric space
of compact type. Specifically, the classical Lie algebras sun, so2n(R), and usp2n arise
in this way.

Proof. Identify g1 and g2 by the isomorphism P . Call the resulting Lie algebra g. The
transformations that commute with T are those in the diagonal in g ⊕ g. Thus the asso-
ciated infinitesimal version of the symmetric space is of type II. The fact that the only
Lie algebras which occur are those in the statement has been proved in 4.2. 
�
This completes the proof of Theorem 4.1. In closing we underline that under the assump-
tions of Prop. 4.6 the odd-dimensional orthogonal Lie algebra does not appear as a type-II
space; only the even-dimensional one does.

5. Classification: Two Distinguished Time-Reversal Symmetries

Here we describe in detail the situation where both of the distinguished time-reversal
operators T and T1 are present. As would be expected, there are quite a few cases. The
work will be carried out in a way which is analogous to our treatment of the case where
only one time-reversal operator was present. In the first part (Sect. 5.1) we operate under
the assumption that the initial truncated space V ⊕ V ∗ is invariant under both of the
distinguished operators. In the second part (Sect. 5.2) we handle the general case where
bigger blocks must be considered.

5.1. The case where V ⊕V ∗ isG-invariant. Throughout, T is mixing, T1 is nonmixing
and P := T T1. Our strategy in Sects. 5.1.3 and 5.1.4 will be to first compute the opera-
tors which are b-isometries, are unitary and commute with P . This determines the Lie
algebra g and its action on V ⊕V ∗. Then k is determined as the subalgebra of operators
which commute with T or T1, whichever is most convenient for the proof. The space of
Hamiltonians is identified with g/k as before.

In the case of E = End(V )⊕ End(V ∗), where g acts diagonally, the answer for g/k
does not depend on the involutory properties of C, T , and T1 individually, but only on
those of the nonmixing operators CP = CT T1 and T1. The pertinent Sects. 5.1.1 and
5.1.2 are organized accordingly.

5.1.1. The case E = End(V ) ⊕ End(V ∗), (CP )2 = Id Recall that in the case of
E = End(V ) ⊕ End(V ∗) it follows that the b-isometry group is SLC(V ) acting diag-
onally. Thus the Lie algebra g consists of those elements of the unitary algebra su(V )
which commute with the mixing unitary symmetry P . Equivalently, g is the subalgebra
of su(V ) defined by commutation with the antiunitary operator CP .

In the present case CP defines a real structure on V , and we have the g-invariant
decomposition V = VR ⊕ iVR. Since the unitary structure 〈 , 〉 is compatible with this
real structure, it follows that g = so(VR). Our argumentation is based around T1. If
it anticommutes with P , then we replace P by iP so that it commutes. Of course this
has the effect of changing to the case (CP )2 = −Id which is, however, handled below.
Hence, in both cases we may assume that P and T1 commute.
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1. T 2
1 = Id: son/(sop ⊕ soq).

The space of CP -real points VR is T1-invariant and splits into a sum V +
R

⊕ V −
R

of
T1- eigenspaces. The Lie algebra k is the stabilizer of this decomposition, which is
〈 , 〉-orthogonal. Thus k = so(V +

R
)⊕ so(V −

R
).

Observe that in this case n can be any even or odd number and that p and q are
arbitrary with the condition that n = p + q.

2. T 2
1 = −Id: so2n/un.

In this case T1 is a complex structure on VR which is compatible with the unitary
structure. Thus k = u(VR, T1) and the desired result follows with 2n = dimCV .

5.1.2. The case E = End(V )⊕ End(V ∗), (CP )2 = −Id The first remarks made at the
beginning of Sect. 5.1.1 still apply: g is the subalgebra of the diagonally acting su(V )
which commutes with the antiunitary operator CP . But now CP defines a C-bilinear
symplectic structure on W = V ⊕ V ∗ by a(w1, w2) := 〈CPw1, w2〉. Actually CP is
already defined on V and transported to V ∗ by C. Thus g = usp(V ).

1. T 2
1 = −Id: usp2n/(usp2p ⊕ usp2q).

In this case � := CT : V → V is a unitary operator which satisfies �2 = Id, and
which defines the eigenspace decomposition V = V + ⊕ V −. This decomposition is
both a- and 〈 , 〉-orthogonal, and consequently k = usp(V +)⊕ usp(V −).
Note that there is no condition on p and q other than p + q = n.

2. T 2
1 = Id: usp2n/un.

Let VR be the T1-real points of V . Then k is the stabilizer of VR in g = usp(V ). Here
the symplectic structure a on V restricts to a real symplectic structure aR on VR.
Since the unitary structure 〈 , 〉 is compatible with this structure, k is the maximal
compact subalgebra un of the associated real symplectic algebra.

5.1.3. The case E = End(V ⊕ V ∗), b = s Recall that in this case C2 = Id, and the
b-isometry group of W = V ⊕ V ∗ is SO(W). Before going into the various cases, let
us remark on the relevance of whether or not time-reversal operators commute with P .

If P 2 = u2Id, where either u = ±1 or u = ±i, we consider the P -eigenspace
decomposition W = Wu ⊕ W−u. Note dimWu = dimW−u from Tr P = 0. The
Lie algebra g ⊂ so(W) of operators which preserve b = s and commute with P is
soR(Wu)⊕ soR(W−u).

An antiunitary operator which commutes with P preserves the decomposition W =
Wu ⊕ W−u if u = ±1, and exchanges the summands if u = ±i. Similarly, if it anti-
commutes with P , then it exchanges the summands inW = W+1 ⊕W−1 and preserves
the decompositionW = W+i ⊕W−i. For this reason, as will be clear from the first case
below, the sign of T T1 = ±T1T has no bearing on our classification.

1. T 2 = T 2
1 = Id: (son/(sop ⊕ soq))⊕ (son/(sop ⊕ soq)).

Suppose first that P 2 = Id, giving the P -eigenspace decomposition W = W+1 ⊕
W−1. Each of the time-reversal operators commutes with P . To determine k we
consider the unitary operator � = CT1 which is a mixing b-isometry satisfying
�P = P� and �2 = Id. Thus W+1 further decomposes into a direct sum W+1 =
W+1

+1 ⊕W−1
+1 of �-eigenspaces, which are orthogonal with respect to both b and 〈 , 〉.

The same discussion holds for W−1. The stabilizer of this refined decomposition is
k = (

soR(W
+1
+1 )⊕soR(W

−1
+1 )

)⊕ (
soR(W

+1
−1 )⊕soR(W

−1
−1 )

)
. From Tr P = Tr � = 0

one infers dimW+1
+1 = dimW−1

−1 = p and dimW−1
+1 = dimW+1

−1 = q.
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Now consider the case whereP 2 = −Id but the time-reversal operators anticommute
with each other and hence with P . In this situation the P -eigenspace decomposition
W = W+i ⊕W−i is still T -invariant. Therefore we are in exactly the same situation
as above, and of course obtain the same result.
This happens in all cases below. Thus, for the remainder of this section we assume
that the time-reversal operators commute with P .

2. T 2 = T 2
1 = −Id: (so2n/(son ⊕ son))⊕ (so2n/(son ⊕ son)).

The situation is exactly the same as that above, except that � = CT1 now satisfies
�2 = −Id. Since � preserves the sets of C-real points of W+1 and W−1, � defines
a complex structure of these real vector spaces. Therefore we have the additional
condition dimW+i

+1 = dimW−i
+1 on the dimensions of the �-eigenspaces.

3. T 2 = −T 2
1 : (son ⊕ son)/son.

The argument to be given is true independent of whether T 2 = Id or T 2 = −Id.
As usual we consider the P -eigenspace decomposition W = W+i ⊕W−i. Since P
is an isometry of both b and 〈 , 〉, the decomposition is b- and 〈 , 〉-orthogonal. Thus
g = soR(W+i)⊕ soR(W−i). Now T is antilinear and commutes with P . Thus it per-
mutes the P -eigenspaces, i.e., T : W+i → W−i. Since k consists of those operators
in g that commute with T , and T is compatible with both the unitary structure and the
bilinear form b, it follows that (A,B) ∈ g is in k if and only if B = TAT −1. In other
words, after applying the obvious automorphism, k is the diagonal in g ∼= son ⊕ son.

5.1.4. The case E = End(V ⊕ V ∗), b = a Recall that in this case C2 = −Id, and the
b-isometry group of W = V ⊕ V ∗ is Sp(W). For the same reasons as indicated above
we may assume that the time-reversal operators commute with P .

1. T 2 = T 2
1 = Id: (usp2n/un)⊕ (usp2n/un).

Observe that the P -eigenspace decomposition W = W+1 ⊕ W−1 is a- and 〈 , 〉-
orthogonal and that therefore g = usp(W+1) ⊕ usp(W−1). Let the dimension be
denoted by dimC(W+1) = dimC(W−1) = 2n.
Now T defines real structures on W+1 and W−1, and these are compatible with a.
Hence in both cases the restriction aR to the set WR

±1 of fixed points of T is a real
symplectic structure. The algebra k consists of the pairs (A,B) of operators in g

which stabilize WR
+1 ⊕ WR

−1. This means that A, e.g., is in the maximal compact

subalgebra of the real symplectic Lie algebra determined by aR on WR
+1, i.e., in a

unitary Lie algebra isomorphic to un. A similar statement holds for B.
2. T 2 = T 2

1 = −Id: (usp2n/(usp2p ⊕ usp2q)⊕ (usp2n/(usp2p ⊕ usp2q)).
The argument made above still shows that g = usp(W+1)⊕ usp(W−1).
Now, to determine k we consider the operator � := CT1 which stabilizes this decom-
position and satisfies �2 = Id. Thus the further condition to be satisfied in order
for an operator to be in k is that the �-eigenspace decomposition of each summand
must be stabilized, i.e., k = ⊕ε,δ=±1usp(Wδ

ε ). The dimensions must match pairwise
because Tr P = Tr � = 0.

3. T 2 = −T 2
1 : sun/son.

The answer for g/k is the same for the two cases T 2 = Id or T 2 = −Id.
In either case it follows from a(w1, w2) = a(Pw1, Pw2) that the summands of the
P -decompositionW = W+i ⊕W−i are a-Lagrangian. Thus an a-isometry stabilizes
the decomposition if and only if it is a C-linear transformation acting diagonally, and
consequently g = su(W+i) (which is acting diagonally as well).
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Without loss of generality we may assume that T 2 = Id (or else we replace T by
T1). Then T is a real structure which permutes the P -eigenspaces. Thus the diagonal
action (w+, w−) �→ (Bw+, Bw−) commutes with T if and only if T BT −1 = B.
Since T is compatible with the initial unitary structure, it follows that B is in the
associated real orthogonal group. For example, if unitary coordinates are chosen so
that T is given by (z, w) �→ (w̄, z̄), then T BT −1 = B simply means that B = B̄.

5.2. Building bigger blocks. Before G0-reduction we must determine the basic block
associated to the G0-representation space V . This has been adequately discussed in all
cases with the exception of the one where there are two time-reversal operators. Here
we handle that case by reducing it to the situation where there is only one.

Write the initial block as V1 ⊕ V ∗
1 and build a diagram consisting of the four spaces

Vi ⊕V ∗
i , i = 1, . . . , 4, with the maps T , T1, and P emanating from each of them. To be

concrete, T : V1 ⊕V ∗
1 → V2 ⊕V ∗

2 defines V2, and T1 : V1 ⊕V ∗
1 → V3 ⊕V ∗

3 defines V3,
and T1 : V2 ⊕ V ∗

2 → V4 ⊕ V ∗
4 defines V4. The relation P = T T1 defines the remaining

maps. At this point there is no need to discuss mixing.
We also underline that, by the nature of the basic model, any two spaces Vi ⊕V ∗

i and
Vj ⊕ V ∗

j are either disjoint in the big Nambu space or are equal.
Let us now complete the proof of our classification result, Theorem 1.1, by running

through the various cases which occur in the present setting where the initial block
must be extended. We only sketch this, because given how the extended block case was
handled in the setting of one distinguished time-reversal symmetry (Sect. 4.4) and the
detailed classification results above, the proof requires no new ideas or methods.

1) V ∗
1 ⊕V ∗

1 is T -invariant and is not T1-invariant. Here it is only necessary to consider
P : W1 = V1 ⊕ V ∗

1 → V3 ⊕ V ∗
3 = W3. If g is the Lie algebra of unitary operators

which commute with the G0-action and respect the b-structure on V1 ⊕ V ∗
1 , then the

further condition of compatibility with P means that the algebra in the present case is
g acting diagonally via P on W1 ⊕W3. Thus we have reduced to the case of only one
time-reversal operator on W1, which has been classified above.

Note that this argument has nothing to do with whether or not T is mixing. Hence,
in this and all of the following cases there is no need to differentiate between T and T1.

2) V ∗
1 ⊕ V ∗

1 is neither T - nor T1-invariant. Consider the diagram introduced above
where all the spaces Wi = Vi ⊕ V ∗

i occur. If any of the Wi is invariant by either T
or T1, then we change our perspective, replace W1 by that space and apply the above
argument. Thus we may assume that no Wi is stabilized by either T or T1. It is still
possible, however, that W1 = W4, and in that case it follows that W2 = W3.

2.1)W1 = W4. Here bothW1 andW4 are P -invariant. We leave it to the reader to check
that P can be transferred to the level of End(H)⊕End(H ∗) or End(H ⊕H ∗) just as we
transferred the time-reversal operators. Thus, e.g., it is enough to know the Lie algebra
of operators g on W1 which are compatible with the unitary structure, are b-isometries
and are compatible with P . This has been computed in Sect. 5.1. Of course we did this in
the case where V ⊕V ∗ is T - and T1-invariant, but the compatibility with P had nothing
to do with time reversal.

In the present case both T and T1 exchange W1 and W2. Thus our symmetric space
is (g ⊕ g)/g.



Symmetry Classes of Disordered Fermions 763

2.2) The spacesWi are pairwise disjoint. Here we will go through a number of subcases,
depending on whether or not there exist (equivariant) isomorphisms between various
spaces. Such an isomorphism is of course assumed to be unitary and to commute with
C; in particular it is a b-isometry.
2.2.1) W1 ∼= W4. If ϕ is the isomorphism which does this, then T ϕT −1 =: ψ is an
isomorphism of W2 and W3. Using these isomorphisms, we build W := W1 ⊕W4 and
W̃ := W2 ⊕W3 which are of our initial type; they are stabilized by P and exchanged by
T . Thus, as in 2.1, if g is the Lie algebra of operators on W which are compatible with
the unitary structure, are b-isometries and are compatible with P , then our symmetric
space is (g ⊕ g)/g.
2.2.2) W1 ∼= W2. For the reasons given above, W3 ∼= W4 and we build W and W̃ as in
that case. In the present situation P exchanges W and W̃ . We must then consider two
subcases during our procedure for identifying g.

The simplest case is whereW and W̃ are not isomorphic. In that setting the Lie alge-
bra g of unitary operators onW which commute with theG0-action and are compatible
with b acts diagonally on W ⊕ W̃ . This is exactly our algebra of interest.

Thus in this case we can forget W̃ , and regard g as acting on W . Here T stabilizes
W and thus the associated symmetric space is g/k, where k consists of the operators in
g which commute with T . This situation has been classified above; in particular, only
classical irreducible symmetric spaces of compact type occur.

Our final case occurs under the assumption W1 ∼= W2 in the situation where W and
W̃ are isomorphic. Here we view an operator which commutes with the G0-action as a
matrix

(
A B
C D

)
.

Compatibility with P can then be interpreted as B and D being determined from A and
C by P -conjugation. In this notation A : W → W and C : W → W̃ . But we may
also regard C as an operator on W which is transferred to a map from W to W̃ by the
isomorphism at hand. Therefore the Lie algebra of interest can be identified with the set
of pairs (A,C) of operators onW which are compatible with the unitary and b-structures
and commute with the G0-action on W . Hence the associated symmetric space is the
direct sum g/k ⊕ g/k, where k is determined by compatibility with T : W → W , i.e., a
direct sum of two copies of an arbitrary example that occurs with only one T -symmetry.

6. Physical Realizations

We now illustrate Theorem 1.1 by the two large sets of examples that were already
referred to in Sect. 2: (i) fermionic quasiparticle excitations in disordered normal- and
superconducting systems, and (ii) Dirac fermions in a stochastic gauge field background.
In each case we fix a specific Nambu space W , and show how a variety of symmetric
spaces (each corresponding to a symmetry class) is realized by varying the group of
unitary and antiunitary symmetries, G.

The invariable nature of W is a principle imposed by physics: electrons, e.g., have
electric charge e = −1 and spin S = 1/2 and these properties cannot ever be changed.
What can be changed, however, by varying the experimental conditions, are the symme-
tries of the Hamiltonian governing the specific situation at hand. For example, turning on
an external magnetic field breaks time-reversal symmetry, adding spin-orbit scatterers to
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the system breaks spin-rotation symmetry, lowering the temperature enhances the pair-
ing forces that may lead to a spontaneous breakdown of the global U1 charge symmetry,
and so on.

6.1. Quasiparticles in metals and superconductors. The setting here is the one already
described in Sect. 2.1: given the complex Hilbert space V of single-electron states,
we form the Nambu space W = V ⊕ V∗ of electron field operators. On W we then
have the canonical symmetric bilinear form b, the particle-hole conjugation operator
C : W → W , and the canonical unitary structure 〈 , 〉.

The complex Hilbert spaces V and V∗ are to be viewed as representation spaces of a
U1 group, which is the global U1 gauge degree of freedom of electrodynamics. Indeed,
creating or annihilating one electron amounts to adding one unit of negative or positive
electric charge to the fermion system. In representation-theoretic terms, this means that
V carries the fundamental representation of the U1 gauge group while V∗ carries the
antifundamental one. Thus z ∈ U1 here acts on V by multiplication with z, and on V∗
by multiplication with z̄.

Extra structure arises from the fact that electrons carry spin 1/2, which implies that V
is a tensor product of spinor space, C

2, with the Hilbert space X for the orbital motion
in real space. The spin-rotation group Spin3 = SU2 acts trivially on X and by the
spinor representation on the factor C

2. (In a framework more comprehensive than is of
relevance to the disordered systems setting developed here, the spinor representation
would enter as a projective representation of the rotation group SO3, and SO3 would
act on the factor X by rotations in the three-dimensional Euclidean space.) On physical
grounds, spin rotations must preserve the canonical anticommutation relations as well
as the unitary structure of V . Therefore, by Prop. 2.2 spin rotations commute with the
particle-hole conjugation operator C.

Another symmetry operation of importance for present purposes is time reversal. As
always in quantum mechanics, time reversal is implemented as an antiunitary operator
T on the single-electron Hilbert space V . Its algebraic properties are influenced by the
spin 1/2 nature of the electron: fundamental physics considerations dictate T 2 = −Id. A
closely related condition is that time reversal commutes with spin rotations. T extends
to an operation on W by CT = T C.

In physics one uses the word quasiparticle for the excitations that are created by
acting with a fermionic field operator on a many-fermion ground state.

6.1.1. Class D. In the general context of quasiparticle excitations in metals and super-
conductors, this is the fundamental class where no symmetries are present.

A concrete realization takes place in superconductors where the order parameter
transforms under spin rotations as a spin triplet, S = 1 (i.e., the adjoint representation
of SU2), and transforms under SO2-rotations of two-dimensional space as a p-wave
(the fundamental representation of SO2). A recent candidate for a quasi-2d (or layered)
spin-triplet p-wave superconductor is the compound Sr2Ru O4 [M, E]. (A noncharged
analog is the A-phase of superfluid 3He [VW].) Time-reversal symmetry in such a sys-
tem may be broken spontaneously, or else can be broken by an external magnetic field
creating vortices in the superconductor. Further realizations proposed in the recent lit-
erature include double-layer fractional quantum Hall systems at half filling [R] (more
precisely, a mean-field description for the composite fermions of such systems), and a
network model for the random-bond Ising model [S2].
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The time-evolution operators U = e−itH/� in this class are constrained only by the
requirement that they preserve both the unitary structure and the symmetric bilinear
form of W . If WR is the set of real points {v + Cv : v ∈ V}, we know from Prop.
4.5 that the space of time evolutions is a real orthogonal group SO(WR). In Cartan’s
notation this is called a symmetric space of theD family. The HamiltoniansH are such
that iH ∈ so(WR); this means that the Hamiltonian matrices are imaginary skew in a
suitably chosen basis (called Majorana fermions in physics).

Note that since WR is a real form of (X ⊗ C
2)⊕ (X ⊗ C

2)∗, the dimension of WR

must be a multiple of four (for spinless particles it would only be a multiple of two).

6.1.2. Class DIII. Let now time reversal be a symmetry of the quasiparticle system.
This means that magnetic fields and scattering by magnetic impurities are absent. On
the other hand, spin-rotation invariance is again required to be broken.

Known realizations of this situation exist in gapless superconductors, say with spin-
singlet pairing, but with a sufficient concentration of spin-orbit impurities to cause strong
spin-orbit scattering [S2]. In order for quasiparticle excitations to exist at low energy, the
spatial symmetry of the order parameter should be d-wave (more precisely, a time-rever-
sal invariant combination of the angular momentum l = +2 and l = −2 representations
of SO2). A noncharged realization occurs in the B-phase of 3He [VW], where the order
parameter is spin-triplet without breaking time-reversal symmetry. Another candidate
is heavy-fermion superconductors [S], where spin-orbit scattering often happens to be
strong owing to the presence of elements with large atomic weights such as uranium and
cerium.

Time-reversal invariance constrains the set of good HamiltoniansH byH = THT −1.
Since T 2 = −Id for spin 1/2 particles, we are dealing with the case treated in 4.3.2.1.
The space of time evolutions therefore is SO(WR)/U(V), which is a symmetric space
of the DIII family. The standard form of the Hamiltonians in this class is

H =
(

0 Z

Z∗ 0

)
, (6.1)

where Z ∈ Hom(V∗,V) is skew. (Note again that the dimension of WR is a multiple of
four, and would be a multiple of two for particles with spin zero).

6.1.3. Class C. Next let the spin of the quasiparticles be conserved, and let time-rever-
sal symmetry be broken instead. Thus magnetic fields (or some equivalent T -breaking
agent) are now present, while the effect of spin-orbit scattering is absent. The symmetry
group of the physical system then is G = G0 = Spin3 = SU2.

This situation is realized in spin-singlet superconductors in the vortex phase [S4].
Prominent examples are the cuprate (or high-Tc) superconductors [T], which are lay-
ered and exhibit d-wave symmetry in their copper-oxide planes. It has been speculated
that some of these superconductors break time-reversal symmetry spontaneously, by the
generation of an order-parameter component idxy or is [S3]. Other realizations of this
class include network models of the spin quantum Hall effect [G].

Following the general strategy of Sect. 3, we eliminate G0 = SU2 from the picture
by transferring from V ⊕ V∗ to the reduced space X ⊕ X∗. In the process the bilinear
form b undergoes a change of parity. To see this let R = C

2 (a.k.a. spinor space) be the
fundamental representation space of SU2.R is isomorphic toR∗ byψ : r �→ 〈iσ2r̄ , ·〉R ,
where σ2 is the second Pauli matrix. This isomorphism ψ : R → R∗ is alternating.
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Therefore, by Prop. 3.12 the symmetric bilinear form of V ⊕ V∗ gets transferred to the
alternating form a of X ⊕X∗.

From Prop. 4.5 we then infer that the space of time evolutions is USp(X⊕X∗)— a
symmetric space of the C family. The standard form of the Hamiltonians here is

H =
(
A B

B∗ −At

)
,

with self-adjoint A ∈ End(X) and complex symmetric B ∈ Hom(X∗, X).

6.1.4. Class CI. The next class is obtained by taking spin rotations as well as the time
reversal T to be symmetries of the quasiparticle system. Thus the symmetry group is
G = G0 ∪ TG0 with G0 = Spin3 = SU2.

Like in the previous symmetry class, physical realizations are provided by the low-
energy quasiparticles of unconventional spin-singlet superconductors [T]. The difference
is that the superconductor must now be in the Meissner phase where magnetic field are
expelled by screening currents. In the case of superconductors with several low-energy
points in the first Brillouin zone, scattering off hard impurities is needed to break addi-
tional conservation laws that would otherwise emerge (see Sect. 6.1.5).

To identify the relevant symmetric space, we again transfer from V ⊕ V∗ to the
reduced spaceX⊕X∗. As before, the bilinear form b changes parity from symmetric to
alternating under this reduction. In addition now, time reversal has to be transferred. As
was explained in the example following Lemma 3.11, the time-reversal operator changes
its involutory character from T 2 = −IdV⊕V∗ to T 2 = +IdX⊕X∗ .

In the language of Sect. 4 the block data are V = X, E = End(V ⊕ V ∗), b = a, T
nonmixing, and T 2 = Id. This case was treated in 4.3.3.3. From there, we know that the
space of time evolutions is USp(X ⊕X∗)/U(X) – a symmetric space in the CI family.
The standard form of the Hamiltonians in this class is the same as that given in (6.1) but
now with Z ∈ Hom(X∗, X) complex symmetric.

6.1.5. Class AIII. This class is commonly associated with random-matrix models for
the low-energy Dirac spectrum of quantum chromodynamics with massless quarks (see
Sect. 6.2.1). Here we review an alternative realization, which has recently been identified
[A3] in d-wave superconductors with soft impurity scattering.

To construct this realization one starts from class CI, i.e. from quasiparticles in a
superconductor with time-reversal invariance and conserved spin, and enlarges the sym-
metry group by imposing another U1 symmetry, generated by a Hermitian operator
Q with Q2 = Id. The physical reason for the extra conservation law is approximate
momentum conservation in a disordered quasiparticle system with a dispersion law that
has Dirac-type low-energy points at four distinct places in the Brillouin zone.

Thus beyond the spin-rotation group SU2 there now exists a one-parameter group
of unitary symmetries eiθQ. The operators eiθQ are defined on V , and are diagonally
extended to W = V ⊕ V∗. They are characterized by the property that they commute
with particle-hole conjugation C, time reversal T , and the spin rotations g ∈ SU2.

The reduction to standard block data is done in two steps. In the first step, we elim-
inate the spin-rotation group SU2. From the previous section, the transferred data are
known to be E = End(X ⊕X∗), b = a, T nonmixing, and T 2 = Id.

The second step is to reduce by the U1 group generated byQ. For this consider the C-
linear operator J := iQwith J 2 = −Id, and let the J -eigenspace decomposition ofX be
written X = X+i ⊕X−i. There is a corresponding decomposition X∗ = X∗+i ⊕X∗−i.
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Since J commutes with T , a complex structure is defined by it on the set of T -real
points of X. Therefore dimX+i = dimX−i. Another consequence of JT = T J is that
the C-antilinear operator T exchanges X+i with X−i. Thus T is mixing with respect to
the decompositionsX = X+i ⊕X−i andX∗ = X∗+i ⊕X∗−i. The C-antilinear operator
C maps X±i to X∗∓i.

The fully reduced block data now are V := X+i ⊕X∗+i, E = End(V )⊕ End(V ∗),
b = a, T mixing, and T 2 = Id. The finite-dimensional version of this case was treated in
4.3.1.3. Our answer for the space of time-evolution operators was SUp+q/S(Up × Uq),
which is a symmetric space in the AIII family.

Unlike the general case handled in 4.3.1.3, it here follows from the fundamental
physics definition of particle-hole conjugation C and time reversal T that the operator
CT stabilizes a real subspace VR. We also have (CT )2 = −Id. Therefore, the operator
CT defines a complex structure of VR, and hence the integers p and q, which are the
dimensions of the CT -eigenspaces in V , must be equal.

6.1.6. ClassA. At this point a new symmetry requirement is brought into play: conserva-
tion of the electric charge. Thus the global U1 gauge transformations of electrodynamics
are now decreed to be symmetries of the quasiparticle system. This means that the system
no longer is a superconductor, where U1 gauge symmetry is spontaneously broken, but is
a metal or normal-conducting system. If all further symmetries are broken (time reversal
by a magnetic field or magnetic impurities, spin rotations by spin-orbit scattering, etc.),
the symmetry group is G = G0 = U1.

All states (actually, field operators) in V have the same electric charge. Thus the irre-
ducible U1 representations which they carry all have the same isomorphism class, say λ.
States in V∗ carry the opposite charge and belong to the dual class λ∗. Since λ �= λ∗, we
are in the situation of Sect. 4.3.1, where E = End(V)⊕ End(V∗). With T being absent,
the space of time evolutions is U(V) acting diagonally on V ⊕ V∗.

In random-matrix theory, and in the finite-dimensional case where U(V) ∼= UN ,
one refers to these matrix spaces as the circular Wigner-Dyson class of unitary sym-
metry. The Hamiltonians in this class are represented by complex Hermitian
matrices.

If we make the restriction to traceless Hamiltonians, the space of time evolutions
becomes SUN , which is a type-II irreducible symmetric space of the A family.

6.1.7. Class AII. Beyond charge conservation or U1 gauge symmetry, time reversal T
is now required to be a symmetry of the quasiparticle system. Physical realizations of
this case occur in metallic systems with spin-orbit scattering. The pioneering experimen-
tal work (of the weak localization phenomenon in this class) was done on disordered
magnesium films with gold impurities [B].

The block data now is E = End(V) ⊕ End(V∗), b = s, T nonmixing, T 2 = −Id.
This case was considered in 4.3.1.1. The main point there was that time reversal T
defines a C-linear symplectic structure a on V by a(v1, v2) = 〈T v1, v2〉. Conjugation
by T therefore fixes a unitary symplectic group USp(V) inside of U(V), and the space
of good time evolutions is G/K = U(V)/USp(V). In the finite-dimensional setting
where G/K ∼= U2N/USp2N , this is called the circular Wigner-Dyson class of symplec-
tic symmetry in random-matrix theory. The Hamiltonians in this class are represented
by Hermitian matrices whose matrix entries are real quaternions. The irreducible part
SU2N/USp2N , obtained by restricting to traceless Hamiltonians, is a type-I symmetric
space in the AII family.
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6.1.8. Class AI. The next class is the Wigner-Dyson class of orthogonal symmetry. In
the present quasiparticle setting it is obtained by imposing spin-rotation symmetry, U1
gauge (or charge) symmetry and time-reversal symmetry all at once.

Important physical realizations are by disordered metals in zero magnetic field. Fam-
ilies of quantum chaotic billiards also belong to this class.

The group of unitary symmetries here is G0 = U1 × SU2. We eliminate the spin-
rotation group SU2 from the picture by transferring from V = X ⊗ C

2 to the reduced
space X. Again, the involutory character of T is reversed in the process: the transferred
time reversal satisfies T 2 = +Id. The parity of the bilinear form also changes, from
symmetric to alternating; however, this turns out to be irrelevant here, as there is still
the U1 charge symmetry and we are in the situation λ �= λ∗.

The block data now is E = End(X) ⊕ End(X∗), b = a, T nonmixing, T 2 = Id.
According to 4.3.1.2 these yield (the Cartan embedding of) U(X)/O(X) as the space of
good time evolutions. The irreducible part SU(X)/SO(X), or SUN/SON in the finite-
dimensional setting, is a symmetric space in theAI family. The Hamiltonian matrices in
this class can be arranged to be real symmetric.

6.2. The Euclidean Dirac operator for chiral fermions. We now explore the physical
examples afforded by Dirac fermions in a random gauge field background. These exam-
ples include the Dirac operator of quantum chromodynamics, i.e., the theory of strong
SU3 gauge interactions between elementary particles called quarks.

The mathematical setting for this has already been described in Sect. 2.3. Recall that
one is given a twisted spinor bundle S ⊗ R over Euclidean space-time, and that V is
taken to be the Hilbert space ofL2-sections of that bundle. One is interested in the Dirac
operator DA in a gauge field background A and in the limit of zero mass:

DA = iγ µ(∂µ − Aµ) .

We extend the self-adjoint operatorDA diagonally from V to the fermionic Nambu space
W = V⊕V∗ by the conditionDA = −CDAC−1. The chiral ‘symmetry’�DA+DA� =
0, where� = γ5 is the chirality operator, then becomes a true symmetryDA = TDAT

−1

with an antiunitary operator T = C� = �C, which mixes V and V∗.

6.2.1. Class AIII. Let now the complex vector space R = C
N be the fundamental rep-

resentation space for the gauge group SUN with N ≥ 3. (N is called the number of
colors in this context.) Quantum chromodynamics is the special case N = 3.

The fact that the extended Dirac operator DA acts diagonally on W = V ⊕ V∗ is
attributed to a symmetry groupG0 = U1 which has V and V∗ as inequivalent represen-
tation spaces. For a generic gauge-field configuration there exist no further symmetries;
thus the total symmetry group is G = G0 ∪ TG0.

The block data here is V = V , E = End(V )⊕ End(V ∗), b = s, T mixing, T 2 = Id,
which is the case considered in 4.3.1.3. If n = dim V , we have

p ∼= sun/s(up ⊕ uq) .

The difference of integers p−q is to be identified with the difference between the num-
ber of right and left zero modes of D2

A. (‘Right’ and ‘left’ in this context pertain to the
(+1)- and (−1)-eigenspaces of the chirality � = γ5.) The latter number is a topological
invariant called the index of the Dirac operator.
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6.2.2. Class BDI. We retain the framework from before, but now consider the gauge
group SU2, where the number of colors N = 2. In this case the massless Dirac operator
DA has an additional antiunitary symmetry [V1], which emerges as follows.

Recall that the unitary SU2-representation space R = C
2 is isomorphic to the dual

representation space R∗ by a C-linear mapping ψ : R → R∗. Combining the inverse
of this with ι : R → R∗ defined by ι(r) = 〈r, ·〉R , we obtain a C-antilinear mapping
β := ψ−1 ◦ ι : R → R. The map β thus defined commutes with the SU2-action on R.
By Lemma 3.11 it satisfies β2 = −IdR since ψ is alternating.

Now, on the (untwisted) spinor bundle S over Euclidean space-timeM there exists a
C-antilinear operator α, called charge conjugation in physics, which anticommutes with
the Clifford action γ : T ∗M → End(S); thus αiγ = iγ α. Since γ5 = γ 0γ 1γ 2γ 3, this
implies that α commutes with γ5 = � and stabilizes the �-eigenspace decomposition
S = S+ ⊕ S− into half-spinor components S±. The charge conjugation operator has
square α2 = −IdS .

For the case of three or more colors, the existence of α is of no consequence from a
symmetry perspective, as the fundamental and antifundamental representations of SUN

are inequivalent for N ≥ 3. For N = 2, however, we also have β, and α combines with
it to give an antiunitary symmetry T1 = α ⊗ β. Indeed,

T1DAT
−1
1 = (α ⊗ β)DA(α ⊗ β) = α(iγ µ)α−1 ⊗ β(∂µ − Aµ)β

−1 .

Since gauge transformations g(x) ∈ SU2 commute with β, so do the components
Aµ(x) ∈ su2 of the gauge field. Thus βAµβ−1 = Aµ , and since α(iγ )α−1 = iγ ,
we have

T1DAT
−1
1 = DA .

Note that the antiunitary symmetry T1 : V → V is nonmixing, and T 2
1 = Id. As usual,

the extension to an operator T1 : W → W is made by requiring CT1 = T1C.
Thus we now have two antiunitary symmetries, T and T1. Because T is mixing

and T1 nonmixing, the unitary operator P = T T1 = T1T mixes V with V∗. Since
T 2 = T 2

1 = Id, and (CP )2 = Id, this is the case treated in 5.1.1.1, where we found

p ∼= so(VR)/(so(V+
R
)⊕ so(V−

R
)) .

After truncation to finite dimension this is sop+q/(sop⊕soq). The difference p−q still
has a topological interpretation as the index of the Dirac operator.

Although our considerations explicitly referred to the case of the gauge group being
SU2, the only specific feature we used was the existence of an alternating isomorphism
ψ : R → R∗. The same result therefore holds for any gauge group representation R
where such an isomorphism exists. In particular it holds for the fundamental represen-
tation of the whole series of symplectic groups USp2N (which includes SU2 ∼= USp2).

6.2.3. ClassCII. Now takeR to be the adjoint representation of any compact Lie (gauge)
group K with semisimple Lie algebra. This case is called ‘adjoint fermions’ in physics.
A detailed symmetry analysis of it was presented in [H2].

The Cartan-Killing form on Lie(K),

B(X, Y ) = Tr ad(X)ad(Y ),

is nondegenerate, invariant, complex bilinear, and symmetric. B therefore defines an
isomorphism ψ : R → R∗ by ψ(X) = B(X, ·). Since B is symmetric, so is ψ .
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The change in parity ofψ reverses the parity of the antiunitary operator β = ψ−1 ◦ ι,
which now satisfies β2 = +IdR . By α2 = −Id this translates to T 2

1 = (α⊗ β)2 = −Id.
Thus we now have two antiunitary symmetries T and T1 with T 2 = Id = −T 2

1 , and
(CP )2 = (CT T1)

2 = −Id. This case was handled in 5.1.2.1 where we found

p ∼= usp(V)/(usp(V+)⊕ usp(V−)) .

In a finite-dimensional setting this would be usp2p+2q/(usp2p ⊕ usp2q).
In summary, the physical situation is ruled by a mathematical trichotomy: the iso-

morphism ψ : R → R∗ is either symmetric, or alternating, or does not exist. The
corresponding symmetry class of the massless Dirac operator is CII, BDI, or AIII,
respectively. As was first observed by Verbaarschot [V], this is the same trichotomy that
ruled Dyson’s threefold way.

Acknowledgement. This work was carried out under the auspices of the Deutsche Forschungsgemeins-
chaft, SFB/TR12. Major portions of the article were prepared while M.R.Z. was visiting the Institute
for Advanced Study (Princeton, USA) and the Newton Institute for Mathematical Sciences (Cambridge,
UK). The support of these institutions is gratefully acknowledged.

References

[A2] Altland, A., Zirnbauer, M.R.: Nonstandard symmetry classes in mesoscopic normal-/supercon-
ducting hybrid systems. Phys. Rev. B 55, 1142–1161 (1997)

[A3] Altland, A., Simons, B.D., Zirnbauer, M.R.: Theories of low-energy quasiparticle states in dis-
ordered d-wave superconductors. Phys. Rep. 359, 283-354 (2002)

[A] Arnold, V.I.: Mathematical methods of classical mechanics. New York, Heidelberg, Berlin:
Springer-Verlag, 1978

[B] Bergmann, G.: Weak localization in thin films – a time-of-flight experiment with conduction
electrons. Phys. Rep. 107, 1–58 (1984)

[B3] Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators. Berlin, Heidelberg, New
York: Springer-Verlag, 1992

[C] Caselle, M., Magnea, U.: Random-matrix theory and symmetric spaces. Phys. Rep. 394, 41–156
(2004)

[D] Dyson, F.J.: The threefold way: algebraic structure of symmetry groups and ensembles in quantum
mechanics. J. Math. Phys. 3, 1199–1215 (1962)

[E] Eremin, I., Manske, D., Ovchinnikov, S.G., Annett, J.F.: Unconventional superconductivity and
magnetism in Sr2RuO4 and related materials. Ann. Physik 13, 149–174 (2004)

[G] Gruzberg, I.A., Ludwig, A.W.W., Read, N.: Exact exponents for the spin quantum Hall transition.
Phys. Rev. Lett. 82, 4524–4527 (1999)

[H2] Halasz, M.A.,Verbaarschot, J.J.M.: Effective Lagrangians and chiral random-matrix theory. Phys.
Rev. D 51, 2563–2573 (1995)

[H] Helgason, S.: Differential geometry, Lie groups and symmetric spaces. New York: Academic
Press, 1978

[K] Katz, N.M., Sarnak, P.: Random matrices, Frobenius eigenvalues, and monodromy. Providence,
R.I.: American Mathematical Society, 1999

[M] Mackenzie, A.P., Maeno, Y.: The superconductivity of Sr2RuO4 and the physics of spin-triplet
pairing. Rev. Mod. Phys. 75, 657–712 (2003)

[R] Read, N., Green, D.: Paired states of fermions in two dimensions with breaking of parity and
time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297
(2000)

[S2] Senthil, T., Fisher, M.P.A.: Quasiparticle localization in superconductors with spin-orbit scatter-
ing. Phys. Rev. B 61, 9690–9698 (2000)

[S3] Senthil, T., Marston, J.B., Fisher, M.P.A.: Spin quantum Hall effect in unconventional supercon-
ductors. Phys. Rev. B 60, 4245–4254 (1999)

[S4] Senthil, T., Fisher, M.P.A., Balents, L., Nayak, C.: Quasiparticle transport and localization in
high-Tc superconductors. Phys. Rev. Lett. 81, 4704–4707 (1998)

[S] Stewart, G.S.: Heavy-fermion systems. Rev. Mod. Phys. 56, 755–787 (1984)



Symmetry Classes of Disordered Fermions 771

[T] Tsuei, C.C., Kirtley, J.R.: Pairing symmetry in the cuprate superconductors. Rev. Mod. Phys. 72,
969–1016 (2000)

[V] Verbaarschot, J.J.M.: The spectrum of the QCD Dirac operator and chiral random-matrix theory:
the threefold way. Phys. Rev. Lett. 72, 2531–2533 (1994)

[V1] Verbaarschot, J.J.M.: The spectrum of the Dirac operator near zero virtuality for Nc = 2. Nucl.
Phys. B 426, 559–574 (1994)

[V2] Verbaarschot, J.J.M., Zahed, I.: Spectral density of the QCD Dirac operator near zero virtuality.
Phys. Rev. Lett. 70, 3852–3855 (1993)
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