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This paper presents a short summary of results on classification of a class of third-order
nonlinear evolution equations with respect to Lie point symmetries. The approach we take
is a suitable combination of the concept of equivalence group with the usual infinitesimal
technique of Lie based on several results on the structure of low-dimensional Lie algebras.

1 Introduction

We classify third-order KdV-type nonlinear evolution equations containing an arbitrary ele-
ment F of the form

ut = uxxx + F (x, t, u, ux, uxx), (1)

where F is a smooth real-valued function of its arguments that admits nontrivial symmetry
groups.

We adopt the approach applied to the classification of several partial differential equa-
tions such as the most general second order quasi-linear heat-conductivity equation and the
Schrödinger equation [1–3]. The approach is basically a combination of Lie’s infinitesimal
method and the use of equivalence transformations and the classification theory of abstract
finite-dimensional Lie algebras.

We implement this classification in an algorithmic way in the following steps. The first step
of the procedure is to find the most general form of the symmetry group of the equation under
study using the standard Lie algorithm [4–6]. This is equivalent to solving a first order system of
linear PDEs. In effect, the coefficients of the infinitesimal generator will satisfy certain relations
connecting them with the arbitrary term and its derivatives. We then use the direct method
(or, equivalently, infinitesimal one) to construct the equivalence group of the equation.

In the second step, we classify realizations of finite-dimensional Lie algebras by vector fields
of the above form up to equivalence transformations. To this end, we use various results on the
structure of abstract Lie algebras [7–11]. In the last step, after transforming symmetry generators
to canonical forms, we proceed to classifying equations that admit nontrivial symmetries. We
do this by inserting these generators into the symmetry condition and solving for F . With
the increasing dimension of the realized algebras, the form of the arbitrary element will be
restricted. Typically we continue this procedure until the arbitrary term figuring in the equation
is completely specified. At this stage, the obtained equations are expected to depend on arbitrary
parameters at most and it is easily checked by Lie algorithm whether the symmetry algebras
obtained can be maximal among all those leaving invariant the equation under study.

The full details of the group classification of (1) can be found in [12].
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2 Determining equations and equivalence transformations

Lie algebra of the symmetry group of equation (1) is realized by vector fields of the form

X = τ(x, t, u)∂t + ξ(x, t, u)∂x + φ(x, t, u)∂u. (2)

Applying the standard Lie algorithm we have

Proposition 1. The symmetry group of the nonlinear equation (1) for an arbitrary (fixed)
function F is generated by the vector field

X = τ(t)∂t +
(

τ̇

3
x + ρ(t)

)
∂x + φ(x, t, u)∂u, (3)

where the functions τ(t), ρ(t) and φ(x, t, u) satisfy the determining equation

−3uxρ̇ − xuxτ̈ − 9uxuxxφuu − 3ux
3φuuu

+ 3φt − 9uxxφxu − 9ux
2φxuu − 9uxφxxu − 3φxxx + 3 (φu − τ̇) F

+
(
2uxxτ̇ − 3uxxφu − 3ux

2φuu − 6uxφxu − 3φxx

)
Fuxx

+ (uxτ̇ − 3uxφu − 3φx)Fux − 3φFu − 3τFt − (3ρ + xτ̇)Fx = 0. (4)

Here the dot over a symbol stands for time derivative.

Next we construct the local group of point transformations preserving the form of the equation
but possibly changing the function F . We require that equation (1) be preserved by local point
transformations

t̃ = T (x, t, u), x̃ = Y (x, t, u), ũ = U(x, t, u), (5)

where

D(T, Y, U)
D(t, x, u)

�= 0.

This requirement constrains the form of the transformation and we obtain the following
assertion

Proposition 2. The maximal equivalence group E has the form

t̃ = T (t), x̃ = Ṫ 1/3x + Y (t), ũ = U(x, t, u), (6)

where Ṫ �= 0, Uu �= 0.

Proposition 3. Vector field (3) is equivalent within a point transformation of the form (5) to
one of the following vector fields:

X = ∂t, X = ∂x, X = ∂u. (7)

Proof. Transformation (6) transform vector field (3) into

X → X̃ = τ(t)Ṫ (t)∂t̃ +
[
1
3
(τ Ṫ−1T̈ + τ̇)(x̃ − Y ) + τ Ẏ + ρṪ 1/3

]
∂x̃

+
[
τUt +

(
1
3
τ̇x + ρ

)
Ux + φUu

]
∂ũ. (8)

There are two cases to consider:
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i) φ = 0. Choose U = U(u) so that we have

X̃ = τ(t)Ṫ (t)∂t̃ +
[
1
3
(τ Ṫ−1T̈ + τ̇)(x̃ − Y ) + τ Ẏ + ρṪ 1/3

]
∂x̃ + φUu∂ũ. (9)

Now if τ = 0, then ρ �= 0 (otherwise X would be zero) we choose T (t) to satisfy

Ṫ = ρ−3.

In this case X̃ is transformed into ∂x̃.
If τ �= 0, then we choose T and Y to satisfy

Ṫ = τ−1, τ Ẏ + ρṪ 1/3 = 0.

With this choice of T and Y vector field X̃ is transformed into ∂t̃.
ii) φ �= 0. If τ = ρ = 0 then we can choose U to satisfy φUu = 1 so that we have X̃ = ∂ũ.

Otherwise, U can be chosen to satisfy

τUt +
(

1
3
τ̇x + ρ

)
Ux + φUu = 0.

Hence we recover Case i.
Summing up, the vector field (3) is equivalent, up to equivalence under E , to one of the three

standard vector fields ∂x, ∂t, ∂u. This completes the proof. �

3 Classification of equations invariant under semi-simple
algebras and algebras having nontrivial Levi decompositions

We start out by classifying equations (1) that admit Lie algebras isomorphic to the Lie algebras
having nontrivial Levi decomposition. To achieve this, we construct equations admitting semi-
simple Lie algebras as invariance algebra.

The lowest order semi-simple Lie algebras are isomorphic to one of the following three-
dimensional algebras:

sl(2, R) : [X1, X3] = −2X2, [X1, X2] = X1, [X2, X3] = X3;
so(3) : [X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2.

Using these commutation relations one can show that there is no realization of so(3) in terms
of vector fields (3). We conclude that we cannot have so(3)-invariant equation of the form (1).

Theorem 1. There exist no realizations of the algebra so(3) in terms of vector fields (3). Hence
no equation of the form (1) is invariant under so(3) algebra.

There are three inequivalent realizations of the algebra sl(2, R) by operators of the form (2)
{

∂t, t∂t +
1
3
x∂x,−t2∂t − 2

3
tx∂x

}
,

{
∂t, t∂t +

1
3
x∂x,−t2∂t − 2

3
tx∂x − x3∂u

}
,

{
∂u, u∂u,−u2∂u

}
.

Inserting the coefficients of basis operators of the above realizations of the algebra sl(2, R)
into invariance relation (4) and solving and analyzing for their maximality we arrive at the
following two theorems.
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Theorem 2. The class of PDEs (1) contains two inequivalent equations whose invariance al-
gebra are semi-simple (sl(2, R))

ut = uxxx − 3
2
u−1

x u2
xx + uxG(x, t);

ut = uxxx − x−3

[
2xux +

1
9
x2u2

x − G(ω1, ω2)
]

, ω1 = 3u − xux, ω2 = 6u − x2uxx.

The maximal invariance algebras of the above equations for arbitrary G are

sl1(2, R) =
{
∂u, u∂u,−u2∂u

}
;

sl2(2, R) =
{

∂t, t∂t +
1
3
x∂x,−t2∂t − 2

3
tx∂x − x3∂u

}
.

Theorem 3. Nonlinear equation (1) whose invariance algebra is isomorphic to a Lie algebra
having non-trivial Levi decomposition is represented by one of the following equations:

ut = uxxx − 3
2
u−1

x u2
xx + uxG̃(x), sl1(2, R) ⊕ {∂t}; (10)

ut = uxxx − 3
2
u−1

x u2
xx + λx−2ux, λ �= 0, sl1(2, R) ⊕

{
∂t, t∂t +

1
3
x∂x

}
; (11)

ut = uxxx − 3
2
u−1

x u2
xx, sl1(2, R) ⊕

{
∂t, ∂x, t∂t +

1
3
x∂x

}
; (12)

ut = uxxx − 2x−2ux − 1
9
x−1u2

x + x−3G̃(σ), σ = x2uxx − 2xux, sl2(2, R) ⊕ {∂u}, (13)

where G̃ is an arbitrary function of x or σ. Moreover, the associated symmetry algebras are
maximal.

4 Equations invariant under solvable algebras

4.1 Equations with one-dimensional symmetry algebras

Given an F we assume that equation (1) is invariant under one-dimensional symmetry groups
whose canonical forms are generated by translational vector fields ∂t, ∂x and ∂u (Proposition 3):

A1,1 : X1 = ∂t, A1,2 : X1 = ∂x, A1,3 : X1 = ∂u. (14)

The corresponding invariant equations will have the form

A1,1 : ut = uxxx + F (x, u, ux, uxx), (15a)
A1,2 : ut = uxxx + F (t, u, ux, uxx), (15b)
A1,3 : ut = uxxx + F (x, t, ux, uxx). (15c)

4.2 Equations with two-dimensional symmetry algebras

There are two isomorphy classes of two-dimensional Lie algebras, Abelian and non-Abelian
satisfying the commutation relations [X1, X2] = κX2, κ = 0, 1. We denote them by A2,1 and A2,2:

A2.1 : [X1, X2] = 0, A2.2 : [X1, X2] = X2. (16)

We construct all inequivalent realizations of the algebras A2,1, A2,2 in terms of infinitesimal
operators (3) and obtain nine classes of two-dimensional algebras altogether. The representatives
of equivalence classes of invariant equations are again found by substituting the coefficients in
the symmetry condition (4). By doing this, the form of F in (15) is further restricted and the
number of variables of F is reduced from four to three.
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Theorem 4. There exist nine classes of two-dimensional symmetry algebras admitted by equa-
tion (1). Those algebras and functions F are represented by

A1
2,1 : X1 = ∂t, X2 = ∂x, F = F (u, ux, uxx),

A2
2,1 : X1 = ∂t, X2 = ∂u, F = F (x, ux, uxx),

A3
2,1 : X1 = ∂x, X2 = α(t)∂x + ∂u, F = −α̇uux + F̃ (t, ux, uxx),

A4
2,1 : X1 = ∂u, X2 = g(x, t)∂u, gx �= const,

F = (gt − gxxx)g−1
x ux + F̃ (x, t, ω), ω = gxxux − gxuxx,

A1
2,2 : X1 = ∂t, X2 = −t∂t − x

3
∂x,

F = x−3F̃ (u, ω1, ω2), ω1 = xux, ω2 = x2uxx,

A2
2,2 : X1 = −3t∂t − x∂x, X2 = ∂x,

F = t−1F̃ (u, ω1, ω2), ω1 = t1/3ux, ω2 = t2/3uxx,

A3
2,2 : X1 = −u∂u, X2 = ∂u, F = uxF̃ (x, t, ω), ω = u−1

x uxx,

A4
2,2 : X1 = ∂x − u∂u, X2 = ∂u,

F = e−xF̃ (t, ω1, ω2), ω1 = exux, ω2 = exuxx,

A5
2,2 : X1 = ∂t − u∂u, X2 = ∂u,

F = uxF̃ (x, ω1, ω2), ω1 = etux, ω2 = etuxx.

4.3 Equations with three-dimensional symmetry algebras

Two classes of decomposable three-dimensional Lie algebras exist over R. Six classes of inde-
composable three-dimensional Lie algebras exist over R.

The decomposable three-dimensional algebras are represented by

A3,1 = 3A1 = A1 ⊕ A2 ⊕ A3

with [Xi, Xj ] = 0 for i, j = 1, 2, 3 and

A3,2 = A2,2 ⊕ A1

with [X1, X2] = X2, [X1, X3] = 0, [X2, X3] = 0.
A solvable three-dimensional Lie algebra has a two-dimensional Abelian ideal. We choose X1

and X2 as basis elements of the ideal. The commutation relations can be represented in the
matrix notation(

[X1, X3]
[X2, X3]

)
= J

(
X1

X2

)
, [X1, X2] = 0,

where J ∈ M
2×2 can be chosen in its Jordan canonical form.

Over R we have

A3.3 : J =
(

0 0
1 0

)
, A3.4 : J =

(
1 0
1 1

)
, A3.5 : J =

(
1 0
0 1

)
,

A3.6 : J =
(

1 0
0 −1

)
, A3.7 : J =

(
1 0
0 q

)
, 0 < |q| < 1,

A3.8 : J =
(

0 −1
1 0

)
, A3.9 : J =

(
q −1
1 q

)
, q > 0.
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Two of them, A3.7 and A3.9 depend on a continuous parameter q. Once algebras in the above
list have been realized we can proceed to construct invariant equations (see [12] for details). The
final result on three-dimensional symmetry algebras can be summed up as a theorem.

Theorem 5. There are thirty-eight inequivalent three-dimensional solvable symmetry algebras
admitted by equation (1).

The explicit forms of those algebras as well as the associated invariant equations are given
in [12].

5 Equations with four-dimensional solvable algebras

Ten isomorphism classes of decomposable four-dimensional Lie algebras and twelve decompos-
able ones exist. Omitting the details we present the result as a theorem. For the forms of
inequivalent realizations of four-dimensional algebras and the corresponding invariant equations
the reader is referred to Ref. [12].

Theorem 6. There exist fifty-two inequivalent four-dimensional symmetry algebras admitted by
equation (1).

Again, the realizations of these algebras and the corresponding functions F are too long to
present here. The interested reader should consult Ref. [12].

Finally we mention that we performed group classification of the most general third-order lin-
ear PDE. To our surprise we established that the nontrivial symmetry group is four-dimensional
at most. However, as confirmed by the results of this work, there are nonlinear equations with
larger symmetry groups than that of the linear equation. This situation is not the case for
second-order PDEs.
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